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Abstract

Time-stamped camera data are increasingly used to study temporal patterns in

species and community ecology, including species’ activity patterns and niche

partitioning. Given the importance of niche partitioning for facilitating coexis-

tence between sympatric species, understanding how emerging environmental

stressors – climate and landscape change, biodiversity loss and concomitant

changes to community composition – affect temporal niche partitioning is of

immediate importance for advancing ecological theory and informing manage-

ment decisions. A large variety of analytical approaches have been applied to

camera-trap data to ask key questions about species activity patterns and tem-

poral overlap among heterospecifics. Despite the many advances for describing

and quantifying these temporal patterns, few studies have explicitly tested how

interacting biotic and abiotic variables influence species’ activity and capacity to

segregate along the temporal niche axis. To address this gap, we suggest coordi-

nated distributed experiments to capture sufficient camera-trap data across a

range of anthropogenic stressors and community compositions. This will facili-

tate a standardized approach to assessing the impacts of multiple variables on

species’ behaviours and interactions. Ultimately, further integration of spatial

and temporal analyses of camera-trap data is critical for improving our under-

standing of how anthropogenic activities and landscape changes are altering

competitive interactions and the dynamics of animal communities.

Introduction

Global biodiversity declines are being driven by the direct

and indirect effects of anthropogenic disturbances (Cardi-

nale et al. 2012; Hooper et al. 2012). Although these direct

effects manifest in obvious ways through habitat loss and

wildlife population declines, more subtle are the myriad

indirect and cascading effects of human-driven disturbances,

including altered species behaviours and interspecific inter-

actions. A better understanding of these indirect impacts is

needed to inform effective conservation planning. Recent

technological and statistical advances in the application of

camera trapping suggest that this emerging methodology

may help provide such understanding.

Camera trapping is widely used in ecology and con-

servation for investigating species’ distributions, estimat-

ing population densities and inventorying biodiversity

(O’Connell et al. 2011; Burton et al. 2015; Steenweg

et al. 2017). While camera-trap studies have typically

focused on the spatial and numerical aspects of species

and population ecology (e.g. Karanth and Nichols 1998;

Linkie et al. 2007; Tobler et al. 2008), they have less

often examined species’ behaviours and interactions and

their associated consequences for community structure.
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Only recently have researchers focused attention on the

finer scaled temporal data provided by time-stamped

camera-trap images (e.g. Ridout and Linkie 2009; Row-

cliffe et al. 2014), which detail the timing of wildlife

occurrences across points in space. While such temporal

data present analytical challenges, they are critical for

developing a more complete understanding of popula-

tion and community dynamics in the face of global

change.

Temporal camera-trap data offer the opportunity to

address unresolved questions regarding species ecology

and community interactions, such as variation in activity

patterns and partitioning along the temporal niche axis.

These temporal insights are not only valuable from an

ecological perspective, but they also provide insight into

human-driven changes to species behaviours and interac-

tions, and the resulting impacts on niche partitioning

and community structure. The increase in camera-trap

studies focused on temporal analyses is beginning to gen-

erate new ecological and applied insights, but a synthesis

of recent approaches and trends is lacking. In this review,

we pursue this synthesis through exploring several princi-

pal questions and analytical approaches for investigating

temporal data collected by wildlife cameras. These ques-

tions reflect common themes we observed in the litera-

ture, and associated methods for analysing temporal data

in the context of species’ behaviour and interactions.

Based on an ad hoc review, we provide a synthetic over-

view of frequently cited and more recent papers, building

on notable past reviews (Bridges and Noss 2011) by add-

ing more recent advances in approaches and thought.

We review the theoretical basis for activity patterns and

temporal niche partitioning, summarize current

approaches, assess current limitations to more complete

analyses and highlight significant advances in gaining a

fuller understanding of species and community ecology.

Ultimately, species’ interactions and community dynam-

ics can only be fully resolved by combining spatial and

temporal data, therefore we also discuss new directions

where combined spatiotemporal aspects of species niche

partitioning and responses to environmental stimuli can

be explored.

Exploring Time as a Niche Axis

Temporal dynamics are integral to niche theory

(Hutchinson 1957, 1959; MacArthur and Levins 1967),

including species autecology and community assembly,

diel activity patterns and temporal niche partitioning

among sympatric heterospecifics. Animal activity – quan-

tifying how species distribute their activity over the day

– is an important dimension of animal behaviour; how

species use time as a resource provides valuable informa-

tion about their ecological niche (Schoener 1974).

Extending to the community level, understanding how

sympatric species partition time provides insight into the

mechanisms facilitating stable coexistence (Carothers and

Jaksi�c 1984; Kronfeld-Schor and Dayan 2003). Numerous

studies employing camera-trap data have observed tem-

poral niche partitioning as an important strategy for

enabling the coexistence of ecologically similar species

(e.g. Di Bitetti et al. 2010; Monterroso et al. 2014;

Sunarto et al. 2015).

As diel activities are adapted to local conditions (Halle

2000), the influence of abiotic and biotic variables on

activity patterns and temporal niche partitioning is a pri-

mary question for both ecological research and biodiver-

sity conservation. Already there is mounting evidence

from camera-trap studies that human-driven landscape

and community impacts – including land-use change

(Ramesh and Downs 2013), human activity (Wang et al.

2015; Ngoprasert et al. 2017), hunting (Di Bitetti et al.

2008), predator control (Brook et al. 2012) and presence

of invasive competitors or predators (Gerber et al. 2012;

Zapata-R�ıos and Branch 2016) – may alter species’ activ-

ity patterns and competitive or predatory interactions

through altered temporal niche partitioning. Therefore,

effective conservation decisions must also consider how

environmental stressors and shifts in community compo-

sition may impact sympatric species’ ability to segregate

not just spatially, but also temporally.

The circular distribution of temporal data comes with

its own set of analytical challenges, and very large sample

sizes are required to explore fine-scale temporal responses

across spatial gradients. Recent statistical and software

developments have made important strides in tackling

the challenges of temporal camera-trap data analysis (e.g.

Ridout and Linkie 2009; Oliveira-Santos et al. 2013),

thereby facilitating characterization of activity patterns

and temporal niche overlap. Nevertheless, modelling the

degree to which external variables (habitat characteristics,

community structure, disturbance variables, etc.) cumula-

tively influence species’ activity patterns and temporal

niche partitioning continues to present considerable chal-

lenges. To date, few researchers have attempted such

multivariate analyses with temporal data (e.g. Norris

et al. 2010; Wang et al. 2015). Even more challenging

is combining both spatial and temporal species’

distributions to gain a fuller resolution of the underlying

dynamics structuring interspecific interactions and

community-level responses. Tackling this challenge starts

with analysing the activity patterns of single species, and

builds iteratively towards more complex multispecies and

multivariable models.
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Current Approaches to the Analysis
of Activity Patterns

Activity data reflect an important dimension of animal

behaviour and ecology, as they provide relevant informa-

tion on species’ natural history and ecological niche.

Temporal data extracted from time-stamped wildlife

images have provided some of the first analyses of diel

(or circadian) activity of populations and species (e.g.

Gerber et al. 2012; Bu et al. 2016).

Early camera-trap studies derived descriptive inferences

from tabulated records or graphical displays of activity

over discrete time periods of the diel cycle (e.g. van

Schaik and Griffiths 1996; Lizcano and Cavelier 2000;

J�acomo et al. 2004). This allowed assignment of taxa to

general behavioural groups (e.g. diurnal, nocturnal) and

better describe the temporal aspects of species’ ecological

niches. More recently, graphical displays of diel activity

patterns use nonparametric kernel density estimates (e.g.

Ridout and Linkie 2009; Linkie and Ridout 2011; Farris

et al. 2015) to view species’ activity as a continuous dis-

tribution over the wrapped 24-h cycle. Kernel density

functions yield a continuous measure of the density of

data points across their scale (Worton 1989), treating the

estimates as a random sample from an underlying contin-

uous distribution instead of grouping them into discrete

time categories. Meredith and Ridout’s (2014) R package

‘Overlap’ produces kernel density curves of species activ-

ity patterns from camera-trap data, with a similar func-

tion offered by the R package ‘Circular’ (Agostinelli and

Lund 2013). Such graphical displays of activity patterns

reflect aspects of temporal variability in species activity

over the diel cycle, including basic behavioural categoriza-

tions (e.g. diurnality vs. nocturnality) and periods of peak

activity. This approach dramatically improved the level of

insight gained without any further investment in data

acquisition, and thus represents significantly improved

return on investment of camera-trap arrays.

Quantitatively investigating activity patterns comes

with various challenges. Time is a wrapped distribution

with an arbitrary zero point, thus classical statistical

methods cannot be applied (Zar 2010). To solve this, cir-

cular statistics use trigonometric functions to derive

descriptive statistics of temporal data, including mean

time of activity (the mean vector), circular median, stan-

dard deviation and variance, as well as other dispersal

estimates such as concentration (Batschelet 1981). Vari-

ous software packages offer functions for deriving the

statistical parameters on circular data, including ORIANA

(Kovach 2011) and the R packages ‘CircStats’ (Lund and

Agostinelli 2007) and ‘Circular’ (Agostinelli and Lund

2013). However, multimodal distributions indicating

multiple peaks of activity (e.g. a crepuscular species

showing activity peaks at dawn and dusk) do not yield

intuitive statistical estimates of centrality (Batschelet

1981). As bimodal activity patterns are widespread

(Aschoff 1966), the derived mean vector may fall

between the two activity modes. Although studies have

reported the mean vector to quantify species’ mean activ-

ity time (e.g. Di Bitetti et al. 2010; Norris et al. 2010;

Ramesh et al. 2012), this should be done with great cau-

tion to ensure the derived mean vector reflects a biologi-

cally accurate and meaningful value.

Oliveira-Santos et al. (2013) proposed conditional cir-

cular kernel density functions to characterize ‘activity

range’ and ‘activity core’ from time of detection camera

data. Following an approach similar to telemetry-based

home range contours, they created density functions

yielding 95% isopleths representing the time interval in

which 95% of the animal activity occurs – an ecologically

relevant activity range that eliminates outlying periods of

activity produced by the statistical smoothing process.

More conservatively, the 50% isopleths can be used to

determine during which time interval(s) core activity is

focused. This approach allows for a more quantitative

analysis of temporal data, delimiting hours of peak activ-

ity to characterize specific aspects of species’ circadian

activities. Rowcliffe et al. (2014) also applied kernel den-

sity functions to camera data in developing an analysis to

quantify the overall proportion of time that an animal

spends active (i.e. activity level). The R package ‘activity’

(Rowcliffe 2016) fits circular distributions to temporal

camera-trap data to create activity schedules and calculate

species’ activity level, thereby facilitating inquiry into ani-

mal energetics, predation risk and foraging effort,

although key assumptions for deriving this metric may

not be met in certain populations (Rowcliffe et al. 2014).

Species’ activity patterns may also be characterized

according to selection for certain time periods by dis-

cretizing the 24-h diel cycle into categories such as dawn,

day, dusk and night. Chi-square tests determine if species’

activity patterns are non-random (e.g. Bu et al. 2016).

Resource selection functions (Manly et al. 2002) have also

been used to determine how species distribute activity

over various time periods given their availability (e.g.

Gerber et al. 2012; Bu et al. 2016), which provides an

approach to ascribing behavioural categorizations to spe-

cies’ activity patterns (e.g. diurnal, nocturnal or crepuscu-

lar). Species can also be assigned into such categorizations

using niche selectivity indices, such as Ivlev’s Electivity

Index (Ivlev 1961) or its derived Jacobs Selectivity Index

(Jacobs 1974). Using a novel approach to investigating

how species selectively use different time periods, Farris

et al. (2015) used hierarchical Bayesian Poisson analysis

by modelling photographic rate (capture events/available

hours) for each time category.
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Camera-trap studies using such descriptive and quanti-

tative approaches have produced considerable insight

into the activity patterns of a wide range of species from

diverse systems. These have included carnivore guilds (Di

Bitetti et al. 2010; Monterroso et al. 2014), ungulates

(Ferreguetti et al. 2015), rodents (Meek et al. 2012), pri-

mates (Gerber et al. 2012), birds (Srbek-Araujo et al.

2012) and various other mammals (Oliveira-Santos et al.

2008; Galetti et al. 2015). Interestingly, some conclusions

from camera-trap research on species activity patterns

have challenged previous conclusions regarding species-

specific temporal activity (Bischof et al. 2014), which

may arise from past sampling constraints that did not

allow non-invasive, 24-h sampling. However, we are

aware of no studies that have directly compared animal

activity patterns generated via camera-trap data with

more complete descriptions of activity derived from

high-frequency GPS telemetry relocations. It is possible

that activity data collected by camera traps may contain

biases related to temporal variability of detectability

caused by temperature, humidity or other factors sup-

pressing detectability, but these remain untested to the

best of our knowledge.

Despite the potential limitations of sampling species’

activity patterns using camera-trap data, many emerging

advances in documenting these patterns have been devel-

oped. The logical first step is comparing these activity

patterns among sympatric species to ask how species

divide the temporal niche axis.

Analyses of Temporal Niche
Partitioning

Perhaps the ecologically most interesting question asked

of species activity data is how sympatric species partition

their activities to promote stable coexistence. MacArthur

and Levins’ (1967) limiting similarity theory predicts that

no two species can coexist in time and space; thus, sym-

patry demands species divide their resources to avoid

extinction by competition (Fig. 1). Time can be consid-

ered as a resource as it is ‘consumed’ analogously to other

resources with limited availability (Halle 2000). Although

not previously emphasized as an important mechanism

for reducing competition, partitioning time of activity

may be one of the most relevant strategies for the coexis-

tence of species (Schoener 1974). Understanding how eco-

logically similar species coexist is not just a key question

in ecology, but also crucial for understanding community

diversity.

Early investigations of temporal niche partitioning

relied on qualitative analyses of histograms. Researchers

later began using linear frequency statistical procedures

with the 24-h cycle categorized in contingency tables

(J�acomo et al. 2004; Lucherini et al. 2009; Gerber et al.

2012). Measures of niche similarity and overlap – such as

Renkonen’s similarity index and Pianka’s measure of

niche overlap (Krebs 1998) – evaluate differential use and

partitioning of time as a resource (e.g. Lucherini et al.

2009; Hofmann et al. 2016), although these require

discretization of data into arbitrary bin sizes.

Software packages which fit nonparametric circular

density functions to camera-trap data allow researchers

to analyse activity through a circular inferential statisti-

cal approach. A descriptive measure of the degree of

similarity between two kernel density curves can be cal-

culated following Ridout and Linkie’s (2009) innovative

coefficient of overlap, which fits camera-trap data to a

kernel density function and then estimates a symmetri-

cal overlapping coefficient between species using a total

variation distance function (Fig. 2). This coefficient of

overlap (Δ), whose precision can be estimated via boot-

strapping and ranges from 0 (no overlap) to 1 (complete

overlap), has often been used to investigate potential

competitive and interaction possibilities between species

(e.g. Linkie and Ridout 2011; Farris et al. 2015; Cusack

et al. 2017). As Δ is a relative measure, interspecific dif-

ferences in activity patterns may also be tested for sta-

tistical significance. The nonparametric circular Mardia–
Watson–Wheeler (MWW) statistical test (Batschelet

1981) and Watson U2 test (Zar 2010) have both been

used to determine if two or more circular distributions

vary significantly. Meredith and Ridout’s (2014) ‘Over-

lap’ package remains a popular tool for presenting the

overlap of two activity curves visually and estimating Δ,
despite the biases introduced by the smoothing process

when applying kernel density functions to temporal data

and deriving an estimation of Δ (as discussed by Ridout

and Linkie 2009).

Exploring temporal niche partitioning with camera

traps has highlighted the prevalence and importance of

segregation along the temporal axis for enabling coexis-

tence within diverse assemblages of sympatric species.

For example, Bischof et al. (2014) concluded that the

elusive Altai mountain weasel Mustela altaica compen-

sates for spatial overlap with intraguild predators by

adopting an inverse activity pattern to its sympatric

dominant predators while still maintaining spatial access

to prey. Ferreguetti et al. (2015) concluded that two

sympatric deer species may mitigate competition for sim-

ilar space and food resources through differences in their

activity patterns. Di Bitetti et al.’s (2010) analysis of

Neotropical felid species activity patterns observed diur-

nal, nocturnal and cathemeral behaviours among species.

Morphologically similar species had the most contrasting

activity patterns, suggesting that the ability of species to

segregate temporal activities may explain the lack of
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character displacement seen in certain assemblages (Di

Bitetti et al. 2010). Similarly, Sunarto et al. (2015)

observed that within a tropical community of felids,

those species with the most similar body size or with

similarly sized prey had the lowest temporal overlap.

Monterroso et al. (2014) observed a negative correlation

between mean pairwise temporal overlap and species

richness (number of species with at least 10 detections)

across a mesocarnivore community. They suggest that

temporal niche partitioning may be influenced by com-

munity diversity and likely plays an important role in

facilitating stable coexistence in mesocarnivore guilds

showing high diversity.

With statistical techniques to quantify temporal niche

partitioning using camera data quickly developing, it is

increasingly possible to ask questions about the factors

that affect partitioning, including anthropogenic pres-

sures induced by landscape and climate change.

Investigating Changes to Species
Activity Patterns and Niche
Partitioning

Animal activity patterns evolve via processes of natural

selection (Kronfeld-Schor and Dayan 2003), such as his-

toric co-evolutionary competitive interactions (‘the ghost

of competition past’, Connell 1980), but behavioural plas-

ticity may allow flexible changes to activity patterns in

response to environmental stimuli (Halle 2000). Environ-

mental cues such as predation risk, resource availability

and the potential for agonistic encounters with dominant

competitors influence behavioural decisions that alter a

species’ activity (Halle 2000). Activity during suboptimal

times of higher predation risk, increased energy demand

or lower prey availability may incur fitness costs. Com-

paring activity patterns in response to external stimuli

provides insight into the degree of plasticity in species

Figure 1. Sympatric species must partition time or space to co-exist. These four species (clockwise: grizzly bear Ursus arctos, wolverine Gulo

gulo, mule deer Odocoileus hemionus, moose Alces alces) were detected at the same camera-trap location. Spatiotemporal partitioning reduces

competition and the potential for agonistic encounters.
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activity schedules and into the extent to which various

environmental factors may alter an animal’s activity pat-

tern.

Changes to species’ activity patterns may lead to altered

temporal niche partitioning between species, with poten-

tial repercussions to species interactions such as intraguild

competition and predator–prey dynamics. Indirect effects

of anthropogenic stressors such as climate and landscape

change could increase temporal overlap between species,

augmenting interspecific conflict and exploitation of prey,

or conversely, releasing species from predation or com-

petitive pressure with reduced overlap. However, very few

studies have empirically quantified how external factors

may influence temporal niche partitioning (but see Wang

et al. 2015).

Investigations of altered activity patterns, as with sim-

pler investigations of animal activity, have typically

involved descriptive comparisons of activity distributions

from graphical displays, but also paired with simple sta-

tistical tests to determine whether two or more circular

distributions differ significantly. Largely, these data have

come from time-stamped wildlife images collected via

camera trapping (but see Suselbeek et al. 2014). Gener-

ally, authors have divided the camera-trap data into two

or three treatment groups based on abiotic or biotic fac-

tors such as season, lunar phase, presence/absence of

predators or competitors, human activity or landscape

change. Significant differences between activity times may

be quantified statistically through a chi-squared contin-

gency table of frequency of photographic records (e.g.

J�acomo et al. 2004), but again this requires categorization

of the temporal data into discrete time bins. The afore-

mentioned MWW and Watson U2 tests have also both

been used to determine if activity distributions between

populations vary significantly. For example, Di Bitetti

et al. (2009) observed that pampas foxes Lycalopex gym-

nocercus showed significantly different activity patterns in

areas where the competitively dominant crab-eating fox

occurred. Likewise, statistical comparisons of activity

records between two colour morphs of oncilla Leopardus

tigrinus revealed significant intraspecific differences in diel

activity patterns (Graipel et al. 2014).

Intraspecific comparisons between study systems or

treatment groups have also been performed using Ridout

and Linkie’s Δ (e.g. Monterroso et al. 2014; Wang et al.

2015). For example, Monterroso et al. (2014) observed a

considerable degree of plasticity in European mesocarni-

vore nocturnal activity times between seasons and sites

based on mean Δ values. By overlaying intraspecific activ-

ity curves of predators experiencing high versus low levels

of human disturbance, Wang et al. (2015) demonstrated

the timing and direction of activity shifts between two

treatment groups. Activity overlap may also be quantified

at conditional isopleths to determine whether overlap is

more concentrated in the activity cores of the species

(Oliveira-Santos et al. 2013). Rheingantz et al. (2016)

observed very low activity overlap at 95% and 50% con-

ditional isopleths between the two studied otter popula-

tions (45.6% and 14.1% respectively), suggesting a high

level of plasticity in activity patterns; this was hypothe-

sized to be a product of human activity or shifts in prey

availability.

To date, the majority of studies evaluating the impact

of external variables on species activity patterns have anal-

ysed the effect of a single variable at a time. Comparative

tests do not allow for modelling multiple explanatory

variables, potentially missing cumulative effects of multi-

ple stressors, and interaction terms. Moreover, differences

arising between treatment groups may potentially mani-

fest in response to confounding (or collinear) variables.

Alternative options include angular–linear correlations, as

done by Hofmann et al. (2016) in comparing peccary

activity time in relation to air temperature. Using an

information-theoretic analysis of species activity, Norris

et al. (2010) used linear mixed effects models to evaluate

how abiotic conditions and human disturbance influenced

activity pattern of three Amazonian terrestrial mammals.

They observed that the time since isolation of forest

patches had the strongest influence on agouti activity tim-

ing (Norris et al. 2010). However, care should be taken to

ensure that the linear (as opposed to circular) scale used

to define activity patterns upholds biological relevance; as

mentioned, there is little biological difference but marked

statistical difference between 2355 h and 0005 h on the

linear scale.

A simple test for evaluating the impact of abiotic or

biotic variables on temporal niche partitioning between

sympatric species could involve directly comparing the

Figure 2. An example of the characterization of diel activity patterns

from camera-trap data. Kernel density functions were used to depict

grey wolf Canis lupus and coyote Canis latrans activity sampled via

camera trapping during October–March 2006 to 2008, in the

Willmore Wilderness Area, Alberta, Canada. The overlap coefficient

(Δ) is the area under the minimum of the two density estimates

(denoted in grey).
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bootstrapped mean overlap coefficient and 95% confi-

dence intervals between species pairs across two or more

treatment groups. Despite the relative simplicity and

potential insights that could be gained from such a com-

parison, we are aware of no studies that have examined

this direct comparison of interspecific temporal overlap

across experimental treatments.

One noteworthy study by Wang et al. (2015) evalu-

ated the influence of external variables on temporal

niche partitioning in areas of ex-urban development

near the Santa Cruz Mountains of California. Using an

information-theoretic approach, these authors modelled

Δ between mesocarnivore species pairs as a response to

landscape development, human activity and forest cover.

Wang et al.’s (2015) approach represents one of the few

studies that simultaneously models the effect of multiple

variables on species’ activities and partitioning along the

temporal axis. However, such fine-scale inferential analy-

sis requires large amounts of data and a robust sam-

pling design for capturing the effect of multiple

explanatory variables across a spatial gradient. Many

studies of species activity patterns and temporal niche

partitioning are performed as secondary investigations,

repurposing camera-trap data collected primarily for

analysing spatial patterns or other responses (e.g. Di

Bitetti et al. 2006; Sunarto et al. 2015; Ikeda et al.

2016). For all the reasons detailed above, spatially

focused study designs with sample sizes only sufficient

to confidently yield spatial and numerical responses may

not be adequate to extend insight to complex and fine-

scale investigation of species’ activity patterns and tem-

poral niche partitioning.

In summary, scientists have only begun to delve into dis-

covering how animals spend their days, how species divide

up time among them and how our marked impacts on

landscapes, climates and biotic communities change these

temporal processes. Moreover, although it is tacitly under-

stood that space and time are inextricably linked, their inte-

gration in this context remains to be explored.

Future Directions: Analysing
Spatiotemporal Species Interactions

With an increasing number of statistical approaches, and

emerging studies of species behaviours and partitioning

along both the spatial and temporal niche dimensions,

our understanding of species interactions across time and

space is mounting. However, this subfield is still relatively

young, and most studies use opportunistic, not purpose-

designed, data. There are many interacting ecological pro-

cesses and cumulative effects of anthropogenic impacts

yet to disentangle. This is a key future area of research, as

the indirect effects of environmental stressors on species

activity and interactions may be as important as the direct

effects (Strauss 1991; Schoener 1993; Abrams 1995).

The opportunity to parse the relative influences of

space and time in species sympatric coexistence is an

intriguing prospect. The competitive interactions shaping

community structure likely manifest as both spatial and

temporal patterns, but few studies to date have directly

assessed such spatiotemporal interactions (but see Lewis

et al. 2015; Swanson et al. 2016; Cusack et al. 2017; Kar-

anth et al. 2017). Based on a comparison of approaches,

Cusack et al. (2017) suggested that approaches using the

combined spatial and temporal data generated by camera

traps yield better insight into the associative patterns

between sympatric species.

A second key opportunity is in using environmental

stressors as ‘treatments’ in large-scale experiments designed

specifically to understand the factors affecting species activ-

ity and interactions. Very little is known about how natural

and anthropogenic changes to landscapes and biotic com-

munities influence competitive interactions in animal pop-

ulations. As it stands, it is difficult to predict how climate

change, landscape change and anthropogenic changes to

community composition may impact the competitive

interactions and behavioural adaptations integral to main-

taining biodiversity and ecosystem stability. Altered spa-

tiotemporal interactions between sympatric species in

communities could have rippling effects throughout the

entire ecosystem (Crooks and Soul�e 1999). With anthro-

pogenic landscape changes projected to continue globally

(Theobald 2005; Seto et al. 2011; Maxwell et al. 2016),

focusing research efforts on understanding species spa-

tiotemporal responses to those impacts is vital to sound

conservation and management decisions. However, these

questions are exceedingly difficult to answer within a single

landscape.

Camera-trap surveys are invaluable for tracking direct

effects of anthropogenic change on species distributions

and abundances. However, the indirect effects of human

influence, mediated by interactions among species in

shifting communities, reside at the frontier of our knowl-

edge of wildlife responses in the Anthropocene. With the

growth of camera-trap networks deployed across multiple

landscapes (Ahumada et al. 2013; Burton et al. 2015;

McShea et al. 2016), hopefully growing into a global bio-

diversity network (Steenweg et al. 2017), network nodes

deployed as coordinated distributed experiments (sensu

Fraser et al. 2013) may help tease apart the effects of

landscape and climate change on species interactions in

complex environments. This research coordination and

accompanying sampling designs remain the greatest

opportunity for this emerging field of research. Fully capi-

talizing on the multi-scale spatial and temporal data pro-

duced by these networks may represent one of our best
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chances of advancing our ecological discoveries and meet-

ing the pressing demands of biodiversity conservation.
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