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Abstract

The Standard Model of Particle Physics has been verified to unprecedented pre-

cision in the last few decades. However there are still phenomena in nature which

cannot be explained, and as such new theories will be required. Since terrestrial

experiments are limited in both the energy and precision that can be probed, new

methods are required to search for signs of physics beyond the Standard Model. In

this dissertation, I demonstrate how these theories can be probed by searching for

remnants of their effects in the early Universe. In particular I focus on three possi-

ble extensions of the Standard Model: the addition of massive neutral particles as

dark matter, the addition of charged massive particles, and the existence of higher

dimensions. For each new model, I review the existing experimental bounds and the
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potential for discovering new physics in the next generation of experiments.

For dark matter, I introduce six simple models which I have developed, and which

involve a minimum amount of new physics, as well as reviewing one existing model

of dark matter. For each model I calculate the latest constraints from astrophysics

experiments, nuclear recoil experiments, and collider experiments. I also provide

motivations for studying sub-GeV mass dark matter, and propose the possibility of

searching for light WIMPs in the decay of B-mesons and other heavy particles.

For charged massive relics, I introduce and review the recently proposed model

of catalyzed Big Bang nucleosynthesis. In particular I review the production of

6Li by this mechanism, and calculate the abundance of 7Li after destruction of 7Be

by charged relics. The result is that for certain natural relics CBBN is capable of

removing tensions between the predicted and observed 6Li and 7Li abundances which

are present in the standard model of BBN.

For extra dimensions, I review the constraints on the ADD model from both

astrophysics and collider experiments. I then calculate the constraints on this model

from Big Bang nucleosynthesis in the early Universe. I also calculate the bounds

on this model from Kaluza-Klein gravitons trapped in the galaxy which decay to

electron-positron pairs, using the measured 511 keV γ-ray flux.

For each example of new physics, I find that remnants of the early Universe pro-

vide constraints on the models which are complimentary to the existing constraints

from colliders and other terrestrial experiments.
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Chapter 1

Introduction

The Standard Model has been very successful for the last three decades, with nu-

merous experiments confirming the existence of several particles and measuring the

fundamental parameters to increasing precision. In spite of many dedicated searches

for new physics at high energy colliders, as yet there has been no confirmed data

which is inconsistent with with Standard Model.

However this success does not extend to explaining cosmological data. For exam-

ple, the WMAP satellite [8, 9] which measured anisotropy in the cosmic microwave

background, and experiments studying both supernovae and large scale structure in

the Universe, have provided strong evidence for the existence of at least two new

forms of energy confirming the results of previous astrophysics experiments. The

first of these is an electrically neutral form of matter referred to as dark matter

comprising 23% of the energy content of the Universe, whose existence had been pre-

viously inferred from the discrepancy between luminous mass and gravitation masses

of galaxies and more recently in the observed gravitational lensing of the bullet clus-
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ter [10]. The other new form of energy, which is referred to as dark energy, has a

negative pressure and comprises 73% of the energy content of the universe, and was

originally detected in supernovae surveys [11, 12]. Astrophysics experiments have

also indicated excess positrons in the galaxy [13], ultra-high energy cosmic rays 1

[15, 16], and a net baryon number in the Universe (which can be measured both

in the CMB and in comparisons of the predictions of Big Bang Nucleosynthesis to

observed abundances of light elements). None of these phenomena can currently be

resolved within the context of the Standard Model.

In addition to these experimental anomalies,the Standard Model also fails to

explain why gravity is fifteen orders of magnitude weaker than the other forces, why

there exists three generations of particles, and several other problems related to the

underlying theory. There are numerous proposals which try to solve these problems,

but as yet none have been confirmed by experiments. Furthermore economical and

technological constraints restrict both the energy and precision which can be probed

directly in either current or next generation of collider experiments.

However nature has provided an alternate laboratory in the search for new physics

in the form of the early Universe. Moments after the big bang, the energy scales

involved in typical particle reactions were well in excess of those accessible to ter-

restrial experiments, allowing for previously undetected physical phenomena to have

an effect on the evolution and particle content of the Universe. If these effects leave

a signature which can be studied in modern times, then they may provide evidence

for the existence and nature of new physics.

1Recent preliminary results from the Auger observatory have suggested that the source of these
ultra-high energy cosmic rays are not isotropic, and may instead be produced in active galactic
nuclei, which would indicate that new physics may not be required to explain them[14].
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In this dissertation, I present several examples of physics beyond the Standard

Model that will have an effect on the early universe, including many models which

my collaborators and I have developed in previous published papers. I also present

several new methods of searching for the effects of these models in the modern Uni-

verse, including both methods which my collaborators and I originally published and

methods which I have developed for this dissertation, which are previously unpub-

lished. As will be demonstrated, each of these new methods provides either stronger

constraints on new physics models than previously existed, or allows existing exper-

iments to probe new regions of the parameter space for each model.

In Chapter 2, I review the motivation for dark matter and present several simple

models. Although the models presented involve minimal extensions of the Standard

Model, they also serve as effective theories for more complicated models and the

bounds presented can be applied to other dark matter candidates. In Section 2.6, I

present the motivations for the special case of light dark matter, involving sub-GeV

dark matter, and the possibility of detection in B-meson experiments as originally

published in:

• C.Bird, P. Jackson, R. Kowalewski and M. Pospelov, “Search for dark matter in

b → s transitions with missing energy”, Phys. Rev. Lett. 93, 201803 (2004),

[arXiv:hep-ph/0401195].

• C.Bird, R. Kowalewski and M. Pospelov, “Dark matter pair-production in b → s

transitions”, Mod. Phys. Lett. A 21, 457 (2006) [arXiv:hep-ph/0601090].
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With the exception of the Minimal Model of Dark Matter (MDM) presented in

Section 2.2.1, which was previously published in Ref [17, 18, 19], all of the models

represent original research. The constraints on each model, which are derived from

existing experimental data as well as updated bounds on the MDM, also constitute

original research.

In Chapter 3 , I review the existing bounds on long lived charged relics which may

exist in the Universe, and how the presence of metastable charged particles could

affect the predictions of Big Bang nucleosynthesis. The possibility that charged par-

ticles could catalyzed the standard reactions in Big Bang nucleosynthesis (BBN) was

originally published in Ref [20], and the resulting constraints from Catalyzed BBN on

charged relics are reviewed. In particular, I calculate the effect of charged particles

on the primordial Lithium-7 and Beryllium-7 abundances, and demonstrate how the

presence of charged particles during nucleosynthesis could catalyze the destruction

of these elements. This work was originally published in:

• C. Bird, K. Koopmanns, M. Pospelov, ”Primordial Lithium Abundance in

Catalyzed Big Bang Nucleosynthesis”, Phys. Rev. D 78, 083010 (2008) ,[

arXiv:hep-ph/0703096v3]

Using the measured 7Li abundance, which is known to be smaller than the abundance

predicted in the standard BBN, constraints on the lifetime and abundance of the

charged relic are derived and compared with previously published constraints derived

from catalyzed production of 6Li .

In Chapter 4, I review the motivations for introducing extra dimensions into

spacetime as well as the existing constraints on higher dimensions from both col-
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lider experiments and astrophysics experiments. I derive new bounds on the size of

nonwarped extra dimensions by calculating the abundance of Kaluza-Klein gravitons

in such models, and comparing this result to limits derived from the comparison of

BBN predictions to the observed abundance of primordial 6Li . This calculation and

constraints were originally published in:

• R. Allahverdi, C. Bird, S. Groot Nibbelink and M. Pospelov, “Cosmological bounds

on large extra dimensions from non-thermal production of Kaluza-Klein modes”,

Phys. Rev. D 69, 045004 (2004) [arXiv:hep-ph/0305010].

In addition, I demonstrate the Kaluza-Klein gravitons produced in the early Universe

could become trapped in the galaxy, and decay in the present. These decays produce

both γ-rays and positrons, with the positrons annihilating to produce an observable

flux of 511 keV γ-rays. By comparison with the 511 keV flux observed by the

INTEGRAL satellite, I derive new constraints on the size of the extra dimensions.

These calculations represent original research which is previously unpublished.

Through these three classes of physics beyond the Standard Model, I will intro-

duce and demonstrate a variety of methods in which new theories can be probed by

examining both their effects on the early Universe and the remnant signatures that

they have left in the modern Universe. As will be shown throughout this dissertation,

the effects of new physics in the early Universe can be used to probe phenomena that

are beyond the reach of terrestrial experiments.
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Chapter 2

Dark Matter

2.1 Overview

One of the oldest and most important problems in modern cosmology is the missing

mass of the Universe. Baryonic matter, such as luminous matter in the form of stars

and nebulae and non-luminous matter in the form of dust and planets, accounts for

less than 5% of the total energy content [8] of the Universe. The remaining matter,

which forms 23 % of the energy density of the Universe, is believed to be in the form

of dark matter, and cannot be explained by the Standard Model1.

The direct detection of dark matter and the determination of its properties is in-

hibited by the apparent weakness of its interactions. At present dark matter can only

be detected through its gravitational effects , and therefore the nature of dark matter

is still undetermined. Most models require dark matter to interact with the Standard

Model through other forces as well, however studying dark matter with these other

1It is possible to explain dark matter using massive neutrinos, however limits on the mass of the
neutrinos in the Standard Model exclude them as the primary form of dark matter.
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forces requires either collider experiments or nuclear scattering experiments, neither

of which has yet detected a clear signal of dark matter.

There are several candidates for dark matter. The most common are in the form

of weakly interacting massive particles (WIMPs). These as yet undetected particles

are expected to by thermally produced in the early universe. If the particles were

strongly interacting, then all WIMPs would have annihilated early in the history of

the Universe, while WIMPs with no interactions are overproduced. The evolution of

the Universe with WIMPs is well understood, and standard methods from cosmol-

ogy (see for example Ref. [21]) can be used to precisely calculate the dark matter

abundance.

In this chapter the properties of several dark matter candidates will be derived

and presented. In Section 2.2, seven minimal models will be developed which rely on a

minimum amount of new physics. Although these models are minimal, they represent

effective models for more complicated dark matter models and the properties and

constraints derived are generic. In Section 2.3, I calculate the dark matter abundance

predicted by each model, and use this result and the observed dark matter abundance

to constrain the parameter space of the model. In Section 2.4, I further constrain the

parameter space of each model by calculating the cross-section for scattering of the

WIMP from a nucleon, and comparing this result to the limits set by dedicated dark

matter searches. In Section 2.5 I review the methods used at high energy particle

colliders to search for invisible Higgs decays, which is the signal expected for each

of the models presented in this dissertation. These results provide the region of

parameter space for each model which can be probed by experiments such as the

LHC and the Tevatron. Finally, in Section 2.6 I review both the motivations and
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limitations of sub-GeV WIMPs, and then derive constraints on light dark matter in

each model using the abundance constraints and the current limits on the invisible

decays of the B-meson. As will be demonstrated in this chapter, each of the minimal

models has unique and interesting properties.

2.2 Minimal Models of Dark Matter

There are many interesting candidates for dark matter. In many of these models,

the dark matter candidate is motivated by another, often more complicated theory,

such as the lightest supersymmetric particle and Kaluza-Klein gravitons (motivated

by the possible existence of higher dimensions). However it is also possible that dark

matter is unrelated to any other theory, and is just a single new particle or a few

new particles.

In this section, I present several minimal models of dark matter in which only a

few new particles are added to the Standard Model 2. In addition, in each model

the WIMP is made stable by only allowing interactions containing an even number

of WIMPs.

These models are simple, yet provide an explanation for the effects of dark matter,

and can also be used as effective theories for more complicated dark matter models.

The models considered in this dissertation are:

• Model 1: Minimal Model of Dark Matter (MDM)

- In this model, a single scalar field is added to the Standard Model, which

2A complete review of all minimal models is beyond the scope of this dissertation, and as such I
will only include models in which the interaction with the Standard Model is provided by a Higgs
or Higgs-like boson.
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couples only to the Standard Model Higgs boson. This represents the simplest

model of dark matter that can produce the observed abundance.

• Model 1b: Next-to-Minimal Model of Dark Matter

- This model is identical to MDM, but introduces a second scalar field which

couples to the scalar WIMP and mixes with the Higgs boson.

• Model 2: Minimal Model of Dark Matter with Two Higgs Doublet

- The simplest Higgs model involves a single Higgs boson, but this may not

be the correct model of nature. There exist several models which include two

Higgs bosons, with one coupled to up-type quarks and one coupled to down-

type quarks and leptons. This model of dark matter introduces a scalar WIMP

which can couple to one or both of these Higgs bosons.

• Model 3: Minimal Model of Fermionic Dark Matter (MFDM)

- In this model, a Majorana fermion WIMP is added to the Standard Model.

However the fermion in this model cannot couple directly to the Higgs boson,

and so an additional scalar field is required to mediate the interactions between

dark matter and the Standard Model.

• Model 4: Minimal Model of Fermionic Dark Matter with Two Higgs Doublets

- As with Model 2, it is possible that there are two different Higgs bosons. In

this model a Majorana fermion WIMP is the dark matter candidate, which can

couple to one or both of these Higgs fields.

• Model 4b: Higgs-Higgsino Model

- In supersymmetric models, each Higgs boson is accompanied by a fermionic
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partner, the Higgsino. In this model a fermionic WIMP is coupled to both the

Higgs and the Higgsino.

• Model 5: Dark Matter in Warped Extra Dimensions

- In models with warped extra dimensions, there is an additional field known as

the radion which has similar properties to the Higgs boson. In this model either

a scalar or fermion WIMP is added to the Standard Model, but with no Stan-

dard Model interactions. Instead the gravitational forces mediate interactions

with the Standard Model through via the radion.

In this section each model will be developed, with constraints and experimental

sensitivities given in the following sections.

2.2.1 Model 1: Minimal Model of Dark Matter

The minimal model of dark matter introduces a singlet scalar to the Standard Model

[17, 18, 19], which interacts with the Standard Model through the exchange of a Higgs

boson. This represents the simplest model which can explain the properties of dark

matter.

The Lagrangian for this model is given by

−LS =
m2

0

2
S2 +

λS
4

+ λS2H†H

=
m2

0 + λv2
ew

2
S2 +

λS
4

+ λvewhS
2 +

λ

2
S2h2

(2.1)

where H is the Standard Model Higgs doublet, vew = 246 GeV is the Higgs vacuum

expectation value, and h is the corresponding Higgs boson, with H = (0, (vew +
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h)/
√

2). The physical mass of the scalar is m2
S = m2

0 + λv2
ew.

As will be demonstrated in later sections, the coupling constant and the Higgs

mass appear together in each calculation. As such, the model is reparameterized

using

κ2 ≡ λ2

(
100GeV

mh

)4

(2.2)

where mh is the Higgs boson mass.

2.2.2 Model 1b: Next to Minimal Model of Dark Matter

It is also possible that the scalar WIMP has no interactions with the Standard Model

particles. In this case, a next-to-minimal model of dark matter can be constructed

in which the scalars are coupled to a second singlet scalar,U. Since the WIMPs must

annihilate to Standard Model particles, this new intermediate scalar must couple

to the Standard Model. However existing experimental bounds restrict a direct

coupling of U to Standard Model fermions or gauge bosons. Therefore in this model

the U-boson is taken to mix with the Standard Model Higgs field.

The Lagrangian for this model is

−LS =
λS
4
S4 +

m2
0

2
S2 + (µ1U + µ2U

2)S2 + V (U) + η′U2H†H

=
m2
S

2
S2 +

m2
u

2
u2 + µuS2 + ηvEWuh+ ...,

(2.3)

where in the second line only the mass terms and relevant interaction terms are listed,
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and where u is the excitation of the U-boson field above its vacuum expectation value,

U =< U > +u

The final term in the second line of Eq. 2.3 gives the mixing between u and h.

If this mixing is significant, the existing bounds on the higgs mass would also

place a lower bound on the mass of the u-boson. If the u-boson is light, then it is

possible that it could violate existing experimental bounds. It is also possible that a

light u-boson could contribute as a second component of dark matter. Therefore in

this dissertation it is assumed that mu � mh,mS. However this region of parameter

space is identical to the MDM, with the redefinition

κ2 ≡ µ2η2

m4
u

(
100 GeV

mh

)4

(2.4)

and as a result, all of the experimental bounds and searches for the scalar in the

minimal model also apply to the scalar WIMP in the next-to-minimal model.

2.2.3 Model 2: Minimal Model of Dark Matter with 2HDM

Another possible extension of the minimal model of dark matter is the addition of

another Higgs particle. One motivation for this model is to allow more freedom in

the properties of the Higgs mechanism. Although the Standard Model can be viable

with a single Higgs field, there is no evidence from experiment or from theoretical

predictions for there to exist only one type of Higgs. Furthermore, the existence of

a second Higgs doublet is required in supersymmetric models to avoid both a gauge
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anomaly and to allow both the up and down type quarks to have Higgs couplings.

There are a few different common two-higgs doublet models, with different Stan-

dard Model particles coupled to each of the Higgs bosons. In this dissertation, the

Type-II model is used in which one Higgs is coupled to the up type quarks and the

second one is coupled to down type quarks and leptons, and which is the model

required for the minimal model of supersymmetry3.

In contrast to the Standard Model Higgs, the vacuum expectation values for the

2HDM are not known, with the only constraint being v2
u + v2

d = v2
ew. Due to this

constraint, it is common to use the parameter tan β ≡ vu/vd. Furthermore, since the

mass ratio of top and bottom quarks is proportional to vu/vd, it is also common to

take tan β to be large [23, 24, 25] so that the Yukawa couplings for top and bottom

type quarks are similar in magnitude.

The other motivation for this model of dark matter is in the possibility of light

WIMPs. As will be outlined in Section 2.6, there are several experiments whose re-

sults could be interpreted as evidence of lighter WIMPs, with masses in the O(1 GeV )

range. In the minimal model of dark matter, the mass of the scalar WIMP receives a

contribution from the Higgs vev of O(200 GeV), m2
DM = m2

0 +λSv
2
ew , and therefore

a sub-GeV WIMP requires significant fine-tuning of m0 and λS to reduce the mass

by the required two orders of magnitude. In the 2HDM model, the corresponding

correction to the WIMP mass can be of order vd ∼ O(1 GeV ) and therefore it may

require very little fine-tuning.

In this section I will introduce three special cases of the minimal model of dark

matter with 2HDM. In general the dark matter couplings to the Higgs bosons will

3For a more detailed review of the Type-II model see, eg. Ref[22]
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be of the form

−L =
m2

0

2
S2 + λ1S

2(|H0
d |2 + |H−d |

2) + λ2S
2(|H0

u|2 + |H+
u |2) + λ3S

2(H−d H
+
u −H0

dH
0
u)

(2.5)

However unlike the minimal model of dark matter, this model has too many unknown

parameters to be fully constrained by the dark matter abundance. However the most

interesting properties of this model are observable in certain special cases. The three

special cases which will be studied in this dissertationare those in which a single λi

is taken to be non-zero. In particular, the special cases are:

Case 1 corresponds to λ1 � λ2, λ3 or a scalar WIMP which interacts with

down-type quarks and leptons through Higgs mediation.

Case 2 corresponds to λ2 � λ1, λ3 or a scalar WIMP which interacts with

up-type quarks through Higgs mediation. In this case, the Higgs vev which

appears in all the calculations in close to vSM , and for most of the WIMP

mass range Hu decays predominantly to the weak bosons as in the single Higgs

model. As a result, this case is almost identical to the minimal model of dark

matter presented in Section 2.2.1.

Case 3 corresponds to λ3 � λ1, λ2 or a scalar WIMP which interacts with both

up and down-type quarks and leptons through Higgs mediation.

In the general model, the physical mass of the scalar is given by

m2
S = m2

0 + λ1v
2
d + λ2v

2
u − λ3vuvd (2.6)
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In the special case of tan β large, and λ1 � λ2, λ3 (Case 1), the scalar mass is

m2
S = m2

0 +
λ1v

2
ew

tan2 β
(2.7)

which, unlike the previous models, can be of order O(1 GeV ) without significant

fine-tuning. For the case of λ3 � λ1, λ2(Case 3) and large tan β, the mass is

m2
S = m2

0 +
λ3v

2
ew

tan β
(2.8)

which can also be small without requiring significant fine-tuning. The third case, in

which λ2 dominates (Case 3), is nearly identical to the MDM and cannot contain

sub-GeV WIMPs without significant fine-tuning.

2.2.4 Model 3: Minimal Model of Fermionic Dark Matter

The models discussed previously have used scalar dark matter. However there are no

observed scalars in nature, and many candidates for dark matter are fermionic. For

this reason, minimal models containing fermion WIMPs also need to be considered.

As with the minimal model of scalar dark matter presented in Section 2.2.1, it

is possible to construct a minimal model of fermionic dark matter [26]. However in

this case a new scalar must be introduced as well to mediate the interaction between

the WIMP and the Higgs 4. The Lagrangian for this model is

4Although it is possible to construct a minimal model without this additional scalar field, the
resulting model in non-renormalizable.
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L =
1

2
∂µΦ∂µΦ− M2

2

2
Φ2 +

1

2
χi��∂χ−

M3

2
χ2 − λ1

2
Φχ2

− λ2ΦH†H − λ3

2
Φ2H†H − λ4

6
Φ3 − λ5

24
Φ4

(2.9)

The first constraint imposed on this model is the requirement that it have a stable

vacuum state. If it does not contain a stable vacuum, it cannot be a realistic model.

The potential for this model in the unitary gauge,
√

2H† = (h, 0), is

V =
M2

2

2
Φ2 +

M3

2
χ2 +

λ1

2
Φχ2 +

λ2

2
Φh2

+
λ3

4
Φ2h2 +

λ4

6
Φ3 +

λ5

24
Φ4 +

λh
4

(h2 − v2
0)2

(2.10)

where the final term is the usual potential for the Higgs boson, but with v0 an

arbitrary parameter instead of vew. This potential is bounded from below if

λ5, λh > 0 λhλ5 > 6λ2
3 (2.11)

or if

λ5 = λ4 = 0 λh > 0 λ3 + 4M2
2 > 0 (2.12)

The minimum of this potential is

< χ >= 0 < h >= vew = ±v0

√
1− 2λ2w + λ3w2

λh
< Φ >≡ w (2.13)
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where w is the solution of the cubic equation

λ2 < h >2 +(M2
2 + λ3 < h >2)w +

λ4

2
w2 +

λ5

6
w3 = 0 (2.14)

and where < h >= vew, as is required in the Standard Model.

Because of the mixing terms, h and φ do not represent physical fields. Instead

the physical particles are linear combinations of the two states, which we will denote

by φ1 = h cos θ+φ sin θ and φ2 = φ cos θ− h sin θ, and the Lagrangian is of the form

L =
1

2
∂µφ1∂

µφ1 −
m2

1

2
φ2

1 +
1

2
∂µφ2∂

µφ2 −
m2

2

2
φ2

2 +
1

2
χi��∂χ−

mχ

2
χ2

− η1 sin θ

2
φ1χ

2 − η1 cos θ

2
φ2χ

2 − η3

2
φ2

1φ2 −
η4

2
φ2

2φ1 −
η5

4
φ2

1φ
2
2

− η6

6
φ3

1 −
η7

6
φ3

2 −
η8

24
φ4

1 −
η9

24
φ4

1

(2.15)

The couplings to the Standard Model are taken to be the usual Higgs couplings, with

h = φ1 cos θ − φ2 sin θ.

For the remainder of this section, it will be assumed that m2 � m1,mχ. As a

result, the last three terms in the Lagrangian will not contribute to the annihila-

tion or scattering cross-sections at tree level, and can be omitted. This requirement,

although not required for the model, ensures that only the fermion contributes sig-

nificantly to the dark matter abundance, and that existing experimental bounds on

new forces below the electroweak scale are not violated.
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2.2.5 Model 4: Fermionic Dark Matter with 2HDM

The model presented in this section is similar to the model presented in Section

2.2.3, but in this model the WIMPs are Majorana fermions. As in that section, it is

assumed in this model the there exist two Higgs doublets, with one Higgs coupled

only to up-type quarks and one coupled only to down-type quarks and leptons.

As in the previous section, the fermions cannot couple directly to the Higgs but

must instead couple through an intermediate boson,

−L =
m2

0

2
χχ+

m2
U

2
U2 + µUχχ+ η1U

2(|H0
d |2 + |H−d |

2)

+ η2U
2(|H0

u|2 + |H+
u |2) + η3U

2(H−d H
+
u −H0

dH
0
u) + ηUU

4

(2.16)

After symmetry breaking, the relevant terms reduce to

−L =
m2
χ

2
χχ+ λ1vdHdχχ+ λ2vuHuχχ+ λ3vuHdχχ (2.17)

assuming that MU >> mH ,mχ.

As in Section 2.2.3, three special cases of this model will be considered corre-

sponding to a single λi dominant. In this dissertation, only the special cases of λ1

and λ3 dominant will be studied. As will be seen in Section 2.6, the special case of λ3

dominant is particularly interesting as it produces sub-GeV fermionic dark matter.

The special case of λ2 dominant is similar to the minimal model of fermionic dark

matter presented in Section 2.2.4, and will not be studied further.
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2.2.6 Model 4b: Higgs-Higgsino Model

Another simple form of fermionic dark matter is a Majorana fermion coupled to a

Higgs-Higgsino pair. This model is inspired by supersymmetry, in which each Higgs

boson is accompanied by a fermion field known as a Higgsino. However in this model

the Higgsino is only assumed to be a fermion field with an SU(2)×U(1) charge, with

the quantum numbers of a Higgs, without requiring the presence of supersymmetry.

In this model, the dark matter is the Majorana fermion, which is analogous to the

neutralino in supersymmetric models. This model exhibits the basic properties of

many supersymmetric models of dark matter, without the additional complications

that are present in such models.

The terms of the Lagrangian for this model which are relevant for these calcula-

tions are

−Lf =
1

2
Mψψ + µH̄dH̄u + λdψH̄dHd + λuψH̄uHu (2.18)

where H̄d, H̄u are the Higgsino fields. In this model it is also assumed that M �

µ, λuvu, and as before tan β is assumed to be large.

The physical fields in this model are linear combinations of the fields given in Eq

2.18. The dark matter candidate is

χ = −ψ cos θ + H̄d sin θ sin2 θ ≡ λ2
uv

2
u

λ2
uv

2
u + µ2

(2.19)

m1 = M cos2 θ

which is the lightest mass eigenstate. The terms in the effective Lagrangian which
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describe the mass and interactions of this state are

Leff =
1

2
m1χχ− λd sin θ cos θHdχχ (2.20)

At energy scales significantly smaller than mU , which is taken to be large, this

model then reduces to the model in Section 2.2.5, with λd sin θ cos θ corresponding

to λ1. The 2HDM+fermion model does include an additional effective two Higgs

- two fermion coupling which is not significant in the tree-level annihilation cross-

sections for WIMPs lighter than mh, but which will become important in searching

for light dark matter in B-meson decays, in which Higgs loops are present, as shown

in Section 2.6.7. As a result, the constraints from abundance calculations, dedicated

dark matter searches, and collider searches for the 2HDM+fermion model also apply

to this model with the reparameterization

κ ≡
(
λdλuvuµ

λ2
uv

2
u + µ2

)(
100 GeV

MH

)2(
tan β

100

)
(2.21)

while the constraints on light dark matter from B-meson decays will be different for

the two models.

2.2.7 Model 5: Dark Matter & Warped Extra Dimensions

The models presented in the previous sections have used the Higgs boson to pro-

vide an interaction between the dark matter candidate and the Standard Model,

as is required to produce the correct dark matter abundance. In this section I will

introduce an alternative method, in which warped extra dimensions can effectively

mediate WIMP annihilations.
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Since WIMPs cannot interact through electromagnetic or strong nuclear forces,

and since interactions through weak nuclear forces are tightly constrained by ex-

periments, it is tempting to consider WIMPs which only interact through gravity.

However gravity is too weak to produce a significant abundance of thermally pro-

duced dark matter. If dark matter is produced in decays of heavy relics, then the

gravitational interactions are too weak to produce efficient annihilation, and the re-

sult is an overabundance of dark matter. One possible exception is to produce dark

matter in regions where gravity is stronger, such as in warped extra dimensions.

The possible existence of extra dimensions5 has become very popular in recent

years [28, 29, 30], with the primary motivation for such models being a resolution of

the hierarchy problem. The electroweak forces have couplings of the order O(TeV −1),

while gravitational couplings are of order M−1
PL =

√
GN = 0.82 × 10−16 TeV −1.

However the Standard Model cannot explain this large difference in the strengths of

the forces.

One explanation is that gravity exists in higher dimensions, effectively diluting

the gravitational field relative to the other Standard Model fields. In these models,

the Standard Model fields are trapped on a four-dimensional spacetime brane while

gravity can propagate in higher dimensions as well. Gravitation experiments can

probe these higher dimensions, and currently restrict the size of the non-warped

extra dimensions to be less than ∼ O(0.1 mm) [31, 32]

The Randall-Sundrum model avoids these constraints by introducing a single

extra dimension which is strongly warped [29, 30]. The spacetime metric for this

model is

5A more complete review of the motivations for extra dimensions are presented in Chapter 4,
along with several of the common models and constraints.
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ds2
RS = e−2kφ|y|ηµνdx

µdxν − φ(xµ)2dy2 (2.22)

where φ(xµ) behaves in the same manner as a scalar field trapped on the brane,

and is referred to as the radion. As a result of this exponential warping, the extra

dimension could be large or non-compact without violating constraints from gravi-

tation experiments. In addition, the effective Planck mass MPL, which determines

the gravitation couplings on the brane, is reduced relative to the true Planck mass,

M∗, by the relation

M∗ ≈MPLe
−kπrc (2.23)

where rc ≡< φ > is the vacuum expectation value of the radion field. In this model,

M∗ can be as small as 1 TeV while MPL = 1.22× 1016 TeV .

There are a number of possible candidates for dark matter which are naturally

contained in extra dimensional models.For example, when the gravitational field

propagates in the higher dimensions, it can only have certain energy levels or modes

due to the boundary conditions on the extra dimension. Each of these modes has

the same properties as a massive particle trapped on the brane, and this effective

particle is referred to as a Kaluza-Klein graviton or a Kaluza-Klein mode. Another

possibility is that the brane on which the SM fields are trapped can fluctuate in the

higher dimensions, forming bumps in the brane. These fluctuations can also behave

like particles trapped on the brane, referred to as branons. In the early Universe, the

KK gravitons and the branons can be formed both in the decay of other particles and

in the annihilations of Standard Model particles. In the same manner that WIMPs
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freeze-out of thermal equilibrium to form a dark matter abundance, these effective

particles can also freeze-out and replicate the effects of dark matter. These models

have been studied extensively in Ref [33, 34] and Ref [35].

In this model, it is only assumed that the dark matter candidate is a new particle

and not necessarily an effect of the extra dimensions. It is also assumed that this new

particle accounts for the entire dark matter abundance, although it is possible that

the observed abundance is a combination of WIMPs and Kaluza-Klein gravitons or

branons.

In the previous sections, a minimal number of new particles were introduced,

which were then coupled to the Standard Model through the exchange of a Higgs

boson. In this section, I again introduce a single new particle 6, but now couple it

to the Standard Model through the exchange of a Randall-Sundrum radion.

Since gravitons and radions naturally couple to the energy-momentum tensor, the

WIMPs naturally interact with the Standard Model without requiring additional

interactions. This has the additional benefit of removing one parameter from the

model, as the WIMP-gravity coupling is proportional to the WIMP mass instead

of an arbitrary coupling constant. Although these properties are also present in

models without extra dimensions, in those cases the gravitational interaction is too

weak to efficiently annihilate WIMPs in the early Universe, with typical annihilation

cross sections being of order σann ∼ O(m2
dmM

−4
PL). Since the Planck mass is several

orders of magnitude lower in the Randall-Sundrum model, the annihilation cross-

section is much larger in the presence of warped extra dimensions and the WIMPs

can annihilate efficiently.

6In this section both a scalar and a fermion are added to the Standard Model, however these
are to be considered as two separate models for dark matter
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In this section I introduce two models. The first model is a singlet scalar WIMP,

with no non-gravitational interactions, and with Lagrangian

L =
1

2
(∂µS)2 − 1

2
m2
SS

2 (2.24)

The second model is similar, except the WIMP is a Majorana fermion. The La-

grangian for the second model is,

L =
1

2
χ̄��∂χ−

mχ

2
χ̄χ (2.25)

As outlined in Ref [36], in the Randall-Sundrum model, the radion couples to the

trace of the energy-momentum tensor, denoted by Θµ
µ,

Lint =
φ

Λφ

Θµ
µ (2.26)

where Λφ is the vacuum expectation value of the radion. The couplings of the radion

to the Standard Model fields was derived in Ref [36], and for the case of strongly

warped extra dimensions are similar to the Higgs couplings.

It should be noted that in the figures for this model, it is assumed that Λφ = vEW .

While solving the hierarchy problem does require the size of the extra dimensions to

be stabilized with Λφ ∼ O(TeV ) [37], there is no further restriction on its size. For

comparison with the previous models which rely on a Higgs coupling, and following

the examples in Ref [36], it will be assumed that Λφ = vEW for the purpose of each

calculation. The actual Λφ dependence included in an effective coupling constant,

κ ≡
(
mS,f

1 TeV

2
)(

vEW
Λφ

)2(
1 TeV

Mφ

)2
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where Mφ is the mass of the radion. It should also be noted that in the range of

mS,f � Λφ the couplings can become non-perturbative and therefore such heavy

WIMPs are not considered in this model.

2.3 Abundance Constraints

The primary constraint on any proposed dark matter candidate is that it not over-

close the Universe, so that the predicted energy density of dark matter should not

exceed the energy density of the Universe. Furthermore, the dark matter density

predicted by each model should be consistent with the observed value of ΩDMh
2 =

0.1099± 0.0062 [9] measured by the WMAP satellite.

The most common mechanism for production of dark matter in the early Universe

is through thermal production. The early Universe contained high energy fields in

hot thermal equilibrium, with all species of particles being created and annihilating.

As the Universe expanded and the temperature dropped, the density of each particle

species decreased (due to dilution in an expanding universe) and the production

and annihilation reaction rates lowered. At a certain temperature, referred to as the

freeze out temperature and taken to be the temperature where H ≈ Γann =< σannv >

ΩDMρcr for each species, the WIMPs became too diffuse to effectively annihilate and

the dark matter density froze out.

Using standard methods(see for example Ref. [21]), the dark matter abundance

at freeze-out can be derived,
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ΩDMh
2 =

1.07× 109xf

g
1/2
∗ MPL GeV < σannv >

(2.27)

where xf = m/Tf is the inverse freeze out temperature in units of the WIMP mass,

and g∗ is the number of degrees of freedom available at freeze out. The annihilation

cross-section term < σannv > in this equation represents the thermal average of the

cross-section and the relative velocity of the WIMPs at the time of freeze-out. From

Eq 2.27 and the observed dark matter abundance, it follows that the annihilation

cross section has to be σann ≈ 0.7 pb.

For most of the parameter space, the thermal average can be related to the cross-

section by the formula

σann = a+ bv2 →< σannv >= a+
6bT

mDM

(2.28)

where a and b represent the s-wave and p-wave parts of the cross-section. However

near the resonances, such as occurs at mDM ∼ mh/2 in the minimal model of dark

matter, this formula fails because the cross-section cannot be written in the form

given in Eq 2.28 due to the presence of the resonance. This formula also fails close to

thresholds, where a particle with a slightly higher energy can annihilate to additional

particles. In those mass ranges, the thermal average is given by [38]

< σannv >=
m3/2

2
√
πT 3

∫ ∞
0

e−mv
2/4Tσannv

3dv (2.29)

This equation provides corrections to account for the highest energy particles in the

thermal equilibrium which can annihilate either through a resonance or the parti-

cles heavier than the WIMPs. These effects widen the resonances in the annihilation
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Figure 2.1: Generic Feynman diagram for annihilation of WIMPs, denoted here by
χ. In this diagram, M is a mediator particle and X represents any Standard Model
field.

cross-section, with the largest correct occurring for WIMPs whose masses are slightly

below the resonance, and reduce the sharp increase in the cross section at the thresh-

old for production of heavier particles.

It should also be noted that in general, the abundance must be calculated sepa-

rately for two mass ranges. For WIMPs in the range mDM & 2 GeV the abundance

freezes out before hadronization, meaning that the annihilation produces unbound

quarks, leptons, and (for sufficiently heavy WIMPs) gauge bosons and Higgs pairs.

For lighter dark matter, with mDM . 2 GeV , the WIMPs freeze out after hadroniza-

tion, and therefore the annihilation produces hadrons as well as leptons, but not

unbound quarks.

In addition, for each model there exists a lower bound on the WIMP mass that

results from requiring the model to have perturbative couplings. This bound is

called the Lee-Weinberg limit [39, 40]. As a result, it was originally believed that

WIMPs could not be lighter than mDM ∼ O(10 GeV ). Since the annihilation cross-

sections for fermions are usually suppressed by a factor of m2
DM/M

4, where M is the
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mass of a mediator particle, light fermionic WIMPs would require new forces below

the electroweak scale. However several recent papers have demonstrated that it is

possible to produce O(GeV ) mass WIMPs with the correct abundance using either

scalar WIMPs [41, 42, 43, 26], or using certain models of fermionic WIMPs with

enhanced annihilation cross-sections [26].

In this section, I derive abundance constraints for each of the minimal models

presented in the last section. In each case the abundance is plotted separately for

light dark matter, with the exception of the minimal model of fermionic dark matter

in which light WIMPs are not possible and in the model of dark matter with warped

extra dimensions, in which case light WIMPs are already excluded.

2.3.1 Model 1: Minimal Model of Dark Matter

For the minimal model of dark matter, the annihilation cross section is calculated

using the diagrams in Figure 2.2. The cross section can then be written in terms of

the decay width of a virtual Higgs boson,

σannvrel =
8v2

EWλ
2

(4m2
S −m2

h)
2 +m2

hΓ
2
h

lim
mh→2ms

ΓhX
mh

(2.30)

The Higgs decay width has been studied extensively in searches for the Higgs boson

(for a review, see [22]), and writing the cross-section in this form then simplifies the

abundance calculation.

For WIMPs in the range of ms . 60 GeV the annihilation cross-section is domi-

nated by production of b-quarks and τ+τ− pairs, while heavier WIMPs in the range

of ms & 85 GeV annihilate efficiently to W+W− and Z0Z0 pairs. It should also be
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(a)

HS

S H

HS

S H

S

(b) (c)

Figure 2.2: The Feynman diagram for the annihilation of scalar WIMPs in the
Minimal Model of Dark Matter.In (a), the scalars annihilate via an intermediate
Higgs boson to produce any Standard Model fields. For sufficiently heavy scalars,
diagrams (b) and (c) also contribute to the annihilation of scalars into Higgs boson
pairs.
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noted that the peak in the annihilation cross-section corresponding to the production

of an on-shell Higgs is located at the Higgs mass, which is currently unknown but is

constrained to mh ≥ 114 GeV [44, 45, 46] and mh ≤ 182 GeV [47], while data from

the ALEPH detector may indicate mh ∼ 115 GeV [48]. In this calculation the Higgs

mass will be taken to be mh = 120 GeV . If the Higgs mass is different from this,

the peak will be located in a different region and the corresponding lowering of the

coupling constant, illustrated in Figure 2.3.1(a), will also move.

For sub-GeV WIMPs, this cross section depends on the decay width of a light

Higgs, which was previously studied two decades ago [49, 50, 51]. However there exist

uncertainties in the annihilation cross section due to the fact that previous calcu-

lations were done at zero-temperature, while the decay width used here is properly

calculated at a finite temperature. In particular, it is unclear whether the reso-

nances in the Higgs decay width will have an effect, since the thermal bath in the

early Universe may significantly broaden the hadronic resonances. There also exist

some uncertainty as to the temperature at which hadronization becomes important.

Therefore in the abundance calculation, we introduce a range of decay widths corre-

sponding to the zero temperature case and the high temperature case, with the true

decay falling somewhere between these two extremes. The result is plotted in Figure

2.3.1b.

For scalars lighter than ∼ 150 MeV , the main annihilation channel is to electrons

and muons. In the range 150 MeV . mS . 350 MeV the annihilation cross-section

is dominated by annihilation to pion pairs. The Higgs-pion coupling is calculated

using the standard low-energy theorems [49]. It should also be noted that the re-

quirement that the scalar abundance be equal to the observed dark matter abundance
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(a)

(b)

Figure 2.3: Abundance constraints on the coupling and mass of the scalar in the
minimal model of dark matter. The first plot gives the constraints for heavy WIMPs,
while the second plot gives the approximate constraints for GeV scale WIMPs. For
sub-GeV WIMPs, there is some uncertainty in the annihilation cross section related
to the effects of non-zero temperature on resonant annihilation modes and the effects
of annihilations during hadronization. The region above the curves corresponds to
abundances below the observed dark matter abundance, but are not excluded.
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requires the coupling to be large, with κ &
√

4π, and as a result the theory would

become non-perturbative.

In the range 350 MeV . mS . 650 MeV kaons and other bound strange quarks

will begin to be produced, as well as several resonances. The most important of

these is the f0(980) resonance, which creates an enhancement in the annihilation

cross section at mS ∼ 490 MeV . However the width of this resonance is only known

at zero temperature, whereas in the early Universe this resonance is important at

T ∼ (0.05 − 0.1)mS ≈ (25 − 50) MeV . The result of this higher temperature

is to destroy a fraction of the resonances during the annihilation, which results in

a weakening of the effect. For this reason, we have taken one extreme to be the

narrowest resonance consistent with experimental bounds, which results in the largest

cross-section, and the other extreme to be complete destruction of the resonance and

no effect on the cross-section.

For WIMPs in the range 650 MeV . mS . 1 GeV the annihilation cross-section

includes several resonances and numerous decay channels. Although the calculation

cannot be done precisely in this range, it is reasonable to assume that there will be

no significant source of suppression or enhancement of the cross-section in this range,

and as such we extrapolate the cross-section in this region.

Above mS ∼ 1 GeV , the freeze-out temperature of the WIMPs is sufficiently

high that hadronization has not occurred and the annihilation cross-section can be

calculated using unbound quarks. However as before there is still some uncertainty

in this calculation. At the threshold for charm quark production the temperature

is just below the hadronization temperature, while at the threshold for D-meson

production (the lightest bound state of a charm quark) the temperature is high
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enough to destroy these states. Therefore we take one extreme for the cross-section

to be introduction of charm quarks at the lower threshold , and one extreme to be

introduction of charm quarks only at the higher threshold. When the scalars are

taken to heavier still, annihilation to τ -leptons also becomes important.

The total cross-section has been calculated, and using Eq 2.27, the abundance has

been calculated. The results are plotted in Figure 2.3.1 in terms of the parameter,

κ ≡ λ

(
100 GeV )

mh

)2

(2.31)

Using the requirement of perturbative couplings, with κ .
√

4π, the range of mS .

300 MeV is excluded. As already mentioned in this section, there is uncertainty in

the decay width of a virtual Higgs boson at low energies and non-zero temperatures,

resulting in uncertainties in the constraint on κ for mS . 2 GeV . For mS ∼ mh/2,

the scalars annihilate through the Higgs resonance, resulting in a larger cross-section,

which then requires κ to be smaller in this region. It should also be noted that in

most of the models in this section, the abundance constraints are only given for

mS . 100 GeV . The WIMPs could be heavier than this, with masses as high

as a few TeV still being viable candidates for dark matter, however such WIMPs

would be difficult to detect and are not expected to be well constrained by present

experiments. Also in each of these plots, the region of parameter space above the

lines corresponds to models which have an abundance lower than the observed dark

matter abundance, although the scalar could still be one component of dark matter.
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2.3.2 Model 2: Minimal Model of Dark Matter with 2HDM

The abundance calculation in this model proceeds in the same manner as in Section

2.3.1, with the Standard Model Higgs decay width replaced with the appropriate

decay width for one of the higgses in the two higgs doublet. For the purpose of

comparison with other models in this dissertation, it is assumed that each of the

Higgs bosons has a mass of mH = 120 GeV , although this assumption is not required.

As with the minimal model of dark matter, if the mass of the Higgs is changed the

constraints on the parameter κ remain the same, except for the position of the Higgs

resonance (which appears as a dip located at mS ∼ mh/2 in the plots below).

For the first special case, with λ1 � λ2, λ3, the scalars annihilate via the Hd

boson, which decays to leptons and down-type quarks. The abundance constraints

are given in Figure 2.4. Since vd � vEW , the width of the Higgs resonance is increased

resulting in a less apparent dip in the allowed value of κ when compared with the

MDM results.

As mentioned before,when tan β is taken to be large the case of λ2 dominant

is very similar to the Minimal Model of Dark Matter, presented in Section 2.2.1.

The difference is in the lack of annihilation to strange and bottom quarks when

the WIMPs have masses of a few GeV. As a result, in this mass range the abun-

dance constraints require κ to be significantly larger than in the MDM. Although

there are uncertainties in the decay width of the virtual Higgs in this case, most of

the parameter space which gives the correct dark matter abundance also requires

non-perturbative couplings. For WIMPs heavier than a few GeV, the abundance

constraints are identical to the MDM.
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(a)

(b)

Figure 2.4: Abundance constraints for the minimal dark matter + 2 HDM, with
λ1 � λ2, λ3 and with MHd = 120GeV.
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Figure 2.5: Abundance constraints for the minimal dark matter + 2 HDM, with
λ2 � λ1, λ3 and with MHu = 120GeV
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The third case, with λ3 dominant, is more interesting. In the large tan β limit,

the scalars annihilate through Hd as in the first model, except the effective coupling

of the WIMP is enhanced by a factor of vu/vd = tan β. Therefore, using

κ = λ3

(
100 GeV

MHd

)2(
tan β

100

)2

(2.32)

the abundance constraints are identical to those plotted in Figure 2.4, but two orders

of magnitude smaller.

In summary, the three special cases considered are defined in a similar manner,

but provide very different abundances. The case of λ1 dominant allows for WIMPs

with mS > 400 MeV to have perturbative couplings, and does not display as large

a variation in the allowed values of κ over the entire mass range when compared to

the other cases. When λ2 is dominant, the range of mS & 5 GeV is very similar

to the minimal model of dark matter, but the lack of annihilations to leptons and

strange quarks reduces the possibility of light WIMPs by requiring non-perturbative

couplings for most of the parameter space. The final case of λ3 dominant has a much

smaller value of κ due to the tan β enhancement of the annihilation cross section,

but otherwise has features identical to the case of λ1 dominant. In the general case,

where all three λi are of comparable magnitude, it is expected that the abundance

constraint will resemble the third case, since the total cross-section is dominated by

the λ3vu/vd terms.
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Figure 2.6: Feynman diagram for the annihilation of WIMPs in the Minimal Model
of Fermionic Dark Matter. In this diagram, φ1, φ2 represent the higgs and higgs-like
scalars of the theory and X represents any Standard Model particles.

2.3.3 Model 3: Minimal Model of Fermionic Dark Matter

As in the previous models, the abundance of dark matter in this model is calculated

using the annihilation cross-section. In the MFDM, this cross section is

σann =
η2

1 sin2 θ cos2 θ
√
s− 4m2

χ

2

(
(m2

1 −m2
2)2 + (m2Γ2 −m1Γ1)2

((s−m2
1)2 +m2

1Γ2
1)((s−m2

2)2 +m2
2Γ2

2)

)
Γh→X

(2.33)

where Γ1 and Γ2 represent the decay widths for φ1 and φ2 respectively, and Γh→X

represents to decay width for a virtual Higgs with mass mh = 2mχ. The thermal

average for the annihilation cross-section can be approximated as

< σannv >≈ 6Tη2
1 sin2 θ cos2 θ

(
(m2

1 −m2
2)2 + (m2Γ2 −m1Γ1)2

((s−m2
1)2 +m2

1Γ2
1)((s−m2

2)2 +m2
2Γ2

2)

)
Γh→X

(2.34)
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Although this approximation is valid for most of the parameter space, it is not

accurate if mχ ∼ m1/2, mχ ∼ m2/2, or if the fermion mass is close to the threshold

for annihilations to heavier particles [38]. For these special cases, the thermal average

has been calculated numerically using Eq 2.29.

The resulting bounds on the coupling constants are plotted in Figure 2.7 , with

the region of parameter space above the line allowed, but leading to an abundance

lower than the observed dark matter abundance. The bounds are written in terms

of the parameter

κ ≡ η1 cos θ sin θ

(
100 GeV

m1

)2

(2.35)

as this combination appears in all of the relevant cross-sections for production, an-

nihilation, and scattering of WIMPs.

It should also be noted that light dark matter is not possible in this model.

Compared to the model presented in Section 2.2.1, the annihilation cross-section is

suppressed by a factor of

σfermion
σscalar

∼
m2
χv

2
rel

m2
u

∼ O(10−5) (2.36)

which results in a coupling strength of κ ∼ O(102 − 103), and is therefore non-

perturbative.7 Requiring the coupling to be perturbative excludes mχ . 25 GeV .

7It is possible to produce light fermionic dark matter in this model when mu � vew and η �
µ < 1, but this region of parameter space has been extensively explored in searches for lighter higgs
bosons and such a model would need significant fine-tuning.
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Figure 2.7: Abundance constraints on the minimal model of fermionic dark matter.
In contrast to the scalar dark matter models, fermionic dark matter requires non-
perturbative couplings for masses of O(1 GeV ), and therefore this range is omitted
from the plot.
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2.3.4 Model 4: Fermionic Dark Matter with 2HDM

As with the case of scalar WIMPs coupled to two Higgs doublets, this model contains

multiple free parameters and as such the general model cannot be easily studied or

plotted. Instead it can be examined through three special cases, corresponding to a

single non-zero or dominant coupling constant λi for each case.

For the case of λ2 dominant, the model reduces to the minimal model from the

previous section, and the constraint is very similar to Figure 2.7. The difference

between these two models is that in this model the WIMPs cannot annihilate to

b-quarks pairs or to τ -leptons. However these effects are only significant for lighter

WIMPs for which κ is already required to be non-perturbative.

The abundance constraints for the case of λ1 dominant are given in Figure 2.8.

As in the minimal model of fermionic dark matter, the coupling constant must be

larger than in the analogous scalar model by a factor of ∼ m2
u/(mχ < U >) and

therefore sub-GeV WIMPs are not possible for the cases of λ1 and λ2 dominant,

with the coupling constant only perturbative for mχ & 1.3 GeV in the first case and

mχ & 25 GeV in the second case.

However the special case of λ3 � λ1, λ2 results in a suppression of the coupling

constants by a factor of tan−1 β ∼ 0.01. This suppression of the coupling constant

by a factor of vd/vu allows for sub-GeV fermionic WIMPs without requiring κ to

be non-perturbative. The abundance constraints are given in Figure 2.8, using the

parameterization,

κ ≡ 2λ3µ

(
vsmw

m2
u

)(
100 GeV

MH

)2(
tan β

100

)
(2.37)
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(a)

(b)

Figure 2.8: Abundance constraints on κ in the 2HDM plus fermionic WIMP model
for the ranges (a) mχ < 2 GeV and (b) mχ . 100 GeV , with λ1 dominant. These
abundance constraints also apply to the Higgs-Higgsino model.
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(a)

(b)

Figure 2.9: Abundance constraints on κ in the 2HDM plus fermionic WIMP model
for the ranges (a) mχ < 2 GeV and (b) mχ . 100 GeV , with λ3 dominant.
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For the general case in which all of the coupling constants are of similar mag-

nitude, the annihilation cross-section is still dominated by the λ3 term due to the

(vu/vd)
2 ∼ tan2 β enhancements, arising from the λ3vu coupling of the WIMP to Hd

and the mf/vd couplings of Hd to the Standard Model fields.

2.3.5 Model 5: Dark Matter & Warped Extra Dimensions

The WIMPs in this model annihilate via a virtual radion, which subsequently decays

into Standard Model fields. The annihilation cross-section can be written in terms

of the radion decay width, given in Ref [36],

< σsv >=
8M4

S

Λ2
φ

1

(4M2
S −M2

φ)2 +Mφ2Γ2
φ

(
Γφ→X
Mφ

)
Mφ→2MS

(2.38)

< σfv >=
12m3

fT

Λ2
φ

1

(4m2
f −M2

φ)2 +M2
φΓ2

φ

(
Γφ→X
Mφ

)
Mφ→2mf

(2.39)

where the first equation corresponds to scalar WIMPs and the second to fermionic

WIMPs, and Λφ is the vacuum expectation for the radion field. As discussed in the

introduction to this section, this form of the thermally average cross-sections is only

valid when the WIMP mass is not close to the resonance in the radion propagator,

and not close to a threshold for producing heavier Standard Model fields. For these

regions the thermal average of the cross-sections are calculated numerically using Eq

2.29.

The dark matter abundance is calculated using Eq 2.27, and the results are

plotted in Figure 2.11 in terms of the effective coupling constant
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S

R

X

X

Figure 2.10: Feynman diagram for the annihilation cross section of WIMPs in the
presence of warped extra dimensions. In this diagram, R represents the radion which
acts as a mediator for the annihilation and S represents either scalar or fermionic
WIMPs.

Figure 2.11: Abundance constraints on scalar (solid line) and fermionic (dashed line)
WIMPs in the presence of warped extra dimensions.
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κ ≡
(
vEW
Λφ

)2(
mS,f

Mφ

)2

(2.40)

For both scalars and fermions there is a lowering of κ at mS,f ∼ 85 GeV , due to the

availability of annihilations to gauge bosons. This decay channel is efficient, leading

to a larger cross-section and requires smaller values of κ to produce the correct dark

matter abundance. It should be noted that, unlike the previous models, the coupling

of the WIMPs to the radion is determined by the mass of the WIMP, and therefore

the abundance constraints leave only the radion mass as a free parameter analogous

to the Higgs mass in previous models.

Also unlike the previous models, the value of Λφ is unknown while the correspond-

ing parameter in the previous models, vEW is known from electroweak measurements.

However in the reactions relevant to this model, Λφ only appears in the parameter

κ and therefore variations in Λφ do not affect the constraints given for this model.

It should also be noted that, although one of these model includes scalar WIMPs,

sub-GeV WIMPs are not possible. Requiring κ to be perturbative sets mS & 35 GeV

and mf & 50 GeV .

The calculations and results of this section demonstrate that the presence of

warped extra dimensions can allow a WIMP to have no gauge or Yukawa interactions

with other particles, but still annihilate efficiently through gravitational forces to

provide the correct dark matter abundance.
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Figure 2.12: A generic Feynman diagrams for elastic WIMP-nucleon scattering.

2.4 Dedicated Dark Matter Searches

At present, the primary method of searching for WIMPs is with dedicated dark

matter detectors which search for the recoil of nuclei which results from from collisions

with WIMPs. In each experiment, an array of semiconductor detectors is located in a

shielded location, usually underground, and surrounded by detectors which measure

either ionization, phonons, or photons which result from the scattering of WIMPs in

the solar system with nuclei in the detectors.

Using various methods, experiments such as DAMA [52] , CDMS [53, 3, 54], and

XENON10 [4] have already reported upper bounds on the WIMP-nucleon elastic

scattering cross section. Furthermore, the DAMA collaboration has claimed a posi-

tive signal of dark matter, although this result conflicts with exclusions set by other

experiments.

For the models presented in this dissertation, the WIMP-nucleon scattering is

mediated by a Higgs or Higgs-like particle. However the Higgs-nucleon coupling is
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not well known, and as such low energy theorems have to be used [55, 22].

The coupling of the Higgs to the quarks is defined as

L = −
∑
i

mi

vEW
hq̄iqi (2.41)

although the effect of the lightest quarks is negligible and can be omitted. The

coupling to gluons, via heavy quark loops, is given by

L =
αsNH

12πvEW
Ga
µνG

µν
a h (2.42)

where NH is the number of heavy quark flavours that the Higgs can couple to. By

equating the terms in this interaction to the trace of the QCD energy-momentum

tensor,

Θµ
µ = −αs(11− 2/3NL)

8π
Ga
µνG

µν
a +

NL∑
i=1

miq̄iqi (2.43)

and using the known expectation value of the energy momentum-tensor for nucleons,

< N |Θν
µ|N >= mN < N |ψ̄NψN |N > (2.44)

the Higgs-Nucleon coupling can be expressed in the form

< N |h|N >=
2NHmN

3(11− 2/3NL)vEW
< N |ψ̄NψN |N > h (2.45)

It should be noted however that this interaction fails to take into account the direct

coupling of the Higgs to the small strange quark component in the nucleon8. The

8In some of the models presented in this dissertation, the type of Higgs boson involved does not
couple to the strange quark, and therefore this correction is dropped
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heavier top, bottom and charm quarks are more strongly coupled to the Higgs boson,

however their abundance in the nucleon is almost non-existent. However virtual

strange quarks in the nucleon, while having a smaller mass and therefore a weaker

Higgs coupling, do have a significant effect on the nucleon Higgs coupling. Using the

estimate [57, 58, 59]

< p|mss̄s|p >' 221± 51 MeV < p|s̄s|p > (2.46)

gives the effective Higgs-nucleon coupling as

< N |h|N >=
1

vEW

(
2NHmN

3(11− 2/3NL)
+

(
1− 2NH

3(11− 2/3NL)

)
< p|mss̄s|p >
< p|N̄N |p >

)
× < N |ψ̄NψN |N > h

(2.47)

The numerical value of this coupling for each type of Higgs will be given in the

following sections.

In the following sections, the WIMP-nucleon scattering cross-section is calculated

for each of the minimal model. For each model, this cross-section will then be

compared to recent data from the CDMS and XENON10 experiments9. Although

there are several other dedicated dark matter experiments as well, these are the three

which currently provide the most stringent bounds on the scattering cross-section 10.

9Data from DAMA is omitted, as the present bounds are weaker than the other two experiments
for the models considered in this dissertation.

10The constraints given in the following sections are the most stringent as of January 2008.
Recently new results have been released by CDMS [54] which are slightly stronger for mDM &
50 GeV , however these new results do not significantly affect the results and have not been included
in this dissertation.
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2.4.1 Model 1: Minimal Model of Dark Matter

For the scalar WIMPs in this model, the elastic scattering cross section depends

on the single diagram in Figure 2.12. This cross-section depends on the Higgs-

nucleon coupling, which is calculated using the low energy theorems outlined in the

introduction to this section . For the Standard Model Higgs boson, the Higgs-nucleon

coupling is approximated as

ghNN ≈
283± 50 MeV

vEW
(2.48)

which gives

σel = κ2

(
50 GeV

mS

)2

((0.87± 0.04)× 10−41 cm2) (2.49)

Using the abundance constraints on κ from Section 2.3.1, the elastic scattering cross-

section is plotted in Figure 2.13 with recent bounds from CDMS[3] and XENON10[4]

11.

In this figure it can be observed that these searches are insensitive to light scalars

with masses below ∼ 10 GeV . In this range, the low mass of the WIMPs results in

small recoil velocities of the heavier nuclei (Germanium and Silicon in CDMS and

gaseous Xenon in XENON10) in the detectors. It is expected that future experiments

will be able to probe this range using lighter nuclei [60], with several such experiments

currently being planned [61, 62, 63]12.

In spite of this model being minimal, it avoids all prior bounds from dedicated

11Although there are several dedicated dark matter searches in operation, at present CDMS and
XENON10 have produced the strongest bounds.

12These experiments use lighter nuclei and are therefore more sensitive to light dark matter,
however other factors in their design may still limit their ability to probe O(1 GeV ) WIMPs
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Figure 2.13: Limits from dedicated dark matter searches on the Minimal Model
of Dark Matter, using as an example mH = 120 GeV. The solid line represents
the WIMP-nucleon scattering cross-section with the coupling constant determined
by the abundance constraint. The dashed and dashed-dotted lines represent con-
straints from CDMS [3] using the Silicon data and Germanium data respectively.
The solid bold line represents the recently released constraints from the XENON10
experiment[4].
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searches with the only constraint arising from the XENON10 data released in 2007.

Full exclusion of this model will require several orders of magnitude improvement

in the detector sensitivity, both for light WIMP mass for which current detectors

are insensitive and for heavier WIMPs near the Higgs resonance, and is unlikely to

happen with the next generation of experiments [64, 65, 66].

2.4.2 Model 2: Minimal Model of Dark Matter with 2HDM

The constraints from dedicated dark matter searches can be calculated in the same

manner as in Section 2.4.1, except that in the 2HDM model the Higgs-nucleon cou-

pling is different due to the change in vew → vu, vd, and the restriction that each of

the higgs couples to only up-type or to down-type quarks and leptons.

In the case of λ1 dominant and λ3 dominant, the scattering cross-section depends

on the HdNN coupling. Using the same low-energy theories as in the Standard

Model Higgs-nucleon coupling, the effective Higgs-nucleon coupling is

LHdNN ≈
220± 50 MeV

vd
HdN̄N (2.50)

In this case, there is no coupling of the Higgs to the gluons through the top-quark

loop, and Hd couples to the nucleon predominantly through direct coupling to the

virtual strange quarks within the nucleons. Since the quark content of the nucleon

is not well known, the Higgs-nucleon coupling in this case contains a significant

uncertainty.

Using this effective coupling, the WIMP-nucleon scatting cross-section for the
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case λ1 dominant is

σel = κ2

(
50 GeV

mS

)2

((0.53± 0.04)× 10−41 cm2) (2.51)

and for the case λ3 dominant is

σel = κ2

(
tan β

100

)2(
50 GeV

mS

)2

((0.53± 0.04)× 10−37 cm2) (2.52)

From the abundance constraints on κ, the limits from dedicated searches can be

derived. The results are given in Figure 2.14. With the exception of a small mass

range near the Higgs resonance, data from the XENON10 experiment can already

exclude mDM & 10 GeV .

Since the annihilation cross-section and the scattering cross-section each contain

a factor of tan β in the case of λ3 dominant, these terms cancel out in the final result

and the scattering cross-section is the same for λ1 or λ3 dominant.

The case of λ2 dominant is more difficult to detect in dedicated searches. Since

Hu is similar to the SM Higgs in the large tan β limit, the abundance constraints for

this model are very similar to the abundance constraints on the minimal model of

dark matter. However the SM Higgs coupling to the nucleon is dominated by a direct

coupling to the strange quark content of the nucleon, and by heavy quark loops. In

the case of Hu, there is no strange quark coupling and no coupling to bottom quark

loops. Therefore the effective coupling is reduced to

LHuNN =
82 MeV

vu
HuNN (2.53)

In this case the Higgs couples to the nucleon predominantly through a top-quark



CHAPTER 2. DARK MATTER 54

Figure 2.14: Limits on the 2HDM+scalar model from dedicated dark matter searches.
The bound is for the special cases of λ1 dominant and λ3 dominant. As in Figure
2.13, the dashed and dashed-dotted lines represent bounds from CDMS, while the
solid bold line represents limits from XENON.
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Figure 2.15: Limits on the 2HDM+scalar model from dedicated dark matter searches.
In this plot, the special case of λ2 dominant is plotted along with the usual experi-
mental bounds.

loop, with no effects from direct coupling to the strange quark and therefore this

coupling does not have the large uncertainty of the previous models.

Using this result, the scattering cross-section can then reduced to

σel = κ2

(
50 GeV

mS

)2

(0.75× 10−42 cm2) (2.54)

The dedicated search limits for this model are given in Figure 2.15. Although the

Higgs-nucleon coupling is smaller for this model, the abundance constraints allow κ

to be slightly larger than in the minimal model of dark matter, and the scattering

cross-section is similar for the two models. Existing data from XENON10 can already
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exclude the range 10 Gev < mS < 40 GeV .

In summary, all three of the special cases of this model can be probed with

dedicated dark matter experiments. As with the minimal model of dark matter, the

scalars in this model with λ1 or λ3 dominant can be as light as a few GeV and are

invisible to present dedicated dark matter searches. However unlike the first model,

heavier WIMPs have been almost completely excluded by XENON10. In the case of

λ2 dominant, sub-GeV WIMPs are forbidden by the abundance constraints and the

requirement that κ be perturbative, but heavier WIMPs can satisfy the abundance

constraint without violating bounds set by nuclear recoil experiments.

2.4.3 Model 3: Minimal Model of Fermionic Dark Matter

The nucleon scattering cross-section for the minimal model of fermionic dark mat-

ter is calculated in the same manner as the minimal model of scalar dark matter

presented in Section 2.4.1. Using the effective coupling, κ, and the Standard Model

Higgs-nucleon coupling presented earlier, the scattering cross-section is

σ = ((1.46± 0.07)× 10−42cm2)κ2 (2.55)

This cross-section is enhanced relative to the minimal model of scalar dark matter.

As shown in Eq 2.36, the annihilation cross-section is suppressed for fermions relative

to scalar WIMPs, resulting in larger values of κ from the abundance bounds which

also produces a larger scattering cross-section. The cross-section is plotted in Figure

2.17, with the current limits from CDMS [3] and XENON10 [4].

In contrast to the scalar models presented previously, the minimal model of
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Figure 2.16: Feynman diagrams for the scattering of WIMPs and nucleons in the
Minimal Model of Fermionic Dark Matter.

fermionic dark matter cannot contain sub-GeV mass WIMPs and as such the en-

tire parameter space can be explored by dedicated searches. For this model, data

from the CDMS and XENON10 experiments have already excluded WIMPs with

mχ . 80 GeV , with the only exception being a range of masses between ∼ 50 GeV

and 60 GeV 13. As in previous models, the mass range that is not excluded is due

to the possibility that the WIMPs annihilate through a Higgs resonance, which en-

hances the cross-section and allows the WIMP couplings to be smaller, and which

results in a suppressed nuclear scattering cross-section.
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Figure 2.17: Expected WIMP-nucleon scattering cross section for the minimal model
of fermionic dark matter (thin solid line), plotted as before with limits from CDMS
(dashed and dashed-dotted lines) and XENON10 (thick solid line).The vertical line
gives the cutoff at which lighter WIMPs require a non-perturbative coupling.
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Figure 2.18: Dedicated Dark Matter search limits on the 2HDM+fermion model, with
either λ1 or λ3 dominant. The experimental constraints from CDMS and XENON10
are as given before. The vertical line represents the cut-off in the λ1 dominant case,
where κ becomes non-perturbative.
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2.4.4 Model 4: Fermionic Dark Matter with 2HDM

As discussed in Section 2.2.5, the case of λ2 dominant is similar to the minimal model

of fermionic dark matter, and the bounds from dedicated dark matter searches are

similiar. Therefore in this section, only the λ1 and λ3 dominant cases will be studied.

The higgs-nucleon couplings in the 2HDM are as given in Section 2.4.2, and the

WIMP-nucleon cross-section is given by

σel ≈ ((8.3± 0.6)× 10−43cm2)κ2 (2.56)

for the case of λ1 dominant, and by

σel ≈ ((8.3± 0.6)× 10−39cm2)

(
tan β

100

)2

κ2 (2.57)

for the case of λ3 dominant. The scattering cross section and the corresponding

experimental constraints are plotted in Figure 2.18. As in the analogous scalar case,

the scattering cross-section is the same for the λ1 and λ3 dominant cases. However

in the λ1 dominant case, the coupling constant becomes nonperturbative for light

WIMPs. This is indicated in the figure by the solid vertical line.

The difference between this model, in which there are no constraints from ded-

icated searches, and the minimal model of fermionic dark matter, in which a large

range of masses is excluded, is that the large Higgs vev in the previous model

leads to a smaller decay width for the Higgs while in this model the Higgs vev

is vd ∼ vEW/ tan β. Because the decay width and the annihilation cross-section are

larger in this model, the abundance constraints allows for a smaller κ. However the

13This range is calculated assuming a Higgs mass of 120 GeV . If the Higgs is heavier than this,
then this range will shift to allow for higher mass WIMPs.
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scattering cross-section does not get this same enhancement since it is assumed that

the scattering occurs at lower energies away from the Higgs resonance, and so the

overall effect is a suppression of the scattering cross-section.

Based on the results of this section, it is apparent that in the special case of λ1

or λ3 dominant, there are no constraints on the WIMP mass in this model, and even

the next generation of experiments may not be able to probe it. In particular, the

case of λ3 dominant allows for sub-GeV WIMPs and yet has no constraints at any

mass range from dedicated dark matter searches.

2.4.5 Model 5: Dark Matter & Warped Extra Dimensions

In a similar manner to the higgs-nucleon coupling, the radion-nucleon coupling is

given by the coupling of the radion to the trace of the energy momentum tensor,

Lint =
φ

Λφ

Θµ
µ (2.58)

where, at low energies,

< N |Θµ
µ|N >= mN < N |ψ̄NψN |N > (2.59)

This coupling is stronger than the corresponding Standard Model Higgs coupling, as

the radion couples to the full energy-momentum tensor rather than just to the mass

of the quarks and quark loops in the nucleon. This difference enhances the WIMP-

nucleon scattering cross-section in this model by an order of magnitude compared to

the Minimal Model of Dark Matter.

For the scalar WIMPs, the WIMP-nucleon scattering cross section is
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Figure 2.19: WIMP-nucleon scattering cross-section for scalar WIMPs (dashed-
dotted line) and fermion WIMPs (dashed line) with radion mediation. The current
limits from CDMS and XENON10 are indicated with the bold dashed and solid lines
respectively. The short vertical lines represent the Lee-Weinberg bound on scalar
and fermion WIMPs.
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σS =
m4
Nm

2
S

2πΛ4
φm

4
φ

= 1.3× 10−44cm2κ2 (2.60)

while for fermions the scattering cross-section is

σf =
m4
Nm

2
f

πΛ4
φm

4
φ

= 2.6× 10−44cm2κ2 (2.61)

Using the abundance constraint previously derived, the scattering cross-sections can

be calculated, and the results are plotted in Figure 2.19.

The data from CDMS does not improve the constraints on this model, as the

region it excludes requires a non-perturbative coupling for both scalars and fermions.

However the recently reported bounds from the XENON10 experiments improve

the constraint, with scalars excluded for mS . 57 GeV and fermions excluded for

mf . 85 GeV .

2.5 Collider Constraints

Another possibility is that dark matter will be detected in the next generation of

high energy colliders, such as the LHC or the ILC. For the models presented in

the section 2.2, the primary signal of WIMPs14 will be an invisibly decaying Higgs

boson15. Results from LEP-I and LEP-II have already excluded an invisible SM

14As these channels require a real Higgs boson be produced, only WIMPs lighter than mh/2 can
be probed in this way.

15In the case of Model 5, in which a radion is used as the mediator, the signal will be an invisibly
decaying radion. However as demonstrated in Ref [36], the production and decay of a radion is very
similar to the Standard Model Higgs boson. Therefore the arguments in this section also apply to
invisible radion decays.
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Higgs16 with mass below 114 GeV [44, 45, 46] using the e+e− → Z0 + hinv channel,

while the Tevatron and the LHC will search for an invisible Higgs boson produced

in either the pp→ Z + hinv channel [68, 69] or through weak boson fusion [70, 69].

The discovery potential of the pp→ Z(→ l+l−)+hinv channel was studied in Ref.

[68, 69, 71] and Ref. [72, 69] for the LHC and Tevatron respectively. The signal of an

invisible Higgs in this channel is obscured by the pp→ Z+jet background, where the

jet could be either soft or otherwise undetected, and it was originally thought that

this background would significantly weaken any signal detected in this channel [68].

However, as demonstrated in Ref [69], the background can be reduced considerably

by introducing specific cuts on the missing momentum, with the optimum results

produced by requiring �pT & 75 GeV .

The other significant backgrounds for this process are

pp̄→ Z(→ l+l−) + Z(→ ν̄ν)

pp̄→ W+(→ l+ν) +W−(→ ν̄l−)

pp̄→ Z(→ l+l−) +W±(→ l±ν)

(2.62)

where in the third channel, the charged lepton is not detected. The second channel

is removed by requiring the invariant mass of the lepton pair to be close to the

Z boson mass, with |ml+l− − mZ | < 10 GeV and the lepton momenta should be

in similar directions, which implies both leptons are produced by a single Z-boson

16These bounds assume a Standard Model Higgs boson with BR(h →�E) = 100%. If there are
multiple Higgs fields, or if this branching ratio is less than 100%, then these bounds are weaker.
However a Higgs boson with a lower invisible branching ratio can be constrained by its visible decay
modes
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Figure 2.20: Feynman diagram for the production of Higgs bosons through the Z0+H
channel, at hadron colliders (left) and electron-positron colliders (right)

rather than from two W± bosons, requiring a cut of φl+l− < 143◦. The background

from the first two channels can also be reduced by rejecting events with lower missing

transverse momentum. As outlined in Ref [69], the decays of Z and W bosons to

missing energy tend to produce soft neutrinos and low momentum decay products,

while invisibly decaying Higgs bosons are expected to generate larger values of �pT .

The third background channel, in which a third charged lepton is missed by the

detector, is expected to be small due to the detector coverage at the LHC [69].

Using these cuts to reduce the background, it is expected that the LHC will be

capable of detecting an invisibly decaying Standard Model Higgs with mass mh .

160 GeV through the Z+hinv channel. In comparison, the WBF channel, which will

be introduced later in this section, is expected to be capable of detecting an invisible

Higgs as heavy as mh . 500 GeV with L = 10 fb−1 [70].

This channel can also be studied at ILC, with the advantage of being able to

accurately measure the mass of the Higgs, and to measure small SM branching ratios

[73].

The second channel which can be used for detection of an invisible Higgs is
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weak-boson fusion, in which the Higgs boson couples to a virtual boson exchanged

by two protons. The final signal in this channel will be hinv + 2jets, with the

dominant contribution to the background being the Z(→ ν̄ν) + 2jets channel and

a lesser contribution to the background from the W±(→ l±ν) + 2jets where as

before the charged lepton is not detected. In the case of weak-boson fusion, the

accompanying jets are formed by high-energy partons in the p̄p collision, and are

expected to have high momentum and a large rapidity gap. In contrast, the two

background channels are expected to produce softer jets with lower rapidity gaps 17.

Therefore the background can be reduced by requiring both the invariant mass of

the jets and the rapidity gap to be large. For example, in Ref [69] the WBF channel

(at the Tevatron) was studied using the cuts,

mjj > 320− 400 GeV ∆ηjj > 2.8 (2.63)

with the strongest signal corresponding to mjj > 320 GeV . In that study, it was

demonstrated that although the WBF channel is too weak to provide detection of

an invisible Higgs at the Tevatron, the combination of WBF with the Higgstrahlung

process described before would allow a 120 GeV higgs to be discovered for L = 7 fb−1

of data. The same channel has been studied for the LHC [70], using

mjj > 1200 GeV φjj . 60◦ (2.64)

where φjj is the angle between the jets, and is restricted to count only forward jets. In

17The background event in which a Z-boson is produced in WBF, and then decays to a neutrino-
antineutrino pair, has very similar properties to the invisible Higgs decay and as such these cuts
cannot reduce this particular channel
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Figure 2.21: Feynman diagrams for the other two processes which could be used to
probe invisible Higgs decays at hadron colliders, weak boson fusion (left) and gluon
fusion (right).

addition, because the cross-section for the weak boson fusion channel does not drop

off as fast for larger Higgs masses, it can detect heavier Higgs bosons, with masses

up to mH ∼ 400 GeV for L = 30 fb−1 compared with a limit of mh ∼ 175 GeV in

the other channels [69].

This channel can be used for detection of an invisible Higgs at either LHC or the

Tevatron, although the signal at the Tevatron is not expected to be strong unless

several channels are combined [69].

Another possible channel which has been studied is the production of hinv + jet

in gluon fusion [74]. Gluon fusion is one of the main channels of Higgs production at

both the LHC and the Tevatron. However as demonstrated in Ref [69], for invisibly

decaying Higgs bosons the background channel of Z(→ ν̄ν)+ jet obscures this signal

and the discovery potential of this channel is limited.

It has also been suggested that the production of top-quark pairs with associated

Higgs production could be used to probe invisible Higgs decays , however the analysis

is significantly more difficult than the other processes and does not appear to provide

a better signal [75].
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The significance of the invisible Higgs signal depends on several factors, but for

mh = 120 GeV the LHC will be able to detect a 3σ signal for a branching ratio as

small as [69]

BRh→invisible &

 0.41 L = 10 fb−1

0.24 L = 30 fb−1

 (2.65)

At the Tevatron, the analogous bounds are

BRh→invisible &

 0.90 L = 10 fb−1

0.52 L = 30 fb−1

 (2.66)

It is also possible to search for invisible Higgs decays in e+e− colliders. The

primary search channel at electron-positron colliders in the ’Higgstrahlung’ process,

e+e− → Z0 + hinv

measured by observing the decay of the Z-boson. The main background reactions

for this reaction are

e+e− → W+W− → `νq̄q

e+e− → Z0Z0 → ν̄νq̄q

e+e− → q̄q + γ

The first reaction appears to produce missing energy if the lepton is hidden in a

jet or is missed by the detectors, while the second reaction can mimic an invisible
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Higgs boson with a mass similar to that of the Z-boson. The third reaction can also

contribute to the background if the photon is not detected. As with the searches at

the LHC, these backgrounds are reduced using a series of cuts outlined in [44, 45]

for LEP, and in [73] for the ILC.

In this section, I will derive and present the expected sensitivity of collider ex-

periments to each of the minimal models. For each model, it will be assumed that

mh = 120 GeV for the purpose of demonstration. The general results are not ex-

pected to change significantly for different Higgs masses, with the exception the the

location of the Higgs resonance in the abundance constraints and resulting drop in

the invisible branching ratio for each model will shift to mDM ∼ mh/2.

2.5.1 Model 1: Minimal Model of Dark Matter

In the minimal model of dark matter, the Higgs coupling to WIMPs is stronger than

the coupling to Standard Model fields for light WIMPs, and for ms . mh/2 the

branching ratio for invisible Higgs decays is almost 100%. Using the search methods

outlined in the introduction to this section, the LHC will be able to search for WIMPs

in this entire mass range, while higher mass WIMPs will produce a signal too weak

to be detected.

The branching ratio for the minimal model of dark matter is plotted in Figure

2.22 for 100 GeV < mh < 140 GeV , along with the minimum branching ratio which

can be detected by the LHC 18. The Tevatron can also probe this range, with a

luminosity of 30 fb−1 being enough to detect BRhinv & 0.52. Existing data from

LEP can already exclude mH < 114.4 GeV in this model when BR(hinv) = 100%

18It should be noted that the upper bounds on the invisible Higgs branching ratio is also dependent
on the Higgs mass. However the variation over this range of masses is small.
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Figure 2.22: Invisible Higgs branching ratio, with the discovery potential for the
LHC. The central dashed line represents the invisible Higgs branching ratio for mh =
120 GeV , with the grey region giving the branching ratio for the range 100 GeV <
mh < 140 GeV . The region above line A is detectable at the 3σ level with L =
10 fb−1 at LHC, while the region above line B can be detected with L = 30 fb−1.
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[44].

In summary, either the LHC or the Tevatron can detect scalar WIMPs in this

model through an invisible Higgs decay. However as indicated in Figure 2.22 if

mDM ≈ mh/2 the invisible branching ratio is reduced and these bounds can be

avoided.

2.5.2 Model 2: Minimal Model of Dark Matter with 2HDM

The special cases of λ1 or λ3 dominant are difficult to detect at colliders. In the pre-

vious model, the WIMPs could be detected through the invisible decay of a Standard

Model Higgs boson which is produced through the Z0 +H channel or through weak

boson fusion. In the 2HDM with large tan β, only the up-type Higgs is produced in

these reactions. The situation is the same for electron-positron colliders such as the

ILC, since the main channel for detecting an invisible Higgs is also Z0 + H which

does not occur in these two cases.

The down-type Higgs can also be produced in the LHC through a b-quark loop

process, which results in a Higgs and a jet of other particles. However if the Higgs

decays invisibly, this signal is difficult to separate from the background for a Standard

Model Higgs boson.

Although the cross-section for down-type Higgs production is enhanced relative

to the Standard Model by a factor of tan2 β, due to the smaller vacuum expectation

value, it is also suppressed by the lack of a top-quark loop. From Ref [74], the

production cross-section for the down-type Higgs through the b-quark loop is σh ∼

O(100 pb) at the LHC, or O(1 pb) for Tevatron. However the background cross-
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section is σb = 1.5× 105 pb (300pb for Tevatron) [69].

As a result, any collider constraints on these models are expected to be quite

weak. With 30 fb−1 of data at LHC, the signal will still be well below 2σ.

For the purpose of collider searches, the third case of λ2 dominant is identical to

the minimal model of scalar dark matter. In this case, higgs production by gluon

fusion involves only a top-quark loop and not a bottom-quark loop, but this has only

a small effect on the higgs production cross-section [74], and the gluon fusion channel

is already difficult to detect when the higgs decays invisibly.

As mentioned in the introduction to this section, invisible Higgs decays can also

be probed at electron-positron colliders through the e+ + e− → Z0 + hinv channel.

However, as with the hadron colliders this channel only proceeds for the case of λ2

dominant, in which case the results are the same as those for the minimal model of

dark matter.

2.5.3 Model 3: Minimal Model of Fermionic Dark Matter

Using the abundance constraints on κ, and the three channels for the detection of

an invisible Higgs given in the introduction to this section, the discovery potential

of the LHC and Tevatron can be calculated for the minimal model of fermionic dark

matter.

In this model, it is possible for the LHC to discover WIMPs as heavy as 50 GeV

(or slightly below mh/2 for Higgs masses above 120 GeV ). However as with the

minimal model of scalar dark matter, the rapid drop off in the Higgs branching ratio

above mχ ≈ 50 GeV restricts detection of heavier WIMPs. As demonstrated in

Figure 2.17, the range of mχ . 50 GeV has already been excluded by the dedicated
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Figure 2.23: The branching ratio for h→ χχ, with mh = 120 Gev (dashed line) and
in the range 100 GeV < mh < 140 GeV (grey region). The horizontal lines represent
the minimum branching ratio which would produce a 3σ signal in the h → Z + χχ
channel at the LHC for L = 10 fb−1 and L = 30 fb−1.
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dark matter searches, CDMS and XENON10. Therefore it is not expected that the

LHC will be able to detect signals from this model.

2.5.4 Model 4: Fermionic Dark Matter with 2HDM

As in the model presented in Section 2.5.2, an invisibly decaying down-type Higgs

boson is difficult to detect in colliders, and therefore it is not expected that there will

be strong constraints on either this model, or the higgsino model given in Section

2.2.6, from any present or near-future collider.

As with the analogous model for scalar WIMPs, the cases of λ1 or λ3 dominant

would be detected by an invisible Hd decay. However in the LHC and Tevatron,

the only channel capable of producing this Higgs boson is a b-quark loop, and the

resulting signal is significantly smaller than the background.

The third case, in which λ2 is dominant, is not significantly different than the

minimal model of fermionic dark matter. Therefore it is expected that either LHC

or the Tevatron could probe this model up to mDM ∼ 50 GeV if mH ≈ 120 GeV .

2.5.5 Model 5: Dark Matter & Warped Extra Dimensions

The radion used in this model has similar properties to the Standard Model Higgs

boson, and so the collider signals and explorable region of parameter space for these

models are similar to those presented in Section 2.5.1 and Section 2.5.3.

The most significant difference is that, unlike in the Higgs models in which vEW

is fixed, the radion vev Λφ is unknown. As a result, the cross-sections for radion

production are enhanced (or suppressed) by a factor of σRS/σSM ≈ v2
EW/Λ

2
φ.

The branching ratio for scalar WIMPs in this model is plotted in Figure 2.24,
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Figure 2.24: Sensitivity of the LHC to scalar WIMPs through the invisible radion
signal. Lines A and B represent the smallest branching ratio that can be detected at
L = 10 fb−1 and L = 30 fb−1 respectively. The vertical line represents the WIMP
mass at which the model becomes non-perturbative.
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with a scaling factor added to account for the enhancement in the radion production

cross-section. For the purpose of comparison with previous models, it is assumed that

Mφ = 120 GeV while mS and Λφ are varied to satisfy the abundance constraints.

In addition, only scalar WIMPs are considered here, as the abundance constraints

on the fermionic WIMPs in this model require non-perturbative couplings for the

regions of parameter space which can be probed by the LHC or Tevatron.

Using these results, the LHC can probe scalar WIMPs in this model up to mS .

38 GeV with L = 10 fb−1 and up to mS . 42 GeV with L = 30 fb−1, while

perturbative couplings require mS & 35 GeV .

2.6 Light Dark Matter

In the previous sections, WIMPs as heavy as mDM ∼ O(100 GeV ) have been studied,

while even heavier WIMPs can be used to explain dark matter. However there

are also many reasons to study models which contain WIMPs with masses in the

O(1 GeV ) range.

Light dark matter has several benefits. The 511 keV γ-ray flux from the galactic

core, which is believed to be caused by a non-localized source of positrons [77], can

be explained by the annihilation [41] or decay [78] of O(100 MeV) WIMPs that have

been captured in the galactic core. It has also been demonstrated that this does not

result in an overproduction of other galactic γ-rays [80, 81]. Light dark matter may

also be able to explain the observed flux of γ-rays in the 1 MeV to 20 MeV range [82]

without conflicting with measurements of the extragalactic γ-ray background [83].

There is also a known discrepancy between results from different dedicated dark
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matter experiments. The data from DAMA indicates the existence of a WIMP

consistent with mDM ∼ 60 GeV , while CDMS and other experiments have excluded

this region of parameter space. Both of these experiments search for dark matter

by detecting the recoil of nuclei scattered by WIMPs. However the experiments use

different nuclei, and the Na atoms in the DAMA detector are more sensitive to light

WIMPs than the Ge atoms in the CDMS detector, due to the difference in the WIMP

velocity that is required to cause a detectable recoil. As demonstrated in Ref [87],

this difference in the detection of light dark matter can explain both the positive

signal at DAMA and the negative at all other detectors.

The abundance constraints on sub-GeV WIMPs were given for each of the min-

imal models in Section 2.3. In this section, constraints on light dark matter from

B-meson decays are calculated and presented for each of the models which permits

light WIMPs. The work in this section was originally published by the author and

collaborators in Ref [89] and Ref [26].

2.6.1 Constraints on Light Dark Matter from B-decays

At present the experimental constraints on light dark matter are weak. As discussed

in previous sections, light WIMPs are difficult to detect in experiments relying on

nuclear recoil, as the heavier nuclei do not have a measurable recoil from lighter

WIMPs unless they have a large velocity. Experiments which study the γ-ray flux

from both the galaxy and from extragalactic sources can provide better constraints

on such models, but are still limited. One alternative is to use the existing B-physics

experiments, in which large numbers of B mesons are produced and accurate decay

rates can be measured.
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In general, WIMPs with masses of a few GeV or less will be produced in the decay

of heavier mesons such as the B-meson. The requirement that the light dark matter

abundance correspond to the observed dark matter abundance places a constraint on

the WIMP annihilation cross section, and therefore a lower bound on the coupling

constants. This also implies a lower bound on the decay widths for the invisible

decays of heavy Standard Model particles.

By measuring the B meson branching ratios involving missing energy, the pres-

ence of light WIMPs could be inferred [89, 26]. As will be demonstrated in the next

section, this method allows B-physics experiments such as BaBar and BELLE to

search for sub-GeV WIMPs, and for many models this provides the strongest con-

straints on their existence and properties. It should also be noted that we demon-

strated the possibility of detecting dark matter in the decays of B-mesons prior to

either BELLE or BaBar placing stringent bounds on the invisible decay widths, and

that this idea has now been invoked as a motivation for building future B-meson

experiments [90, 91, 92] capable of further probing invisible decays.

It should be noted that in this section only the decay B → K+��E is studied. The

decays B →��E ,B → γ +��E, and B → π +��E will also produce WIMP pairs in these

experiments, however neither of the first two decays can be easily detected, while

the third decay is suppressed by a factor of ∼ |Vts/Vtd|2 ∼ 0.04 relative to the kaon

decay and is also not as well constrained from experiments [93]. It is also possible to

produce WIMP pairs in the decays of heavier mesons, such as Υ→ γ +��E. However

in general there is less data available for these decays, while some specific decays like

this one have large widths in the Standard Model and therefore will have very small

branching ratios for WIMP production.
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2.6.2 B-Meson Experiments

Although the decay of B+ → K+ + ��E can be detected through the detection of the

kaon, it is not possible to determine the missing energy without first knowing the

energy of the initial B-meson. This can be achieved by considering the system in

which there are two B-mesons produced, and reconstructing one decay completely.

Such a system can be studied effectively by considering the threshold production of

two B-mesons in the decay of the Υ(4S) state.

For the reconstructed B-meson, either hadronic decays or semileptonic decays are

allowed and the decay products of this B-meson are accounted for and removed from

consideration. If the only remaining particle in the detector is a single kaon 19, then

it could represent a missing energy signal.

When the kaon momentum is small, there also exists a large background which

can overwhelm the signal. The most common of these are normal B-meson decays

in which some particles are undetected, such as B → (D → K + `ν̄) + `ν̄, and

in decays to the long lived neutral kaon, K0
L which can pass through the detectors

without depositing any significant energy. As such only decays in which the kaon is

above a predetermined minimum are counted as a signal. For the BaBar and BELLE

experiments, this restriction is pK > 1.2 GeV , which restricts the range of WIMP

masses that can be probed to be mDM < 1.9 GeV . For the CLEO experiment,

pK > 0.7 GeV and can probe up to mDM < 2.1 GeV .

At present, BaBar has examined 8.8 × 107 Υ(4S) → B̄B decays with both

19In practice, many of these decays also have some background particles or spurious effects of
the decay products of the reconstructed B-meson. As such, it is common to use weaker selection
criteria which suppress the background without adversely affecting the efficiency of the missing
energy searches.
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hadronic and semileptonic decays of the reconstructed B-meson, and restricted the

invisible branching ratio to [94]

BR(B+ → K+ + ��E) < 5.2× 10−5 (2.67)

at a 90% c.l. In contrast, BELLE examined 53.5 × 107 Υ(4S) → B̄B decays with

only hadronic B-mesons reconstructed, and set a limit of [7]

BR(B+ → K+ + ��E) < 1.4× 10−5 (2.68)

at a 90% c.l.

In principle it is also possible to search for dark matter in the decays of the

neutral B-meson, through the reaction B0 → K0 + ��E, however it more both more

difficult to reconstruct B0 and less probable that the resulting K0 can be detected

and as such this reaction does not significantly enhance the constraints on missing

energy.

Another possible channel is the decay of B-meson to an excited state of the

kaon, B → K∗ + ��E. The sensitivity from this decay mode is comparable to that of

B+ → K+ + ��E and can probe WIMPs only slightly lighter than that case.

As more data is collected from B-meson factories, it is expected that this sensitiv-

ity to light dark matter will improve. In particular, increased luminosity will allow

these experiments to probe smaller branching ratios, while possible improvements in

separating signal from background may allow the experiments to detect lower energy

kaons and therefore heavier WIMPs.
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Figure 2.25: Feynman diagrams which contribute to B-decay with missing energy in
the minimal scalar model of dark matter.

2.6.3 Model 1: Minimal Model of Dark Matter

As discussed in Section 2.6, light dark matter can be detected in B meson decays.

In particular, the decay B → K + missing energy provides a strong probe of the

sub-GeV range of the minimal model of dark matter.

The decay B → K + missing energy can occur in two ways. The Standard

Model predicts this decay will occur as B → K + νν [95], with

Br(B+ → K+ + νν) ' (4± 1)× 10−6

As demonstrated in Ref [89, 26], this decay can also proceed as a decay to dark matter

which would not be seen in the present detectors. The diagrams which contribute to

the Standard Model decay and to the decay in the Minimal Model of Dark Matter

are given in Figure 2.25.

The loop process b→ s+h, which is required for the decay to dark matter scalars,

can be calculated as the derivative of the b→ s self-energy term with respect to vEW

(see for example Ref [96]), resulting in an effective vertex

Lbsh =

(
3g2

Wmbm
2
tV
∗
tsVtb

64π2M2
WvEW

)
sLbRh+ h.c. (2.69)
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Since the Higgs is constrained to be significantly heavier than the other particles

involved in this decay, it can be integrated out to form an effective Lagrangian for

b-decays.

LbsE =
1

2
CDMmbsLbRS

2 − CνsLγµbRνγµν + h.c. (2.70)

At leading order, the coefficients are

CDM =
λ

m2
h

3g2
WV

∗
tsVtb

32π2
xt

Cν =
g2
W

M2
W

g2
WV

∗
tsVtb

16π2

[
x2
t + 2xt

8(xt − 1)
+

3x2
t − 6xt

8(xt − 1)2
lnxt

] (2.71)

where xt = m2
t/M

2
W . From these effective interactions and the hadronic form factors

for B and K mesons [97, 98, 99], the decay width for the process B → K + SS can

be calculated:

dΓB+→K+SS

dŝ
=
x2
tC

2
DMf0(ŝ)2

512π3

I(ŝ, mS)m2
b(M

2
B −M2

K)2

M3
B(mb −ms)2

, (2.72)

where ŝ = (pB − pK)2,I(ŝ, mS) reflects the available phase space,

I(ŝ, mS) = [ŝ2 − 2ŝ(M2
B +M2

K) + (M2
B −M2

K)2]
1
2 [1− 4m2

S/ŝ]
1
2 . (2.73)

and f0(ŝ) ' 0.33exp(0.63ŝ/M2
B − 0.095ŝ2/M4

B + 0.591ŝ3/M6
B) encodes the internal

structure of the B-meson and kaon 20.

20In Ref [99], the form factor is given a different parameterization. However for the purpose of
this calculation, the two parameterizations give nearly identical results.
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Figure 2.26: Predicted branching ratios for the decay B+ → K++ missing energy,
with κ determined by the abundance constraints, and with current limits from CLEO
(I) [5], BaBar (II) [6] , and BELLE (III) [7]. The grey bar shows the expected
B → Kνν̄ signal. The parameter space to the left of the vertical dashed line can
also be probed with K+ → π+ +missing energy.

From these results, the branching ratio for invisible B decays is calculated to be

BRB+→K++E = 4× 10−6 + 2.8× 10−4κ2F (mS) (2.74)

where as before,

κ ≡ λ

(
100 GeV

mh

)2

(2.75)

and F (mS) represents the available phase space,
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F (mS) =

∫ ŝmax

ŝmin

f0(ŝ)2I(ŝ, mS)dŝ

[∫ ŝmax

ŝmin

f0(ŝ)2I(ŝ, 0)dŝ

]−1

(2.76)

The first term in the branching ratio represents the Standard Model result, and the

second term represents the additional effects of dark matter. The branching ratio is

plotted in Figure 2.26 with recent limits from BaBar and BELLE. In this figure, the

region between the two solid lines gives the correct abundance for dark matter, with

the region above the dashed lines excluded by B-physics experiments. The region

to the right of these dashed lines corresponds to WIMP masses for which this decay

produces a kaon with momentum less than the experimental cut-off. For very light

WIMPs it is also possible to produce dark matter in the kaon decay, K+ → π+ +��E,

and measurements of this decay width can already exclude the kinematically allowed

region of mS . 150 MeV [100].

From the abundance calculation, it is clear that κ ∼ O(1) for most kinematically

allowed scalars, resulting in a branching ratio at least one order of magnitude larger

than predicted by the Standard Model. As discussed in the introduction, recent

results from BaBar [94] have set a limit of Br(B+ → K+ + E) < 5.2 × 10−5 at

90% confidence level, while preliminary results from BELLE [7] report a limit of

Br(B+ → K+ + E) < 1.4× 10−5.

Based on the results of these experiments, the mass of scalar WIMPs in the

minimal model can be constrained to be mS & 1.7 GeV .
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Figure 2.27: Diagrams contributing to the decay b → s + SS in the 2HDM plus
scalar dark matter model when λ1 is dominant and tan β is large. Inside the loops,
Hu and Hd denote the two charged Higgs bosons, with the mixing of the two doublets
denoted by a cross.

2.6.4 Model 2: Minimal Model of Dark Matter with 2HDM

As before, we consider the three special cases in which a single λi is taken to be

dominant. For the first case, λ1 >> λ2, λ3 the diagrams which contribute are given

in Figure 2.27 and, using the same effective Lagrangian given in Eq 2.70, the Wilson

coefficient is

CDM =
λ1

M2
Hd

g2
WV

∗
tsVtbxt

32π2

(
1− at + at ln at

(1− at)2

)
(2.77)

where at = m2
t/M

2
H . The corresponding branching ratio is

BRB→K+E = 4.0× 10−6 + 3.2× 10−5κ2

(
1− at + at ln at

(1− at)2

)2

F (mS) (2.78)

where

κ = λ1

(
100 GeV

MH

)2

(2.79)
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Figure 2.28: Branching Ratios for B → K+missing energy in the two higgs doublet
model, with scalar WIMPs coupled primarily to Hd. The labeling of current limits
from CLEO (I),BaBar (II), and BELLE (III) is the same as in Figure 2.26.
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Figure 2.29: Diagrams contributing to the decay b → s + SS in the 2HDM plus
scalar dark matter model when λ3 is dominant and tan β is large.

and as for the minimal model of dark matter,

F (mS) =

∫ ŝmax

ŝmin

f0(ŝ)2I(ŝ, mS)dŝ

[∫ ŝmax

ŝmin

f0(ŝ)2I(ŝ, 0)dŝ

]−1

(2.80)

The branching ratio is plotted against current experimental limits in Figure 2.28.

The second case is λ2 dominant, corresponding to a scalar WIMP which is coupled

to the Hu boson. In the limit of large tan β, vu ≈ vew and the model becomes very

similar to the minimal model of dark matter presented in Section 2.2.1. However

because the WIMPs cannot annihilate to down or strange-type quarks, the Lee-

Weinberg limit excludes a larger region of the parameter space.

The final case is the one in which λ3 � λ1, λ2. The diagrams for this model are

given in Figure 2.29. As noted in Section 2.3.2, the annihilation cross-section in this

model is enhanced relative to the case of λ1 dominant, resulting in a suppression

of λ3 by a factor of tan β. However in this model the leading terms in the two B-

decay diagrams (ie. the terms which are proportional to tan β) cancel, resulting in a

suppressed coupling CDM ∼ O(tan0 β). The overall result is that BR(B → K +SS)

is reduced by tan−2 β ∼ 10−4, and so
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BR(B → K + SS)� BR(B → K + νν) (2.81)

and there are no constraints on this model. In the case with both λ1 and λ3 sig-

nificant, the B-decay constraints can exclude certain regions of parameter space but

cannot exclude WIMPs at any range of masses.

For the case of λ1 dominant, the results are similar to those plotted in Figure

2.26, and as with the minimal model the experiments exclude WIMPs lighter than

∼ 1.7 GeV . For the case of λ2 dominant, the results are similar and the data from

BELLE excludes WIMPs lighter than ∼ 1.5 GeV . The case of λ3 dominant is quite

different, in that the decays of B-mesons to WIMP pairs is suppressed by a factor

of tan2 β relative to the other two cases. As a result, B physics experiments cannot

provide constraints on this model.

For the most general case, in which the three coupling constants are comparable in

magnitude, the experimental limits are weaker. In the annihilation cross-section, the

λ3 terms dominate and are therefore λ1 and λ2 are not well constrained. However the

invisible branching ratio is dominated by λ1 and λ2 terms, with λ3 terms representing

an O(tan2 β) correction. As a result, it is more difficult to place constraints on this

model than in the special cases, as unlike those models BR(B → K + SS) is not

related to ΩDM .
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2.6.5 Model 3: Minimal Model of Fermionic Dark Matter

As demonstrated in Section 2.3.3, the minimal model of fermionic dark matter cannot

describe sub-GeV WIMPs and maintain perturbative couplings21. Therefore it is not

possible to search for this type of dark matter in B-physics experiments.

2.6.6 Model 4: Fermionic Dark Matter with 2HDM

As was demonstrated in Section 2.3.4, it is possible to have sub-GeV fermionic

WIMPs, without violating the abundance constraints, if they are coupled to the

Higgs bosons in a two-higgs doublet. In particular, in the special case in which the

λ3χχvuHd

term dominates all other WIMP-Higgs interactions, there is a tan2 β enhancement

of the WIMPs annihilation cross-section and therefore λ3 can be O(tan β) smaller,

making it perturbative for light WIMPs.

However for this special case, the diagrams which contribute to the decay B →

K+χχ, which are given in Figure 2.30, cancel at leading order in tan β. As a result,

BR(B → K + χχ)� BR(B → K + νν)

and therefore this model is not constrained by B-meson decays.

21As discussed in Section 2.2.4, it may be possible for this model to contain light fermionic WIMPs
if the mediator particle is also light. However such models are constrained by existing experiments,
and are not considered in this dissertation.
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Figure 2.30: The Feynman diagrams which contribute to b → s + E/ in the 2HDM
plus fermionic WIMP model for the special case of λ3-dominant.
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Figure 2.31: The Feynman diagram for the leading order decay of b→ s+χχ in the
Higgs-Higgsino model.

2.6.7 Model 4b: Higgs-Higgsino Model

In this model, the decay of the b-quark to dark matter is given by a single diagram,

given in Figure 2.31. The effective Lagrangian for this process is as given in Eq 2.70,

with the Wilson coefficient

CDM =
V ∗tsVtb tan β

32π2v3
sm

(
λdλuvuµ

λ2
uv

2
u + µ2

)
at ln at
1− at

(2.82)

where, as before, at ≡ m2
t/M

2
H . Using the parameter κ from Eq 2.21, and the phase

space integral for fermions,
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Figure 2.32: Branching ratio in the Higgs-Higgsino model

F (mχ) =

∫ ŝmax

ŝmin

f0(ŝ)2(ŝ− 2m2
χ/M

2
B)I(ŝ, mχ)dŝ

[∫ ŝmax

ŝmin

f0(ŝ)2ŝI(ŝ, 0)dŝ

]−1

(2.83)

the branching ratio for this decay is

BRB→K+/E = 4.0× 10−6 + 9.8× 10−5κ2

(
at ln at
1− at

)2

F (m1) (2.84)

The first term represent the Standard Model decay to neutrinos, and the second term

represents the contribution from decays to light dark matter.

The bounds on this model from B-decays are given in Figure 2.32. Using the most

recent data from BELLE [7], neutralinos lighter than ∼ 1.7 GeV can be excluded
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22. Furthermore, WIMPs heavier than ∼ 2 GeV produce a signal smaller than the

uncertainty in the predictions of the Standard Model, and as such the effect of decays

to WIMP pairs will not be detectable.

2.6.8 Model 5: Dark Matter & Warped Extra Dimensions

As outlined in the previous section, the radion has similar properties to the Standard

Model Higgs boson and as such existing experimental data can place a lower bound

on its mass of mφ & 100 GeV . From the abundance constraints in Section 2.3.5, this

bound on the radion mass implies that the WIMP mass satisfies mDM & 30 GeV

which is too heavy to be produced in B-meson decays.

2.7 Conclusion

The nature of dark matter has remained a mystery for several decades, in spite of

increasing evidence for its existence. Measurements of the cosmic microwave back-

ground and other astrophysics experiments suggest an abundance of ΩDM ∼ 0.11,

which for WIMP dark matter corresponds to a total annihilation cross-section of

< σannv >≈ 0.7 pb, while dedicated dark matter searches have constrained the nu-

clear recoil cross-section. However most of the properties of dark matter are still

unknown.

In this chapter, I have presented seven models of dark matter in which only a

minimal amount of new physics is introduced. For each model, I have calculated and

presented the dark matter abundance and used this result to constrain the model.

22As outline in Section 2.2.6, this model does not include all of the complications of supersym-
metry, and it may be possible to avoid these bounds in certain supersymmetric models.
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Each of these models was able to reproduce the observed abundance using natural

values of the parameters, and perturbative couplings.

In Section 2.4, I calculated the WIMP-nucleon scattering cross-section for each

model using the abundance constraints, and used this result and existing data from

dedicated dark matter searches to constrain the parameter space. I have also demon-

strated how each model can be explored at collider experiments, such as the LHC

and the Tevatron, with the primary signals being invisible Higgs decays through the

channel pp → Z0 + hinv and through weak-boson fusion. These experiments should

be able to detect WIMPs lighter than mDM . Mh/2, while heavier WIMPs can avoid

detection.

In Section 2.6, I outlined the motivations for light dark matter and the existing

bounds. I then proved that light dark matter could be detected in the decay of

B-mesons, as originally published by myself and collaborators in Refs [89] and [26].

It is expected that this result is generic, with most models of sub-GeV dark matter

producing an observable signal in B-meson decays.

Throughout this chapter I have shown how each of the minimal models, while

defined in a similar manner, have very different properties. The Minimal Model of

Dark Matter is capable of reproducing the observed dark matter abundance for the

most of mass range considered, with the Lee-Weinberg limit only requiring mS &

300 MeV . Dedicated dark matter searches have only recently been able to probe

this model, with XENON10 data released in 2007 excluding a range of 10 . mS .

30 GeV . However it is expected that the LHC will be able to further probe this

model for WIMP masses as large as half the Higgs mass, or mS & 55 GeV for

mH ≈ 120 GeV . Furthermore, using existing data from BELLE and BaBar can
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already exclude WIMPs lighter than ∼ 1.6− 1.8 GeV , although in this model these

light WIMPs require a significant fine-tuning of the parameters to provide O(1 GeV )

masses.

In Model 2, the scalar WIMP was coupled to two different Higgs fields in the

Type-II two Higgs-doublet model. For the special cases of this model, WIMPs could

have masses below O(100 MeV ) without fine-tuning or violating the Lee-Weinberg

limit due to tan β enhancements of the coupling constants. However these same

models can be excluded by nuclear recoil experiments for mS & 10 GeV , with the

exception of a small range at 50 GeV . mS . 70 GeV due to the Higgs resonance.

Since these special cases do not include strong couplings to the weak gauge bosons,

they are not expected to be probed well by colliders, which search for Higgs bosons

in the Z0 + h channel or from weak boson fusion. From B-meson experiments, the

case of λ1 dominant is excluded for mS . 1.4− 1.6 GeV , while the λ3 dominant case

cannot be probed in these experiments.

The minimal model of fermionic dark matter is similar to the MDM, but with

fermion WIMPs replacing the scalars. While this model can produce the correct

abundance of dark matter, the Lee-Weinberg bound is mχ ∼ 25 GeV and nuclear

recoil experiments exclude mχ . 50 GeV (when mH ∼ 120 GeV ). The LHC and

Tevatron are not expected to be able to probe WIMPs heavier than this bound.

When the SM Higgs in the MFDM is replaced with two higgs doublets, the results

can be quite different. For the special case of λ3 dominant, this model can produce

sub-GeV fermionic WIMPs without violating the Lee-Weinberg limit, due to tan2 β

enhancements to the annihilation cross-section, while the case of λ1 dominant can

contain WIMPs as light as mχ ∼ 1.6 GeV . Furthermore, these two cases are not
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presently constrained by data from nuclear recoil experiments. When the WIMPs are

light, B-meson decays can exclude mχ . 1.6− 1.8 GeV in the case of λ1 dominant,

while the WIMPs in the case of λ3 dominant cannot be probed by these experiments.

The Higgsino model has similar properties to this model with λ1 dominant.

The final model presented is dark matter in the presence of warped extra dimen-

sions. Although the WIMPs in this model have no non-gravitational interactions, the

radion field generated by the extra dimensions allow them to annihilate efficiently.

The result is that this model can provide the correct abundance, with a Lee-Weinberg

limit of mS & 35 GeV for scalars and mf & 50 GeV for fermions. Dedicated dark

matter searches further restrict this to mS & 60 GeV and mf & 80 GeV . Further-

more, it is expected that both the LHC and Tevatron will be able to probe this model

further, with the precise limit of their sensitivity depending on the radion mass and

vev. As with the minimal model of fermionic dark matter, this model cannot contain

light WIMPs and therefore is not constrained by B-meson experiments.

Although the models presented are minimal, their properties are similar to more

complicated models. From the figures on dedicated dark matter searches and collider

searches, it is clear that the next generation of experiments will be able to probe most

of the parameter space of these models and possibly detect dark matter.
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Chapter 3

Charged Relics

In addition to dark matter, it is also possible that the early Universe contained a

small abundance of exotic charged massive particles (referred to as CHAMPs). The

presence of these relics in the early universe can have many effects on the standard

cosmology and on astrophysical processes, depending on their properties.

Heavy charged particles are predicted to exist in several modern theories, with

the most commonly cited examples being in supersymmetry and in models with

extra dimensions. In supersymmetry, every known charged particles would have a

supersymmetric partner, which would also be charged, and which would be present

in the early Universe. These models often also include candidates for dark matter,

in the form of the lightest stable particle, with the next-to-lightest (quasi)stable par-

ticles being charged. For example, both the Constrained Minimal Supersymmetric

Standard Model (CMSSM) and Minimal Supergravity (mSUGRA) theories, contain

gravitino dark matter accompanied by a stau NLSP which is long lived, massive, and

charged.
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The properties of CHAMPs are already constrained by experiments at LEP [101]

and the Tevatron [102], which are currently able to probe up to mX ∼ O(100 GeV ).

However these constraints tend to be model dependent, and the existing experiments

cannot effectively probe higher masses.

In addition to accelerator based searches for charged particles, CHAMPs which

survive to the present age of the universe could be detected using heavy water exper-

iments [103, 104, 105] as well as in cosmic ray and γ-ray detectors [103] and neutrino

detectors [106]. A detailed review of the bounds can be found in Ref [107]. However

these searches are insensitive to relics which are long-lived, with lifetimes in the range

of O(100s − 1000s) or longer, but which are not stable. Since such particles decay

in the early Universe, new methods are required to search for the existence.

The focus of this chapter is on the recently proposed model of catalyzed big bang

nucleosynthesis, in which the primordial abundances of light nuclei are altered by the

formation of bound states with charged massive particles. In such models, metastable

CHAMPs can be detected through their effects on the early universe without vio-

lating the existing bounds on stable charged massive particles. By comparing the

predictions of CBBN to observed abundances of primordial elements, the properties

of CHAMPs can be better constrained.

3.1 Catalyzed Big Bang Nucleosynthesis

Big Bang Nucleosynthesis (BBN) is the process by which the light nuclei in the

Universe are formed, and is also a powerful tool for constraining new physics (for a

review, see eg. Ref [108]) . The theory relies on particle physics, nuclear physics,
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and general relativity to predict the abundances, and the results depend on a single

parameter, the baryon-to-photon ratio, which can be measured from the cosmic mi-

crowave background [8]. The predictions have proven to be accurate when compared

to the observed abundances in older, metal-poor stars. Therefore the effects of new

physics on nucleosynthesis also provide strong constraints on proposed models.

If there exist charged particles which survive to the era of nucleosynthesis, then

they can affect the standard processes in several ways. For the purposes of this

section, there are two classes of model in which the charged particle can have a

naturally long lifetime. One possibility is that all relevant coupling constants in the

theory are small, which results in a low decay rate, and which we refer to as Type I.

The other possibility is that the decay releases very little energy while having natural

coupling constants. We refer to these models as Type II.

It is already well known that the presence of massive relics can affect Big Bang

nucleosynthesis. The most common mechanism is through the decay of a massive relic

during the epoch of BBN, with the decays producing more energy and entropy, which

in turn alter the predictions of the primordial abundances of light elements [109, 110,

111, 112, 111]. In addition the decay of the relic can produce energetic photons, which

will photo-dissociate the light nuclei [113, 114], and additional hadrons which can

convert protons to neutrons leading to a higher neutron-to-proton ration and an

overabundance of 4He [115, 116, 110, 110] as well as non-thermally producing other

light nuclei [117, 118, 116, 110, 110].

However it is also known that any charged particles present during nucleosynthesis

will form bound states with light nuclei. These heavy bound states result in a

reduced Coulomb repulsion of other nuclei, as well as changing the rates of the
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nuclear reactions. This results in a shift in the relative abundances of light nuclei

[20, 119, 120, 121].

In this Chapter, two results of catalyzed BBN will be studied. In Section 3.1.2

it will be demonstrated that the presence of a charged massive relic can increase the

production rate of 6Li, and by comparison with observations of the primordial 6Li

abundance this result is used to constrain the properties of CHAMPs. In Section

3.1.3, I demonstrate how the same charged relics can suppress the 7Li abundance, and

using observations of the primordial 7Li abundance I derive limits on the lifetime and

abundance of the charged relics. This work was originally published by the author

and collaborators in Ref [122].

3.1.1 Bound States of Nuclei

The predictions of CBBN rely on the properties of bound states of nuclei with heavy

charged particles. However the exact properties of these states are not well known,

and depend on the internal structure of each nuclei.

For a first approximation, the bound state can be treated as a hydrogen-like state,

with the X− treated as a massive point particle and the light nucleus in a bound state

with the naive Bohr energies. However it is common for the Bohr radius in these

bound states to be comparable to or even smaller than the nuclear radius, leading to

inconsistencies in the calculations. Furthermore, the nuclei have more complicated

charged distributions than a point-particle, and as such the binding energies and

wavefunction are also significantly altered. Therefore the Bohr approximation fails.

Assuming that the internal structure of the nuclei is unaffected, ground states

energies for these bound states can be calculated using experimental data for the
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nuclear radii and variational methods in quantum mechanics to determine the ground

state wavefunctions and energies. In each case the charge distribution is assumed to

be:

ρc(r) = ρ0e
−(r/r0)2 ρ0 = Zα/(

√
πr0)1/3 (3.1)

as this distribution has been previously found to be a good approximation to the

actual charge distribution of the light nuclei [123, 124]. The value of r0 is chosen

such that the rms of this distribution matches the experimental rms radius, or r0 =√
2/3RN .

For the calculations that follow, each wavefunction was calculated using both

a trial wavefunction which is tuned to minimize the ground state energy and a

numerical solution of the Schrodinger equation, although these two methods have

been found to give identical results.

The energies for the common light elements involved in CBBN1 are given in Table

3.1. In this table,|E0
b | and a0 are the Bohr energy and radius for a point-like nucleus,

Rsc
N and |Eb(Rsc

N )| are the nuclear radius and bound state binding energy for assuming

a uniform charge distribution and RN = 1.22A1/3, and RNc and |Eb(RNc)| represent

the nuclear radius and bound state binding energy using experimental determinations

of the nuclear radius, RN = (5/3)1/3Rc where Rc is the measured charge radius. T0

represents the ionization energy of the bound state.

When nucleosynthesis starts, the temperature of the Universe is too high to form

bound states. Although some states will form, ambient high energy photons will

1It should be noted here that the properties of (4HeX−−) are included in this table, but as yet
have not been included in detailed calculations of CBBN
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bound st. |E0
b | a0 Rsc

N |Eb(Rsc
N )| RNc |Eb(RNc)| T0(keV )

4HeX− 397 3.63 1.94 352 2.16 346 8.2
6LiX− 1343 1.61 2.22 930 3.29 780 19
7LiX− 1566 1.38 2.33 990 3.09 870 21
7BeX− 2787 1.03 2.33 1540 3 1350 32
8BeX− 3178 0.91 2.44 1600 3 1430 34

4HeX−− 1589 1.81 1.94 1200 2.16 1150 28

DX− 50 14 - 49 2.13 49 1.2
pX− 25 29 - 25 0.85 25 0.6

Table 3.1: Properties of bound states for charged relics and light nuclei. In this
table, |E0

b |,|Eb(Rsc
N )|, and |Eb(RNc)| are given in units of keV, while a0,Rsc

N , and RNc

are given in fm.

immediately break-up the bound states. As the Universe cools, nucleosynthesis pro-

ceeds as in the standard model of BBN until the temperature drops below the binding

energy for each state. At that time, the charged relics will begin to capture light

nuclei which have already been formed. The abundance of bound states can be

calculated in the usual manner using the Boltzmann equation,

−HT
dY(NX−)

dT
=< σrecv > nNYX− < σphv > nγY(NX−) (3.2)

where Y(NX−), YX , nN are the abundances of bound states, free relics, and free nuclei

respectively, and the cross-sections represent recombination and photodisintegration

respectively. In previous papers [125, 126, 127] it has been common to use a Saha

equation,

Y(NX−)(T ) =
YXe

−T 2
τ /T

2

1 + n−1
He(mαT )3/2e−Eb/T

(3.3)

with Tτ = T/
√

2τH(T ) and which assumes a thermal distribution of bound and
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unbound relics, as an approximation to the solution of the Boltzmann equation.

However this assumes that the recombination and photodisintegration reactions are

in equilibrium and that there exists a thermal distribution of bound and unbound

systems throughout the epoch of nucleosynthesis. As demonstrated in Ref [128, 129],

this approximation is not valid and can result in order of magnitude errors in the

final abundances of the light nuclei.

Throughout this section, bound states of charged relics are denoted by (NX−),

where N can be any nuclei. The S-factors are defined in the usual way, as S(E) =

Eσ/G where σ is the reaction cross section and G is the Gamow factor, which

measures the probability that two particles can overcome Coulomb repulsion during

a fusion reaction.

3.1.2 Overproduction of 6Li

The effects of catalyzed Big Bang nucleosynthesis are most noticeable in the rarer

elements such as Lithium-6 and Lithium-7. The theory of CBBN was introduced in

Ref [20], where it was demonstrated that the presence of any significant abundance

of charged relics with τ & O(104 s) would produce additional 6Li in excess of obser-

vations. As a result, experimental constraints on the primordial abundance of 6Li

can be used to constrain theories which include metastable charged relics.

It should also be noted that the observed abundance of 6Li is known to be several

orders of magnitude larger than predicted in SBBN. This excess is believed to be

produced by more modern sources, such as in α − α or p − α fusion by cosmic

rays [130, 131]. However the excess is still present in metal-poor regions in which

cosmic ray reactions should not have produced such large abundances of 6Li, and
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furthermore there appears to exist a 6Li plateau analogous to the Spite plateau of

7Li in which the 6Li abundance appears to be constant over large regions of space

and is independent of metallicity. This suggests that the excess of 6Li is produced

in the early Universe (for a review of the 6Li problem, see Ref [132, 133]).

In the Standard BBN scenario, 6Li is produced in small quantities by the reaction,

4He+D →6 Li+ γ (3.4)

The cross-section for this reaction is suppressed due to the presence the photon in

the final state. As outlined in Ref [20], the 6Li nucleus can be modeled as a 4He−D

bound state, and the E1 transition would normally be expected to dominate this

reaction. However the two terms in the amplitude for this transition cancel due to

the almost equal charge-to-mass ratio of the 4He and D nuclei. As a result, the

reaction in Eq 3.4 proceeds by an E2 transition in which the quadrupole moment of

the 4He − D system couples to the photon. The result is that this cross-section is

proportional to the inverse fifth power of the photon wavelength, leading to a strong

suppression relative to other BBN reactions.

If there exist charged particles during BBN then they can form bound states

with 4He, which has a relatively large primordial abundance. These bound states

can then produce additional 6Li primarily through the reaction

(4HeX−) +D →6 Li+X− (3.5)

The cross section for this reaction does not have the same suppression as the reaction

Eq 3.4. For this reaction, the photon emitted by the 6Li nucleus is virtual and can
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D γ D
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Figure 3.1: Diagrams contributing to the production of 6Li , in the standard BBN
(left) and in CBBN (right).

a much smaller wavelength. This results in a cross-section that is approximately

eight orders of magnitude larger than the primary channel in the Standard BBN.

The diagrams for the BBN and CBBN reactions are given in Figure 3.1, and the

relationship between the S-factors for the two processes can be approximated as

SCBBN = SBBN ×
8

3π2

pfa0

(ωa0)5

(
1 +

mD

m4He

)2

(3.6)

where a0 is the Bohr radius of the (4HeX−) system, pf =
√

2m6Li(QCBBN + E is

the momentum of the 6Li nucleus in the CBBN reaction (with QCBBN = 1.13 MeV )

and ω = QBBN +E is the energy of the photon in the SBBN reaction (with QBBN =

1.47 MeV ). A more detailed calculation of the S-factor has been completed using

a ground state wavefunction for (4HeX−) obtained by variational methods rather

than the Bohr approximation, and Coulomb wavefunctions for the final state rather

than plane waves, however the results are similar to this approximation. Using the

results of Ref [134] interpolated to the relevant energies, the S-factor is found to be

SCBBN ' 0.3 MeV bn.

The presence of a charged relic in the bound state with 4He also affects the

Gamow factor in the reaction. Since the relic carries a negative charge, it screens the
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Coulomb repulsion between the 4He and D nuclei and reduces the Gamow suppres-

sion. Because the relic is also much more massive than the nuclei, the change in the

reduced mass of the system will also affect the Gamow factor. The Gamow energy

for the system is changed as

EGamov
SBBN = 5249 keV → EGamov

CBBN = 1973 keV (3.7)

Combining the new S-factor and the reduced Gamov energy gives the 6Li production

cross-section as

< σCBBNv >' 1.8× 109 × T−2/3
9 exp(−5.37T

−1/3
9 ) (3.8)

where the units are those common to BBN calculations, N−1
A cm3s−1g−1, with T9 the

temperature in 109K. It should be noted that this assumes that all nuclear distances

are smaller than the Bohr radius for the bound state. In Ref [125] a solution of the

three-body Schrodinger equation was utilized to improve on the cross-section, with

the new results being

< σCBBNv >' 2.4× 108(1− 0.34T9)T
−2/3
9 e−5.33T

−1/3
9 (3.9)

For the purpose of comparison, the cross-section for the reaction in Eq 3.4 is

< σSBBNv >' 30× T−2/3
9 exp(−7.435T

−1/3
9 ) (3.10)

From these equations, it is apparent that the presence of a charged relic can increase

the rate of 6Li production by several orders of magnitude.
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The predicted abundance of 6Li in this model will also depend on the initial

abundance of (4HeX−) bound states. For the purpose of this calculation, it is

assumed that the relic abundance is small, and that by the time the 6Li producing

reactions occurs all X− particles are either in bound states with 4He nuclei or are

unbound 2.

As discussed in the previous section, the abundance of bound states must be calcu-

lated using the full Boltzmann

−HT
dY(NX−)

dT
=< σrecv > nNYX− < σphv > nγY(NX−) (3.11)

where nN and YX represent the abundance of unbound nuclei and relics, and Y(NX−)

is the abundance of bound states.

Using the CBBN cross-section and the abundance of bound states, the evolution

equation for the abundance of 6Li is

−HT d
6Li

dT
= D(nBS < σCBBNv > +nHe < σSBBNv >)−6 Li np < σpv > (3.12)

where 6Li and D are used to denote the (hydrogen normalized) abundance of each

element, and σp is the destruction cross-section for the reaction

6Li+ p→3 He+4 He (3.13)

The solution of this equation is given in Figure 3.2 for stable and for long-lived

2A full treatment of CBBN would require a fraction of the relics to be bound to other nuclei,
however these fractions are quite small and are not expected to significantly alter these results.
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Figure 3.2: Abundance of 6Li as a function of temperature (in keV) in the CBBN
model. The solid lines correspond to stable relics, while the dashed lines correspond
to τ = 104 s. The 6Li abundance is given for two abundances of relics, YX = 10−2

and YX = 10−5. The predicted abundance from SBBN is given at the bottom of the
figure.
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(τ = 104s) relics, with abundances of YX = 10−2 and YX = 10−5. As an example

of the strength of this method of constraining the properties of CHAMPs, it can

be noted that for τ ∼ 105 s and a 6Li abundance of Y6Li ≈ 2 × 10−11 [109], the

abundance of X− must satisfy

YX− . 8× 10−8 or
nX−

s
. 10−17 (3.14)

This method of constraining CHAMPs with nucleosynthesis is also independent of

the nature of the decay of the relics, whereas other constraints are based primarily

on the effects of those decays [109, 110, 111].

As outlined in Ref [20], a scan over the entire parameter space of relic lifetimes

and abundances yields a constraint (for reasonable choices of the relic annihilation

cross-section) of τ . 4 × 103s using only the 6Li abundance. It is possible that

including other reactions involving rare nuclei in the early Universe will strengthen

this bound.

3.1.3 Suppression of 7Li

In addition to the overproduction of 6Li in Ref [122] my collaborators and I demon-

strated that there is a region of parameter space which satisfies the constraints from

6Li production while also reducing the 7Li abundance. The calculations and primary

results of the 7Li suppression by catalyzed BBN processes are repeated and reviewed

in this section.

The abundance of 7Li is one of the few problems with the standard BBN. Using

the value for the baryon-to-photon ratio derived from the CMB anisotropy, which
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leads to consistent predictions for the other abundances of light elements, the relative

abundance of 7Li is predicted to be Y7Li = 5.24+0.71
−0.67 × 10−10 [136]. However observa-

tions of low metallicity stars gives a value of Y7Li = 1.23+0.68
−0.32× 10−10 [132, 137] while

observations of globular clusters have given values of Y7Li = 2.19+0.30
−0.26 × 10−10 [138]

and Y7Li = 2.34+0.35
−0.30 × 10−10 [139], which is a factor of a few smaller than predicted.

There have been several proposed solutions for the 7Li problem. If the relevant

nuclear reactions had been measured incorrectly, or if there were different rates in the

early Universe, the predictions would be altered. However the possible corrections

do not produce a significant change in the 7Li abundance [135, 140]. There is a

possibility that there is an unknown mechanism in which stars burn 7Li faster than

current models predict [132, 141, 142], as well as changes to the predictions from

new developments in understanding how heavier elements such as 7Li are diffused

and destroyed in stars [141, 142], both of which could affect the inferred primordial

abundances.

It is also possible that an unknown physical effect, or a new particle, in the early

Universe could affect the BBN predictions. In Ref [112, 111] it was demonstrated

that a decaying relic with τ ∼ 1000− 3000s could release enough energy to lower the

7Li abundances. As will be demonstrated in the section, yet another possibility is

that charged metastable particles can catalyze lithium burning reactions.

Recombination of 7Be and X−

In the standard BBN scenario, 7Li is produced through the destruction of 7Be by

neutrons, through the reaction
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7Be+ n→7 Li+ p (3.15)

and after the epoch of nucleosynthesis through electron capture. From these two

processes, all of the primordial 7Be is converted to 7Li (or other lighter nuclei) by

the present time. Therefore depletion of the 7Li abundance can be achieved by

first depleting the 7Be abundance. In the CBBN scenario, similar reactions using

the bound state (7BeX−)can destroy 7Be which further depletes the 7Li abundance

relative to the SBBN predictions. It should also be noted that in the SBBN, the 7Be

abundance is frozen out at about T ∼ 40 keV , while the formation of bound states

occurs at T ∼ 33 keV . Therefore the 7Be abundance will be constant throughout

the timespan in which CBBN becomes important, with the only changes arising from

CBBN processes.

Therefore the most important aspect of the 7Li suppression via CBBN is the

recombination of 7Be with the charged relic, X−. If the capture rate is too low, then

the density of bound states will be too low for the catalyzed reactions to affect the

primordial 7Li abundance. As was demonstrated in Ref [122], the formation of these

bound states is the critical stage in the series of CBBN reactions which determines

the primordial 7Li abundance.

The recombination rate also depends strongly on the properties of the bound

state, (7BeX−) . The bound state energy could be approximated with the 7Be nucleus

represented as a point particle, in which case the ground state energy is E
(0)
g =

−2785 keV . However in this approximation the Bohr radius is aB = 1.03 fm, while

the actual 7Be radius is< r2 >1/2= 2.50±0.04 fm [143]. Assuming a Gaussian charge

distribution, and a finite nuclear radius, the ground state energy is approximated as
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Figure 3.3: Recombination of 7Be and X−. The relic is captured to an excited state
(left) and then radiates a number of photons to reach the ground state (right).

Eg = −1330± 20 keV (3.16)

The recombination rate will also depend on the internal structure of the 7Be nucleus.

The first excited state of 7Be with spin 1/2, has an energy of only 429 keV above

the ground state and can also form bound states with X−. Therefore it is possible

to form (7BeX−) through intermediate states. The most important of these are

(7Be1/2X
−), n = 3, l = 0, ER = (−239 + 429)keV = 190keV;

n = 3, l = 1, ER = (−290 + 429)keV = 140keV; (3.17)

n = 3, l = 2, ER = (−308 + 429)keV = 121keV.

where ER is the energy level of the state relative to 7Be3/2 +X− . The recombination

cross-section is

< σrecv >=
6× 103

T
1/2
9

+
1.9× 104

T
3/2
9

exp(−1.40/T9) +
1.5× 104

T
3/2
9

exp(−1.62/T9) (3.18)
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where T9 ≡ T/109K is the temperature, and the rate is given in the standard BBN

units of N−1
A cm3s−1g−1. The first term corresponds to the non-resonant reactions

7Be3/2 +X− → (7Be3/2X
−) + γ → (7BeX−) + kγ

7Be3/2 +X− → (7Be1/2X
−) + γ → (7BeX−) + kγ

where k is a number of photons,while the other two terms correspond to the reso-

nances and captures to the excited states of 7Be. In addition to these reactions, it is

possible that the recombination rate is increased by effects from the 2s state via the

reaction

7Be3/2+X− → (7Be1/2X
−, n = 2, l = 0)→ (7Be1/2X

−, n = 2, l = 1)+γ → (7BeX−)+3γ

However the position of this resonance is unknown, and this reaction introduces

additional uncertainty into the recombination rate. Therefore two special cases will

be considered, corresponding to either no effect from this reaction or to a resonance

located at +10 keV. In the second case, the recombination cross-section contains an

additional term,

< σrecv >→< σrecv > +
4× 103

T
3/2
9

exp(−0.12/T9) (3.19)

This additional term can increase the total recombination rate by a factor of a few,

and therefore is the source of a significant uncertainty.

It is also important that the bound states are not destroyed by thermal photons.
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The rate for this process is related to the recombination rate via the detailed balance

relation [144],

Γphoto =

∫
E>|Eg |

σphotodnγ(E) =< σrecv > ×
(
mBeT

2π

)3/2

exp(−|Eg|/T ) (3.20)

or

Γphoto =< σrecv > ×
5.5× 106

T
3/2
9

exp(−15.42/T9)nγ (3.21)

where nγ(T ) = 0.24T 3 is the total photon number density. Using both the recom-

bination rate and photodisintegration rates, the Boltzmann equation for the density

of bound states is

−HT dYB
dT

= nBYX(1− YB) < σrecv > −ΓphotoYB (3.22)

with the assumption that nX � nB.

It should also be noted again that in this calculation the abundance of 7Be nuclei

is taken to be constant. In the SBBN scenario, 7Be freezes out at a temperature of

T ∼ 40 keV , while the bound states (7BeX−) form at temperatures of T ∼ 33 keV .

Therefore in the temperature range at which CBBN reactions become important,

the abundance of 7Be is approximately constant.
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Catalyzed Reactions

Once the bound states of 7Be have formed, there are several reactions which destroy

the 7Be nuclei and decrease the abundance of 7Li + 7Be. Some of these reactions are

enhanced relative to the SBBN case, while other reactions are not possible in SBBN.

The first reaction to be considered is the destruction of 7Be by protons. The

reaction

7Be+ p→8 B + γ

is significantly enhanced in the catalyzed form, (7BeX−) + p →8 B + X−, but the

threshold energy is too large for this reaction to occur at any significant rate. It is

also possible to catalyze this reaction as3

(7BeX−) + p→ (8BX−) + γ

In this reaction, there is a reduction in the Gamow suppression due to the Coulomb

shielding of the 7Be nucleus by X−, as well as an increase in the rate due to the emit-

ted photon having approximately five times more energy than in the non-catalyzed

reaction. The non-catalyzed reaction has been well studied (see for example Ref.

[147] for the properties of the S-factor), and is known to depend on the third power

of the photon energy through the S-factor,

SSBBN(0) =
5π

9
α

(
Z1A2 − Z2A1

A

)2

ω3
SBBNI

2(0) (3.23)

3In Ref [145, 146], it was also suggested that this reaction could proceed through a resonant
excited state of 8B. However the threshold energy for this reaction is much larger and the reaction
is unimportant.
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In this equation, Ai and Zi represent the mass and charge of the initial nuclei in this

reaction and I(0) is the radial nuclear integral. Therefore, at first approximation the

S-factor is taken to be

SCBBN(0) = SSBBN(0)

(
ωCBBN
ωSBBN

)3
1

0.372
∼ 15 keV bn (3.24)

where we have taken SSBBN(0) = 21 eV bn and the factor of represents the effects

of the mass and charge of X−.

This reaction also receives a significant contribution from the bound state reso-

nances, with the most important being

(7BeX−) + p→ (8BX−, n = 2, l = 1)→ (8BX−) + γ ER = 167 keV

where the energy is given relative to the (7BeX−) + p unbound system. The rate for

this reaction is

< σv >' 1.6× 108T
−2/3
9 exp(−8.86/T

1/3
9 ) + 1.6× 106T

−3/2
9 exp(−1.94/T9) (3.25)

The non-resonant contribution is small relative to the resonant rate, and the bound

states, (7BeX−), are destroyed by p-burning until T9 ≈ 0.2.

The bound states, (8BX−), will β-decay into (8BeX−) which remains stable for

the lifetime of the charged relic. Once it decays, the remaining 8Be decays into

two α-particles, but the amount of 4He produced in this way does not affect the
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primordial abundance of Helium. It may also be possible for the reaction

(8BeX−) + n→9 Be+X−

to occur, resulting in a small abundance of primordial 9Be.

The second reaction to be considered is destruction by neutrons. In the Standard

BBN, the main channel for 7Be depletion is

7Be+ n→7 Li+ p

However as outlined in Ref [122], the corresponding bound state reaction

(7BeX−) + n→ (7LiX−) + p

is not enhanced, as the widths of the 8Be resonances which mediate the reaction are

too large to be affected by the binding energies in any significant way.

From the relative magnitude of the proton and neutron destruction of 7Be , as well

as the relative abundances of protons and neutrons at the appropriate temperatures,

it is clear the in CBBN p-burning is the dominate channel for suppressing the 7Be

+ 7Li abundance.

Internal Decays of X−

Another possible destruction mechanism is through the decay of the charged relic

while in the bound state. The three main processes for this are:

A: (7BeX−)→7 Be+ decay products + hard γ →3 He+4 He+ ...
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B: (7BeX−)→7 Be(E � T ) + background particles + ...→3 He+4 He+ ...

C: (7Be∗X−)→3 He+4 He+ ...

In the first case, the decaying X− produces a high energy photon which destroys the

7Be nucleus. In this case, the decaying X− can release energies of O(100 GeV ) while

the photodisintegration threshold for 7Be is Ethr ' 1.59 MeV . In the second case,

the decaying X− does not directly affect the nucleus, but instead release the 7Be

nucleus back into the background of thermal nuclei. Because the orbital energies of

the 7Be are of order O(1 MeV ) in the bound state, the recoiling nucleus is sufficiently

energetic that it may be broken up by collisions with other nuclei and background

particles. In the third case, the effect of being bound to a charged particle polarizes

the 7Be nucleus, effectively forming a superposition of the ground state with several

excited states of the free nucleus. When the X− decays, this polarization is removed

and the 7Be excited states can decay into 3He+4 He.

The efficiency of case A can be estimated as follows. Assuming a Type I model

(to provide sufficient energy in the decay) and that X− decays to a single charged

particle with an energy of Emax � 1.59 MeV , and approximating the flux of high

energy photons colliding with the 7Be nucleus, the probability of radiative break-up

is

Prad br '
∫ ∞

0

dr|ψ(r)|2
∫ Emax

Ethr

σγ(E)dnγ(E) (3.26)

where dnγ(E) is the number of photons with E < Emax and σγ(E) is the cross-

section for radiative breakup of the 7Be nucleus. Using the measured cross-section4

4In the calculation of the probability of break-up for the 7Be nuclei, the cross-sections are given
in different units than usual for BBN, as this calculation applies to a single nuclei with a certain
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for 7Be+ γ →3 He+4 He [109],

σγ = 0.504 mb

(
2371 MeV

ω

)2

exp
(
−5.19/

√
Ecm − 0.548Ecm

)
× (1− 0.428E2

cm + 0.534E3
cm − 0.115E4

cm)

(3.27)

where ω is the energy of the virtual photon, Ethr = 1.587 MeV is the threshold at

which this reaction can occur, and Ecm ≡ ω − Ethr is the released energy in MeV.

The probability is given by

Prad br ≈ 1.0× 10−4 Emax = 100 GeV (3.28)

The other channel which can destroy the bound 7Be is 7Be+ γ →3 He+4 He, with

cross-section

σγ = 32.6 mb
E10
thrE

2
cm

ω12
+ 2.27× 106 mb

E8.83
thr E

13
cm

ω21.83
(3.29)

where Ethr = 5.61 MeV . As with the previous channel, the probability is

Prad br ≈ 1.3× 10−4 Emax = 100 GeV (3.30)

This indicates that this mechanism is not efficient, with . 0.1% of the bound 7Be

nuclei being destroyed in this manner, and does not constitute a significant channel

for suppression of the 7Be + 7Li abundance.

In case B, the decay of the relic X− leaves the 7Be nucleus unbound with O(MeV)

energy rather than a thermal distribution, and is not required in the BBN calculation.
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kinetic energy. In effect, the released nucleus is bombarded with a flux of background

photons and other particles which serve to destroy the nucleus.

The exact destruction rate depends on the relative rates of the slowing of the

7Be nucleus and the reaction 7Be + p →8 B + γ. The slowing of the 7Be nucleus

occurs via elastic collisions, in the form of Coulomb scattering from electrons and

positrons5. In Ref [122], we have estimated that an O(MeV ) nucleus will thermalize

in this manner in ∼ 10−6s. The rate for 7Be destruction is significantly smaller, with

the rate of destruction by the reactions 7Be+γ →4 He+3He and 7Be+p→9 B+γ

estimated as Γγ ∼ 10−10s−1 and Γp ∼ 10−5s−1 respectively [128]. Therefore the

probability of the 7Be nucleus being destroyed before thermalization is . 10−11, and

therefore this mechanism is also not significant.

In case C, the rate of destruction depends on the part of the bound state 7Be

wavefunction which corresponds to an excited nucleus. This can be approximated as

∑∣∣∣∣ d · E0i

E0 − Ei

∣∣∣∣2 (3.31)

where d · E0i is of order 1 MeV, and the energy difference is (Ei − E0) ≥ 10 MeV .

From these typical values, it is clear that this mechanism is not efficient either, with

less than 1% of recoiling nuclei decaying from excited states.

These three channels do not contribute significantly to the destruction of 7Be

nuclei, and therefore the effects of internal decays of the charged relic can be ignored.

5The nuclei can also be slowed by Compton scattering of thermal background photons, however
the cross-section for this process is several orders of magnitude smaller than the cross-section for
Coulomb scattering [115]
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Figure 3.4: The internal conversion of 7Be to 7Li via a weak-boson exchange with
X−.

Internal Conversion Channels

Another possibility is that there is a second relic state, X0, which has a similar mass

to X−, and which can be a decay product of X− → X0 + charged particles. The

most obvious choice is a weak-coupling, X− → X0 + W−, and in this case the W−

boson can then hit the 7Be nucleus in the bound state,(7BeX−), and convert it into

a 7Li nucleus,

(7BeX−)→7 Li+X0

This reaction is shown in Figure 3.4. As the 7Li nucleus is more fragile, it is subse-

quently destroyed through the SBBN channels.
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Energy Injection From X+X− Annihilation

In addition to the catalysis of nuclear reactions, the presence of charged relics can

also affect the primordial abundances of the light elements through the injection of

energy from X+X− annihilations and decays. In particular, when the temperature

of the Universe is low enough the relic can form a bound state with its antiparticle,

and subsequently annihilate through a positronium-like state.

The rate of energy released by X+X− annihilations is

Γann =< σX+X−vrel > nX+ (3.32)

where the cross-section for bound state formation is

< σX+X−vrel >=
210π3/2α3

3e4m
3/2
X T 1/2

(3.33)

It should be noted that this cross-section is sufficiently small that this mechanism

does not have a significant effect on the abundance of X− during CBBN.

As is common in calculations of this nature, the effects of this mechanism are

quantified using the energy released per photon, normalized on 1 GeV. For annihi-

lating particles, this takes the form

ξ =
2mX

1 GeV
Y 2
Xη

2
B ×

∫ T2

T1

< σX+X−vrel > nγ
TH

dT (3.34)

where T1 to T2 represents the range of temperatures at which these effects are im-

portant. In this calculation, this range is between ∼ 10 keV and ∼ 40 keV . At

higher temperatures the effects of the annihilating particles will be overwhelmed by

the thermal nuclear reactions.



CHAPTER 3. CHARGED RELICS 122

Using the cross-section given above, ξ is given by

ξ = 2.2× 10−12

(
500 GeV

mX

)1/2(
YX
0.02

)2

(3.35)

At this scale, the energy released in the form of photon pairs produced in X+X−

annihilations is not sufficient to affect the nuclear abundances. However if the an-

nihilations produce hadrons with any significant branching ratio, then this energy

release can suppress the 7Li abundance by a factor of a few[111]. It should also be

noted that the m
3/2
X scaling of ξ, which is a result of the expected linear dependence of

YX on mX , means that heavier CHAMPs will produce a stronger suppression of the

7Li abundance due to hadronic annihilations. As a result, the predicted abundance

of 7Li in the CBBN model depends on both the catalyzed reaction rates, calculated

in previous sections, and on the effects of energy injected into the system by both

the annihilations and decays of the CHAMP being considered.

Abundance

In the Standard BBN, the dominant processes which determine the 7Li abundance

are:

SBBN : 3He+4He → 7Be+γ; 7Be+n→ 7Li+p; 7Li+p→ 24He or D+6Li. (3.36)

In addition to these reactions, the abundance is also affected by secondary reactions:
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SBBN : 3H + 4He → 7Li + γ; 7Be + p→ 8B + γ; 7Be + D→ p+ 24He; (3.37)

These processes have been studied extensively in relation to BBN [135, 148].

As demonstrated in the previous sections, the presence of charged relics can add

additional destruction channels:

CBBN : 7Be +X− → (7BeX−) + γ; (7BeX−) + γ → 7Be +X−;

7Li +X− → (7LiX−) + γ; (7LiX−) + γ → 7Li +X−.

(3.38)

Type I and II : (7BeX−) + p↔ (8BX−) + γ; (8BX−)→ (8BeX−).

(7BeX−) + n→ (7LiX−) + p; (7LiX−) + p→ X− + 24He;

(7LiX−) + p→ X− + D + 6Li.

Type II only : (7BeX−)→ 7Li +X0; (8BX−)→ 8Be +X0.

In addition to these primary channels, destruction of the (7BeX−) can occur by D-

burning. In (7LiX−) + p and (7BeX−)+D reactions the only change implemented

relative to the SBBN rate is in the Coulomb penetration factor. In Type II models,

it is also possible to produce 7Li through the internal conversion process 7Be+X− →

(7BeX−) + γ → 7Li +X0 + γ, as discussed in the previous section.

Although a full treatment of CBBN would require the inclusion of several hun-

dred catalyzed reactions, the calculation of the 7Li abundance can be performed to
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Figure 3.5: The combined constraints on the abundance and lifetime of charged relics
from CBBN in (a) Type-I and (b) Type-II models. The gray region is excluded due
to an overproduction of 6Li while the lines represent the region that can explain the
observed 7Li suppression. Curve A corresponds to the abundance when Eq 3.18 is
used, while curve B corresponds to the abundance when Eq 3.19 is used.
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reasonable precision using only the Li-Be reactions 6 since the final abundances of

these elements are too small for a backreaction to significantly affect the more abun-

dant elements such as 4He , 3He , and D. Using the predicted temperature dependent

abundances D(T),3He (T),etc. from the full SBBN code, and the portions of the code

corresponding to the reactions in Eq 3.36 and Eq 3.37, the prediction for the 7Li +

7Be abundance is

(7Litot)SBBN ≡ (7Be + 7Li)SBBN = 4.1× 10−10 (3.39)

which agrees with more detailed calculations7 of the SBBN [135, 137, 148].

When the reactions of Eq 3.38 are included, the 7Li abundance is reduced. The

abundance depends on the mass and lifetime of the charged relic, and is given in

Figure 3.5 along with the constraints from 6Li abundances. For relics along the

solid line, the 7Li abundance is 2.5 × 10−10, which is consistent with the observed

abundance of primordial 7Li . From these results, a charged relic with

few × 100s < τX < 2000s

could reduce 7Li to observed levels without overproducing 6Li .

6During the writing of this dissertation, two more calculations of the 6Li and 7Li abundance in
CBBN were published [145, 146], in which additional reaction rates were estimated and included.
However as indicated in Table 3.2, these additional reactions do not significantly alter the constraints
given here.

7It should be noted that after this calculation was completed, the reaction rates were updated
and the SBBN prediction for (7Litot)SBBN has increased [136]. However these updated reaction
rates are not expected to significantly alter the conclusions of this chapter.
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nuclei τX(s) YX
Pospelov [20] 6Li . 4000 . 10−7

Hamagutchi [125] 6Li 3300-3700 ∼ 10−3 − 10−4

Koopmans [128] 6Li 1600 - 7000 ∼ 5× 10−4 − 0.07
Bird et. al. [122] 7Li 1000-2000 & 0.04
Jittoh et. al. [127] 7Li 730-1736 & 1.2× 10−10

Kusakabe et. al. [145, 146] 6Li , 6Li 1600-2800 0.09 - 0.6
Kusakabe et. al. [145, 146] 6Li , 7Li 1400-2700 0.04 - 0.2

(with X− internal decays)
Pospelov [121] 9Be . few × 103 -

Table 3.2: Preferred parameters for CHAMPs from various calculations of CBBN

3.2 Conclusions

The existence of massive charged relics is well motivated in theories of supersymmetry

and in other theories of new physics. In the past the properties of such particles has

been constrained by both collider experiments and heavy water experiments, as well

as indirect constraints from the γ-ray background. However collider experiments

have thus far only been capable of excluding mX . O(100 GeV ) in very model

dependent ways, and heavy water experiments cannot constrain heavy metastable

CHAMPs with low abundance.

In this chapter, I have demonstrated how the presence of charged massive particles

in the early Universe could affect the predictions of Big Bang nucleosynthesis by

catalyzing nuclear reactions. In particular, the formation of bound states of charged

relics with Lithium and Beryllium nuclei can lead to a suppression of the primordial

7Li abundance. As the 7Li abundance is one of the few discrepancies between BBN

predictions and observation, with the observed abundance a factor of a few lower

than predicted, this result can be viewed as another motivation for the existence of
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charged massive particles in the early universe.

The primary constraint on CHAMPs in CBBN is from 6Li production. This

bound and the 7Li bounds are reasonably model independent, with the main as-

sumption being that the relic has unit charge and is massive.

As originally published in Ref [122], for CHAMPs with lifetimes in the range of

τ ∼ 1000 − 2000 s and abundances in the range of YX & 0.04, the predicted 7Li

abundance is consistent with observations without violating observed limits on the

6Li abundance. At present, the region of concordance between all CBBN bounds

gives the preferred CHAMP properties as τ ∼ 1500 s with YX ∼ O(0.1).

In the last year, the predictions of catalyzed Big Bang nucleosynthesis have been

studied extensively [20, 119, 120, 122, 125, 126, 127, 149, 150, 151, 152, 145, 146, 153,

154] and will be studied in more detail in the future. A summary of the constraints

on CHAMPs in each study is given in Table 3.2. The first three studies [20, 125, 128]

used the production of 6Li as a restriction, with different estimates of the relevant

production rates and the fractional abundance of bound states of (4HeX−) , and

constrain generic properties of the CHAMPs based on the observed small but non-

zero abundance of primordial 6Li . The 7Li calculations [122, 127] assume that the

CHAMP is responsible for the observed suppression of primordial 7Li , although these

constraints could be avoided if 7Li is suppressed by other mechanisms as well. The

two papers which simultaneously treat 6Li and 7Li also estimate additional reaction

rates in CBBN which slightly alter the constraints. Furthermore, these two papers

give different constraints, as the first result is independent of the CHAMP decay

mode while the second result includes the effects of the decay (NX−)→ N+X0 + ...

[145, 146].
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In addition, CBBN predicts a fairly model independent abundance of 9Be rela-

tive to the 6Li abundance [121], which should be measurable in future astrophysics

experiments. It has also been suggested that the region of parameter space which re-

solves the 7Li discrepancy should be thoroughly probed in future collider experiments

[157, 158].

Based on these results, it is clear that CBBN provides a strong constraint on the

properties of charged relics in the Universe as well as providing a possible explanation

for the higher abundance of 6Li and the suppression of 7Li in the early Universe.
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Chapter 4

Extra Dimensions

4.1 Overview

The possibility that there may exist hidden dimensions in our Universe has been

considered for several centuries. The first serious research into extra dimensions

occurred in 1915 with the four-dimensional general theory of relativity, and the five

and six dimensional theories of Nordstrom [159], Kaluza [160], and Klein [161]. These

theories were largely ignored until the 1970’s, with the realization that certain models

of supersymmetry and superstring theory were only consistent in higher dimensional

spacetimes.

In 1998, the idea that the Universe could contain extra dimensions was revital-

ized with the realization that higher dimensions could solve several problems with

Standard Model. It was discovered that if the Standard Model fields were confined

to a small region of the extra dimension [28], or confined to a three-dimensional

membrane [29, 30], then gravity could be made as strong as the other three forces
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in the Standard Model without violating existing experimental bounds, resolving

the hierarchy problem. In addition, these models allowed extra dimensions as large

as R ∼ 1 mm which made it possible to search for extra dimensions in modern

gravity experiments. Later models have also been used to explain the fermion hi-

erarchy [162, 163], number of spacetime dimensions[164], dark matter [33, 34, 35],

dark energy [165], inflation [166], the low energy scale of the cosmological constant

[167, 168], and non-singular alternatives to inflation [169].

The original models introduced by Kaluza and Klein included no difference be-

tween higher dimensions and the usual dimensions of space, with the exception of

compactification. At present there are several models of extra dimensions, with no

clear indication of which if any is correct. Many of the models are known to be

unstable with respect to small perturbations. However each model predicts unique

phenomena which could be detected. The three main classes of extra dimensional

models are:

Universal Extra Dimensions (UED) - In the UED model, all Standard Model

fields are allowed to propagate through all dimensions. This also results in very

strong constraints on the size of the extra dimensions, with colliders restricting

R . 10−16 cm. Since the SM fields can propagate in the higher dimensions,

these models have been used to explain the three generations of the Standard

Model [162, 163], dark matter [33, 34, 170], but may also predict a decaying

proton [171, 172].

Nonwarped Braneworlds - The second class of extra dimensional models in-

volves 4D branes embedded in higher dimensional spacetimes. In such models,
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the extra dimensions are not warped, and are usually given the topology of

a d-dimensional torus. In these models, only gravity can propagate in all di-

mensions, while the Standard Model fields are restricted to the brane. Gravity

experiments still require these extra dimensions to be compact, but their sizes

can be of O(1 mm) [28] which is observable in modern gravity experiments [31].

One of the features of these models is the presence of Kaluza-Klein gravitons.

The gravitational field, like any function with periodic boundary conditions,

can be described by discrete modes. Each of these modes satisfies the equation

of motion for either a spin-2 particle (KK graviton), a vector field (gravipho-

ton), or a scalar (radions or graviscalars) [173]. These effective particles are

known as Kaluza-Klein modes, and have a mass spectrum of the form

m2
→
n

= m2
0 +

→
n

2

R2
(4.1)

where
→
n represents a set of d-integers. Nonwarped brane models also have a

reduced Planck mass, which is given by

Md+2
∗ = M2

PL/R
d (4.2)

and which can be as low as a few TeV[28].

Warped Extra Dimensions - In models with warped extra dimensions, the Stan-

dard Model fields are still trapped on a 4D brane while gravity can propagate in

higher dimensions. However unlike the previous model, the strong warping of
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the extra dimensions allows for large or even infinite dimensions as the warping

limits the range over which gravity can operate.

The most common example of warped extra dimensions are the Randall-Sundrum

models [29, 30]. In the Randall-Sundrum model, the metric of spacetime is

given by

ds2 = e−2kφ(xµ)|y|ηµνdx
µdxν − φ(xµ)2dy2 (4.3)

As outlined in Section 2.2.7, the field φ(xµ) has the same properties as a scalar

field trapped on the 4D brane, and is referred to as the radion. As with the

nonwarped models, the Randall-Sundrum has a reduced Planck mass given by

M∗ ≈MPLe
−kπrc (4.4)

where rc ≡< φ >. In this model, M∗ can be as small as 1 TeV.

In this section I review the existing constraints on the ADD model [28] of nonwarped

extra dimensions, and then calculate two new sets constraints arising from Big Bang

nucleosynthesis in Section 4.3.1 and from positron production in the galactic core

in Section 4.3.2. Although each constraint assumes the extra dimensions form a

d-dimensional torus with all compact dimensions having the same size, the meth-

ods used are generic and could also be applied to more general models to provide

additional constraints.
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4.2 Previous Constraints & Searches

The most important constraint on such models is that they not violate current limits

from gravitation experiments [31]. In the ADD model, a single extra dimension

cannot resolve the hierarchy problem unless R ' 1000 km. However a dimension

this large would lead to a 1/r3 gravitational force at the scale of the solar system, and

so is already excluded. For higher dimensions, the present limit from gravitational

force measurements is R . 0.13 mm [32]. For comparison with other bounds, the

gravitational bound on two extra dimensions limits the Planck mass to be M∗ &

1.9 TeV .

4.2.1 Astrophysics Constraints

In the early Universe, large numbers of Kaluza-Klein gravitons would have been cre-

ated in both thermal processes and non-thermal processes. For thermal production,

the dominant production channels are γγ → KK, ν̄ν → KK and e+e− → KK

[173, 174]. By assuming that the abundance of Kaluza-Klein modes is smaller than

the abundances of the Standard Model fields, which avoids backreactions of the KK

modes, the Boltzmann equation can be written as

ṅm =
∑

i=γ,ν,e+

< σannv >i n
2
i − 3Hnm (4.5)

where H is the Hubble constant and ni is the number abundance of the fields. In

this equation, it is assumed that the Kaluza-Klein modes produced in this way will

have small mass, which results in a long life [173] and as such the decay term in

the Boltzmann equation has be omitted. Following Ref [174], this equation can be
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reduced to

ṅm = −3Hnm +
11m5T

128π3M2
P

K1(m/T ) (4.6)

where m is the mass of the Kaluza-Klein mode, MP is the reduced Planck mass (or

the Planck mass as viewed on the brane) and K1 is the modified Bessel function of

the second kind. Taking in consideration the subsequent KK mode decays, gives the

present abundance of a specific mode as

nm '
19T 3

0

64π3√g∗,RH
m

MP

e−Γdec(m)t0

∫ ∞
m/TRH

q3K1(q)dq (4.7)

or for all modes with mass m,

nm ' (1.9× 10−22 GeV 4)Sd−1
T d+1
RH

Md+2
∗

(
m

TRH

)d
e−Γdec(m)t0

∫ ∞
m/TRH

q3K1(q)dq (4.8)

where TRH is the temperature at which the Universe becomes radiation dominated,

Sd−1 = 2πd/2/Γ(d/2) is the area of a d-dimensional sphere. It is assumed that the

modes are so closely spaced and that R is sufficiently large that the sum over indices,

which for a given mass m must satisfy
∑

i=1..d

(
ki
R

)2
= m2 , can be replaced with an

integral over the surface of a sphere.

The second production mechanism in the early Universe is non-thermal produc-

tion during reheating. It is believed that the Universe underwent a period of infla-

tionary expansion, generated by a massive field known as the inflaton. At the end

of this expansion, the inflatons decayed into other fields, which in effect reheated

the Universe and began the period of thermal interactions which produced the usual
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Standard Model fields and dark matter. Since gravity is coupled to energy, these

inflaton decays would necessarily be accompanied by production of Kaluza-Klein

gravitons.

The abundance of Kaluza-Klein modes produced by reheating can be calculated

in a similar manner to the abundance of thermally produced modes (see eg. Ref

[175]). The final result is an abundance of

nm ' (1.9× 10−22 GeV 4)Sd−1
T d+1
RH

Md+2
∗

(
m

TRH

)d−7

e−Γdec(m)t0

∫ m/TRH

m/(αTRH)

q10K1(q)dq

(4.9)

where α ≡ TMAX/TRH is a measure of the maximum temperature produced during

reheating.

The total (number) abundance of Kaluza-Klein gravitons is given by the sum of

the thermal and non-thermal abundance, given in Eq. 4.8 and Eq. 4.9 respectively,

summed over all modes. The total (energy) abundance is similarly given by

ρKK =

∫ ∞
0

dm m(nm,thermal + nm,reheat) (4.10)

As before, it is assumed that the modes are so closely spaced that the sum over

modes with the same mass can be replaced with an integral over the surface of

a sphere, and the sum over modes with different masses can be replaced with an

integral over the mass.
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Diffuse γ-ray Background

Since these gravitons can have sufficiently long lifetimes that they still exist in the

Universe at present, the decay of these modes can be detected in satellite experiments.

Some of these gravitons will decay to photons, with the decay rate [173]

Γdec(m) =
m3

80πM2
PL

(4.11)

producing a flux of extragalactic γ-rays which can be observed by several satellite

based experiments.

Using the measurements from EGRET [176] and COMPTEL [177], a lower limit

on the Planck mass, M∗, was calculated1 [175]. The results are given in Table 4.1.

This also places an upper bound on the size of the extra dimensions from the relation,

R

1 mm
. 2× 1031/d−16

(
1 TeV

M∗

)1+2/d

(4.12)

From the table, it can be seen that the constraints on the size of extra dimensions

from this method are already several orders of magnitude better than from gravity

experiments. As before, it should also be noted that these bounds assume that the

extra dimensions form a torus, whereas other topologies and geometries are also

possible and could avoid these bounds.

1These results assume that TMAX & 1 GeV , while TRH ∼ 0.7 MeV , although it is possible that
the difference between these two temperatures could be higher resulting in stronger constraints. It
has also been argued that if TMAX is too large, the KK modes produced would be heavier and
therefore decay too early to be detected at present [178].
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d = 2 d = 3 d = 4 d = 5 d = 6
M∗ 167 TeV 21.7 TeV 4.75 TeV 1.55 TeV < 1 TeV
R 22 nm 2.5× 10−2 nm 1.1 pm 0.17 pm > 0.029 pm

M∗ 700 TeV 25.5 TeV 2.8 TeV 0.57 TeV 0.17 TeV
R 1.3 nm 1.9× 10−2 nm 2.4 pm 0.70 pm 0.16 pm

Table 4.1: Bounds on the size of nonwarped extra dimensions and the reduced Planck
mass from astrophysical experiments, with the first two lines representing bounds
from the γ-ray background and the second two lines representing bounds from neu-
tron stars. The size of the extra dimensions is given as an upper bound, while the
Planck mass given is a lower bound.

Neutron Stars & Supernovae

In addition to the Kaluza-Klein gravitons produced in the early Universe, it is also

expected that high energy astrophysical processes will produce a significant abun-

dance of Kaluza-Klein gravitons. In particular, it is expected that a fraction of the

energy released in a supernova will be in the form of KK modes. The immediately

imposes a constraint on the size of the extra dimensions, since the energy loss will

affect the flux of neutrinos and other particles emitted by the supernova. For SN

1987A, observations of the neutrino flux restrict the fraction of energy lost to KK

modes to be fKK . 0.5 [179, 180, 181], which corresponds to M∗ & 8.9 TeV for2

d = 2. The bounds can be strengthened further by using the EGRET data to search

for sources of γ-rays created in the decay or annihilation of the KK gravitons sur-

rounding all cosmic supernovae, with fKK . 0.5 × 10−2 or M∗ & 28 TeV for d = 2

[183, 182].

It is also possible to search for the effects of Kaluza-Klein gravitons in nearby

neutron stars. During a supernova, a large number of KK modes are produced but

2For the purpose of clarity, only the constraints on the case of d = 2 are presented. The results
for higher dimensions are given in Ref [182]
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they tend to have small kinetic energies, and as such are trapped in the gravitational

potential of the supernova core. The final result is a neutron star surrounded by

a halo of KK gravitons. Since these modes are decaying and annihilating, this also

results in a flux of ∼ O(100 MeV ) neutrinos, electrons/positrons, and γ-rays. There-

fore experiments designed to search for γ-ray fluxes from localized sources, such as

GLAST, will be able to detect the effects of this halo, with the strongest bounds

arising from nearby neutron stars. Existing data from EGRET can already be used

is this manner to restrict M∗ & 54 TeV for d = 2 [184, 182].

The Kaluza-Klein graviton halo also affects the neutron star itself. The same

decays and annihilations which produce an observable flux at Earth will also produce

a flux of particles and γ-rays that reheat the neutron star and prevent it from cooling.

By observing the thermal emissions of pulsars, this effect can be used to place strong

bounds on the ADD model of M∗ & 700 TeV for d = 2 [184, 182]. The bounds for

higher numbers of dimensions and the corresponding upper bounds on the size of the

extra dimensions are given in Table 4.1.3

From Table 4.1, it can be observed that the constraints from neutron stars, in

which the KK-modes are produced through neutron-neutron scattering, are better

than those from the γ-ray background,in which the KK-modes are thermally pro-

duced, for d = 2 and d = 3 while for higher dimensions the γ-ray background is

stronger. This difference is due to the fact that γ-rays are produced by thermal

KK-modes while neutron stars produce modes via neutron-neutron scattering which

have different dependencies on the number of dimensions.

3It should be noted that there is some uncertainty in the production of KK modes in supernovae,
and various authors have produced different constraints, as summarized in Ref. [185]
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4.2.2 Collider Constraints

Existing Experiments

Aside from astrophysics experiments, Kaluza-Klein modes can also be produced in

collider experiments. In the ADD model all particle processes can emit gravitons,

however due to the weak gravitation couplings the rates of graviton emission are

proportional to inverse powers of the Planck energy MPL = 1.2×1019 GeV . As such

it is not possible to search for events with a specific number of missing gravitons.

However it is possible to search for the missing energy due to the emission of

large numbers of gravitons. Although the probability of emitting a single graviton

is small, in the ADD model the number of graviton modes with energy less than

E is ∼ (RE)d. For reasonable energies, this number is quite large and as such the

probability of producing any gravitons is significant. At the Tevatron, searches have

been conducted for the reaction pp→ jet+��E [2] while LEP searched for the reactions

e+e→γ+��E[1], Z0 +��E [186]. The combined results from LEP give the limits in Table

4.2 at 95% c.l. while the limits from the Tevatron are given in Table 4.3.

d 2 3 4 5 6
M∗ 1.60 TeV 1.20 TeV 0.94 TeV 0.77 TeV 0.66 TeV
R 250 µm 3.2 nm 12 pm 0.45 pm 50 fm

Table 4.2: Lower bounds on M∗ and upper bounds on R, due to missing energy
experiments at LEP through the reaction e+e− → γ + ��E. [1]

The constraints on the ADD model are stronger at LEP for d = 2, 3, 4, and

stronger at Tevatron for d = 5, 6, due to different dependences on the number of

dimensions for the two processes studied. However both of these collider results are

weaker than the astrophysics constraints on the ADD model, with the exception of
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d 2 3 4 5 6
M∗ 1.18 TeV 0.99 TeV 0.91 TeV 0.86 TeV 0.83 TeV
R 350 µm 3.6 nm 11 pm 0.35 pm 34 fm

Table 4.3: Lower bounds on M∗ and upper bounds on R, due to missing energy
experiments at Tevatron through the reaction pp̄→ jet+ ��E. [2]

d = 6 for which the CDF at the Tevatron provides the strongest constraints.

Future Experiments

The ADD model will also be probed at the LHC (and the ILC) using several channels.

Since the Standard Model Higgs field couples to the Kaluza-Klein gravitons, it may

be possible for the ADD model to be probed using the invisible Higgs decays outlined

in Section 2.5 [187, 188]. As shown in Ref [187], it is also possible to probe the ADD

model using the mixing of a Higgs boson and a Kaluza-Klein graviscalar. However

the constraints from these channels at future colliders are still expected to be weaker

than those from existing satellite experiments, particularly for d = 2, 3 in which the

scale of gravitation interactions,M∗, is expected to be above the energies probed at

these colliders.

Another channel which can be used at the LHC is dimuon production, in which

virtual graviton exchange produce an observable effect in the production of muon

pairs with large invariant mass. This channel can provide the limits given in Table

4.4 and Table 4.5 [189]. Using this channel, the LHC bounds for d = 2, 3, 4 are

weaker than those from the diffuse γ-ray background, as given in Table 4.1, even

for very high luminosity. However the LHC could probe for extra dimensions with

d = 5, 6 with luminosity as low as L = 10 fb−1, as the existing astrophysics bounds
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L = 10 fb−1 L = 30 fb−1 L = 100 fb−1 L = 300 fb−1

d = 3 5.0 TeV 6.1 TeV 7.5 TeV 8.6 TeV
d = 6 4.2 TeV 4.8 TeV 5.8 TeV 6.7 TeV

Table 4.4: The values of M∗ which provide 5σ signal from dimuon production at the
LHC, for d = 3 and d = 6.

L = 10 fb−1 L = 30 fb−1 L = 100 fb−1 L = 300 fb−1

d = 3 0.29 nm 0.21 nm 0.15 nm 0.12 nm
d = 6 4.3 fm 3.6 fm 2.8 fm 2.3 fm

Table 4.5: The values of R which provide 5σ signal from dimuon production at the
LHC, for d = 3 and d = 6.

are weak for higher numbers of dimensions.

It has also been suggested that colliders could search for extra dimensions through

the production of black holes (for a review, see eg Ref. [190, 191, 192]). The produc-

tion of sub-atomic black holes is not well understood, however it is believed that they

can form when the energy in the collider exceeds the Planck scale. Although this will

not happen for MPL ' 1.2 × 1016 TeV in the normal four-dimensional spacetime,

the ADD model reduces the Planck mass to the TeV scale, which is accessible.

Although the production of black holes in colliders is not well understood, or

even certain to occur, the energy scales which can be probed by colliders is limited.

In order to produce black holes at the LHC, the Planck mass would have to be

M∗ . O(10 TeV ), which from astrophysics constraints on the ADD model means

that only d = 4, 5, 6 could be probed in this way.

The next generation of collider experiments has the potential to probe an inter-

esting region of parameter space in the ADD model. For low numbers of dimensions,
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d = 2, 3 the range of Planck masses which can be studied is already excluded by

existing astrophysics bounds. For d = 4, 5 the LHC can explore regions which are al-

lowed by the neutron star bounds, however as will be shown in Section 4.3, this range

is excluded by nucleosynthesis and by galactic positron production 4. For d = 6, the

LHC is expected to be able to probe further than any existing astrophysics bounds.

4.3 New Constraints

4.3.1 Nucleosynthesis Constraints

The presence of extra dimensions, and in particular the decay of the Kaluza-Klein

modes, will also affect the relative abundance of the light nuclei predicted by BBN.

By comparing the observed abundances with the abundances predicted by BBN in

the presence of KK gravitons, the ADD model can be further constraints. In this

section, I derive and present the resulting limits, as previously published by the

author and collaborators in Ref [193].

In the standard cosmology, it is believed that the early universe experienced a

period of rapid expansion known as inflation. This expansion is generated by the

presence of a field, referred to as the inflaton, which then decays into the Standard

Model fields and reheats the Universe.

However if the Universe also contains extra dimensions, then some fraction of the

energy released by inflaton decay will be in the form of Kaluza-Klein gravitons. Since

the KK modes interact through gravity, they couple to the mass and energy of the

4The bounds from these two mechanisms could be weakened sufficiently to allow LHC to detect
extra dimensions, however this requires some tuning of the models.
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ψ(k  )KK(k  )2 3
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Figure 4.1: The Feynman diagram for emission of KK modes in the decay of the
inflaton into a pair of the scalars ψ.

inflaton, and as such are relatively insensitive to the precise details of the inflaton

model. This also requires that every decay channel of the inflation, φ → ψiψj, be

paired with a KK-mode producing channel, φ→ ψiψj +KK.

The KK modes produced in inflaton decays are expected to have lifetimes of

several years, which results in their decay occurring after all light elements have

been generated by Big Bang Nucleosynthesis. As a result of this delay in the release

of some of the inflaton energy, the relative abundances of the light elements will be

distorted compared to models without extra dimensions, and observed abundances

can be then used to restrict the nature of the higher dimensions.

For the purpose of this calculation, it will be assumed that the inflaton decays

primarily to Higgs bosons. The Feynman diagrams which contribute to this decay

are given in Figure 4.1. As I will demonstrate in this section, the constraints on extra

dimensions which result from this calculation depend on the energy released rather

than the coupling constants. Therefore these constraints are relatively insensitive to

which decays dominate.

Although there is a large range of masses and lifetimes for the KK-modes which

are produced, any neutral relics which decay after recombination (τKK & 1012 sec)

will leave a signature in the γ-ray background, which provides a very strong bound
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Figure 4.2: The lifetime of the KK gravitons as a function of mass is indicated by
the dashed line. The lifetime of the KK radions is shown for d = 2 (solid line) and
for d = 6 (dashed-dotted line).

[194, 195]. For neutral relics with shorter lifetimes, it is expected that constraints

from the dissociation of light nuclei will provide a stronger bound [194, 109]. From

Ref. [109] the bound on the energy released by these decays is

∑
nKKmKK

s·
≈ 2× 10−12 GeV (4.13)

for τKK & 108s, while for 108s > τKK > 106s the bound is

∑
nKKmKK

s·
≈ 2× 10−9 GeV (4.14)
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For KK modes with lifetimes in this range, the masses are in the electroweak energy

scale, and the decays are to Standard Model particles. The lifetime of the graviton

modes is [173]

τgr ' 5× 104 sec

(
1 TeV

mKK

)3

(4.15)

while for the radions the lifetime is

τrad ' 2(d+ 2)× 105 sec

(
1 TeV

mKK

)3

(4.16)

The precise lifetimes are plotted in Figure 4.2.

By using the requirement that τ . 108 sec for the KK mode to have a significant

effect on BBN, a maximum mass can be calculated

mgr
max ' 80GeV;

mrad
max ' 200, 210, 225, 240, 250 GeV,

for d = 2, 3, 4, 5, 6,
(4.17)

The density of KK modes is calculated by first calculating the ratio of emitted

KK modes to inflatons. This ratio is parameterized as

niKK
nφ

= Ci(x)
m2
φ

M2
PL

x =
mi
KK

mφ

i = gr, rad (4.18)

and is equal to the three body decay width involving a single KK mode divided

by the total decay width of the inflaton. For the purpose of this calculation, it is

assumed that the inflaton decay width is dominated by the two-body decays and

that the ratio using Standard Model particles is similar to the ratio using only scalar
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Figure 4.3: The dependence of Crad(x), as defined in (4.18), on the ratio x =
mrad
KK/mφ. Separate plots are given for the number of extra dimensions d = 3, 4,

and 6.

fields in the decay products. The diagrams for the decay of the inflaton are given in

Figure 4.1. The functions Ci(x) which are calculated in this manner are plotted in

Figure 4.3.

The entropy released by inflaton decay satisfies the relation

nφ
s
' 3T

mφ

(4.19)

which can be combined with the results of (4.18) to give the energy density of the

KK modes,
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Figure 4.4: The dependence of Brad(x) on the ratio x = mrad
max/mφ. Separate plots

are given for the number of extra dimensions d = 3, 4, and 6.

∑
KK

mi
KKn

i
KK

s
' 3Bi(x)

3Tmφ

M∗

(
mi
max

M∗

)d+1

, x =
mi
max

mφ

(4.20)

where Bi(x) =
∑

KKm
i
KKCi(m

i
KK/mφ). Since the KK mode masses are very close

together, this sum can be replaced with an integral over mi
KK ,

Bi(x) =
Sd
xd+1

∫ x

0

dyCi(y)yd (4.21)

where Sd = 2πd/2/Γ(d/2) is the surface area of a d-dimensional sphere. The function

Brad(x) is plotted in Figure 4.4.

In the limit of mmax � mφ, the energy density of KK modes can be approximated
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Figure 4.5: Lower bounds on M∗ for d=3,4,6 and for a range of inflaton masses.
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mφ d = 2 d = 3 d = 4 d = 5 d = 6

1 TeV 35 TeV 13 TeV 7.1 TeV 4.5 TeV 2.8 TeV

2 TeV 47 TeV 17 TeV 9.1 TeV 5.7 TeV 3.4 TeV

M∗ 220 TeV 42 TeV 15 TeV 7.9 TeV 4.0 TeV

Table 4.6: Lower bounds on the reduced Planck mass from nucleosynthesis con-
straints as a function of mφ.

mφ d = 2 d = 3 d = 4 d = 5 d = 6

1 TeV 0.52µm 60 pm 0.59 pm 39 fm 7.4 fm

2 TeV 0.29µm 38 pm 0.41 pm 28 fm 5.7 fm

M∗ 0.013µm 8.5 pm 0.19 pm 18 fm 4.6 fm

Table 4.7: Upper bounds on the size of nonwarped extra dimensions in the ADD
model from nucleosynthesis constraints as a function of mφ.

as

∑
KKm

i
KKn

i
KK

s
' 2Sd

(d+ 1)π

TRmφ

M∗

[
d

d+ 2

(
mrad
max

M∗

)d+1

+ 2

(
mgr
max

M∗

)d+1
]

ln

(
mφ

mmax

)
(4.22)

where we take lnmgr
max ≈ lnmrad

max, and TR ' 0.7 MeV is the reheat temperature5.

The constraint in Eq 4.14 then places a constraint on M∗, and therefore on the

scale of the extra dimensions. These limits are given in Table 4.6 and Table 4.7. In

addition, limits on M∗ for d=3,4,6 and for a range of inflaton masses are given in

Figure 4.5.

5Recently it has been suggested that any reasonable model of inflation would require TR ≥
4 MeV [196], which would further strengthen these bounds
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These constraints are stronger than the previous constraints for d = 4, 5, 6. How-

ever unlike the previous constraints, these results are model dependent. For heavier

inflatons, the constraints are expected to be even stronger.

4.3.2 Galactic Positron Constraints

In the previous sections,the effects of Kaluza-Klein excitations on the early Universe

were considered. However it is also possible that observable effects could be created

in the modern Universe by quasi-stable modes,which were produced in the early

Universe, and which the ADD model predicts would still exist in the present.

As outlined in Section 2.6, measurements by the SPI spectrometer on the INTE-

GRAL satellite [13, 197] have confirmed previous observations of a flux of 511 keV

photons from the galactic center [198, 199, 200]. These experiments have also deter-

mined that the γ-rays are most likely produced by a diffuse source rather than by a

few point sources, which is consistent with a galactic halo composed of dark matter

or KK-modes.

In this section I consider the possibility that a significant density of KK gravitons

could be trapped in the gravitational potential of the galaxy. Although these modes

are quasi-stable, some will decay into electron-positron pairs and into γ-rays. This

should result in an observable flux of γ-rays both from direct decay of the KK-modes

and from subsequent electron-positron annihilation. The observed flux can then be

used to constrain the nature and size of the extra dimensions by comparing the

predicted flux with the observed flux in the solar system6.

6During the preparation of this dissertation, we became aware of another paper addressing this
issue [201]. However in that paper, only a single modulus field was considered rather than the
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Although it is possible to derive constraints from the entire spectrum of galac-

tic γ-rays, the complexity of such a calculation places it beyond the scope of this

dissertation. Therefore only the 511 keV γ-ray flux, which is produced by positron

production in the galaxy, will be considered. It should also be noted that the con-

straint considered in this section results from the production of low-energy positrons

which lose energy as they travel through the interstellar medium. It is assumed that

the positrons become non-relativistic7 within a short distance and annihilate in the

galactic bulge. However the rate of energy loss by these positrons and the cut-off

energy above which the positrons can no longer contribute to the observed flux are

not well understood, and could potentially cause some uncertainty in the final limits.

For the purpose of this calculation, it can be assumed that the γ-ray flux which

results from KK decays depends only on the partial decay width and galactic abun-

dance of the modes. It will also be assumed that all positrons produced in the decay

of KK-modes with mass below a certain cut-off, denoted mmax, will become non-

relativistic and annihilate within the galactic bulge. The decay widths for graviton

decay to electron-positron pairs is given in Ref. [173],

Γe+e−(mKK) =
m3
KK

80M2
PL

(4.23)

while the abundance of gravitons in the Universe was previously calculated in Ref.

[174] and Ref. [178]. At cosmic scales, the number density of each KK-mode as a

complete spectrum of KK-modes
7It is also possible to detect relativistic positrons produced by dark matter annihilations or

KK-mode decays in astrophysics experiments [202, 203, 204], with some experiments indicating an
unexplained excess of high energy positrons [205]. However there are also a number of uncertainties
inherent to modeling positrons flux through the galaxy (see eg. Ref [206]), and as such these bounds
will not be considered in this dissertation.
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function of mass is

n0(mKK) ' 19T 3
0

64π3
√
g∗

mKK

MPL

e−t0/τKK

×

(∫ ∞
mKK/TRH

q3K1(q)dq + 2

(
mKK

TRH

)−7 ∫ mKK/TRH

mKK/TMAX

q10K1(q)dq

)
(4.24)

where mKK is the mass of the Kaluza-Klein mode, T0 is the present (neutrino)

temperature of the Universe, and TRH is the temperature at which the Universe

becomes dominated by radiation. In this equation, the first term represents KK

production by thermal processes which occur during this radiation dominated epoch ,

while the second term represents KK production during an earlier period of reheating.

The second integral also depends on TMAX , which is the maximum temperature at

which KK modes are produced during the reheating phase. In this section, only the

two special cases of TMAX ∼ TRH and TMAX � TRH will be considered.

The total energy density of Kaluza-Klein modes is obtained by summing over all

masses. However as before, at the relevant energy scales the difference between the

masses of neighbouring KK modes is small and as such the sum can be replaced with

an integral over a d-dimensional sphere. The resulting energy density is

ρG =
∑

all modes

mKKn0(mKK) '(1.9× 1022 GeV 4)Sd−1

(
TRH
M∗

)d+2

I
(1)
d (TRH/Tmax)

(4.25)

where
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I
(σ)
d (β) =

∫ ∞
0

dze−t0/τKK
(
zd+σ

∫ ∞
z

dq q3K1(q) +2 zd+σ−7

∫ z

βz

dq q10K1(q)

)
(4.26)

represents the integral over all modes.

The bound derived in this section assumes that these KK modes, which were

formed in the early Universe, have become trapped in the gravitational potential

of the galaxy. Using the cosmological KK-mode abundance, the distribution of KK

modes in the galaxy can then be approximated as

ρKK(r) =
ρG

ρDM,cosmic

ρDM(r) (4.27)

where ρDM,cosmic is the total cosmic dark matter abundance, and

ρDM(r) = ρ0exp

(
− 2

α

[(
r

r0

)α
− 1

])
(4.28)

with r0 = 20h−1kpc and 0.1 < α < 0.2,is the galactic dark matter distribution [207].

The constant ρ0 is determined by requiring ρDM(8.5kpc) = 0.3 GeV/cm3, which is

the accepted value of the dark matter density at the Solar system. In this calculation

it is assumed that the KK modes are distributed in the halo with the same mass

distribution as in the early Universe. In practice the lightest modes are too light to

be captured in the halo, however the effect of these missing modes is small.

Using similar methods, the rate of positron production in the Universe can be

determined by summing over the partial width for the decay KK → e+e− of each

KK mode,
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Ne+,cosmic =
∑

all modes

Γe+e−(mKK)n0(mKK)

' (1.9× 1022 GeV 4)Sd−1

(
TRH
M∗

)d+2
T 2
RH

80M2
PL

I
(3)
d (TRH/Tmax)

(4.29)

and the number density of non-relativistic positrons produced per unit time in the

galaxy follows from Eq 4.27,

N511keV (r) ' Ne+,cosmic

ρDM(r)

ρDM,cosmic

' (2.57× 10−3d−4 cm−3s−1)(0.85 + 1.49α)Sd−1

(
1000 TRH

M∗

)d+2

×
(

TRH
1 MeV

)2

I
(3)
d (TRH/TMAX)fNR(mmax/TRH)exp

(
− 2

α

[(
r

r0

)α
− 1

])
(4.30)

where the integral I
(3)
d is given in Eq 4.26, and fNR(mmax/TRH) is the fraction of

Kaluza-Klein modes which are lighter than mmax, and which are assumed to decay

to non-relativistic positrons. This fraction is plotted in Figure 4.6 for the cases of

TMAX ∼ TRH and TMAX � TRH .

As outlined in Ref [78], the resulting flux of 511 keV γ-rays at the Solar system

can be derived by calculating the line-of-sight integral of this density. However it

should be noted that not all positrons contribute to the 511 keV γ-ray flux. As

outlined in Ref [208, 209, 81] positrons produced in the galaxy can form positron-

ium states with electrons before annihilating. The positronium states only produce

511 keV photons in approximately 25% of the annihilations, while the other states



CHAPTER 4. EXTRA DIMENSIONS 155

(a)

(b)

Figure 4.6: The fraction of Kaluza-Klein modes with mass below mmax for the cases
of (a) TMAX ∼ TRH and (b) TMAX � TRH .
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decay to three photons each with lower energies. By measuring the flux of 511 keV

photons relative to lower energy photons, the fraction of positrons bound into positro-

nium states in the galactic core is determined to be f = 0.967 ± 0.022 [210]. As a

result, on average each positron produced contributes 2(1 − 0.75f) = 0.55 photons

to the 511 keV flux. Therefore the rate of positron production is expected to be a

factor of ∼ 3.6 larger than would be expected based solely on the 511 keV flux.

As discussed in the introduction to this section, the 511 keV flux has been mea-

sured by several experiments. The SPI spectrometer on the INTEGRAL γ-ray ob-

servatory measured an azimuthally symmetric distribution of 511 keV photons with

FWHM of ∼ 8◦±1◦, and total flux Φobs = (1.05±0.06)×10−3 ph cm−2 s−1 [13, 197].

Integrating the density in Eq 4.30 over this solid angle with the line of sight integral

gives a total predicted flux of

Φth = (0.86× 1020−3d cm−2s−1)(1.4− 3.8α)Sd−1

(
1000 TRH

M∗

)d+2

×
(

TRH
1 MeV

)2

fNR(mmax/TRH)I
(3)
d (TRH/TMAX)

(4.31)

Comparing this result with the observed 511 keV γ-ray flux constrains the Planck

mass,

(
M∗

1000 TRH

)d+2

& (0.43± 0.03)× 1023−3d(1.4− 3.8α)Sd−1

(
TRH

1 MeV

)2

× fNR(mmax/TRH)I
(3)
d (TRH/TMAX)

(4.32)
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d=2 d=3 d=4 d=5 d=6
TMAX � TRH

α = 0.1 580 TeV 20 TeV 2.1 TeV 0.43 TeV 0.13 TeV
α = 0.2 520 TeV 18 TeV 1.9 TeV 0.39 TeV 0.12 TeV

TMAX ∼ TRH
α = 0.1 340 TeV 12 TeV 1.2 TeV 0.17 TeV 0.069 TeV
α = 0.2 300 TeV 11 TeV 1.1 TeV 0.16 TeV 0.066 TeV

Table 4.8: Limits of sensitivity on M∗ (TeV) for different values of α and different
dimensions, assuming TRH = 1 MeV . For larger values of M∗, the positron flux from
decaying KK modes is lower than the observed 511 keV γ-ray flux.

d=2 d=3 d=4 d=5 d=6
TMAX � TRH

α = 0.1 1.9 nm 30 pm 3.7 pm 1.0 pm 0.45 pm
α = 0.2 2.3 nm 35 pm 4.3 pm 1.2 pm 0.50 pm

TMAX ∼ TRH
α = 0.1 5.5 nm 69 pm 8.6 pm 3.8 pm 1.0 pm
α = 0.2 7.0 nm 79 pm 9.7 pm 4.1 pm 1.1 pm

Table 4.9: Limits of sensitivity on the size of extra dimensions, R for different values
of α and different dimensions and assuming TRH = 1 MeV . For smaller values of R,
the positron flux from decaying KK modes is lower than the observed 511 keV γ-ray
flux.

where as before Sd = 2πd/2/Γ(d/2), and where it is assumed that the contribution

from direct production of 511 keV photons is negligible. Although it is possible to

produce a flux of γ-rays in this energy range through direct production, the effect is

expected to be small and will not significantly alter the constraints given.

The corresponding bounds on the Planck mass and the size of the extra dimen-

sions are given in Table 4.8 and Table 4.9 respectively. In each bound, it is assumed

that TRH ∼ 1 MeV , although recent data from the CMB and from large scale

structure suggest TRH > 4 MeV for most models [196]. If this stronger temper-
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d=2 d=3 d=4 d=5 d=6
TMAX � TRH

α = 0.1 4600 TeV 140 TeV 13 TeV 2.6 TeV 0.74 TeV
α = 0.2 4200 TeV 130 TeV 12 TeV 2.3 TeV 0.68 TeV

TMAX ∼ TRH
α = 0.1 2700 TeV 83 TeV 7.8 TeV 1.0 TeV 0.39 TeV
α = 0.2 2400 TeV 77 TeV 7.0 TeV 0.95 TeV 0.37 TeV

Table 4.10: Limits of sensitivity on M∗ (TeV) for different values of α and different
dimensions, assuming TRH ∼ 4 MeV and fNR ≈ 1.

d=2 d=3 d=4 d=5 d=6
TMAX � TRH

α = 0.1 30 pm 1.2 pm 0.23 pm 0.082 pm 0.045 pm
α = 0.2 36 pm 1.4 pm 0.27 pm 0.098 pm 0.050 pm

TMAX ∼ TRH
α = 0.1 86 pm 2.7 pm 0.54 pm 0.31 pm 0.10 pm
α = 0.2 110 pm 3.1 pm 0.61 pm 0.34 pm 0.11 pm

Table 4.11: Limits of sensitivity on the size of extra dimensions, R for different values
of α and different dimensions assuming TRH ∼ 4 MeV and fNR ≈ 1.

ature bound is used, then each of the constraints on M∗ is improved by a factor

of 4(d+4)/(d+2). The corresponding bounds8 in this case are given in Table 4.10 and

Table 4.11 respectively.

It is also assumed that the mass at which decaying modes no longer produce non-

relativistic positrons is sufficiently high as to not affect this bound. The production

of nonrelativistic positrons requires mmax . O(200 MeV ) [41]. Limits on γ-ray

production by bremsstrahlung processes suggest mmax . 40 MeV [80] or mmax .

6 MeV [81]. If these bounds are used as a mass cut-off, the resulting constraints

8It should be noted that for TRH ≥ 4 MeV , a significant fraction of the produced positrons
have energies of order O(100 MeV ), and therefore may remain relativistic. This introduces a level
of uncertainty into these constraints.
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on the ADD model are weaker than from other astrophysics experiments. However

it should be noted that these bounds assume all positrons are created with uniform

energy. In this model, the positrons have a range of energies corresponding to the

range of KK-mode masses, and as such mmax can be larger without violating these

bounds. As indicated in Figure 4.6, mmax/TRH can be as low as ∼ 40 without

significantly weakening the constraints.

It should also be noted that these bounds are based on several assumptions. First,

there is an assumption that the relative abundance of KK modes of different masses

is the same in the galaxy as in the early Universe. There are also uncertainties

in the dark matter halo profile of the galaxy, which can affect the observed flux,

although this variation is small for most reasonable profiles and parameters. It is

also assumed that the positrons annihilate within a short distance compared to the

scale of the galactic center. This diffusion process is not completely understood, and

if the positrons travel further then the observed flux would have a wider angular

distribution which could improve these bounds [80]. It is also assumed that all

annihilating positrons produce 511 keV photons (or lower energy γ-rays from the

decays of positronium states.). However if a significant fraction of the positrons

annihilate at higher energies, these photons would not be counted in the observed

511 keV flux. This would result in less stringent constraints on the number of

positrons, and would weaken the bounds given in Table 4.8 and Table 4.9, while

improving bounds obtained from considering the entire γ-ray spectrum.

From Table 4.8, it is apparent that the accumulated KK modes in the galactic

core provide a strong bound on the size of the extra dimensions in the ADD model9,as

9Although the ADD model is considered in this section, it is expected that other models of extra
dimensions can be constrained in this manner as well.
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well as providing an explanation for the source of the observed population of galactic

positrons. When these modes do decay, they inject photons and positrons into the

galaxy which could be observed by existing experiments. As an example, I derived the

non-relativistic positron density in the galaxy which is produced by the decay of light

KK-modes. By requiring the flux of 511 keV photons produced by the subsequent

annihilations of the positrons to be lower than the observed flux, constraints can be

placed on the properties of extra dimensions.

In summary, Kaluza-Klein gravitons which were produced in the early Universe

can still exist in the present. Furthermore, these particles can accumulate in the

galactic halo, leading to a high density in the galactic core. If KK modes heavier

than ∼ 40 MeV can exist in the galaxy with a significant abundance and can pro-

duce nonrelativistic positrons, then the bounds from galactic positron production

are significantly stronger than the bounds from collider experiments for d ≤ 4, and

are comparable to the bounds from the extragalactic γ-ray background and other

astrophysics experiments for all dimensions.

4.4 Conclusions

The possible existence of extra dimensions has been studied for almost a century, with

several models proposed to explain a variety of phenomena both within the Standard

Model and beyond the Standard Model. The simplest of these is the addition of a

number of non-warped space-like dimensions with the topology of a torus, referred

to as the ADD model.

In this chapter, I have reviewed the existing bounds on the ADD model from
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collider searches, from the γ-ray background, and from the properties of astrophysical

objects such as supernovae and neutron stars. For d = 2, 3, 4 the bounds from neutron

stars are the strongest constraints on the ADD model. For higher dimensions of

d = 5, 6, astrophysics experiments have provided constraints, but the next generation

of high energy colliders such as the LHC are expected to be able to probe regions of

parameter space which are not yet constrained.

I then demonstrated how the existing bounds could be improved upon using Big

Bang nucleosynthesis, as originally published by myself and collaborators in Ref

[193], and using the 511 keV γ-ray flux from the galactic core, which has not been

previously published.

In the first case, decaying inflatons lose a fraction of their energy to the production

of Kaluza-Klein gravitons. The energy stored in these gravitons is then released later

in the evolution of the Universe, which effectively reheats the Universe. For KK

gravitons with masses in the range of mgr ∼ 80 GeV , this reheating occurs before

the completion of Big Bang nucleosynthesis and alters the predicted abundance of

light nuclei. Since these abundances are tightly constrained by observations, the

properties of the extra dimensions are also constrained, although these constraints

are dependent on the mass of the inflaton . For d ≥ 4 these bounds are stronger

than previous constraints. However it is expected that the LHC will be able to probe

the case of d = 6 up to M∗ ∼ 6 TeV , which could improve upon the nucleosynthesis

bounds of M∗ & 3 TeV .

In the second case, the effects of Kaluza-Klein gravitons in the modern Universe

were studied. These particles are produced thermally in the early Universe, and

survive long enough to get trapped in the gravitational well of the galaxy. They
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then decay to γ-rays and to electron-positron pairs, which subsequently annihilate

to 511 keV γ-rays, producing a flux of γ-rays at our solar system. Using existing

measurements of this flux from the INTEGRAL experiment, the properties of the

KK gravitons can be constrained, and in turn the properties of the extra dimensions

can be constrained. If the reheat temperature is TRH ∼ 1 MeV , then the resulting

bounds are comparable to the bounds derived from other astrophysics experiments.

In models with a higher reheat temperature, the constraints from the 511 keV γ-ray

flux are expected to be stronger than other astrophysics constraints for d = 2 and are

expected to be comparable to the constraints from the γ-ray background for d ≥ 3.

However these bounds are dependent on the energy loss of positrons in the galactic

core, and therefore contain a level of uncertainty.

Although these two methods of probing extra dimensions have been applied to

a specific model, it is expected that they can be generalized to other models. It

is also clear from these results and from the previous constraints that astrophysics

experiments are able to constrain models of extra dimensions better than colliders

and other terrestrial experiments for a large extra dimensions with d = 2, 3, 4, and

are expected to be competitive with colliders for d = 5, 6.
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Chapter 5

Conclusions

In spite of its many successes, it is clear that the Standard Model cannot describe

all aspects of nature. Aside from the lack of a valid theory of quantum gravity,

astrophysics experiments have determined that ∼ 96% of the energy content of the

Universe is unexplained. There also remain questions about why the Standard Model

forces are several orders of magnitude stronger than gravity, why the cosmological

constant is so small, and several other unexplained phenomena. Terrestrial experi-

ments have searched for signs of new physics, but as yet have been unsuccessful.

In this dissertation, I have demonstrated how new theories can be probed using

remnants of the early Universe. In the first few minutes, the Universe contained

ultra-high energy particles and fields, and therefore any new theories are expected

to contribute to its evolution. It is expected that some of these effects left signatures

that could be detected in the present. Some examples have been reviewed in this

dissertation, and in several cases the constraints imposed by examining the early

Universe have been shown to be stronger than the corresponding constraints from
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terrestrial experiments.

In the Chapter 2, I reviewed the motivations for introducing dark matter as well

as the current experimental limits on dark matter. In particular, I introduced a series

of minimal models in which only a minimum amount of new physics is introduced.

In each model, I applied existing experimental constraints from dedicated searches,

from high energy colliders, and from astrophysical experiments, to demonstrate their

properties. These minimal models are generic, and therefore these results can be

applied to a larger class of dark matter models.

In addition to existing constraints, I have shown that for sufficiently light parti-

cles, which can exist in several of the minimal models, it is possible to produce the

correct dark matter abundance while also providing observable effects in B-meson

decays. I also showed that light dark matter models can exist which are not con-

strained by any present experiments, including B-meson decays. These results are

general, and can be used to probe or constrain most models of light dark matter.

In Chapter 3, the possibility of long lived charged relics was presented. In par-

ticular, I have shown that charged particles present during Big Bang nucleosynthesis

could form bound states and catalyze the standard nuclear reactions. This catalysis

serves to create 6Li while destroying 7Li , and in a certain region of parameter space

can explain both the observed 6Li abundance and the observed suppression of the

primordial 7Li abundance relative to the standard BBN model. Through the use of

CBBN, bounds can be placed on models of heavy charged relics.

In the Chapter 4, the motivations for introducing additional spacetime dimensions

were reviewed along with the existing experimental constraints from colliders and

from astrophysical experiments. I demonstrated that the effects of extra dimensions
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could affect nucleosynthesis in the early universe and derived constraints on both the

size of the higher dimensions and on the higher dimensional Planck mass. For the

case of d ≥ 4 these bounds are stronger than the previous astrophysics and collider

bounds on the ADD model. Also in this chapter, I showed how the presence of

excited Kaluza-Klein states in the galactic core and their subsequent decays could

be used to explain the 511 keV γ-ray line. By requiring the flux from KK-graviton

decay not exceed the observed flux, I was able to add additional constraints the ADD

model.

In conclusion, in this dissertation I have demonstrated how three different types

of new physical theories -neutral particles, charged particles, and extra dimensions

- can be studied and constrained using their effects on the early Universe. For each

model, existing experimental data was used to apply new constraints and in most

cases the limits from astrophysics and cosmology were comparable to or stronger

than the limits from terrestrial experiments, thus proving that the early Universe

provides a viable probe of new physics.
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