
Mining Small Subgraphs in Massive Graphs

by

Yudi Santoso

B.Sc. (Physics), Gadjah Mada University, Indonesia, 1993

M.Sc. (Physics), Bandung Institute of Technology, Indonesia, 1996

Ph.D. (Physics), Texas A&M University, Texas, USA, 2001

M.Sc. (Computer Science), University of Victoria, Victoria, BC, Canada, 2018

A Dissertation Submitted in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in the Department of Computer Science

© Yudi Santoso, 2023

University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

ii

Mining Small Subgraphs in Massive Graphs

by

Yudi Santoso

B.Sc. (Physics), Gadjah Mada University, Indonesia, 1993

M.Sc. (Physics), Bandung Institute of Technology, Indonesia, 1996

Ph.D. (Physics), Texas A&M University, Texas, USA, 2001

M.Sc. (Computer Science), University of Victoria, Victoria, BC, Canada, 2018

Supervisory Committee

Dr. Alex Thomo, Co-supervisor

(Department of Computer Science)

Dr. Venkatesh Srinivasan, Co-supervisor

(Department of Computer Science)

Dr. Xuekui Zhang, Outside Member

(Department of Mathematics and Statistics)

iii

ABSTRACT

Graph or network analysis is a much needed method of analysis as it can reveal

some insights that will not be obvious through other methods. In a graph, entities

are represented by nodes or vertices, and relations or connections among the entities

are represented by edges. By analysing a graph we can get invaluable information

on how a system works and on how one part of the system is related to the others.

Many graph analytical problems require that we find and locate all subgraphs of

specific patterns within a given graph. This task is not trivial when we are dealing

with massive graphs, of millions or even billions of nodes and edges. In particular,

it becomes harder when we want to get it done within a limited time, and with a

limited amount of computational resources. In this dissertation, we focus on building

efficient algorithms and methods to enumerate graphlets, or small connected induced

subgraphs, for both undirected and directed graphs. With our solutions we are able

to enumerate up to 5-node graphlets in some massive graphs by using only a single

commodity machine, producing trillions of graphlets.

iv

Contents

Supervisory Committee ii

Abstract iii

Contents iv

List of Tables viii

List of Figures xii

Acknowledgements xvi

Dedication xvii

1 Introduction 1

2 Theoretical Background 6

2.1 Graphs and Digraphs . 6

2.2 Graph Representations . 10

2.3 Subgraphs and Subgraph Patterns . 12

2.4 Wedges, Triangles, and Triads . 14

2.5 Cliques . 19

2.6 Graphlets . 21

2.7 Orbits and GDV . 22

v

2.8 Induced and Non-Induced Subgraphs 24

3 Related Works 26

3.1 Triangles . 26

3.2 Triads . 26

3.3 Graphlets . 27

3.4 Cliques . 28

3.5 Distributed Enumeration . 28

4 Undirected Graphlet Enumeration 30

4.1 Triangles . 30

4.1.1 Algorithms . 31

4.1.2 Analysis . 33

4.1.3 Experiment . 34

4.2 Four-Node-Graphlets . 35

4.2.1 Algorithm . 38

4.2.2 Analysis . 39

4.2.3 Experiment . 41

4.3 Five-Node Graphlets . 44

4.3.1 Idea . 45

4.3.2 Algorithm . 53

4.3.3 Analysis . 55

4.3.4 Experiment . 57

4.4 GDV . 59

4.5 Beyond 5 Nodes . 59

5 Directed Graphlets Enumeration 61

5.1 Directed Triangles . 61

vi

5.1.1 Algorithms . 62

5.1.2 Analysis . 63

5.1.3 Experiment . 65

5.2 Triads . 66

5.2.1 Algorithm . 68

5.2.2 Experiment . 71

5.3 Directed Graphlets . 73

6 Distributed Enumeration 75

6.1 Graph Partition and Subproblems . 75

6.2 Distributed Four-node Graphlet Enumeration 77

6.2.1 Previous Distributed Enumeration 77

6.2.2 Generalized Color-Direction 78

6.2.3 S4GE with Color Direction . 82

6.2.4 Compact-Forward for 4-clique listing 83

6.2.5 Analysis . 85

6.2.6 Experiment . 89

6.2.7 Discussion . 97

6.3 Distributed Triad Enumeration . 99

6.3.1 Experiment . 101

7 Future Work 105

7.1 Larger Directed Graphlets . 106

7.2 5-node Graphlet Enumeration . 106

7.3 Larger Order Graphlets . 106

7.4 Probabilistic Graphlets . 107

7.5 Typed and Labeled Graphs . 108

vii

8 Conclusion 110

Bibliography 112

A Graph Datasets 123

A.1 Directed Graph Datasets . 123

A.2 Undirected Graph Datasets . 124

B Algorithms for 5-node Graphlet Enumeration 126

C Directed 4-node Graphlets 140

C.1 Directed 3-path . 140

C.2 Directed 3-star . 141

C.3 Directed 4-cycle . 142

C.4 Directed tailed-triangle . 142

C.5 Directed diamond . 143

C.6 Directed 4-clique . 144

viii

List of Tables

Table 2.1 Our notation on graphs and digraphs. 7

Table 2.2 Our notation on triangles and triads. 19

Table 2.3 Triad types and description. 19

Table 4.1 The undirected graphs. Here, dBG
max is the effective maximum de-

gree when only larger neighbours are included after the prepro-

cessing. 42

Table 4.2 Counts of the graphlets. The dewiki dataset needs longer than

our time limit to terminate. 43

Table 4.3 The runtime, in seconds, for triangle enumeration T∆, for wedges

and triangles together T3g, and for all three and four-node graphlets

together T4g. 45

Table 4.4 The 5GT functions. The first graphlet in each list is for when

the two neighbours are not connected, while the second one is

for when the two neighbours are connected. The graphlets in the

parentheses are not enumerated as they are already discovered by

some other functions. 54

ix

Table 4.5 The 5GW1 functions. The input is a type-1 wedge with the

smallest node u at the center of the wedge. The first graphlet in

each list is for when the two neighbours are not connected, while

the second one is for when the two neighbours are connected.

The graphlets in the parentheses are not enumerated as they are

already discovered by some other functions. 55

Table 4.6 The 5GW2 functions. The input is a type-2 wedge with the

smallest node u at one of the legs of the wedge, and the center

node is v. The first graphlet in each list is for when the two

neighbours are not connected, while the second one is for when the

two neighbours are connected. The graphlets in the parentheses

are not enumerated as they are already discovered by some other

functions. 56

Table 4.7 The runtime, in seconds, for S4GE T4g, and S5GE T5g. As a

reference, we also list the maximum degree of each graph. 57

Table 4.8 Graphlet counts, output of S5GE. 58

Table 5.1 Link encoding using two binary digits. We assume that the first

node is on the left and the second one on the right. 67

Table 5.2 Triad types and binary encoding. 70

Table 5.3 Maximum degrees before and after the preprocessing. The de-

grees after are listed as deff . 72

Table 5.4 The counts of triads of each type on the selected graphs. 72

Table 5.5 The running time (in seconds) of triad enumeration using FPTE

algorithm, and the preprocessing time. 73

Table 5.6 Four-node directed graphlets. 74

x

Table 6.1 The numbers of vertices n, edges m, wedges |∠|, and triangles |∆|,

and the max degree of the symmetrized graphs. The last three

graphs are the largest and they require more computing power

than the others. 89

Table 6.2 The enumeration time (minutes) of D4GE/S4GECD with ρ = 16,

120 workers, against S4GE (single machine) with 24 threads. . . 93

Table 6.3 The enumeration time (minutes) of D4GE/S4GECD against PSE/S4GE,

with ρ = 16, 120 workers. 94

Table 6.4 Enumeration time (minutes) of D4GE/CF4CD against PSE/VF2,

with ρ = 16 . 94

Table 6.5 Duplicated emissions from PSE partitioning scheme with different

local algorithms. 95

Table 6.6 The outputs of D4GE/S4GECD with ρ = 16, on a cluster of 120

workers. 96

Table 6.7 The outputs of D4GE/S4GECD with ρ = 16, on a cluster of 120

workers. 97

Table 6.8 The outputs of D4GE/S4GECD with ρ = 25, on a cluster of 672

workers. 97

Table 6.9 The numbers of vertices n, edges m, maximum degree of the

original graph dmax and its transpose dTmax, and the effective max-

imum degrees after the preprocessing, deff
max and dT eff

max, of the graph

datasets. 101

Table 6.10The enumeration time (seconds) of D3GE/FPTECD with ρ = 12

and 128 workers, against original FPTE with 16 threads on a

single machine. 102

Table A.1 Properties of the directed graphs. 124

xi

Table A.2 Properties of the undirected graphs. Note that davg = 2|E|/|V |. 125

xii

List of Figures

Figure 2.1 The process of symmetrizing a directed graph to get an undi-

rected graph. (a) The graph
↪→

G. (b) The transpose graph
↪→

G
T

.

(c) The union graph
↪→

G ∪
↪→

G
T

. (d) The corresponding underlying

undirected graph G̃. 9

Figure 2.2 A simple graph of 5 nodes and 6 edges. 11

Figure 2.3 (a) A graph, (b) an induced subgraph (induced by vertex set

{1, 2, 3, 6}) and (c) an edge-induced subgraph (induced by edge

set {1-2, 2-7, 5-6}). Note that (c) is not an induced subgraph of

(a). 13

Figure 2.4 Using node 1 as the reference node, we have two types of wedges:

Type 1 wedge (2, 1, 3) (a) and Type 2 wedges (1, 2, 3) and (1, 3, 2)

(b and c). 14

Figure 2.5 A triangle, (1, 2, 3)∆. 15

Figure 2.6 (a) A cycle triangle, (1, 2, 3)C and (b) a trust triangle, (1, 2, 3)T . 16

Figure 2.7 Sixteen types of triads. 16

Figure 2.8 Seven types of (triangle) triads. 17

Figure 2.9 There are six trust triangles in a Type 7 triad: (1, 2, 3)T , (1, 3, 2)T ,

(2, 3, 1)T , (2, 1, 3)T , (3, 1, 2)T , and (3, 2, 1)T respectively. 18

Figure 2.10There are two cycle triangles in a Type 7 triad: labeled as

(1, 2, 3)C and (1, 3, 2)C respectively. 18

xiii

Figure 2.11A 3-clique, a 4-clique, a 5-clique and a 6-clique. 20

Figure 2.12Four node graphlets: a 3-path (g3), a 3-star (g4), a rectangle or

4-cycle (g5), a tailed-triangle (g6), a diamond (g7), and a 4-clique

(g8). 21

Figure 2.13Five node graphlets. 22

Figure 2.14Orbits for 2, 3, 4, and 5 node graphlets. The labeling is following

the convention used by Przulj [52]. 23

Figure 4.1 For diamonds we start with the smaller opposing node and end

with the other opposing node. In between we list the two con-

necting nodes in order. For example, in the diamond shown

above 1 and 3 are the opposing nodes, and 2 and 4 are the con-

necting nodes. Therefore, it is listed as (1, 2, 4, 3)7. 37

Figure 4.2 Finding g12 and g21 through a triangle ∆(u, v, w). Here x ∈

N1(u) and y ∈ N1(v). We get a g12 when x and y are not

connected, or g21 when x and y are connected. 46

Figure 4.3 Finding a g13 through a wedge ∠(u, v, w). Here x ∈ N1(u) and

y ∈ N2(v, w), and x and y are not connected. 47

Figure 4.4 There are three ways leading to g26: (a) N2 with itself, connected;

(b) N2 and N3, not connected; (c) N1 and N3, connected. . . . 48

Figure 4.5 The symmetry of g26. 49

Figure 4.6 Listing all possible combinations in g26. The two yellow nodes

are the two highest labeled nodes, 4 and 5. In (c1), (c2), and

(c2), we allow the node at the top of the figure to be either higher

or lower than the others. 49

Figure 4.7 There are two ways leading to g24: (a) two N2, not connected;

(b) N1 and N3, connected. 50

xiv

Figure 4.8 There are two ways leading to g28: (a) N2 with N3, connected;

(b) N3 with itself, not connected. 51

Figure 4.9 There are two ways of finding a g13 through a wedge (green

nodes): (a) N1(v) with N2(u,w), not connected, and (b) N1(v)

with itself, connected. For the sake of notation, here we assume

u is the center node of the green wedge. 51

Figure 4.10There are two ways of finding a g10 through a wedge (green

nodes): (a) N1(v) with N1(u), not connected, and (b) N1(v)

with itself, also not connected. For the sake of notation, here we

assume u is the center node of the green wedge. 52

Figure 4.11There are three ways of finding a g16 through a wedge (green

nodes): (a)N1(v) withN1(u), connected, (b)N1(u) withN2(v, w),

not connected, and (c) N1(v) with N2(v, w), not connected. For

the sake of notation, here we assume u is the center node of the

wedge. 52

Figure 4.12There are two ways of finding a g20 through a wedge (green

nodes): (a) N1(u) with N2(v, w), connected, and (b) N2(v, w)

with N2(v, w), not connected. For the sake of notation, here we

assume u is the center node of the wedge. 53

Figure 4.13Finding 6-node graphlets through a triangle. Here we takeN1(u),

N1(v) and N1(w). We get four types of 6-node graphlets depend-

ing on whether we have zero, one, two, or three edges among the

neighbour nodes. 60

Figure 5.1 A trust triangle, (1, 2, 3)T and the labeling of its edges. 62

Figure 5.2 Four pointers . 70

xv

Figure 6.1 A graph illustrating the need for symmetrization. 81

Figure 6.2 The enumeration time (minutes) of D4GE/S4GECD on several

graphs, with varying value of ρ. Higher ρ does not add much

overhead; the lines flatten out rather than sloping up perceptibly. 91

Figure 6.3 Machine scalability of D4GE/S4GE on cnr and hollywood09.

This shows very strong scalability with slopes -0.899 and -0.968,

which is very close to -1, the perfect value. 92

Figure 6.4 Strong correlation between the enumeration time and dsym
max(|∆|+

|∠|) on the small-medium datasets. 98

Figure 6.5 Scalability of D3GE/FPTECD on uk02 and arabic. D3GE/FPTECD

again presents very strong scalability with slope -0.866 and -

0.894. 104

Figure 7.1 Typed triangles with two types of nodes. 108

Figure 7.2 Two weighted graphlets of the same type, but with different sets

of weights. 109

Figure 7.3 A multidimensional graph. Each edge has a type based on the

dimension, represented by color and line-type. 109

xvi

ACKNOWLEDGEMENTS

I would like to thank:

my family, for sharing an extraordinary journey, support, and faith.

Dr. Thomo & Dr. Srinivasan, for their mentoring, guidance, and patience.

University of Victoria, for funding me with a scholarship.

VADA, for funding me with a scholarship and providing a training program in data

analysis.

Don’t let schooling interfere with your education.

Mark Twain

The only thing that interferes with my learning is my education.

Albert Einstein

xvii

DEDICATION

For Julie, Sarah and Lucas.

Chapter 1

Introduction

Graph/Network Analytics has become an indispensable tool for data analysis [3].

Whenever we have a set of objects with some relations or connections among them,

we have a network or a graph. For example: computer networks, internet networks,

social networks, financial networks, neural networks, road networks, and many more.

A graph is a composite mathematical object, consisting of a set of nodes and a set of

edges where each edge connects a pair of nodes [13, 16]. There are many methods that

have been developed for analysing a graph. Some of them require finding, counting

and/or enumerating small subgraphs inside an input graph. The applications can be

found in various fields: in biology [34, 43] chemistry [24, 56], social study [28, 14],

network analysis and classification [77], and more.

Finding means that we locate a subgraph that matches a given pattern by listing

the labels of all of its nodes. Counting means that given a subgraph pattern, we count

the number of its occurrences inside the input graph. Enumerating/listing means that

we list each occurrence by its nodes. Note that by enumeration we would get the count

as well. However, counting does not have to be done through enumeration as there

are other methods to do this, e.g., by using some combinatorial formulas. Out of

2

these three tasks, enumeration has the highest computational complexity, and this is

the topic of this dissertation.

Here, I focus on enumerating small subgraphs in massive graphs. By ‘small’

we typically consider subgraphs with less than ten nodes. Nevertheless, when the

input graph is very large, of order, a million or more nodes, enumeration becomes

challenging even for subgraphs of order four. The computational complexity grows

exponentially on the order of the subgraphs that we want to enumerate. This can

be understood combinatorially. Suppose we want to find subgraphs of k nodes in a

graph of n nodes, then there are
(
n
k

)
∝ n(n− 1) . . . (n− k+ 1) possible combinations

that we need to check. If n � k, this is approximately nk. For a graph of a million

nodes, each increment of the subgraph order, k, would increase the complexity by a

million times. On the other hand, an order of magnitude increase in n would increase

the complexity by 10k.

Of course, in practice, not all combinations need to be checked. Efficient algo-

rithms were built by minimizing unnecessary checking. It was shown by Shervashidze

et al. [67] that by using DFS (Depth First Search), enumeration can be done in

O(ndk−1) where d is the maximum degree. We will see below that this bound can

still be improved. Nonetheless, it is generally true that the number of subgraphs grows

rapidly with the size of the graph, and since in enumeration we need to ‘touch’ each of

the subgraph instances, the running time is bounded from below by this number. For

this reason, many papers in the literature focus their attention on counting; either

finding approximate counts by using probabilistic methods, such as Graft [55], or uti-

lizing combinatorial properties of graph to get the counts without full enumeration,

such as Orca [32] and Escape [51].

One may ask, if we can get the counts by other means why do we need to do

enumeration? While counts of subgraphs are useful in computing some graph proper-

3

ties, such as the global clustering coefficient [39, 74], their usage is limited. With the

advancements of Artificial Intelligence (AI) and Machine Learning (ML), people are

looking for ways of applying ML to graph data [17, 29, 36, 1], a field of study generally

known as Graph Machine Learning or Graph Learning [78]. In order to do this, we

need to build features that can be used as input by the ML algorithms [31], counting

is no longer sufficient. Enumeration gives us more detailed information about the

graph that can be used as features. Some analyses use node degrees as a feature [6].

Extending from degrees (i.e., the number of neighbours) to graphlet degrees (see Sec-

tion 2.7) is an improvement [52]. Similarly, if, instead of an adjacency list, we can use

e.g. some adjacent subgraphs lists to build the features, then it would improve the

ML performance. Another option that we may explore is to use a list of graphlets,

which are small induced connected subgraphs (see Chapter 2 for the definitions), to-

gether with their nodes, as a feature. We will not be able to build this feature simply

by counting.

In summary, the problem that we want to solve is: given a massive graph how

can we enumerate the graphlets inside it efficiently and produce a list of all graphlets

within a limited time budget and limited computing resources. I made contributions

by proposing several unique algorithms that enumerate all types of graphlets up to

a certain order efficiently in a single run, for both undirected and directed graphs.

My research has resulted in four published papers [64, 63, 38, 62], so far. I am

going to discuss the topics briefly here and will discuss them in detail in subsequent

chapters. I also propose a new solution for 5-node graphlet enumeration, that has

never been published before, in this dissertation. In addition, I also discuss my study

on extending directed graphlet enumeration from 3-node to 4-node.

A subgraph that gained lots of attention from researchers is a triangle. Triangle

plays an important role in network analyses. For example, the presence of trian-

4

gles is an indicator of communities in the network [54]. Triangles are also central

to computing the connectivity of a graph [5], the clustering coefficient [75], and the

transitivity [45]. There are many practical applications of these, for example, detect-

ing fake users in social networks [80] and uncovering hidden thematic layers in the

Web [27]. I show that with careful algorithmic engineering, it is possible to enumerate

triangles in a graph of a billion nodes using just a single commodity machine.

A lot of real-world networks have directed relationships, and therefore we should

use directed graphs to represent those networks. A triad is a subgraph of three

nodes in a directed graph [23, 4]. When each pair of nodes is connected we have a

closely connected triad, but we will simply call closely connected triads as triads here.

Enumerating triads means listing the edges as well as the nodes inside every triad.

Triad enumeration would reveal a more detailed picture of the network, and hence

open up more possible applications. For example, transitivity can be more accurately

analyzed by using triads [5], and directed clustering coefficient can be used as a

measure of systemic risk in complex banking networks [70]. Also, triad enumeration

is an important element in social network analysis [74]. I have been able to make a

contribution to triad enumeration, published in EDBT-2019 [64]. My algorithm is

able to enumerate triads on a graph of a billion nodes and billions of edges using a

single commodity machine.

A triangle is a graphlet of three nodes. A wedge is another three-node graphlet

that has two edges. Beyond three nodes, graphlets in a massive graph are difficult

to enumerate for the same reason as for general subgraphs. Previous belief was that

an enumeration algorithm, which has to touch each graphlet, cannot terminate in a

reasonable time [51]. Indeed, previous methods, such as Fanmod [76] and Rage [40],

do not scale well and take a very long time to run on million scale graphs. In [63],

published in EDBT-2020, I proposed an efficient enumeration algorithm for four-node

5

graphlets. My algorithm achieves a running time of O((N∆ +N∠) d+T3), where N∆ is

the number of triangles, N∠ is the number of wedges, and T3 is the time to enumerate

the three-node graphlets. This is a significant improvement compared to the previous

O(ndk−1) bound, for k = 4. Moreover, unlike most in the literature, our solution

yields the counts of all four node graphlets in a single run.

I extended the scalability of my 4-node graphlet enumeration algorithm, which

I call S4GE (Simultaneous 4-node Graphlet Enumeration), by porting it to a dis-

tributed computing platform. While a distributed platform opens up the possibility

of bringing in as much computational power as needed, we cannot simply run the

single-machine solution on a distributed platform. There are many technical chal-

lenges. Especially, we need an efficient solution, which minimizes the overhead cost

and redundancy, to justify the cost of the distributed system. Our solution has been

accepted for publication in the SSDBM 2021 conference [38]. In the same paper, I also

extended my solution to analyse probabilistic graphs. Furthermore, I extended the

paper to include more details and also to bring my triad solution onto a distributed

platform as well. This extended paper is published in DAPD 2022 [62].

Continuing my solution on four-node graphlet enumeration, I expand the solution

to enumerate five-node graphlets. I propose a solution called S5GE (Simultaneous

5-node Graphlet Enumeration). Similar to S4GE, S5GE simultaneously enumerates

all types of 3, 4, and 5-node graphlets in a single run. I have succeeded in building an

algorithm and implementing it in a code. The running time of this algorithm is less

than the running time of S4GE times the maximum degree. My solution is described

in detail in Section 4.3. I also discuss the foundation to expand triad enumeration

to enumerate 4-node directed graphlets in Section 5.3 and in Appendix C, where I

computed the number of distinct types of 4-node directed graphlets. Once we know

these types, we can proceed with a method similar to the triad enumeration.

6

Chapter 2

Theoretical Background

In this chapter, we provide the necessary theoretical background and the conven-

tions we use in this dissertation.

2.1 Graphs and Digraphs

A graph, also known as a network, consists of a set of nodes, or vertices, and

a set of edges which are connections among the nodes. We commonly denote a

graph by G(V,E) where V is the set of nodes and E is the set of edges. An edge

represents a relationship or a connection between two nodes. It can be either directed

or undirected. In the directed case, the graph is called a directed graph or a digraph,

while in the undirected case the graph is called an undirected graph. We consider

both directed and undirected graphs in our study. When it is necessary to make a

distinction, we denote an undirected graph by G and a directed graph by
↪→

G 1. When

we talk about the general case we will just use G. The notation that we use for graphs

and digraphs is summarized in Table 2.1.

1Note that some works of literature use D to denote a directed graph, and some others simply
use G (or G) for both cases.

7

An edge connects a pair of nodes. In general, there could be more than one edge

between any pair of nodes. In that case, we call the edges multi-edges. For digraphs,

an edge from node u to node v (denoted by u → v, or (u, v)) is distinct from an

edge from node v to node u, v → u. Therefore, when both are present they are not

considered as multi-edges. Also, there could be an edge from a node to itself. This

kind of edge is called a self-loop. A simple graph (or a simple digraph) has neither

multi-edge nor self-loop. We focus our research on simple graphs and digraphs, hence

it will be assumed from here on that the graphs are simple unless stated otherwise 2.

Symbol Definition
↪→

G (V,E) A directed graph, or digraph.
↪→

G
T

(V,ET) The transpose digraph of
↪→

G (V,E),
ET is the same set of edges as E but with the
direction of every edge is reversed.

u→ v = (u, v) A directed edge from u to v.
N+(u) The set of neighbours from node u.
N−(u) The set of neighbours to node u.
d+(u) The out-degree of node u, d+(u) = |N+(u)|.
d−(u) The in-degree of node u, d−(u) = |N−(u)|.

G(V,E) An undirected graph.
uv = u-v An undirected edge with end-nodes u and v, uv = vu.
N(u) The set of neighbours of node u.
d(u) The degree of node u, d(u) = |N(u)|.

Table 2.1: Our notation on graphs and digraphs.

The degree of a node u, d(u), is the number of edges incident on it. The out-degree

d+ is the number of edges from the node, while the in-degree d− is the number of

edges to the node. Given a directed graph
↪→

G, its transpose graph,
↪→

G
T

, is a graph of

the same set of nodes and edges but with all of the edges are reversed. The out-degree

2Note that a graph with multi-edges can be represented as a weighted simple graph where the
number of multi-edges in the original graph becomes an edge weight in the weighted graph.

8

of node u in
↪→

G is the same as its in-degree in
↪→

G
T

, and vice versa, i.e.,

d±↪→
G

(u) = d∓
↪→
G

T (u) (2.1)

The number of nodes in a graph G(V,E) is known as the order of the graph,

commonly denoted by n = |V |. The number of edges is known as the size of the

graph, commonly denoted by m = |E|. Note that for an undirected graph, we have

2m =
∑
u∈V

d(u) (2.2)

while for a directed graph

m =
∑
u∈V

d+(u) =
∑
u∈V

d−(u) (2.3)

We can symmetrize a directed graph
↪→

G to get an undirected graph G̃ by taking

the union between
↪→

G and its transpose,
↪→

G ∪
↪→

G
T

, and treat each pair of edges as a

single undirected edge. This process is illustrated in Fig. 2.1. The undirected graph

G̃ is also known as the underlying graph of
↪→

G. Note that the set of nodes remains the

same,

V (G̃) = V (
↪→

G) = V (
↪→

G
T

) (2.4)

while the numbers of edges obey

|E(
↪→

G)| ≤ 2|E(G̃)| ≤ 2|E(
↪→

G)| (2.5)

For a simple undirected graph, the number of edges is bounded by

0 ≤ m ≤ n(n− 1)/2 (2.6)

9

(a) (b) (c) (d)

Figure 2.1: The process of symmetrizing a directed graph to get an undirected graph.

(a) The graph
↪→

G. (b) The transpose graph
↪→

G
T

. (c) The union graph
↪→

G ∪
↪→

G
T

. (d)

The corresponding underlying undirected graph G̃.

The upper bound occurs when every pair of nodes in the graph are connected. In

this case, the graph is a complete graph. A regular graph is a graph where all of its

nodes have the same degree. If the degree is r, it is called a regular graph of degree

r, or an r-regular graph. In a regular graph of degree r and n nodes, the number of

edges is rn/2. A complete graph of n nodes, denoted by Kn, is a regular graph of

degree n − 1. A cycle, Cn, is a graph where each node has two neighbours, and the

edges form a single loop. Thus, a cycle is a regular graph of degree 2.

A complete graph has the maximum number of edges a simple graph can have.

That is mmax = n(n−1)/2 for a graph of order n. On the other side of the spectrum,

we may have a graph without any edge. This is called an empty graph. Graph density,

ρ, is a measure to specify how densely connected a graph is. It is defined as

ρ =
m

mmax

=
m

n(n− 1)/2
(2.7)

which has a value between 0 and 1. Related to this we can roughly categorize a graph

as sparse or dense. A sparse graph is a graph with m� mmax, while a dense graph is

a graph with m close to mmax. A graph with m = O(n) is considered sparse, while a

graph of m = O(n2) is considered dense.

10

2.2 Graph Representations

For computational purposes it is common to label the nodes with integers: 1, 2,

3, ... (or 0, 1, 2, 3, ...). There are several ways to represent the edges: by using an

adjacency matrix, an incidence matrix, or an adjacency list.

An adjacency matrix, A, is an n×n matrix, where n is the number of nodes. The

entries in the matrix represent the number of edges between the row node and the

column node. For example, Aij is the number of edges between node i and node j.

For undirected graphs, the matrix is symmetric, Aij = Aji, while for directed graphs

in general the matrix is not symmetric. The sum of the entries along one row is the

degree of the node represented by that row. For a directed graph, Aij is the number

of edges from node i to node j, the horizontal sum gives us the out-degrees, and

the vertical sum gives us the in-degrees. For a simple graph, the entries (or matrix

elements) are either 1 or 0, with the diagonal entries all 0.

An incidence matrix, I, is an n×m matrix, where n is the number of nodes and m

is the number of edges. Only two elements per column are 1, and the rest are 0. The

two rows where they are 1 represent the two end nodes of the edge represented by that

column. Incidence matrix is less commonly used in graph computation compared to

the adjacency matrix.

An adjacency list is a list of n rows. Each row is prefixed by a node label, and it

contains the neighbours of that node. It is common to have them listed in ascending

order. The number of entries in each row is equal to the degree of the node represented

by that row. Because we list nodes that are connected to the row node, an adjacency

list is a more efficient representation for sparse graphs.

As an illustration, consider the simple graph in Figure 2.2 which has 5 nodes and

11

6 edges. The adjacency matrix for this graph is

A =

1 2 3 4 5

0 1 1 1 1

1 0 0 0 0

1 0 0 0 1

1 0 0 0 1

1 0 1 1 0



1

2

3

4

5

(2.8)

The adjacency list is

1 : 2, 3, 4, 5

2 : 1

3 : 1, 5

4 : 1, 5

5 : 1, 3, 4

(2.9)

1

2

3

4

5

Figure 2.2: A simple graph of 5 nodes and 6 edges.

The advantage of using an adjacency matrix is that some graph problems can

be solved through matrix computations. For example, to compute the number of

triangles in the graph, ∆, we can compute A3, and use the relation

∆ =
1

6
Tr (A3) (2.10)

In this example, it is 2. However, when dealing with a very large graph, the adjacency

12

matrix requires a lot of memory space. Thus, matrix methods may not be applicable

in this case. An adjacency list may be able to represent the same graph by using much

less memory, especially when the graph is sparse - with a lot of 0s in the adjacency

matrix.

Furthermore, using the adjacency list, there is a compression scheme that can be

utilized to reduce the size of the representation even smaller. This scheme is the Web-

Graph [11, 12], which is very useful in dealing with massive graphs. Instead of listing

the labels as they are, WebGraph lists just the first number and then subsequently

the difference to the next number in the list. Overall, the differences are smaller than

the numbers themselves, and smaller numbers can be represented by fewer number of

bits. Since we are focusing on massive graphs, we mainly use an adjacency list, and

we employ WebGraph in our experiments.

2.3 Subgraphs and Subgraph Patterns

A graph H(VH , EH) is a subgraph of graph G(VG, EG) if and only if VH ⊆ VG and

EH ⊆ EG. We use the notation H ⊆ G to express that H is a subgraph of G. A

subgraph H ⊆ G is an induced subgraph if for any u, v ∈ VH , uv is in EH if and only

if uv is in EG. Without this condition, the subgraph is non-induced.

An edge induced subgraph is a subgraph formed by a set of selected edges from

the graph and the end nodes of those edges. Note that the notion of an edge-induced

subgraph is not the same as that of an induced subgraph, because an induced subgraph

is a subgraph of chosen vertices while an edge-induced subgraph is a subgraph of

chosen edges. This is illustrated by an example shown in Figure 2.3. As we will see

below, induced subgraphs are related to graphlets while edge-induced subgraphs are

used for graph partitioning.

13

1

2

3

4

5

6

7

(a)

1

2

3

6

(b)

1

2

5

6

7

(c)

Figure 2.3: (a) A graph, (b) an induced subgraph (induced by vertex set {1, 2, 3, 6})
and (c) an edge-induced subgraph (induced by edge set {1-2, 2-7, 5-6}). Note that
(c) is not an induced subgraph of (a).

A path is a sequence of edges where each pair of subsequence edges are connected by

a common node, u0u1, u1u2, u2u3, . . . , uk−1uk, and each node appears only once, i.e.,

u0 6= u1 6= . . . 6= uk. In the directed case the edges should have the same orientation,

i.e., they are connected by head-to-tail, u0 → u1, u1 → u2, . . . , uk−1 → uk. If u0 = uk,

then we have a cycle.

An undirected graph is connected if any two nodes in it are connected by at least

one path. A directed graph is weakly connected if its underlying undirected graph is

connected. A directed graph is strongly connected if for every pair of nodes u and

v there are directed paths from u to v and from v to u. A subgraph that contains

all nodes connected to each other, and all the edges among the nodes, is called a

connected component. Using this definition, a graph is connected if and only if it has

only a single connected component.

Two graphs G1(V1, E1) and G2(V2, E2) are isomorphic if there is a mapping ϕ :

V1 → V2 such that uv ∈ E1 if and only if ϕ(u)ϕ(v) ∈ E2. It is necessary that

|V1| = |V2| and |E1| = |E2|. Given a small graph H(VH , EH) and a graph G(VG, EG),

the enumeration problem is to find and list all subgraphs of G that are isomorphic

to H. In this context, H is also called the subgraph pattern for the enumeration. We

can either impose that the subgraphs are induced, or not. This leads to two types

of enumeration problems: induced and non-induced. A clique is a subgraph that is

14

isomorphic to a complete graph. Note that a clique is always induced.

Related to enumeration and/or counting problems, there is also the motif prob-

lem. Motifs are statistically significant subgraph patterns. To classify a given graph,

sometimes we just need to know the dominant subgraph patterns inside the graph.

2.4 Wedges, Triangles, and Triads

A wedge is a small simple graph of three nodes and two edges. Given a reference

node, we can classify wedges into two types: (1) one with the reference node at the

center, where the two edges meet, and (2) one with the reference node at one of

its legs. This is illustrated in Figure 2.4, where we use the lowest labeled node as

the reference node. We will see later that these two types require different ways to

enumerate.

1

2

3

(a)

1

2

3

(b)

1

2

3

(c)

Figure 2.4: Using node 1 as the reference node, we have two types of wedges: Type
1 wedge (2, 1, 3) (a) and Type 2 wedges (1, 2, 3) and (1, 3, 2) (b and c).

A triangle is a graph of three nodes connected to each other by three edges. An

undirected triangle is shown in Fig. 2.5. It is known as a clique of order 3, K3, which

is also a cycle of order 3, C3. We represent a triangle by its nodes, e.g., (u, v, w)∆ for a

triangle with nodes u, v, and w. Note that, for example, (w, v, u)∆ represents the same

triangle as (u, v, w)∆. In fact, any permutation of the three nodes would represent

the same triangle. This leads to a multiple counting problem in enumeration. There

are six permutations of three labels. So, if we do not take care of the ordering of the

15

labels, a triangle could be counted six times. To avoid this problem we can impose a

condition that we list a triangle only in ordered labels, u < v < w.

1

2

3

Figure 2.5: A triangle, (1, 2, 3)∆.

In directed graphs, a cycle is a set of edges connecting nodes in a cyclic path.

A cycle of three nodes is depicted in Fig. 2.6(a). We call this a cycle triangle, and

denote it by (u, v, w)C . Now, note that (u, v, w)C = (w, u, v)C = (v, w, u)C , but

(u, v, w)C 6= (u,w, v)C . To avoid multiple counting for a cycle we anchor the first

node label to be the smallest. Thus we might, for example, enumerate (1, 2, 3)C and

(1, 3, 2)C , but not (2, 3, 1)C . When one of the edges of a cycle triangle is flipped,

we have what we call a trust triangle. This is depicted in Fig. 2.6(b). We use the

name trust to reflect that it shows a propagation of trust. That is, if 1 trusts 2 and

2 trusts 3, then 1 also trusts 3. A trust triangle is also known as a truss, as in a

truss bridge, or a transitive triangle. We use index T to denote a trust triangle, e.g.,

(u, v, w)T is a trust triangle of nodes u, v and w, connected by edges u → v, v → w

and u → w. For trust triangles, the order of the nodes matters. We start with the

source node and end with the sink node. We do not impose any ordering condition

when enumerating trusts since each permutation represents a different trust. Cycle

and trust triangles are the only possible types of directed triangles. Typically, we

consider them as non-induced subgraphs within a larger graph.

On the other hand, given a directed graph we can explore all of its induced sub-

graphs of three nodes, known as triads [33, 74, 4]. There are sixteen of those. A

unique coding for triads that describes the type of connections inside is well known.

16

1

2

3

(a)

1

2

3

(b)

Figure 2.6: (a) A cycle triangle, (1, 2, 3)C and (b) a trust triangle, (1, 2, 3)T .

We show these sixteen triads and their coding in Figure 2.7.

1 - 003 2 - 012 3 - 102 4 - 021D

5 - 021U 6 - 021C 7 - 111D 8 - 111U

9 - 030T 10 - 030C 11 - 201 12 - 120D

13 - 120U 14 - 120C 15 - 210 16 - 300

Figure 2.7: Sixteen types of triads.

The coding consists of three digits and may be followed by a letter to specify the

orientation. The three digits are for the numbers of mutual connection, asymmetric

connection, and no connection (or null dyad), respectively. The possible orientations

are up (U), down (D), cyclical (C), and transitive (T). The triads can be classified as

having no connection (empty), single connection, two connections, and three connec-

17

tions (or triangle).

Note that to count/list triads we need to consider every triple node combination

in the graph, there are O(n3) of them. We may restrict the search to only triads

whose underlying graph is a triangle. These are called triangle triads, and there are

seven types of them as depicted in Fig 2.8. In fact, this is what we do here, and hence

from here on when we say triads we will implicitly mean triangle triads. We label

them as Type 1, Type 2, ... Type 7 3, to simplify our notation. Note that, using the

coding above, Type 1 triad is 030C (10), Type 2 triad is 030T (9), Type 3 triad is

120C (14), and so on.

Type 1 Type 2 Type 3 Type 4

Type 5 Type 6 Type 7

Figure 2.8: Seven types of (triangle) triads.

Notice that Type 1 triad is isomorphic to a cycle triangle and Type 2 is isomorphic

to a trust triangle. However, we should make the distinction between triads and

directed triangles clear here. When we enumerate directed triangles we do not impose

on them to be induced subgraphs. However, triads, by definition, are always induced

subgraphs. For any triad, there could be from zero to six trust triangles, and from

zero to two cycle triangles. The maximum number of trust and cycle triangles are

found in the Type 7 triad, which has six directed edges. This is shown in Fig. 2.9

and Fig. 2.10 respectively. Our notations for triangles and triads are summarized in

3Our numbering convention is slightly different from the one used by other authors [20, 46].

18

Table 2.2.

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

Figure 2.9: There are six trust triangles in a Type 7 triad: (1, 2, 3)T , (1, 3, 2)T ,
(2, 3, 1)T , (2, 1, 3)T , (3, 1, 2)T , and (3, 2, 1)T respectively.

1

2

3

1

2

3

Figure 2.10: There are two cycle triangles in a Type 7 triad: labeled as (1, 2, 3)C and
(1, 3, 2)C respectively.

The underlying graph of any (triangle) triad is an undirected triangle. Therefore,

if we just need to know the total number of triads in a graph, without needing to know

the number of each type, we can count the number of triangles in the corresponding

undirected graph instead. That is

∆ =
7∑
i=1

∆i (2.11)

The type of a triad is characterized by the number of cycles and trusts that it

contains. This is listed in Table 2.3. This table tells us that we can count the number

of cycle triangles and trust triangles from the number of triads by the following

relations

∆C = ∆1 + ∆3 + ∆6 + 2∆7 (2.12)

19

Symbol Definition

(u, v, w)∆ An undirected triangle with nodes u, v, and w.
(u, v, w)T A trust with nodes u, v, and w, connected

by edges u→ v, v → w, and u→ w.
(u, v, w)C A cycle with nodes u, v, and w, connected

by edges u→ v, v → w, and w → u.
(u, v, w)i A triad of type i with nodes u, v, and w,

∆ The number of (undirected) triangles.
∆T The number of trust triangles.
∆C The number of cycle triangles.
∆i The number of triads of type i.

Table 2.2: Our notation on triangles and triads.

and

∆T = ∆2 + ∆3 + 2∆4 + 2∆5 + 3∆6 + 6∆7 (2.13)

respectively.

Triad Description

Type 1 1 cycle
Type 2 1 trust
Type 3 1 trust + 1 cycle
Type 4 2 trusts merging
Type 5 2 trusts parting
Type 6 3 trusts + 1 cycle
Type 7 6 trusts + 2 cycles

Table 2.3: Triad types and description.

2.5 Cliques

A clique is a subgraph that is isomorphic to a complete graph. Because each

pair of nodes in a clique is connected, the clique must include all edges within the

subgraph, hence it must be an induced subgraph. A triangle (viewed as a subgraph)

20

is a 3-clique. A four-node subgraph with each pair of nodes connected is a 4-clique. In

general, a k-clique is a subgraph of k nodes where each pair is connected by an edge.

We show some lower-order cliques in Fig. 2.11. Consider a k-clique with k nodes

1, 2, . . . , k. Note that there is only one k-clique containing all of these specific nodes

in the whole graph. Thus, any permutation of 1, 2, . . . , k would refer to the same

k-clique. By convention, to avoid duplicate listing, we can choose to list a k-clique

by its nodes in ascending order, e.g., (1, 2, . . . , k)k.

Figure 2.11: A 3-clique, a 4-clique, a 5-clique and a 6-clique.

We observe that a k-clique contains k of (k − 1)-cliques. So for example, a 4-

clique contains four 3-cliques (or triangles), a 5-clique contains five 4-cliques, and a

6-clique contains six 5-clique. We can continue the decomposition all the way down

to triangles, and find that a 4-clique contains four triangles, a 5-clique contains ten

triangles, and a 6-clique contains twenty triangles. Or in general, a k-clique contains(
k
3

)
triangles, for k ≥ 3,

(
k
4

)
4-cliques, for k ≥ 4,

(
k
5

)
5-cliques, for k ≥ 5, and so on.

Moving to the other direction, given a k-clique we can try to find another node

in the graph that is connected to all nodes in the k-clique. This new node together

with the k-clique form a (k + 1)-clique. We can continue this process of growing a

clique. At some point, there will be no more point that is connected to all nodes in

the clique, and hence the process stops. A clique that is not part of a higher order

clique is called a maximal clique.

21

2.6 Graphlets

Next, we generalize our discussion from triangles and cliques to graphlets. We

assume the following definition: A graphlet is a small induced connected subgraph.

Small here is not rigidly defined, but roughly speaking of the order less than ten. For

simplicity, we will restrict our discussion here to the undirected case. There are two

types of three-node graphlets: triangles and wedges. A wedge consists of three nodes

and two edges where the two edges are connected by a common node. A triangle has

three nodes and three edges. We label wedges as g1 and triangles as g2.

For four nodes, there are six types of graphlets as shown in Figure 2.12. We have

3-paths (or four-node-paths) (g3), 3-stars (g4), 4-cycles or rectangles (g5), tailed-

triangles (g6), diamonds (g7), and 4-cliques (g8). The labeling convention that we use

here follows the one commonly used in the literature [53, 8] 4.

g3 g4 g5 g6 g7 g8

Figure 2.12: Four node graphlets: a 3-path (g3), a 3-star (g4), a rectangle or 4-cycle
(g5), a tailed-triangle (g6), a diamond (g7), and a 4-clique (g8).

Note that, as induced subgraphs, wedges, and triangles cannot be on top of each

other (i.e., a wedge and a triangle cannot have the same set of three nodes within

the same graph.). Similarly, the four-node graphlets cannot be on top of each other.

Notice that g3, g4 and g5 do not contain any triangle, while g6, g7 and g8 contain 1,

2 and 4 triangles respectively.

Next, on to the five-node graphlets. There are 21 types of (or non-isomorphic)

4Except that here we use small g, while other authors denote them using capital G.

22

graphlets of five nodes [8]. These are shown in Figure 2.13. Again, we can see

that some of them contain triangles while others do not. However, the hierarchical

structure of five-node graphlets is more complicated.

g9 g10 g11 g12 g13 g14 g15

g16 g17 g18 g19 g20 g21 g22

g23 g24 g25 g26 g27 g28 g29

Figure 2.13: Five node graphlets.

In summary, there are 2 non-isomorphic 3-node graphlets, 6 non-isomorphic 4-

node graphlets, and 21 non-isomorphic 5-node graphlets. Higher-order graphlets

are even more numerous. For 6-node, there are 112 non-isomorphic graphlets, for

7-node, there are 853 non-isomorphic graphlets, and for 8-node, there are 11117

(https://oeis.org/A001349).

2.7 Orbits and GDV

Taking a node point of view, we can count the number of each graphlet type that

it is a part of. This is an extension of the node degree, which basically is the count

of two node graphlets attached to the node being considered.

For a given graphlet type, we can still differentiate further by the location of the

node within the graphlet. For a wedge, for example, it matters whether the node is

23

at the joint or at one of the legs. This leads to the notion of orbits. Up to five node

graphlets, we have 73 orbits as shown in Figure 2.14 below.

0

g0

1

2

g1

3

g2

4

5

g3

6

7

g4

8

g5

9

10

11

g6

12

13

g7

14

g8

15

16

17

g9

18

19

20

21

g10

23

22

g11

24

25

26

g12

27

28

29

30

g13

31

32

33

g14

34

g15

35

36

37

38

g16

39

41

40

42

g17

43

44

g18

45

46

47

48

g19

49

50

g20

51

52

53

g21

54

55

g22

56

57

58

g23

59 60

61

g24

62

63

64

g25

65

66

67

g26

68

69

g27

70

71

g28

72

g29

Figure 2.14: Orbits for 2, 3, 4, and 5 node graphlets. The labeling is following the
convention used by Przulj [52].

This brings us to the notion of Graphlet Degree Vector (GDV), which is the 73

counts attached to each node. The collection of GDVs for all nodes in a graph forms

what is called the Graphlet Degree Distribution (GDD).

24

2.8 Induced and Non-Induced Subgraphs

We have talked about induced and non-induced subgraphs. They differ on whether

or not to include all connected edges from the original graph. We have noted that a

clique is always an induced subgraph. However, we can view a clique as non-induced

as well, if we do not impose the induced condition.

Given the counts of non-induced subgraphs, we can derive the counts of induced

subgraphs, and vice versa. The relation is given by

N = M I (2.14)

where N is the vector for the non-induced counts, and I is the vector for the induced

counts. For 3-node subgraphs, wedges, and triangles, the conversion matrix is

M =

 1 3

0 1

 (2.15)

This is telling us that for every triangle, there are 3 non-induced wedges inside it.

For 4-node (3-path, 3-star, square, tailed triangle, diamond, 4-clique, in this order),

the matrix M is

M =



1 0 4 2 6 12

0 1 0 1 2 4

0 0 1 0 1 3

0 0 0 1 4 12

0 0 0 0 1 6

0 0 0 0 0 1


(2.16)

The get induced counts from the non-induced counts, we just need to reverse the

25

equation to

I = M−1N (2.17)

where the inverse matrices are

M−1 =

 1 −3

0 1

 (2.18)

for 3-node, and

M−1 =



1 0 −4 −2 6 −12

0 1 0 −1 2 −4

0 0 1 0 −1 3

0 0 0 1 −4 12

0 0 0 0 1 −6

0 0 0 0 0 1


(2.19)

for 4-node.

26

Chapter 3

Related Works

3.1 Triangles

Triangle enumeration and counting have been the subject of numerous papers. For

this seemingly simple task, many algorithms/methods had been proposed, the list of

which can be found in [37]. Schank and Wagner [65] did an experimental comparison

among some of the algorithms. Latapy [37] did a more detailed study and confirmed

the finding. Since then it is commonly agreed that Compact Forward algorithm is

the most efficient algorithm for triangle enumeration on shared memory platforms.

Some more details about enumerating triangles and related engineering are presented

in [61].

3.2 Triads

Pajek (http://mrvar.fdv.uni-lj.si/pajek/) is a well-known graph analysis

software that can be used for triad enumeration. The triad census algorithm by

Batagelj and Mrvar [4], which is employed in Pajek, has been known as the standard

algorithm to enumerate triads for several years. However, this program is not suitable

http://mrvar.fdv.uni-lj.si/pajek/

27

for very large graphs with millions of nodes and edges because it is too slow.

Chin et al. [20] proposed a compact data structure where both outgoing and

incoming edges are listed in the same adjacency list, and the edge direction is encoded

using the 2 lowest bits out of the 32 bits (i.e., using int) in each entry. This data

structure is suitable for parallel computation using shared memory architectures.

This idea was further refined by Parimalarangan et al. [46], who proposed two types

of algorithms, intersection based (AI) and marking based (AM), as the most efficient

algorithms to enumerate triads on shared memory platforms.

While those ideas significantly improve the running time, there is a cost due to the

scalability. With two bits used for edge direction, the order of the graphs that can be

processed is reduced. This becomes a problem when we want to analyse a graph of a

billion nodes. Theoretically, we can switch to 64-bit integers and the problem should

be moot. Practically, however, this would at least double the memory requirement.

With a limited memory budget, space is already a problem for analysing very large

graphs.

We proposed a different approach where the edge encoding is computed on the

fly [64]. With this method, we were able to enumerate triads in a graph with around

a billion nodes using a single commodity machine. Moreover, the running time is

competitive with the previous solution.

3.3 Graphlets

Chiba and Nishizeki published several subgraph listing algorithms [19] which can

be considered as a pioneering work on graphlet enumeration. Milo et al. [44] analysed

frequent subgraph patterns, and called them network motifs. Since then, there have

been many studies on how to find and count small subgraphs within a graph or

28

network. Fanmod [76] and Rage [40] are such solutions, but they do not scale well

and take a very long time to run on graphs with millions of nodes and edges. Another

proposed solution, PGD [2], uses parallelized algorithm.

There are several algorithms proposed in the literature to count (but not enu-

merate) the number of graphlets. They are either estimates using approximation

methods, such as Graft [55], or exact counting without full enumeration, notably

Orca [32] and Escape [51]. In addition, Silvestri [68] provided another complexity

analysis on subgraph enumeration.

We proposed a graphlet enumeration solution that enumerates all types of graphlets

of 3 and 4-nodes in a single run, called S4GE [63]. In this dissertation, we propose

S5GE, which enumerates 3, 4, and 5-node graphlets in a single run.

3.4 Cliques

Clique enumeration had been the subject of many papers long before comput-

ers are widely available. There are two influential papers on cliques, from which

later algorithms on cliques were based: Bron and Kerbosch [15] which was published

in 1973, and Chiba and Nishizeki [19] which was published in 1985. The current

state-of-the-art (SOTA) is by Danisch, Balalau, and Sozio [22] which is an improved

implementation based on Chiba and Nishizeki algorithm. Jain and Seshadhri [35]

proposed a counting method that does not require full enumeration.

3.5 Distributed Enumeration

Suri and Vassilvitskii [69], proposed a MapReduce triangle enumeration algorithm,

GP, based on graph partitioning. The idea is to partition the graph into overlapping

subsets of sub-graphs such that each triangle in the graph comes in at least one of the

29

partitions. However, GP has a lot of redundant operations. To rectify the problem in

GP, Park and Chung [47] proposed another Map-Reduce algorithm, called Triangle

Type Partition (TTP). However, for very large graphs, TTP gets out of memory error

when the size of shuffled data is getting larger than the total available space. Park

et al. subsequently proposed an improvement [49] with a multi-round MapReduce

algorithm, Colored Triangle Type Partition (CTTP), to reduce the amount of shuffled

data in each round. However, the net shuffled data across all rounds remains the

same as TTP. Finally, Park et al. [48] proposed a new MapReduce algorithm, Pre-

partitioned Triangle Enumeration (PTE), which significantly reduces the amount of

shuffled data and has better performance. Bhojwani [7] expanded PTE to enumerate

trust and cycle triangles in directed graphs.

For general graphlets, Park et al. generalized PTE to PSE [50]. It uses VF2

algorithm [21] as its serial enumeration algorithm. We consider PSE as the state of

the art for distributed solutions of subgraph enumeration problems.

There are several distributed methods/frameworks for graph processing published

in the literature, notably Arabesque [72] and its descendant Fractal [25], DistGraph [71],

GraphZero [41], G-Miner [18], G-thinker [79], RADS [57] and DISC [81]. They are

multipurpose graph applications that can be used to enumerate subgraphs as well.

They are query based, where the users need to supply the subgraph finding algorithm.

In general, they are more suitable for non-induced subgraphs enumeration.

To the best of our knowledge, there has not been a distributed solution to simulta-

neously, and fully, enumerate all the induced 4-node graphlets, that can scale to large

graphs using a modest cluster of machines, before our proposed solution, D4GE [38].

D4GE is bringing our single machine enumeration S4GE to the distributed platform,

using an extended version of the partition scheme used by PSE.

30

Chapter 4

Undirected Graphlet Enumeration

4.1 Triangles

Triangle is the smallest nontrivial graphlet that has an important role in graph

analysis. Triangle enumeration had been studied extensively in the literature and

many algorithms had been proposed. The most efficient algorithm known for triangle

enumeration is the Compact Forward algorithm [37]. This algorithm works by real-

izing that when iterating through the nodes, we only need to consider higher labeled

neighbours of each node. This is related to the symmetrical property of a triangle,

that we only need to enumerate each triangle once when the nodes are ordered. We

built a modified algorithm by employing a graph pre-processing before doing the tri-

angle enumeration. In the pre-processing, we first sort the nodes in ascending order of

their degrees and cut off lower ordered neighbours from each node’s adjacency list 1.

With careful design and implementation, we were able to enumerate triangles in a

graph with almost a billion nodes and more than forty billion edges using a single

commodity machine within a reasonable amount of time (i.e., less than a day) [61].

1In Compact Forward Algorithm, the nodes are sorted in descending order of the degrees, and
only lower ordered neighbours are kept for finding the third node. This filtering is done on the fly
while iterating through the adjacency lists.

31

4.1.1 Algorithms

The algorithm that we use for undirected triangle enumeration is described in

Algorithm 1. It iterates through the nodes and the neighbours of each node. For

each neighbour with a higher index (line 4) it calls the Intersection function to

find the common neighbours. We keep only common neighbours with higher indices

(line 7) to avoid multiple counting.

Algorithm 1 Undirected Triangle Enumeration

Input: An undirected graph G = (V,E) and its adjacency list N(v ∈ V).
Output: The list of the triangles and the number of triangles in G.

1: S ← ∅, c← 0
2: for all nodes u ∈ V do
3: for all nodes v ∈ N(u) do
4: if u < v then
5: S ← Intersection(N(u), N(v), d(u), d(v))
6: for all nodes w ∈ S do
7: if v < w then
8: Enum (u, v, w) . For Listing
9: c← c+ 1

10: return c

The Intersection function is described in Algorithm 2. It works on any two

sorted sets of integers. It starts by considering the lowest numbers of each set and

checks whether the two numbers are equal. If yes, then the number is put into the

intersection list. It then proceeds by moving up in the set with a lower number, or

both if equal.

To avoid multiple counting we impose a condition on the ordering of the nodes,

u < v < w. This condition leads to an interesting consequence. Since u < v and

u < w, only the larger neighbours of u need to be considered. Similarly, since v < w,

only the larger neighbours of v need to be considered. As a result, we can actually

cut the adjacency list to keep only larger neighbours before starting the triangle

enumeration and we would obtain the same result. In this case, line 4 and 7 of

32

Algorithm 2 Intersection

Input: Two sorted sets of integers A and B, a = size of A, b = size of B
Output: The set A ∩B, the size of the intersection.

1: C ← ∅
2: i← 0, j ← 0, k ← 0
3: while i < a and j < b do
4: if A[i] == B[j] then
5: C[k]← A[i]
6: k ← k + 1, i← i+ 1, j ← j + 1
7: else if A[i] < B[j] then
8: i← i+ 1
9: else . A[i] > B[j]

10: j ← j + 1

11: return C (and optionally k)

Algorithm 1 is no longer needed. Also, since the degrees are reduced, the number

of iterations is reduced, and the running time is shorter. Note that the sorting

can be done in O(n log n) time using some common sorting algorithms. The graph

preparation is described in Algorithm 3. First, we order the nodes according to the

degrees and relabel (or map) them accordingly. Then we omit smaller neighbours in

the adjacency lists of the relabeled nodes. The node with the highest degree would

be labeled the highest, which after omitting the smaller neighbours would get zero

neighbour. This idea had also been realized in the Compact Forward algorithm [37].

However, here we separate these sorting and cutting processes into a separate phase.

This pre-processing reduces the maximum effective degree of the graph. It has the

greatest impact on graphs with exponential (or power-law) degree distribution, where

few nodes have very large degrees and many have relatively small degrees.

Algorithm 3 Graph-Prep

Input: An undirected graph G(V,E)
1: Sort V based on the degrees, in ascending order.
2: Relabel (or map) the vertices according to their new order.
3: Build adjacency list of the sorted and relabeled vertices.
4: Cut out the smaller neighbours from each neighbour list.

33

4.1.2 Analysis

We give the proof of correctness and analyse the running time of the algorithm.

Theorem 1. The Undirected Triangle Enumeration algorithm (Algorithm 1), applied

on an undirected graph that is preprocessed using the Graph Preprocessing algorithm

(Algorithm 3), correctly enumerates the triangles in the input graph.

Proof. Given an undirected graph, we iterate through all of its nodes, and for each

node, we iterate over all its neighbours. Thus, all edges (or all pairs of nodes in the

graph with an edge between them) would be iterated. By using the Intersection

function, all common neighbours of the two end nodes of each edge would be found.

Thus, all triangles in the graph would be found. Without imposing the ordering on

the nodes, a triangle with nodes u, v and w would be found as (u, v, w), (u,w, v) (when

iterate node u), (v, w, u), (v, u, w) (when iterate node v), (w, u, v), and (w, v, u) (when

iterate node w). That is six permutations of three indices. One of them would be the

ordered permutation, which, without loss of generality, is (u, v, w) with u < v < w.

Thus, to enumerate a triangle we just need to find this ordered one. This is done by

checking the condition u < v and v < w in the algorithm.

Relabelling the nodes of a graph is equivalent to finding an isomorphic graph.

Thus relabelling does not change the number of triangles inside the graph. The

listing can be translated back to the old labels if needed.

Now, if an edge (u, v) is in the original graph and u < v, then (u, v) would also be

in the preprocessed graph (assuming that we already use the new labels). Therefore,

running the Triangle Enumeration on the preprocessed graph, the edge (u, v) would

be iterated. Since w > u and w > v, w would be kept in the list of higher ordered

neighbours of u and v, respectively, in the preprocessed graph. Therefore the triangle

(u, v, w) would be found.

34

For the running time, we claim the following.

Theorem 2. The running time of the Undirected Triangle Enumeration on graph

G(V,E) is bounded by O(|V |(dmax(G))2).

Proof. Recall that the algorithm practically iterates over the edges of the graph. For

each edge (u, v) the intersection computation runs in time d(u) + d(v). Thus, the

running time is
∑

u→v(d(u) +d(v)) ≤
∑

u d(u) (d(u) + max[d(v ∈ N(u))]). The worst

case is 2|V |(dmax(G))2.

Keep in mind that what we have here is the upper bound on the running time,

not the exact running time.

Note that the running time on the preprocessing part (Algorithm 3) is dominated

by the sorting of the whole set of nodes V . Assuming an efficient sorting algorithm

such as Merge Sort, the running time is O(n log n), where n = |V |. This is commonly

less than the enumeration time.

4.1.3 Experiment

We conducted experiments using our algorithms on several very large graphs. The

data sets that we use in our experiments are listed in Appendix A. We used a Xeon

E5620 machine with 64 GB of RAM. This machine has 16 threads in total. To utilize

the multi-thread feature of the machine, we parallelize the node iteration in our code

implementation (using Java-8).

In our experiment we used eleven graphs: words, enron, uk-2007, cnr-2000,

ljournal, uk-2002, arabic, uk-2005, webbase, twitter, and clueweb, which are

symmetrized to be undirected graphs. The order of the graphs ranges from ten

thousand to close to a billion, and the size ranges from sixty four thousand to thirty

35

seven billion. The maximum degree for the smallest graph (words) is 332, while for

the largest graph (clueweb) is more than 75 million.

We found that the pre-processing can reduce the effective maximum degrees of

some graphs significantly, by four orders of magnitudes in the case of clueweb graph.

As a result, the running time is much shorter, even after including the preprocessing

time. We ran the triangle enumeration on both the preprocessed and unprocessed

graphs. The reduction in running time, however, is less than the reduction in d2
max,

in general. Recall that the O(nd2
max) is only an upper bound, but not the exact

formula for the running time. Perhaps, we should consider the average degree to get

a better estimate. Moreover, parallelization also yields an overhead cost. It may also

indicate that our code implementation can still be optimized further. Nevertheless,

this reduction is enough to enable us to enumerate the triangles in clueweb, which

has almost a billion nodes and forty billion edges in less than a day. It would not

be possible without the preprocessing. We found that clueweb has almost 2 trillion

triangles.

4.2 Four-Node-Graphlets

Consider four node graphlets in Figure 2.12. Notice that g6, g7 and g8 contain

triangle(s). A g6 contains one triangle, a g7 contains two triangles, and a g8 contains

four triangles. This fact suggests that we can find them through the triangles in

the graph. Whenever we find a triangle, we can check if this triangle is a part of

any g6, g7, and/or g8. Similarly, g3, g4, and g5 contain two, three, and four wedges,

respectively. Therefore, we can find them through wedges.

We list graphlets by their nodes. Thus, for example, (u, v, w, z)8 is a g8 with nodes

u, v, w and z. In enumerating the graphlets, some care is needed to avoid multiple

36

listing. Without loss of generality, we can use labels 1, 2, 3, and 4 to represent the

nodes in a graphlet. Clearly, 1 < 2 < 3 < 4, so 1 represents the smallest node.

• There are 3! = 6 permutations of three nodes. Therefore, for wedges, we have

(1, 2, 3)1, (1, 3, 2)1, (2, 1, 3)1, (2, 3, 1)1, (3, 1, 2)1 and (3, 2, 1)1. However, (1, 2, 3)1

is the same wedge as (3, 2, 1)1, (1, 3, 2)1 is the same as (2, 3, 1)1, and (2, 1, 3)1 is

the same as (3, 1, 2)1. Thus, we have only three possible wedges, only one can

be present (for induced case). Our convention is to list it with the smaller leg

first, i.e. (1, 2, 3)1, (1, 3, 2)1, and (2, 1, 3)1. We can divide these into two types:

those with the smallest node at the center of the wedge (type 1), i.e., (2, 1, 3)1,

and those with the smallest node at one of the legs (type 2), i.e., (1, 2, 3)1 and

(1, 3, 2)1. We will see that they require separate treatment.

• For triangles, all six permutations are isomorphic. Therefore, we only need

one to list. We choose the one with the nodes ordered ascendingly: (1, 2, 3)2.

• Now for four nodes, there are 4! = 24 permutations. For 3-paths, by symmetry

we only need half (i.e. twelve) of them. Our convention is to list them such

that the smallest node is in the first half: (1, 2, 3, 4)3, (1, 2, 4, 3)3, (1, 3, 2, 4)3,

(1, 3, 4, 2)3, (1, 4, 2, 3)3, (1, 4, 3, 2)3, (2, 1, 3, 4)3, (2, 1, 4, 3)3, (3, 1, 2, 4)3,

(3, 1, 4, 2)3, (4, 1, 2, 3)3, and (4, 1, 3, 2)3. Note that only one of them can exist.

• For 3-stars, we have four distinct ones depending on which one is the center.

Our convention is to list the center first, and then the rest in order from smallest

to largest. Thus, we have (1, 2, 3, 4)4, (2, 1, 3, 4)4, (3, 1, 2, 4)4, and (4, 1, 2, 3)4.

• For 4-cycles, the cyclic symmetry gives us a factor of four, while the clockwise

counter-clockwise symmetry gives us a factor of two. Therefore, we have only

24/8 = 3 distinct permutations. Suppose we list the nodes from the smallest

37

node, those three are distinguished by which node is opposite to this smallest

one, i.e. at the third position. They are (1, 3, 2, 4)5, (1, 2, 3, 4)5, and (1, 2, 4, 3)5.

We list them such that the second node is smaller than the fourth node.

• For tailed-triangles, the distinguishing nodes are the end node and the center

node, giving us
(

4
2

)
or twelve distinct configurations. We choose to list them

by starting with the end node, followed by the center node, and then the last

two nodes in ascending order. Thus we have (1, 2, 3, 4)6, (2, 1, 3, 4)6, (1, 3, 2, 4)6,

(3, 1, 2, 4)6, (1, 4, 2, 3)6, (4, 1, 2, 3)6, (2, 3, 1, 4)6, (3, 2, 1, 4)6, (2, 4, 1, 3)6,

(4, 2, 1, 3)6, (3, 4, 1, 2)6 and (4, 3, 1, 2)6.

• For diamonds, we have a pair of triangles. Let us call the two end nodes of the

shared edge as the connecting nodes, and the other two nodes as the opposing

nodes. There are symmetries between the two opposing nodes, and between

the two connecting nodes, giving us 24/2/2 = 6 distinct configurations. Our

convention is to start from the smaller opposing node and end with the other

opposing node. The two connecting nodes are listed in between in ascending

order. Thus we have: (1, 3, 4, 2)7, (1, 2, 4, 3)7, (1, 2, 3, 4)7, (2, 1, 3, 4)7, (2, 1, 4, 3)7,

and (3, 1, 2, 4)7. This convention is illustrated in Figure 4.1.

1

2

3

4

(1, 2, 4, 3)7

Figure 4.1: For diamonds we start with the smaller opposing node and end with the
other opposing node. In between we list the two connecting nodes in order. For
example, in the diamond shown above 1 and 3 are the opposing nodes, and 2 and 4
are the connecting nodes. Therefore, it is listed as (1, 2, 4, 3)7.

38

• For 4-cliques, we can swap any pair of nodes and still get the same clique.

Thus there is only one unique configuration, and we choose to list the nodes in

ascending order: (1, 2, 3, 4)8.

4.2.1 Algorithm

For four-node graphlet enumeration, we built a set of algorithms that we call

S4GE (Simultaneous 4-node Graphlets Enumeration). It works by first searching for

triangles and wedges in the graph (as shown in Algorithm 4), and for each that is

found then expand the search to find the four-node graphlets. Note that here we use

the unprocessed graph as the input because wedge enumeration does not work with

pre-processed one, i.e., we have to allow for lower neighbours as well.

Algorithm 4 Triangle and Wedge Enumeration

Input: An undirected graph G(V,E) in an adjacency list representation
1: for all vertex u ∈ V (G) do
2: for all vertex v ∈ N(u) do
3: if u < v then
4: for all u′ ∈ N(u) and v′ ∈ N(v) do
5: if (u′ > u) ∧ (v′ > u) then
6: if u′ = v′ > v then
7: EnumerateTriangle (u, v, u′)

8: if ((u′ < v′) ∨ (v′ = u)) ∧ (u′ > v) then
9: EnumerateWedgeType1 (v, u, u′)

10: if (u′ > v′) ∧ (v′ 6= u) then
11: EnumerateWedgeType2 (u, v, v′)

When we find a triangle, we search for 4-cliques, diamonds, and tailed-triangles

by using Algorithm 5. When we find a wedge, we search for rectangles, 3-stars,

and 3-paths by using either Algorithm 6 or Algorithm 7 depending on the type of

the wedge. There are two types of wedges, based on whether the smallest node is

at the center (type 1) or not (type 2). Note that we have taken care of multiple

39

counting by imposing some conditions on the ordering of the node labels to follow the

prescriptions above. Notice that S4GE enumerates all six types of non-isomorphic

four-node graphlets in a single run.

Algorithm 5 Explore Triangle

Input: A triangle (u, v, w)2, u < v < w, N(u), N(v), N(w).
1: for all z ∈ N(u) ∩N(v) ∩N(w) with z > w do
2: Enumerate4Clique (u, v, w, z)8

3: for all z in two sets and z > opposite node do
4: EnumerateDiamond (.)7

5: for all z in one set only do
6: EnumerateTailedTriangle (.)6

Algorithm 6 Explore Wedge Type-1

Input: A type-1 wedge (v, u, w)1, u < v < w, N>u(u), N>u(v), N>u(w).
1: for all z ∈ N>u(v) ∩N>u(w) with z /∈ N>u(u) do
2: EnumerateRectangle (u, v, z, w)5

3: for all z ∈ N>u(u) only do
4: if z > w then
5: Enumerate3Star (u, v, w, z)4

6: for all z ∈ N>u(v) only do
7: Enumerate3Path (w, u, v, z)3

8: for all z ∈ N>u(w) only do
9: Enumerate3Path (v, u, w, z)3

4.2.2 Analysis

Let us first prove the correctness of our algorithm. We need to show that all of

the graphlets would be found and listed just once.

Theorem 3. Algorithm 4, Triangle and Wedge Enumeration, correctly enu-

merates wedges and triangles in an undirected graph.

40

Algorithm 7 Explore Wedge Type-2

Input: A type-2 wedge (u, v, w)1, u < v, u < w, N>u(u), N>u(v), N>u(w).
1: for all z ∈ N>u(v) only do
2: if z > w then
3: Enumerate3Star (v, u, w, z)4

4: for all z ∈ N>u(w) only do
5: if z 6= v then
6: Enumerate3Path (u, v, w, z)3

Proof. Each edge uv is iterated once and only once, when u < v. For each, we

enumerate all the intersecting neighbours (i.e., triangles), and non-intersecting neigh-

bours (i.e., wedges). Thus, all wedges and triangles in the graph would be found. For

triangles, we avoid multiple listing by imposing condition u′ = v′ > v. For type-1

wedges we impose condition u′ > v. For type-2 wedges, since u < v′ (line 5) there

will be no double counting.

Theorem 4. Algorithms 5, 6 and 7, combined with Algorithm 4, correctly enumerate

all four node graphlets in an undirected graph.

Proof. As proven above, all triangles and wedges are enumerated once. For each

triangle, the three neighbour sets are checked (Algorithm 5). Each node that is in

only one of the sets yields a tailed-triangle. All tails would be found in the sets. A

node that is in the intersection of two sets yields a diamond. By asserting that this

node is larger than the opposite node in the diamond we assure that any diamond

would be listed just once. A node that is in the intersection of all three sets yields a

4-clique. We assert that this node is larger than any node in the triangle to assure

that the clique has not been listed in any previous iteration. For wedges, similarly,

all four node graphlets attached to each wedge would be found, either by Algorithm 6

or Algorithm 7. Multiple listing is avoided by considering only 3-paths, 3-stars, and

4-cycles, and by careful conditions on the node ordering. For the 3-paths we make

sure that the smallest node is always in the first half of the path. For the 3-stars

41

we make sure that the fourth node is greater than the third node. The center node

does not need to be the smallest. For 4-cycles we make sure that the fourth node is

opposite to the first node.

Theorem 5. The runtime of S4GE is bounded by O((N∆ + N∠) dmax + T3g), where

N∆ (N∠) is the number of triangles (wedges), and T3g is the time to enumerate the

triangles and wedges.

Proof. First, S4GE searches for triangles and wedges, using T3g time. For each triangle

and wedge the algorithm runs through the neighbor sets to check the intersections

with cost ≤ (d(u) + d(v) + d(w)) ≤ 3dmax.

Note that in general (N∆ + N∠) . nd2
max, with the upper value is satisfied by a

regular graph. However, for all real-world networks, we have (N∆ + N∠) � nd2
max.

Also, T3g � nd2
max using efficient enumeration. Therefore, in practice, our runtime is

much less than worst case bound of O(nd3
max) from general DFS algorithms [67].

4.2.3 Experiment

For experimenting on S4GE we chose the following graphs: enron, cnr-2000,

dblp-2011, amazon-2008, dewiki-2013, and ljournal. The networks that we stud-

ied are listed in Table 4.1. All of the datasets were downloaded from the Laboratory

for Web Algorithmics [11, 10], http://law.di.unimi.it/datasets.php. We sym-

metrized them and took out any self-loops to get simple undirected graphs. We

implemented our code in Java, using the WebGraph library [11]. We used a Linux

machine with dual Xeon E5-2620 processors of 24 threads and 128 GB of RAM. We

notice, however, that the memory usage is < 1 GB throughout the experiment.

The basic properties of the graph datasets are listed in Table 4.1. We include a

column for the effective maximum degree after preprocessing, dBG
max. However, note

http://law.di.unimi.it/datasets.php

42

that preprocessed graphs can only be used for the triangle enumeration part, but not

for the wedge enumeration part. We also include the average degree in the original

graph, davg. As we can see, the average degree is much smaller than the maximum

degree for these graphs, indicating a power-law degree distribution.

Dataset n m dmax dBG
max davg

enron 69,244 254,449 1,634 87 7.35

cnr 325,557 2,738,969 18,236 85 16.83

dblp 986,324 3,353,618 979 118 6.80

amazon 735,323 3,523,472 1,077 16 9.58

dewiki 1,532,354 33,093,029 118,246 490 43.19

ljournal 5,363,260 49,514,271 19,432 756 18.46

Table 4.1: The undirected graphs. Here, dBG
max is the effective maximum degree when

only larger neighbours are included after the preprocessing.

The graphlet counts that we got as the results of our enumeration are listed in

Table 4.2. We can check that for all of these graphs, N∆ + N∠ � nd2
max using their

dmax values from Table 4.1. For example, for amazon we have N∆ + N∠ ≈ 42M and

nd2
max ≈ 853B, a four order of magnitude difference. For all of the graphs that we

consider here, the difference is from three to five orders of magnitude.

Note that, even though dewiki has smaller order and size compared to ljournal,

it has a much larger maximum degree, and a larger average degree. We found that

dewiki has an enormous number of wedges, more than 51 billion. Because of this,

we actually were not able to finish the enumeration, hence we do not have the 4-node

counts for this graph.

The runtimes are shown in Table 4.3. We include the triangle enumeration time,

T∆, for comparison. For this triangle enumeration, we use the pre-processed graphs.

However, wedges cannot take advantage of the pre-processing, so they require longer

43

Graph g1 g2 g3

enron 40,309,453 1,067,993 2,511,039,670

cnr 7,798,287,209 20,977,629 6,118,026,632

dblp 81,529,950 7,005,235 2,678,518,695

amazon 38,015,403 4,464,791 372,366,885

dewiki 51,141,107,679 88,611,282 ..

ljournal 8,726,048,197 411,155,444 1,812,284,632,329

Graph g4 g5 g6

enron 8,043,804,283 21,598,984 582,841,848

cnr 41,392,015,937,553 37,876,822,234 79,429,334,745

dblp 3,545,925,764 1,483,611 543,447,587

amazon 609,961,827 2,689,696 9,232,707

dewiki

ljournal 8,847,128,736,944 8,551,292,956 189,716,360,703

Graph g7 g8

enron 46,141,288 5,001,773

cnr 42,974,515,602 159,814,399

dblp 21,608,538 40,910,658

amazon 13,096,219 4,192,682

dewiki

ljournal 26,962,410,402 16,129,080,442

Table 4.2: Counts of the graphlets. The dewiki dataset needs longer than our time
limit to terminate.

44

enumeration time, hence T3g, which includes the time to enumerate both triangles

and wedges, is larger than T∆. For enron, dblp and amazon, the numbers of wedges

(and triangles) are not very large. Therefore, for these graphs, T3g is not much larger

than T∆, as both are actually still dominated by the overhead cost. On the other

hand, cnr has a very large number of wedges, and we see that T3g is an order of

magnitude larger than T∆.

Note that T4g, the time required to enumerate all 3 and 4-node graphlets, does not

strongly depend on the size of the graph, but rather on the degrees and the numbers

of triangles and wedges, validating our analysis. For example, comparing ljournal

with amazon, the ratio of their (N∠ + N∆) dmax values is about four thousand, while

the ratio of their T4g values is about six thousand, i.e. approximately the same order.

This observation experimentally validates the statement of Theorem 5 relating the

runtime to the (N∠ +N∆) dmax value.

Interestingly, cnr requires a longer runtime than ljournal. Even though it is

smaller by an order of magnitude it has more graphlets. The amazon dataset, which

has relatively small maximum degree can be processed in merely 14 seconds. The

dewiki dataset has an enormous number of wedges and a large maximum degree.

The program did not terminate even after running for four days, and we had to abort

the run.

4.3 Five-Node Graphlets

A direct continuation of our work on four-node graphlets would be to look for

algorithms to enumerate larger graphlets. Here we propose a solution to enumerate

five-node graphlets.

45

Graph T∆ T3g T4g

enron 1.03 3.49 76.50

cnr 1.75 57.03 176K

dblp 1.93 3.45 62.05

amazon 1.73 2.53 14.05

dewiki 12.79 517.3 > 300K

ljournal 32.96 257.1 82K

Table 4.3: The runtime, in seconds, for triangle enumeration T∆, for wedges and
triangles together T3g, and for all three and four-node graphlets together T4g.

4.3.1 Idea

Looking at Fig. 2.13, the five-node graphlets, we notice that all of them contain

triangles and/or wedges. There are 15 out of 21 that contain one or more triangles.

Now, we are going to show that they can be discovered directly through either a

triangle or a wedge. Recall that, in S4GE, in order to find four node graphlets, once

a triangle or a wedge is found, say ∆(u, v, w) or ∠(u, v, w), we line up the neighbour

sets of the three nodes and check for any intersections. Through this process, we can

divide the neighbour sets into three categories: those nodes that are neighbours to

only one, two or all three of u, v, and w. With N(u) is the neighbour set of u, N(v)

is the neighbour set of v and N(w) is the neighbour set of w, we have

N(u) ∪N(v) ∪N(w) = N1(u) ∪N1(v) ∪N1(w) ∪

N2(u, v) ∪N2(u,w) ∪N2(v, w) ∪

N3(u, v, w) (4.1)

where N1(u) is the set of neighbours of u that are not neighbours of v or w, and

similarly for the other sets. Note that the sets on the right hand side are all disjoint

from each other, while the ones on the left hand side are in general not. Also, note

46

that for example,

N(u) = N1(u) ∪N2(u, v) ∪N2(u,w) ∪N3(u, v, w) (4.2)

and similarly for N(v) and N(w). Now, once we have this division, we can take two or

more of these sets simultaneously and check if the nodes in those sets are connected,

to find five-node graphlets. For example, if we take N1(u) and N1(v) we can get some

g12 (if the two nodes are not connected) and g21 (if the two nodes are connected).

This is illustrated in Figure 4.2.

x y

u v

w

g12

x y

vu

w

g21

Figure 4.2: Finding g12 and g21 through a triangle ∆(u, v, w). Here x ∈ N1(u) and
y ∈ N1(v). We get a g12 when x and y are not connected, or g21 when x and y are
connected.

We can also take a set and combine it with itself, e.g., N1(u) with N1(u), to find

two-tailed triangles g14, and also g18. We can prove that we can find all of the five-

node graphlets through this method, either through a triangle or a wedge. The g13

is a special case. If we look at the triangle inside it, we might think that we need to

go two steps from the triangle and that this method of taking two neighbour sets at

a time does not work. That is, we need to search for the neighbours of the tail and

find the ones that are not connected to any of u, v, or w. However, if we start from

a wedge instead, then we will see that we can find g13 through this method as well,

47

e.g., by taking N1(u) and N2(v, w). This is illustrated in Figure 4.3. Thus, out of

the 21 types, 7 of them need to be discovered through wedges, while the rest can be

discovered through triangles.

w

v

y

u

x

g13

Figure 4.3: Finding a g13 through a wedge ∠(u, v, w). Here x ∈ N1(u) and y ∈
N2(v, w), and x and y are not connected.

For a proper enumeration, we still need to make sure that there is no double count-

ing while including all of the graphlets. For this, we have to consider each graphlet

type separately and utilize the symmetrical properties of the graphlet. For example, if

we look at g13 in Figure 4.3, we see that it is symmetric under the interchange w ↔ y.

In other words, we would get the same g13 when w = 5, y = 8 or when w = 8, y = 5,

for example, with all the other nodes being the same. Thus, to avoid double counting

we can impose a condition that we only enumerate when w < y. Note that x can be

greater or lower than (u, v, w), hence no condition shall be imposed on x. Notice also

that, assuming u < v and u < w (but no ordering imposed between v and w), here

we use a type 2 wedge ∠(u, v, w) where the smallest node is at one of the legs. To

find all g13 in the graph, we need to consider N1(w) together with N2(u, v) as well,

and also the type 1 wedges, i.e., ∠(v, u, w), where the smallest node is at the centre

of the wedge.

Furthermore, there are graphlets that can be discovered through more than one

combination. For example, consider g26. Using our method, there are three ways

48

leading to g26, as illustrated in Figure 4.4. From a triangle, we can take an N2 and

combine it with itself; we get a g26 when the two neighbours are connected. We can

also take N3 and N2; we get a g26 when the two neighbours are not connected. Or,

we can take N3 and N1; we get a g26 when the two neighbours are connected.

(a) (b) (c)

Figure 4.4: There are three ways leading to g26: (a) N2 with itself, connected; (b) N2

and N3, not connected; (c) N1 and N3, connected.

The question now is how do we make sure that there is no multiple counting while

also making sure that all g26 will be counted? Let us look at the symmetry of g26, as

shown in Figure 4.5. We see that g26 is isomorphic under a ↔ b, and c ↔ d. Now,

suppose we start with a triangle ∆(a, b, x) and proceed on finding g26 via N2(a, b)

with itself (Figure 4.4(a)), then we can avoid double counting by imposing condition

c < d. It is implicit from the triangle that a < b is already imposed (i.e., one node

must be lower than the other).

Note that, at this moment, there is no condition imposed between (a, b) and

(c, d). However, we can also go through Figure 4.4(b) and (c), and the results may

repeat those from (a). This double-counting problem can be solved if we impose

that the yellow nodes in Figure 4.4(a) are higher than the green nodes. Similarly for

Figure 4.4(b). For Figure 4.4(c), however, we need to allow the top yellow node (i.e.,

the element of N1) to be either greater or lower than the green nodes. To show and

49

x

ab

c

d

Figure 4.5: The symmetry of g26.

prove that we will get all g26 without double counting through this method, let us

think of the nodes as labeled by 1, 2, 3, 4, 5, with 1 < 2 < 3 < 4 < 5. We just need

to show that we cover all possible positions for the two highest labels 4 and 5. This is

shown in Figure 4.6 where the two highest labeled nodes are the yellow ones. These

can be viewed as all possible combinations of orbits of two nodes (See Figure 2.14).

(a) (b) (c1) (c2) (c3)

Figure 4.6: Listing all possible combinations in g26. The two yellow nodes are the
two highest labeled nodes, 4 and 5. In (c1), (c2), and (c2), we allow the node at the
top of the figure to be either higher or lower than the others.

Other 5-node graphlets that can be discovered in multiple ways through triangles

are g24 and g28. The case for g24 is shown in Figure 4.7. It can be seen that g24 can

be discovered through a triangle and either by two unconnected N2 or by connected

N1 and N2. Note that there is only one symmetry for g24, that is the up-down mirror

50

symmetry. In this case, we can see that if we allow the neighbours to be of higher or

lower labels in Figure 4.7(a) we would already cover all possible patterns. Thus, we

do not need Figure 4.7(b). With the triangle fixed (say the lower positioned node is

assumed to have a lower label than the higher positioned node), we do not need to

worry about double counting from the mirror symmetry.

(a) (b)

Figure 4.7: There are two ways leading to g24: (a) two N2, not connected; (b) N1 and
N3, connected.

The case for g28 is shown in Figure 4.8. We see that, from a triangle, we can get

a g28 through N2 and N3 connected, or through N3 with itself, not connected. From

Figure 2.14 we can see that g28 has two types of orbits. If we go via Figure 4.8(b),

then with the triangle fixed, the only symmetry is on the two neighbour nodes (the

yellow nodes). This can easily be taken care of since both are coming from the same

set N3, to make sure that there is no double counting. If we allow the yellow nodes

to be either higher or lower than the green nodes all g28 graphlets would be found

through this way. Thus, we do not need to consider Figure 4.8(a).

Next, move on to 5-node graphlets that can be discovered through wedges, there

are also some that can be discovered in more than one way. In fact, the g13 that

we discussed earlier can also be discovered through N1(v) with N1(v) when the two

neighbours are connected. Here, we assume v is one of the wedge legs. These two ways

51

(a) (b)

Figure 4.8: There are two ways leading to g28: (a) N2 with N3, connected; (b) N3

with itself, not connected.

can be seen in Figure 4.9. However, following our previous discussion, all of the g13

can already be discovered through (a), when the bottom node is let free. Therefore,

(b) is not needed.

(a) (b)

Figure 4.9: There are two ways of finding a g13 through a wedge (green nodes): (a)
N1(v) with N2(u,w), not connected, and (b) N1(v) with itself, connected. For the
sake of notation, here we assume u is the center node of the green wedge.

Other 5-node graphlets that can be discovered through wedges in multiple ways

are g10, g16, and g20. The case for g10 can be seen in Figure 4.10. The symmetry looks

the same as the one for g13. By the same argument, we only need Figure 4.10(a) to

enumerate all g10 in a graph, with no need for (b).

Next, g16 can be discovered in three ways, as shown in Figure 4.11. If we let the

52

(a) (b)

Figure 4.10: There are two ways of finding a g10 through a wedge (green nodes): (a)
N1(v) with N1(u), not connected, and (b) N1(v) with itself, also not connected. For
the sake of notation, here we assume u is the center node of the green wedge.

two yellow nodes be free, so that they can be higher or lower than the other nodes,

then we can show that all g16 would be found through (b). We just need to make

sure that we do not double-count the wedge, which we have already done. Thus, for

g16 we do not need to consider (a) and (c).

(a) (b) (c)

Figure 4.11: There are three ways of finding a g16 through a wedge (green nodes):
(a) N1(v) with N1(u), connected, (b) N1(u) with N2(v, w), not connected, and (c)
N1(v) with N2(v, w), not connected. For the sake of notation, here we assume u is
the center node of the wedge.

Lastly, for g20, there are two ways as shown in Figure 4.12. This graphlet has two

symmetries: between the two nodes with degree three, and among the nodes with

degree two. All g20 can be found through (b) if we let the yellow nodes be either

53

higher or lower than the green nodes. Multiple counting can be avoided if we impose

that the central green node is lower than the yellow nodes.

(a) (b)

Figure 4.12: There are two ways of finding a g20 through a wedge (green nodes): (a)
N1(u) with N2(v, w), connected, and (b) N2(v, w) with N2(v, w), not connected. For
the sake of notation, here we assume u is the center node of the wedge.

4.3.2 Algorithm

The algorithm for enumerating five-node graphlets can be considered as an exten-

sion of the S4GE. Let us call the whole set S5GE. First, we find triangles and wedges

in the same way as we did in S4GE. This part is similar to Algorithm 4 of S4GE.

The only difference is in the procedures that are called from within. When a triangle

is found, we call the Extended Explore Triangle procedure. This procedure

works similarly to the Explore Triangle procedure of S4GE, and in fact also enu-

merates the 4-node graphlets along the way. However, here we have more to be done:

to build the sets N1(u), . . . , N3(u, v, w), and after that, to call all the 5GT functions

to enumerate five node graphlets that are attached to the triangle. Because of the

long list of algorithms, we put the S5GE algorithms in Appendix B. The Extended

Explore Triangle is shown in Algorithm 22. Similarly, for wedges, we have the

Extended Explore Wedges procedures, shown in Algorithms 23 and 24. The

corresponding functions for wedges are called 5GW1 and 5GW2 respectively.

There are nine 5GT functions: one that pairs an N1 with itself (Algorithm 25),

54

one that pairs an N1 with another N1 (Algorithm 26), one that pairs an N1 with

an overlapping N2 (Algorithm 27), one that pairs an N1 with a non-overlapping N2

(Algorithm 28), one that pairs an N2 with itself (Algorithm 29), one that pairs an

N2 with another N2 (Algorithm 30), one that pairs an N1 with N3 (Algorithm 31),

one that pairs an N2 with N3 (Algorithm 32), and one that pairs N3 with itself

(Algorithm 33). We summarize these functions and their outputs in Table 4.4. We

should mention here that, because of the triangle symmetry, we should treat u, v and

w equally. Although we list N1(u) and N1(u) for 5GT-uu, it is also ran over N1(v)

(paired with itself) and N1(w) (paired with itself). Similarly, the other functions are

also ran over all possible choices of u, v, w.

Function Pairing Discover

5GT-uu N1(u) N1(u) g14, g18

5GT-uv N1(u) N1(v) g12, g21

5GT-u2uv N1(u) N2(u, v) g17, (g24)
5GT-u2vw N1(u) N2(v, w) g19, g25

5GT-2uv2uv N2(u, v) N2(u, v) g22, g26

5GT-2uv2uw N2(u, v) N2(v, w) g24, g27

5GT-u3uvw N1(u) N3(u, v, w) g23, g26

5GT-2uv3uvw N2(u, v) N3(u, v, w) g26, (g28)
5GT-3uvw3uvw N3(u, v, w) N3(u, v, w) g28, g29

Table 4.4: The 5GT functions. The first graphlet in each list is for when the two
neighbours are not connected, while the second one is for when the two neighbours are
connected. The graphlets in the parentheses are not enumerated as they are already
discovered by some other functions.

The 5GW1 and 5GW2 functions are only to discover (and enumerate) the rest

of the 5-node graphlets: g9, g10, g11, g13, g15, g16, and g20. Therefore, not all of the

neighbour sets are needed. That is, we should not include those that form a triangle,

except for the one in g13. However, for the wedges, we need to differentiate whether

we are looking at the neighbours of the centre node or the leg nodes. The 5GW1

functions are summarized in Table 4.5.

55

Function Pairing Discover

5GW1-uu N1(u) N1(u) g11, (g14)
5GW1-vv N1(v) N1(v) (g10), (g13)
5GW1-uv N1(u) N1(v) g10, (g16)
5GW1-vw N1(v) N1(w) g9, g15

5GW1-u2vw N1(u) N2(v, w) g16, (g20)
5GW1-v2uw N1(v) N2(u,w) g13, (g21)
5GW1-v2vw N1(v) N2(v, w) (g16), (g21)
5GW1-2vw2vw N2(v, w) N2(v, w) g20, (g25)

Table 4.5: The 5GW1 functions. The input is a type-1 wedge with the smallest
node u at the center of the wedge. The first graphlet in each list is for when the two
neighbours are not connected, while the second one is for when the two neighbours are
connected. The graphlets in the parentheses are not enumerated as they are already
discovered by some other functions.

Notice that we skip 5GW1-u2uv since the 5-node graphlets have been enumer-

ated through triangles. From the table shown, we can see that we actually do not

need 5GW1-vv and 5GW1-v2vw either. Note that we need to run some functions,

such as 5GW1-uv, on the other leg, with v replaced by w.

For 5GW2 the input is a type-2 wedge with the smallest node u at one of the legs of

the wedge. By convention, we list u as the first node and denote the center node as v,

i.e., ∠(u, v, w). Note that u < v and u < w, but there is no ordering imposed between

v and w. This is different from the type-1 above. The 5GW2 functions are similar

to the 5GW1 functions but with the roles of u and v exchanged. However, there

are some other subtle, yet important, differences. These functions are summarized in

Table 4.6. They can be seen in Appendix B.

4.3.3 Analysis

Theorem 6. S5GE correctly enumerates all five node graphlets in an undirected

graph.

56

Function Pairing Discover

5GW2-vv N1(v) N1(v) g11, (g14)
5GW2-uv N1(u) N1(v) g10, (g16)
5GW2-uw N1(u) N1(w) g9, (g15)
5GW2-v2uw N1(v) N2(u,w) g16, (g20)
5GW2-u2vw N1(u) N2(v, w) g13, (g21)
5GW2-2uw2uw N2(v, w) N2(v, w) g20, (g25)

Table 4.6: The 5GW2 functions. The input is a type-2 wedge with the smallest node
u at one of the legs of the wedge, and the center node is v. The first graphlet in
each list is for when the two neighbours are not connected, while the second one is
for when the two neighbours are connected. The graphlets in the parentheses are not
enumerated as they are already discovered by some other functions.

Proof. As has already been proven in the case of S4GE, all triangles and wedges

would be found and enumerated once. For each, the neighbours of the three nodes

are in either one of the N1, N2, or N3 sets. By considering all possible combinations

of two of these sets, all 5-node graphlets that contain the triangle or the wedge would

be found. Since any 5-node graphlet contains at least a triangle or a wedge, all 5-

node graphlets in the input graph would be found. Multiple countings are avoided

by considering the symmetrical properties of the graphlets.

Theorem 7. The runtime of S5GE is bounded by O((N∆ +N∠) d2
max + T3g), where

N∆ (N∠) is the number of triangles (wedges), and T3g is the time to enumerate the

triangles and wedges.

Proof. First, S5GE searches for triangles and wedges, using T3g time. For each trian-

gle and wedge, the algorithm runs through the neighbor sets to check for intersections

with cost ≤ (d(u) + d(v) + d(w)) ≤ 3dmax, forming the disjoint neighbour sets N1,

N2 and N3. It then runs the 5G functions, where each checks the neighbours of

the neighbours to see any connections. The cost is d(x). Thus, overall we have

O(d2
max).

Note: The T3g is typically smaller, and we can simply write the bound as O((N∆ +

57

N∠) d2
max).

4.3.4 Experiment

We implemented the S5GE algorithm in Java, and experimented on several

graphs: wordassociation, enron, amazon and dblp. They are chosen since they

have relatively small maximum degrees. We used a Xeon machine with 24 threads

and 64 GB of RAM. The running times are listed in Table 4.7. We compare these

with the running times of S4GE using the same machine.

Graph T4g T5g dmax

wordassociation 1.77 133.43 332

enron 73.34 47,411.44 1,634

amazon 13.09 1,402.82 1,077

dblp 63.73 17,826.07 979

Table 4.7: The runtime, in seconds, for S4GE T4g, and S5GE T5g. As a reference,
we also list the maximum degree of each graph.

It is interesting to note that T5g/T4g is generally smaller than dmax. This validates

our analysis that the difference between T5g and T4g is bounded by a factor dmax.

Due to the time constraint, we do not run S5GE on any other graphs that we

have (Appendix A). For ljournal, for example, T4g is already around 1 day, and its

dmax is just below 20 thousand. If we assume a factor of 1000, as a rough estimate,

we already need 1000 days to run the enumeration on the same machine.

The runs yielded graphlet counts that are listed in Table 4.8. The largest count

in this table is 2.6 trillions for g11 in enron. We see that g10 and g11 tend to have the

largest counts in each graph.

58

Graphlet wordassociation enron amazon dblp

g1 2,181,681 40,309,965 38,029,668 81,534,875
g2 61,795 1,067,993 4,464,791 7,005,235

g3 61,182,256 2,511,108,017 372,441,882 2,678,632,511
g4 59,531,563 8,043,807,281 609,970,485 3,545,929,648
g5 214,883 21,598,984 2,689,696 1,483,611
g6 7,383,771 582,841,848 92,327,207 543,447,587
g7 339,674 46,141,288 13,096,219 21,608,538
g8 28,258 5,001,773 4,192,682 40,910,658

g9 2,372,920,633 237,853,341,447 5,538,677,838 104,932,594,398
g10 9,058,521,999 2,488,523,105,141 24,161,440,795 844,270,600,140
g11 4,183,563,421 2,614,152,202,537 76,617,522,566 542,061,274,958
g12 284,095,186 100,576,301,784 1,046,863,494 23,191,416,092
g13 820,768,531 169,356,292,757 1,464,098,155 59,952,351,960
g14 514,678,642 156,468,737,188 1,846,987,095 41,790,666,219
g15 2,175,530 441,436,983 4,750,305 18,991,534
g16 636,893,718 316,091,186,540 844,908,317 16,123,769,262
g17 88,117,927 37,275,612,382 354,792,620 4,768,657,594
g18 5,568,058 1,590,007,904 29,777,114 1,220,161,037
g19 117,731,184 38,994,981,365 447,001,216 6,000,243,276
g20 522,101 3,751,148,426 2,502,602 21,280,525
g21 2,071,516 992,955,577 10,351,656 35,091,797
g22 4,738,106 8,648,341,377 56,226,399 845,154,386
g23 59,455,510 42,038,568,231 449,075,244 21,883,544,694
g24 6,737,933 4,784,316,007 74,061,563 305,618,895
g25 93,904 171,971,082 1,344,863 1,617,053
g26 246,608 793,982,638 8,313,900 265,088,604
g27 8,520 27,486,607 191,230 169,035
g28 591,109 3,918,967,836 64,332,031 8,626,672,675
g29 2,044 16,894,713 1,263,171 531,434,127

Table 4.8: Graphlet counts, output of S5GE.

59

4.4 GDV

We can extend our solution for enumerating graphlets to find the Graphlet Degree

Vector (GDV) of each node. In this case, we need to create a vector of 73 elements for

each node and initiate with values 0. The first element is just the degree of the node.

We then run S5GE. Every time we enumerate a 3/4/5-node graphlet, we check the

nodes inside it and their orbits. Then, we increase the associated elements in their

GDV by one. Since each graphlet is enumerated once, we ensure that we count the

orbits correctly. Therefore, by the end of the run, we would have the correct GDV

for every node. Note, however, that the memory space requirement may restrict the

scalability of this solution.

4.5 Beyond 5 Nodes

An idea similar to the one we used for 5-node graphlets can, in principle, be

employed to find even larger graphlets. Taking three neighbouring nodes of a triangle

or a wedge simultaneously we can find 6-node graphlets. An example of this is shown

in Figure 4.13. Take four neighbouring nodes simultaneously to find 7-node graphlets,

and so on. Note, however, that not all higher order graphlets can be found through

this method, at least not without any extended computation. For example, a path

and a cycle of 6 nodes.

We can see that the number of possible configurations grows fast. For 6-node

graphlets, we need three neighbour nodes. For 7-node graphlets, we need four neigh-

bour nodes. While there are two non-isomorphic graphs of two nodes, there are four

of three nodes, and eleven for four nodes. In addition, we also need to consider the

difference when a connection is between two N1 nodes, or between an N1 and an N2

nodes, for example. The number of combinations grows as well. With seven neigh-

60

bour sets to choose from (see Eq. 4.1), with duplicates the number grows as 7N (but

is reduced by symmetry), where N is the number of neighbour nodes to consider at

a time.

Figure 4.13: Finding 6-node graphlets through a triangle. Here we take N1(u), N1(v)
and N1(w). We get four types of 6-node graphlets depending on whether we have
zero, one, two, or three edges among the neighbour nodes.

Moreover, again, we need to make sure that we do not count any graphlet twice.

The analytical complexity is higher than what we have done so far. Recall that there

are 112 types of six-node graphlets and 853 types of seven-node graphlets, and many

of them can be found in multiple ways. We may need to find a different method to

enumerate higher-order graphlets. Alternatively, we can use flags to let us know if a

graphlet has already been enumerated.

Also, the running time would restrict the order of the graph that we can enumerate.

We may have to be less ambitious here, and instead of trying to enumerate all types

at once, like what we do with four and five-node graphlets, we can look at some but

not all of the patterns at a time. We may find some optimization that works for

specific patterns. For example, as shown by Danisch et al [22], cliques of higher order

can be enumerated by using a specialized algorithm.

61

Chapter 5

Directed Graphlets Enumeration

So far we have been focusing our study on undirected graphs. However, many real-

world networks are directed, where the relations among the nodes are not symmetric,

but have directions from one node to another. Note, however, that a pair of nodes

can have two relations that are opposite to each other (i.e., bidirectional). Let us

now turn our attention to subgraphs in directed graphs. We assume directed graphs

as the input of our enumeration throughout this chapter. Therefore, we will simply

use the notation G to denote a directed graph here.

5.1 Directed Triangles

Given a directed graph, we can enumerate the directed triangles inside it. Here,

by a triangle, we mean a subgraph of three nodes and three (directed) edges. There

are only two kinds of directed triangles: cyclic triangle and trust triangle. In general,

they are not induced subgraphs, as explained in Chapter 2. Directed triangle enu-

meration has some similarities to undirected triangle enumeration, especially for the

trust triangle.

62

5.1.1 Algorithms

The algorithm that we use to enumerate trust triangles is described in Algorithm 8.

Notice the similarity between this algorithm and Algorithm 1. The difference is

that here we do not put any restriction on the order of the labels u, v, and w.

Thus, u can be greater or smaller than v and/or w, and also v can be greater or

smaller than w. Here, we assume that the graph is simple, with no multi-edge or

self-loop, so u 6= v 6= w. We only need the directed graph as input for this algorithm,

without the transpose graph. However, note that this algorithm can also be applied

to the transpose graph by itself, without the original graph. This algorithm involves

computing the intersection between two neighbour sets. The algorithm for this is

given in Algorithm 2.

Algorithm 8 Trust Triangle Enumeration

Input: A directed graph G = (V,E)
Output: The list and number of trust triangles in G.

1: S ← ∅, k ← 0, c← 0
2: for all nodes u ∈ V do
3: for all nodes v ∈ N+(u) do
4: (S, k)← Intersection(N+(u), N+(v), d+(u), d+(v))
5: for all nodes w ∈ S do
6: Enum ((u, v, w)T) . For Listing

7: c← c+ k

8: return c

For a trust triangle, we can label the edges as the first, second and third edges,

as illustrated in Figure 5.1.

1

2

3

1st 2nd

3rd

Figure 5.1: A trust triangle, (1, 2, 3)T and the labeling of its edges.

63

Notice that if we flip the third edge in a trust triangle, we will get a cycle triangle.

Based on this observation, we can modify the algorithm for trust triangle enumeration

to enumerate cyclic triangles. The result is described in Algorithm 9. In this case, it

requires as input both the graph and its transpose. The in-going neighbour set of u

is read from the out-going neighbour set of u in the transpose graph, i.e., N−(u,G) =

N+(u,GT). Notice that in Intersection call we use N−(u) as the argument. In

Cycle Triangle Enumeration we impose the condition that u < v and u < w to avoid

double counting.

Algorithm 9 Cycle Triangle Enumeration

Input: A directed graph G = (V,E), its transpose GT = (V,ET)
Output: The list and number of cycle triangles in G.

1: S ← ∅, k ← 0, c← 0
2: for all nodes u ∈ V do
3: for all nodes v ∈ N+(u) do
4: if u < v then
5: (S, k)← Intersection(N−(u), N+(v), d−(u), d+(v))
6: for all nodes w ∈ S do
7: if u < w then
8: Enum ((u, v, w)C) . For Listing
9: c← c+ 1

10: return c

5.1.2 Analysis

We give the proof of correctness and analyse the running times of the algorithms.

Theorem 8. The Trust Triangle Enumeration algorithm (Algorithm 8) correctly enu-

merates the trust triangles in a simple directed graph.

Proof. The algorithm iterates over each node once, and for each node, its outgoing

neighbours are checked once. Thus, it goes through every edge in the graph, and each

edge is checked once. Any common outgoing neighbours of the two end nodes of an

64

edge would be found by the intersection computation, once. Thus all trust triangles

containing these two nodes in the first edge would be found once. Without any

ordering condition on the nodes, all trust triangles found would be enumerated.

Theorem 9. The Cycle Triangle Enumeration algorithm (Algorithm 9) correctly enu-

merates the cycle triangles in a simple directed graph.

Proof. A cycle triangle (u, v, w)C has three nodes u, v, w, connected by edges u→ v

(first edge), v → w (second edge), and w → u (third edge). When we reverse the

third edge of a cycle triangle we get a trust triangle, and vice versa. Consequently,

we can search for cycle triangles by using the same Intersection algorithm as in Trust

Triangle Counting provided that we use an in-going edge instead of an out-going edge

for the third edge. The in-going edges can be read from the transpose graph. Since all

cycle triangles will appear like a trust triangle by this procedure, and by Theorem 8

we have shown that all trust triangles would be found, and all cycle triangles would

be found.

Now, notice that (u, v, w)C , (v, w, u)C and (w, u, v)C are identical cycle triangles.

We can avoid double counting by anchoring the first node. We do this by imposing

the condition that the first node must be smaller than the other two in the triple,

u < v and u < w. Note that we do not impose any condition on the order of v and

w, because (u, v, w)C and (u,w, v)C are distinct cycles and hence should be counted

separately. Thus, Algorithm 9 would find all cycle triangles and enumerate each of

them once.

Theorem 10. The running time of the Trust Triangle Enumeration on graph G(V,E)

is bounded by O(|V |(d+
max(G))2).

Proof. Recall that the algorithm iterates over the edges in the graph by going through

the nodes and for each node its adjacent nodes. For each edge u→ v the intersection

65

computation runs in time d+(u)+d+(v). Thus, the running time for the trust triangle

counting is
∑

u→v(d
+(u) + d+(v)) ≤

∑
u d

+(u)(d+(u) + max[d+(v ∈ N+(u))]). The

worst case is 2|V |(d+
max(G))2.

Theorem 11. The running time of the Cycle Triangle Counting on graph G(V,E)

is bounded by O(|V |d+
max(G)(max[d+

max(G), d−max(G)])).

Proof. The proof is similar to the one for the trust triangle above. The difference is

that for each edge u → v here, the running time for the intersection computation is

d−(u) + d+(v). Therefore, the cycle triangle counting running time is
∑

u→v(d
−(u) +

d+(v)) ≤
∑

u d
+(u)(d−(u) + max[d+(v ∈ N+(u))]). The worst case is when all the

degrees are equal to the maximum, yielding running time

O(|V |d+
max(G)(max[d+

max(G), d−max(G)])).

Now, suppose that we have a graph where d+
max is much larger than d−max, then

we can run the Trust Triangle Enumeration on the transpose graph instead, and get

the answer in a shorter time. On the other hand, if d+
max is much smaller than d−max,

we should run the Trust Triangle Enumeration on the graph itself. For the Cycle

Triangle Enumeration, on the other hand, reversing the role between the graph and

the transpose graph does not guarantee a clear advantage in terms of the running

time.

5.1.3 Experiment

For experimenting on directed triangle enumeration, we use the same settings as

we used for the undirected triangle enumeration, in the previous chapter. For the

datasets we also use the same graphs, but without the symmetrization, so the graphs

are still directed.

66

There were 11 directed graphs used in this experiment, ranging from words with

10,617 nodes and 72,172 directed edges, to clueweb with 978,408,098 nodes and

42,574,107,469 directed edges. The clueweb is a highly asymmetric graph. Its maxi-

mum out-degree is only 7,447, but its maximum in-degree is 75,611,690. We were able

to run both the cyclic and trust triangle enumeration on clueweb, within less than a

day each. We were even able to run the enumeration using just a third-generation i7

machine, also within one day’s time. However, when we ran the trust enumeration on

the transpose of clueweb, the running time became so long that we had to abort the

run before finished. These results validate our observation that the running time of

trust triangle enumeration depends on the maximum out-degree of the input graph.

We found 1,036,190,284,927 cycle triangles, and 5,508,820,034,813 trust triangles

in clueweb, more than a trillion. In comparison, when we enumerate the undirected

triangles in the underlying graph of clueweb, we found 1,995,295,290,765 triangles.

So the count of undirected triangles is between the count of the cycle triangles and

the count of the trust triangles in this case. This makes sense because each undirected

triangle is correlated to between zero and two cycle triangles, and between zero and

six trust triangles.

5.2 Triads

In a directed graph each edge has a direction. Edges connected to a node u can be

classified into two types: edges to u and edges from u. Accordingly, we have outgoing

neighbours of u, N+(u), and ingoing neighbours of u, N−(u), for the neighbouring

nodes of u. The out-degree of u is d+(u) = |N+(u)|, and the in-degree of u is

d−(u) = |N−(u)|. Note that N+(u) and N−(u) may overlap, because, for a pair of

nodes u and v, we may have both u → v and u ← v edges. We call the connection

67

between two nodes a link. There are three types of links between nodes u and v:

from u to v, from v to u, and bidirectional. We encode the links by using two binary

digits as shown in Table 5.1.

Link Value Binary

0 00

1 01

2 10

3 11

Table 5.1: Link encoding using two binary digits. We assume that the first node is
on the left and the second one on the right.

A triad is a subgraph of three nodes in a directed graph [23, 4]. When each pair

of the nodes is connected we have a closely connected triad. Here, since we restrict

our study to only closely connected triads, we will simply call them triads. Other

authors use the term triangles [66, 73], but we do not want to confuse them with

the undirected triangles, or the directed triangles as in the previous section. There

are seven types of triads, as shown in Figure 2.8. Enumerating triads means listing

the edges (or links) as well as the nodes inside every triad. Thus, triad enumeration

is more complex than triangle enumeration. Nonetheless, we have shown that it is

possible to devise an efficient algorithm that, when combined with a compression

framework such as WebGraph [11], is able to enumerate triads on a graph with a

billion nodes and billions of edges using a single commodity machine [64].

The Batagelj and Mrvar triad census algorithm [4] assigns a code to each pair

of nodes to represent the directed edges between them. For each triple of nodes, it

then uses a table to find the triad types based on the combined codes. Although this

algorithm can do triad enumeration in subquadratic time, it is not fast enough for

very large graphs with millions of nodes and edges.

68

Chin et al. [20] developed a compact data structure that makes it easier to paral-

lelize the computation. They combined the adjacency list to contain both outgoing

and incoming edges. The edge information or the link is coded using 2-bits: 01 (for-

ward), 10 (backward), and 11 (both), embedded in the neighbour node labels inside

the list. Suppose the nodes were labeled by using 32-bit integers. The bits are shifted

to the left by two, and the two lowest bits are then used for the edge direction. Thus,

only 30 bits can actually be used to label the nodes.

The drawback of the compact data structure solution is that it leads to reduced

scalability. In Java, the 32-bit integer data type can be used to label up to 231 nodes

(because we can have only signed integers), but with 2 bits used for edge information,

it can label only up to 229 (or about 1/2 billion) nodes. This becomes problematic

when we want to analyze a graph such as clueweb12 which has almost a billion nodes

and about forty two billion edges. Theoretically, we can switch to 64-bit (or 8-byte)

long data type and be able to do clueweb12. However, we still need to overcome the

memory limitation problem. With clueweb12, forty two billion edges translate to

more than 300 GB RAM if we use 8 bytes for each, which is way beyond the typical

amount of RAM in current commodity machines.

We develop a new algorithm that computes the type of connections between each

pair of nodes on the fly, using both the graph and its transpose as input. Using this

algorithm, and partial loading method of WebGraph [11], we were able to process

clueweb12 on a single machine with a memory budget of 32 GB RAM.

5.2.1 Algorithm

Our serial algorithm for triad enumeration is described in Algorithm 10. The

algorithm requires both a directed graph and its transpose graph as input, similar

to the case for cycle triangle enumeration. Recall that the transpose of a directed

69

graph G = (V,E) is another directed graph GT = (V,ET), where ET is the same

set of edges as E but with each edge is reversed. The key idea here is that the

ingoing neighbours of node u in G are the outgoing neighbours of u in GT , i.e.,

N−(u) ≡ N−G (u) = N+
GT (u). Therefore, we can consider only the outgoing adjacency

lists from each G and GT in the computation. That is, we find N+(u) from G and

N−(u) from GT . To find the triads, this algorithm employs four pointers, one on

each of N+(u), N−(u), N+(v), and N−(v). Therefore, we call it Four Pointers Triad

Enumeration (FPTE) algorithm.

Algorithm 10 FPTE

Input: A directed graph G = (V,E) and its transpose GT

Output: The list and number of each type of triads in G, ∆i

1: ∆1 ← 0, . . . , ∆7 ← 0
2: for all u ∈ V do . Can be parallelized
3: while there is next do
4: Find next neighbour in N+(u) and/or N−(u): v.
5: Code the link uv as e1: either 01, 10 or 11
6: while there is next do
7: Find next common neighbour of u and v: w.
8: Code the links vw as e2, and wu as e3.
9: Look up triad type i using e1, e2, e3.

10: enum(u, v, w, e1, e2, e3)
11: ∆i ← ∆i + 1

The algorithm iterates over the first node u. This iteration can easily be paral-

lelized. For each u, it checks both N+(u) and N−(u) to find the neighbours of u and

their respective links. For each neighbour of u, v, it finds their common neighbours

using four pointers (Line 7). For each common neighbour, w, it looks up the triad

type based on the links among the three nodes (u, v, w). The encodings are listed in

Table 5.2. In line 10, enum() is a space holder for an enumeration or listing function.

The 4-pointers algorithm is an expansion of the 2-pointers algorithm commonly

used for set intersections in triangle enumeration (See Algorithm 2). The flow of the

70

Triad Binary Code

Type 1 010101, 101010

Type 2 010110, 011001, 100101, 101001, 100110, 011010

Type 3 010111, 011101, 110101, 101011, 101110, 111010

Type 4 011011, 110110, 101101

Type 5 100111, 111001, 011110

Type 6 011111, 110111, 111101, 101111, 111011, 111110

Type 7 111111

Table 5.2: Triad types and binary encoding.

4-pointers algorithm is illustrated in Figure 5.2. At the start, each pointer is set to

the lowest member of each corresponding set. It checks on the lowest pointer to see if

there is another pointer at the same level, and if the member is a common neighbour

of u and v. If so, it then computes the link type and enumerates the triad. It then

proceeds by moving the lowest pointer(s) to the next neighbour. Thus, it searches for

intersection between (N+(u), N−(u)) and (N+(v), N−(v)).

N+(u) N−(u) N+(v) N−(v)

Figure 5.2: Four pointers

As with triangle enumeration, preprocessing the input graph before the enumer-

ation is crucial in shortening the runtime. In this case, the preprocessing needs to

be done simultaneously on the graph and its transpose, so that any relabelling would

be consistent between the two. To get the greatest benefit, the sorting is based on

whichever has the bigger maximum degree. The pseudocode for this preprocessing is

71

given in Algorithm 11.

Algorithm 11 DiGraph-Prep

Input: An directed graph G(V,E) and its transpose GT (V,ET)
1: Check the maximum out-degrees of G and GT .
2: Sort V based on the out-degrees of either G or GT , whichever has the higher

maximum out-degree, in ascending order.
3: Relabel the vertices according to their new order.
4: Build adjacency list of the sorted and relabeled vertices.
5: Cut out the smaller out-neighbours from each neighbour list.

5.2.2 Experiment

We ran our experiments on a machine with dual Intel Xeon E5620 CPUs and

64 GB of RAM. However, to make a better comparison with other papers, we allowed

only 32 GB of RAM to be used by the Java virtual machine. The Xeon CPU has a

clock speed of 2.40 GHz and 8 threads (16 threads total for the dual).

We select five datasets to be used for this experiment are cnr-2000, ljournal,

arabic-2005, uk-2005, and clueweb. See Appendix A, for the descriptions. The

smallest dataset, cnr-2000, has 3.2M edges, while the largest dataset, clueweb, has

more than 42B edges. The graphs and their transpose graphs are preprocessed ac-

cording to Algorithm 11. The degree statistics of the graphs before and after the

preprocessing are listed in Table 5.3. Here, d− refers to the out-degree in the trans-

pose graph. The degrees after are denoted by deff . Notice that the preprocessing

managed to reduce the effective maximum degree by four orders of magnitude, in the

case of clueweb. Recall that the preprocessing first chooses the larger between d+
max

and d−max, and proceeds based on the one chosen. For these five graphs, we see that

the transpose graphs are the ones with larger maximum degrees. This is why the

reduction in d− is bigger compared to that for d+.

72

Name d+
max d−max d+,eff

max d−,eff
max

cnr-2000 2,716 18,235 1,336 81
ljournal 2,469 19,409 1,257 397
arabic 9,905 575,618 6,646 3,126
uk-2005 5,213 1,776,852 5,213 584
clueweb 7,447 75,611,690 5,873 4,242

Table 5.3: Maximum degrees before and after the preprocessing. The degrees after
are listed as deff .

The enumeration produced the counts for each triad type. The results are shown

in Table 5.4. We can see that, for these graphs, ∆1 is typically the smallest, followed

by ∆3. Recall that type-1 contains one cycle triangle, and type-3 contains one cycle

and one trust triangle. Interestingly, ∆7 is much bigger than ∆1, for all of the graphs

that we consider here. The biggest number in this table is ∆5 for the clueweb which

is greater than 790 billion.

Name ∆1 ∆2 ∆3 ∆4

cnr-2000 10,342 9,899,367 85,969 2,433,041
ljournal 530,051 86,777,707 10,421,919 69,748,792
arabic 2,668,704 6,906,765,421 30,427,662 1,571,745,235
uk-2005 5,335,890 5,198,533,331 48,779,535 1,773,901,843
clueweb 281,444,867 517,684,665,693 2,261,300,705 153,674,084,413

Name ∆5 ∆6 ∆7

cnr-2000 6,736,504 419,472 1,392,934
ljournal 44,608,271 80,177,727 118,890,977
arabic 11,765,868,185 384,594,679 16,233,290,956
uk-2005 9,499,139,863 411,396,906 4,842,278,688
clueweb 790,291,640,762 28,556,769,295 502,545,385,030

Table 5.4: The counts of triads of each type on the selected graphs.

In Table 5.5 we list the running times of the triad enumeration on the selected

graphs, in seconds. The preprocessing time is shown as Tprep. The running times on

73

graphs without preprocessing are not shown here. However, note that this prepro-

cessing is important in keeping the running time low. The running time on clueweb

is more than a day, but less than one and a half days.

Name Tprep TFPTE

cnr-2000 2.75 3.0
ljournal 74 81
arabic 200 2,961
uk2005 311 796
clueweb 12,870 115,960

Table 5.5: The running time (in seconds) of triad enumeration using FPTE algo-
rithm, and the preprocessing time.

We also compared the performance of our FPTE algorithm to an algorithm by

Parimalarangan et al. [46] which uses the compact data structure described above,

the AI algorithm. We found that FPTE has a comparable running time compared to

AI. Moreover, FPTE was able to process clueweb, while AI cannot. This is because

FPTE does not require compact data structure, hence can use all 32 bits of integer

for the labels.

5.3 Directed Graphlets

As with triangle and (triangle) triads, we can look for directed wedges, which are

directed graphs whose underlying graph is a wedge. As can be seen in Figure 2.7,

there are six of them: 4-021D, 5-021U, 6-021C, 7-111D, 8-111U, and 11-201. A way

of looking into this is as follows: recall that there are three types of links between two

nodes, so with two links in a wedge there are 32 = 9 possible combinations. However,

some of them are isomorphic. A wedge can be viewed as a 2-path, ad it has a mirror

symmetry. Three of the configurations are self-image under this symmetry. So we are

left with (9− 3)/2 + 3 = 6 non-isomorphic directed wedges.

74

We can proceed in a similar fashion to consider directed four-node graphlets. For

each type of graphlet, we need to find non-isomorphic configurations of possible links.

As an example, let us consider the directed three path (g3). There are three links in

this type of graphlet, so 33 = 27 possible combinations. The only symmetry is the

mirror symmetry. One of the combinations is where all three links are bidirectional,

which is its own mirror image. Two other combinations, where the center link is

bidirectional and the other two links are in opposite directions, are also self-imaged.

The rest are paired by mirror symmetry. Thus, we have (27 − 3)/2 + 3 = 15 non-

isomorphic configurations (or types), which is quite plenty. We can continue with the

other graphlet types as well, however, the symmetrical properties are more complex.

More formally, these computations can be done by employing Burnside’s Lemma

which computes the number of orbits (or distinct objects) based on the number of

invariant objects under some symmetry operations. The computation details can be

found in Appendix C. We summarize the result for 4-node graphlets in Table 5.6. So,

in total there are 199 types of 4-node directed graphlets.

Underlying graph Number of links Number of types

g3 3 15
g4 3 10
g5 4 15
g6 4 45
g7 5 72
g8 6 42

Table 5.6: Four-node directed graphlets.

The same idea that we use in triad enumeration can be used to enumerate directed

4-node graphlets as well. It is just that the number of types and the look-up table,

similar to Table 5.2, will be very large.

75

Chapter 6

Distributed Enumeration

Since with enumeration, we have to touch each subgraph instance in the graph, the

running time is bounded from below by the number of the subgraphs. Because this

number grows rapidly with the size (and order) of the input graph, we are limited on

the size of the graph that we can process on a given machine for a given time budget.

Distributed computing is often proposed as a solution to push this limit further.

On a distributed platform there are compute nodes (or workers) that are connected

by a computer network. Our problem is deciding on how to distribute the enumeration

tasks among the workers, and how to collect and combine the outputs. In this setting,

overhead costs and redundancy are inevitable. We need to minimize these to justify

the economic cost of using a distributed platform [42].

6.1 Graph Partition and Subproblems

To distribute a subgraph enumeration, the input graph needs to be partitioned.

We use a partition scheme by coloring as in [48]. Below are the definitions used in

this scheme.

76

Coloring. Coloring refers to a technique of applying a modulo function with

respect to a chosen number of colors, ρ, to each edge uv ∈ E. An edge uv has ”color”

(i, j) where i = u%ρ, j = v%ρ and % is the mod operator. Edges with the same color

can be grouped together to form an edge-induced sub-graph.

Edge-orientation. Edge-orientation is a technique widely used in sub-graph enu-

meration because following an orientation helps eliminate duplicate outputs and

speeds up the enumeration. It assigns orientation to each edge in an undirected

graph by following a prescribed rule. A common rule is as follows. First, define a

function η which determines a total ordering of the nodes in V . An edge uv = vu is

orientated by η, such that if η(u) < η(v), we list only uv but not vu. This oriented

edge is then denoted by (−→u, v). As is common in practice, we use the degrees of the

nodes to define the total ordering η, i.e., if d(u) < d(v) then η(u) < η(v). If the

degrees are equal we just use the node labels to determine the order.

Directed acyclic graph. Using edge-orientation, the undirected input graph is

transformed into a directed acyclic graph (DAG), i.e., a directed graph without any

directed cycle, denoted by
−→
G(V,

−→
E). The out-neighbouring vertices of vertex u are

denoted by N+(u). The out-degree of vertex u is denoted by d+(u).

Edge set. An edge set Eij is an edge-induced sub-graph of the undirected input

graph formed by all edges with color (i, j). Note that orienting the edges does not

change the edge set.

Symmetrization. Symmetrization is the process of making all edges in a directed

graph bi-directional. As we will see below, symmetrization is needed for our dis-

tributed solution.

Directed edge set. A directed edge set E∗ij is an edge-induced sub-graph of the

edge-oriented DAG, where each edge (−→u, v) ∈ E∗ij points from color i to color j.

Directed edge set E∗ij is a subset of edge set Eij. For i 6= j, E∗ij ∪E∗ji = Eij. For i = j,

77

E∗ii = Eii.

Sub-problems. A sub-problem refers to the union of edge-sets of particular colors,

or more precisely the problem of finding the graphlets in that union-set. For a k-order

graphlet enumeration, we denote sub-problems by S{c0,c1,...,cl} where |{c0, c1, ..., cl}| ∈

{1, 2, ...k} and cl ∈ {1, 2, ...ρ}. For example, for ρ = 3 and k = 3 (e.g., trian-

gle), the sub-problems are: S0, S1, S2, S01, S02, S12 and S012, where, Si = Eii,

Sij = Eii ∪ Eij ∪ Ejj, and Sijk = Eij ∪ Eik ∪ Ejk. Note that Si ⊂ Sij, but Sij 6⊂ Sijk.

6.2 Distributed Four-node Graphlet Enumeration

6.2.1 Previous Distributed Enumeration

Park et al. [48] proposed a distributed solution for triangle enumeration called

PTE (Pre-partitioned Triangle Enumeration). PTE employs Compact-Forward algo-

rithm as the local serial algorithm. On each distributed worker, PTE does O(m1.5/ρ3)

amount of work. Summing over all O(ρ3) sub-problems, PTE recovers O(m1.5)

amount of work overall, which is the same asymptotic behaviour as the Compact-

Forward on a single machine. Note, however, that because of the distribution of the

subproblems, there are inherently some redundant computations. Park et al. reduced

the total number of operations by a factor of 2− 2
ρ

by employing color directions to

minimize this redundancy.

Park et al. generalised PTE to support non-induced sub-graph query of arbitrary

order, called PSE (Pre-partitioned Subgraph Enumeration) [50]. PSE takes a query

sub-graph Gq(Vq, Eq) of order k as input where k = |Vq|, and enumerates all the sub-

graphs matching Gq. PSE employs VF2 algorithm [21] as the local serial algorithm for

query graph matching. We stress that VF2 can only take one non-induced subgraph

query at a time, in contrast to S4GE, which enumerates all types of four-node induced

78

connected subgraphs simultaneously. PSE starts by defining
∑k

l=1

(
ρ
l

)
sub-problems.

For example, with ρ = 4 and k = 4, PSE first defines the following sub-problems: S0,

S1, S2, S3, S01, S02, S03, S12, S13, S23, S012, S013, S023, S123 and S0123. Park et al.

observed that solving the sub-problems independently introduces duplicate emissions

and that some sub-problems can be grouped together to reduce duplication. For ex-

ample, since S0 ⊂ S01 ⊂ S012, enumerating the sub-graphs from S012 also enumerates

all the sub-graphs from S0 and S01. PSE introduced a sub-problem group as the fun-

damental computing task of each distributed worker. For example, {S012, S0, S1, S2},

is a valid sub-problem group, where solving S012 is sufficient to solve for the entire

group. Park et al. showed that PSE requires at most
(
ρ−1
k−2

)
|E| amount of network

read, for querying k-order sub-graphs from an input graph of size |E|.

Note that PTE can only enumerate triangles, while PSE can enumerate graphlets

of any size (given the appropriate serial algorithm to do the task). However, PSE

is not fine-tuned for enumerating four-node graphlets using the S4GE as the serial

algorithm.

6.2.2 Generalized Color-Direction

PSE, while correctly enumerating all sub-graphs that match the query, discovers

certain sub-graphs more than once. Consider the following: if there is a 4-node

sub-graph (u, v, w, z) whose color is (0, 0, 1, 1), it can be discovered from the group

{S012, S0, S1, S2} as well as from the group {S013, S01, S03}, since the first group S012

reads edge sets E00 ∪ E11 ∪ E22 ∪ E01 ∪ E02 ∪ E12, and the second group S013 reads

edge sets E00 ∪ E11 ∪ E33 ∪ E01 ∪ E03 ∪ E13. Both contains E00 ∪ E01 ∪ E11 where

(u, v, w, z) of color (0, 0, 1, 1) would be found.

We observe that: (1) Given a 4-node graphlet and ρ colors, there are in total ρ4

possible color assignments of the four vertices (denoted by Kijkl). (2) When a 4-node

79

graphlet (u, v, w, z) is emitted, it is imposed that the graphlet edges are oriented

following the ordering of the vertices: (−→u, v), (−−→u,w), (−→u, z), (−−→v, w), (−→v, z) and (−−→w, z).

Combining both observations, each color assignment Kijkl can be used to represent

the set of all possible 4-node graphlets (u, v, w, z) of ordered colors (i, j, k, l), where the

edges can only point from color i to colors {j, k, l}, from color j to colors {k, l}, and

from color k to color l. Any 4-node graphlet can have only one unique ordered color

assignment. Each ordered color assignment contains all the 4-node graphlets that

meet the criteria, and there is no overlap among different ordered color assignments.

Hence, enumerating from all ordered color assignments enumerates all the 4-node

graphlets once and once only. The ordered color assignment can be viewed as a

directed version of a sub-problem. Unlike a sub-problem Sijkl that requires the union

of edge sets Eij’s, a color assignment Kijkl requires the union of directed edge sets

E∗ij’s. A color assignment Kijkl requires knowledge of E∗ij ∪E∗ik ∪E∗il ∪E∗jk ∪E∗jl ∪E∗kl.

However, simply solving all the ordered color assignments on distributed workers will

incur unnecessary network read. The color assignments, therefore, are grouped into

sub-problems to reduce the network read, with a strategy introduced below. Sub-

problems become the fundamental task assigned to each distributed worker.

Algorithm 12 D4GE

Input: An undirected graph G(V,E); the number of colors ρ

1: Construct
−→
G(V,

−→
E) by applying edge-orientation to G(V,E)

2: Symmetrise
−→
G(V,

−→
E) into Gsym(V,Esym)

3: Partition Esym into directed edge sets E∗ij using ρ
4: Generate ordered color assignments and sub-problems {SCs 7→ {Kijkl}}
5: for all SCs, {Kijkl} do . Distributed-for
6: Emap ←ReadEdgeSetsCD (SCs, 4)
7: for all Kijkl ∈ {C0, C1, ...} do
8: S4GECD (Emap, ijkl)

We call our scheme, applied to four-node graphlets, as Distributed 4-node Graphlet

Enumeration (D4GE). The pseudo-code of D4GE is given as Algorithm 12 and Al-

80

gorithm 13. We want to stress that while PTE employs the idea of color-direction

to reduce the amount of work performed, we exploit both the linearity of the DAG

and the color-direction, and are able to observe that the color-assignment problem

is essentially a combination problem, and the unique relationship between any sub-

graph to its color assignment guarantees the duplication-freeness of our algorithm. In

addition, PTE explicitly lists all the ordered color-tuples in the algorithm, while we

use combinations to generalize color-assignment. This works not only for k = 4, but

also to any order k (with ρk color-assignments).

Algorithm 13 ReadEdgeSetsCD

Input: Sub-problem SCs with Cs = {c0, c1, ..., cl}; order of query graph k
1: Initialize empty map Emap ≡ {(i, j) 7→ E∗ij}
2: for all (i, j) ∈ Cs2 do
3: if i = j and |{c0, c1, ..., cl}| 6= k then
4: Emap[(i, i)]← E∗ii
5: else
6: Emap[(i, j)]← E∗ij

7: return Emap

D4GE takes a DAG as input and symmetrizes it. Symmetrization is necessary to

ensure the correctness of S4GE to enumerate all the wedge-based 4-node graphlets.

Consider the graph in Figure 6.1 with DAG adjacency list: 1: {4}, 2: {4}, 3: {4},

4: {5,6}, 5: {6}, 6: ∅. If we apply S4GE algorithm on this adjacency list, we will

only find triangle (4, 5, 6) but will not discover tailed-triangle (1,4,5,6), (2,4,5,6)

and (3,4,5,6), as vertices 1, 2, 3 are not in the adjacency list of vertex 4. With

symmetrization, the adjacency list is now 1: {4}, 2: {4}, 3: {4}, 4: {1,2,3,5,6}, 5:

{4,6}, 6: {4, 5}, and S4GE can now successfully enumerate the three tailed-triangles,

as vertices 1, 2 and 3 are added into the neighbourhood of vertex 4.

Now, we introduce the grouping strategy to form sub-problems from ordered color

assignments. Consider color assignments K0001 and K0002. By definition K0001 re-

81

1

2

3

4
5

6

Figure 6.1: A graph illustrating the need for symmetrization.

quires knowledge of E∗00 ∪ E∗01 and K0002 requires knowledge of E∗00 ∪ E∗02. If these

two color assignments are computed on two different workers, the partitioned edge-

set E∗00 is then loaded twice. To address this, color assignments Kpqrs are grouped

into sub-problems. We use Sijkl to denote a sub-problem. The color assignments

are grouped by the following rule: Kpqrs belongs to sub-problem Sijkl if the sorted

and reduced form of {p, q, r, s} is {i, j, k, l}, where sorted means {p, q, r, s} is sorted

in ascending order, and reduced means removing the duplicated colors from the se-

quence {p, q, r, s}. For example, the sorted and reduced form of {2, 0, 1, 0} is {0, 1, 2}.

Therefore K2010 belongs to S012.

It is not hard to see that sub-problem Sijkl contains 4! = 24 color assignments -

precisely the number of permutations of the sequence {i, j, k, l}. To fully cover all

the color assignments, D4GE generates
(
ρ
2

)
number of Sij,

(
ρ
3

)
number of Sijk and

(
ρ
4

)
number of Sijkl. Sub-problem Sijkl contains all the ordered color assignments Kpqrs

where p, q, r, s ∈ {i, j, k, l}; sub-problem Sijk contains all the ordered color assign-

ments Kpqrs where p, q, r, s ∈ {i, j, k}; sub-problem Sij contains all the ordered color

assignments Kpqrs where p, q, r, s ∈ {i, j}. In the special case of ordered color assign-

ments Kiiii where all four colors are the same, we omitted Si and instead attach Kiiii

to sub-problem Sij where i+ 1 = j%ρ. Each sub-problem is computed independently

on a distributed worker.

For all ordered color assignments under sub-problem Sijkl, there are only two

possible relative orders of two arbitrary colors p and q: p precedes q or the reverse,

meaning for any p and q from {i, j, k, l}, E∗pq ∪E∗qp = Epq is needed. Hence overall, to

82

fully enumerate Sijkl, Eij ∪Eik ∪Eil ∪Ejk ∪Ejl ∪Ekl needs to be read. Sub-problem

Sijk can be treated as Siijk ∪ Sijjk ∪ Sijkk to reflect that it requires Eii ∪ Eij ∪ Eik ∪

Ejj∪Ejk∪Ekk, and sub-problem Sij can be treated as Siiij∪Siijj∪Sijjj to reflect that

it requires Eii ∪Eij ∪Ejj. Each of the sub-problems and the associated ordered color

assignments are sent to a distributed worker; the worker iterates over all the ordered

color assignments. For each colored assignment, the worker reads the directed edge

sets from distributed storage and enumerates the 4-node graphlets by applying the

modified S4GE algorithm.

Algorithm 14 S4GECD

Input: A mapping from the colors of directed edge set to the edge set Emap ≡
{(i, j) 7→ E∗ij}; ordered color assignment ijkl

1: E∗ij ≡ Emap[ij], E∗ik ≡ Emap[ik], E∗jk ≡ Emap[jk]
2: for all (u, v) ∈ E∗ij do
3: if η(u) < η(v) then
4: for u′ ∈ N(u) ⊂ E∗ik and v′ ∈ N(v) ⊂ E∗jk do
5: if (u′ > u) ∧ (v′ > u) then
6: if u′ = v′ > v then
7: DExploreTriangle (u, v, u′, Emap, ijkl)

8: if (u′ < v′) ∧ (u′ > v) then
9: DExploreWedge-1 (v, u, u′, Emap, ijkl)

10: if u′ > v′ then
11: DExploreWedge-2 (u, v, v′, Emap, ijkl)

6.2.3 S4GE with Color Direction

S4GE is modified accordingly so that it is able to enumerate all 4-node graphlets

for an ordered color assignment ijkl, and we call this modified version S4GECD. The

pseudocode for S4GECD is given in Algorithm 14, and the details of the explore-

functions are given in Algorithms 15, 16, and 17 respectively.

Instead of enumerating on a complete graph, S4GECD now enumerates on a sub-

graph denoted by the color assignment ijkl. The sub-graph consists of a mapping

83

Algorithm 15 DExploreTriangle

Input: Given triangle (v, u, w); Emap ≡ {(i, j) 7→ E∗ij}; ordered color assignment
ijkl.

1: N>u(u) ≡ {z | z ∈ N(u)|Emap[il] , η(z) > η(u)}
2: N>u(v) ≡ {z | z ∈ N(v)|Emap[jl] , η(z) > η(u)}
3: N>u(w) ≡ {z | z ∈ N(w)|Emap[kl] , η(z) > η(u)}
4: for all z ∈ N>u ∩N>u(v) ∩N>u(w) with z > w do
5: Enumerate4Clique (u, v, w, z)

6: for all z in two sets and z > opposite node do
7: EnumerateDiamond (u, v, w, z)

8: for all z in one set only do
9: EnumerateTailedTriangle (u, v, w, z)

between the ordered color 2-tuples (i, j) and the corresponding directed edge-sets

E∗ij. For an ordered color assignment, there are
(

4
2

)
= 6 such 2-tuples: (i, j), (i, k),

(i, l), (j, k), (j, l) and (k, l). (i, j), (i, k), (j, k) and the corresponding edge-sets are

used to discover the wedge or triangle, and (i, l), (j, l), (k, l) and the corresponding

edge-sets are used to discover the graphlet after the base wedge or triangle have been

discovered. S4GECD inherits the correctness from S4GE since the actual intersection

logic is untouched, whereas S4GECD solely focuses on a particular edge-induced sub-

set of the input graph, with all the edges pointing from color i to j, k, l, from j to k, l

and from k to l.

The modification of S4GE shows the expandability of the D4GE partitioning

scheme. Since the intersection is not modified, the partitioning scheme can be applied

to different edge-based enumeration algorithms to suit different needs. All it requires

is to modify the input to accommodate a directed sub-set of the input graph.

6.2.4 Compact-Forward for 4-clique listing

Since PSE with VF2 only supports one query graph per run, for the purpose of

comparison we build an algorithm to enumerate 4-cliques. Furthermore, we fit it to

84

Algorithm 16 DExploreWedge-1

Input: Given wedge (v, u, w); Emap ≡ {(i, j) 7→ E∗ij}; ordered color assignment ijkl.
1: N>u(u) ≡ {z | z ∈ N(u)|Emap[il] , η(z) > η(u)}
2: N>u(v) ≡ {z | z ∈ N(v)|Emap[jl] , η(z) > η(u)}
3: N>u(w) ≡ {z | z ∈ N(w)|Emap[kl] , η(z) > η(u)}
4: for all z ∈ N>u(v) ∩N>u(w) with z /∈ N>u(u) do
5: EnumerateRectangle (u, v, z, w)

6: for all z ∈ N>u(u) only do
7: if z > w then
8: Enumerate3Star (u, v, w, z)

9: for all z ∈ N>u(v) only do
10: Enumerate3Path (w, u, v, z)

11: for all z ∈ N>u(w) only do
12: Enumerate3Path (v, u, w, z)

Algorithm 17 DExploreWedge-2

Input: Given wedge (v, u, w); Emap ≡ {(i, j) 7→ E∗ij}; ordered color assignment ijkl.
1: E∗jl ≡ Emap[jl], E∗kl ≡ Emap[kl]
2: N>u(v) ≡ {z | z ∈ N(v)|E∗jl , η(z) > η(u)}
3: N>u(w) ≡ {z | z ∈ N(w)|E∗kl , η(z) > η(u)}
4: for all z ∈ N>u(v) only do
5: if z > w then
6: Enumerate3Star (v, u, w, z)

7: for all z ∈ N>u(w) only do
8: if z 6= v then
9: Enumerate3Path (u, v, w, z)

be used with the color direction scheme of D4GE. This algorithm, called CF4CD, is

given as Algorithm 18.

Note that CF4 extends the idea of Compact-Forward algorithm from triangles to

four-cliques, hence the name CF4. The correctness of CF4CD is intuitive. CF4CD

does O(m2) work for a given graph.

85

Algorithm 18 CF4CD

Input: An edge-oriented edge set E∗ij, E
∗
ik, E

∗
jk, E

∗
il, E

∗
jl, E

∗
kl

1: for all (−→u, v) ∈ E∗ij do
2: for all w ∈ {N+(u)|E∗ik ∩ N

+(v)|E∗jk} do
3: for all z ∈ {N+(u)|E∗il ∩ N

+(v)|E∗jl ∩ N
+(w)|E∗kl} do

4: Enumerate (u, v, w, z)

6.2.5 Analysis

In this analysis, first we show that D4GE with S4GECD correctly enumerates all

the 4-node graphlets. D4GE works by generating all possible colored assignments of

all 4-node graphlets. Any 4-node graphlet must be found from one and only one of

the colored assignments. D4GE then applies S4GECD algorithm on each individual

color assignment. Since S4GE correctly enumerates all 4-node graphlets for any

given graph, D4GE/S4GECD correctly enumerates all 4-node graphlets for all color

assignments of Gsym(V,Esym).

Second, we show that D4GE with S4GECD is expected to require no more than

2msym amount of network read in addition to PSE, where msym is the number of

edges in Esym. For D4GE with S4GECD, the edge set Eii is requested (ρ − 1) times

(by sub-problems Sik), and
(
ρ−1

2

)
times (by sub-problems Sikl), hence the amount of

network read is
∑ρ−1

i=0 |Eii|
(
ρ
2

)
. The Eij with i 6= j is requested once by sub-problems

Sij,
(
ρ−2

1

)
times by sub-problems Sijk, and

(
ρ−2

2

)
times by sub-problems Sijkl. Thus,

the amount of network read is
∑ρ−1

i=0

∑ρ−1
j=i+1|Eij|

[
1 +

(
ρ−1

2

)]
. Combining both cases:

86

ρ−1∑
i=0

|Eii|
(
ρ

2

)
+

ρ−1∑
i=0

ρ−1∑
j=i+1

|Eij|
[
1 +

(
ρ− 1

2

)]

=

(
ρ

2

)[ρ−1∑
i=0

|Eii|+
ρ−1∑
i=0

ρ−1∑
j=i+1

|Eij|

]
− (ρ− 2)

ρ−1∑
i=0

ρ−1∑
j=i+1

|Eij|

≡
(
ρ

2

)
msym − (ρ− 2)msym

6=

(6.1)

If we assume the edges are distributed evenly, the expected size of msym
6= is ρ2−ρ

ρ2
=1− 1

ρ

of msym. Recall that, for k = 4, PSE requires
(
ρ−1

2

)
msym amount of network read.

Thus the difference to PSE is

[(
ρ

2

)
− ρ+ 3− 2

ρ

]
msym −

(
ρ− 1

2

)
msym =

(
2− 2

ρ

)
msym (6.2)

which is less than 2msym.

Last, we show D4GE reduces the amount of work compared to PSE. For this com-

parison, we are using S4GECD as the localized algorithm. Since S4GECD enumerates

all 4-node graphlets by discovering the base triangle and wedges first, we separate

the work calculation into two parts: one being the amount of work to discover all the

base triangle and wedges, the other to discover the fourth vertex.

Let us consider the first part. We can see that
∑

(u,v)∈Esym(dsym(u) + dsym(v)) is

the amount of work to intersect all pairs of edges for a symmetrised graph. This

sum is bounded by and can be estimated by 2msymdsym
max, where dsym

max is the maximum

degree of the symmetrised graph. Following the analysis to derive expression 6.1,

D4GE does

2

(
ρ

2

)
msym

= dsym
max + 2

[
1 +

(
ρ− 1

2

)]
msym
6= dsym

max (6.3)

87

amount of work for discovering all the base triangles and wedges. For PSE, each E∗ii

is read
(
ρ−1

2

)
times; each E∗ij with i 6= j is read

(
ρ−2

1

)
+
(
ρ−2

2

)
=
(
ρ−1

2

)
times. So the

total amount of work done by PSE to list all base triangles and wedges is

2

(
ρ− 1

2

)
msym

= dsym
max + 2

(
ρ− 1

2

)
msym
6= dsym

max. (6.4)

Subtracting Expression 6.3 by Expression 6.4 yields

2

(
ρ− 1

1

)
msym

= dsym
max + 2msym

6= dsym
max

= 2(ρ− 2)msym
= dsym

max + 2msymdsym
max

(6.5)

recall that if we assume edges are distributed evenly, the expected value of msym
= is

1
ρ
msym. Thus expression 6.5 can be simplified to

2(ρ− 2)msym
= dsym

max + 2msymdsym
max

= 2
ρ− 2

ρ
msymdsym

max + 2msymdsym
max

=

(
4− 4

ρ

)
msymdsym

max

(6.6)

Now consider the second part - the work required to locate the fourth vertex

after listing all the base shapes. Given a particular base triangle or wedge (u, v, w),

the amount of work by S4GECD to locate the 4th vertex z through intersection is

dsym(u)+dsym(v)+dsym(w). Similarly, this expression is upper bounded by 3 dsym
max. Also

for each graph dataset, the numbers of triangles and wedges are fixed. D4GE/S4GECD

enumerates each triangle and wedges ρ times. This is required because given a triangle

or wedge of color (i, j, k), the 4th vertex can have ρ different colors. All ρ colors are

necessary to ensure that all graphlets would be enumerated. Thus overall, D4GE

88

with S4GECD does

3 ρ dsym
max(|∆|+ |∠|) (6.7)

amount of work.

As discussed briefly at the beginning of Subsection 6.2.2, PSE may discover a

four-node-graphlet in more than one subproblem group. The number of duplications

depends on the number of colors of the triangles and wedges. This, in turn, determines

the amount of work. We denote the uni-color triangles and wedges by ∆I and ∠I , the

bi-color ones by ∆II and ∠II , and the tri-color ones by ∆III and ∠III . We can write

WPSE
I = (1 + a(ρ)) 3 dsym

max(|∆I |+ |∠I |)

WPSE
II = (1 + b(ρ)) 3 dsym

max(|∆II |+ |∠II |)

WPSE
III = (1 + c(ρ)) 3 dsym

max(|∆III |+ |∠III |)

(6.8)

where a(ρ), b(ρ), c(ρ) are positive functions of ρ representing the duplications in the

three types. Their exact values depend on the instance of the input graph.

Expression 6.8 minus expression 6.7 yields

3 dsym
max (a(ρ) (|∆I |+ |∠I |) + b(ρ) (|∆II |+ |∠II |) + c(ρ) (|∆III |+ |∠III |)) (6.9)

which is the amount of extra work PSE/S4GE does compared to D4GE/S4GECD for

enumerating all the 4-node graphlets after all the wedges and triangles are discovered.

Now consider expressions 6.6 and 6.9. Expression 6.6 shows that the extra work

performed by D4GE with S4GECD to discover all base triangles and wedges is sensitive

to the size of the symmetrised graph, ie., the number of edges and degrees; expression

6.9 shows that the extra work performed by PSE with S4GE to list the 4th vertex,

89

grows with respect to ρ and, is sensitive to the number of triangles and wedges. Note

that for real-world graphs, the number of wedges plus triangles is often a magnitude

greater than the number of edges, and for a reasonable-sized cluster, ρ is often set to

a large value. As a result, D4GE with S4GECD can often achieve greater performance

improvement. This will be confirmed in the experiments below.

6.2.6 Experiment

Our solution, D4GE, is implemented in Apache Spark 2.4.5 with OpenJDK 1.8.0.

We experimented with it on several large real-world datasets, symmetrized (See Ap-

pendix A). In Table 6.1 we list the graphs we use here, along with the number of

wedges and triangles.

Dataset n m |∠| |∆| dsym
max

enron 69K 510K 40M 1M 1.6K

cnr 326K 5.6M 7.8B 21M 18K

amazon 735K 7M 38M 4.5M 1.1K

hollywood09 1.1M 114M 33B 4.9B 11K

dewiki 1.5M 33M 51B 89M 118K

hollywood11 2.2M 229M 100B 7.1B 13K

orkut 3M 234M 44B 628M 33K

ljournal 5.4M 100M 8.7B 441M 19K

uk02 18.5M 529M 188B 4.5B 195K

enwiki18 5.6M 235M 297B 378M 248K

indochina 7.4M 304M 392B 61B 256K

Table 6.1: The numbers of vertices n, edges m, wedges |∠|, and triangles |∆|, and
the max degree of the symmetrized graphs. The last three graphs are the largest and
they require more computing power than the others.

For the smaller graphs, unless specifically stated otherwise, the experiments were

conducted using 30 Intel E5430 quad-core machines with 6 GB of RAM each. This

90

gives equivalently 120 distributed workers1 and 1.5 GB of RAM per worker. For the

three largest graphs, uk02, enwiki18 and indochina, we employed a larger cluster

on Compute Canada2 using 14 compute nodes, with 48 cores and 192 GB RAM per

node. This configuration effectively gives us 672 workers with 4 GB RAM per worker,

which can still be considered modest.

We compared the performance with the performance of the SotA, the PSE, and the

single-machine solution S4GE. The single-machine experiment was conducted using a

machine with dual Xeon E5-2620 processors and 128 GB of RAM. The total number

of threads in this machine is 24. We set our time budget to be six days for each run.

The impact of ρ on performance

Let us first address the impact of ρ on the overall performance of our distributed

algorithm. In previous literature, Suri and Vassilvitskii [69] regarded ρ as a trade-off

between the network read and the input size of each distributed worker: a larger value

of ρ increases the amount of network read, but also decreases the input size as each

task becomes smaller. Park et al. [48] on the other hand adjusted ρ accordingly to

the input graph size, to fully utilize the amount of available memory for each worker.

We show that while ρ affects the amount of network read, a large ρ value in prac-

tice can help with balancing the workload distribution, even when the number of sub-

problems over-saturates the number of workers. Also, with a large enough ρ, the input

size of each task shall never exceed the allocated memory for each worker. We ex-

perimented with D4GE/S4GECD on three different datasets and varying ρ = 8, 12, 16

and 20. The result is shown in Figure 6.2.

When ρ = 8 there are
(

8
2

)
+
(

8
3

)
+
(

8
4

)
= 154 sub-problems, hence ρ = 8 is

the minimum value to saturate our cluster of 120 workers. Any ρ greater than 8

1Each worker is equivalent to a physical CPU core.
2https://docs.computecanada.ca/wiki/Cedar

https://docs.computecanada.ca/wiki/Cedar

91

8 10 12 14 16 18 20

0

500

1,000

1,500

ρ

R
u
n
n
in

g
T

im
e

(m
in

) hw09
hw11

ljournal

Figure 6.2: The enumeration time (minutes) of D4GE/S4GECD on several graphs,
with varying value of ρ. Higher ρ does not add much overhead; the lines flatten out
rather than sloping up perceptibly.

will over-saturate the cluster. Theoretically, we should not see any improvement

after ρ = 8, but in fact, we do. This is because of better load balancing. From

ρ = 8 to 12, we observe improvement, consistently on various datasets. This shows

that ρ = 12, with almost 5 times more sub-problems than ρ = 8, gives us a better

workload distribution. However, the improvement diminishes and the performance

would eventually decrease as ρ gets higher. The overhead of network read and Apache

Spark framework itself could dwarf the computation when ρ is too large. We would

like to note that the network read in our experiment is through internal traffic - i.e.,

traffic between distributed workers and distributed storage. Internal traffic is often

free even on a commercial platform, and the internal network connection can be an

order of magnitude faster than an external one. Even though a large ρ value introduces

more network read, the performance penalty from the network read is negligible.

Machine scalability

We investigate the machine scalability of D4GE/S4GE by measuring the run-

ning time on hollywood09 and cnr datasets while varying the number of distributed

workers from 32 to 256. The results are presented in Figure 6.3. D4GE/S4GE shows

92

strong scalability: with slopes -0.968 and -0.899 respectively, which are very close to

the perfect value -1. It means that the running time decreases by 2−0.968 = 1.956

and 20.899 = 1.865 times, respectively, when the number of machines is doubled. We

emphasize that this is on par with the SotA Map-Reduce based algorithms [48] and

[50].

32 64 128 256

102

103

Number of distributed workers

R
u
n
n
in

g
T

im
e

(m
in

) hw09: -0.968
cnr: -0.899

Figure 6.3: Machine scalability of D4GE/S4GE on cnr and hollywood09. This shows
very strong scalability with slopes -0.899 and -0.968, which is very close to -1, the
perfect value.

S4GE vs D4GE/S4GECD

Here we compare the running time of D4GE/S4GECD to S4GE on a single machine.

For this experiment, for D4GE/S4GECD we used a cluster of 120 distributed workers,

while for S4GE we used a machine with 24 threads. We set ρ = 16 for the distributed

runs. Our results are shown in Table 6.2. For hollywood09, dewiki, hollywood11,

and orkut using S4GE we abort the runs because they are over our time budget of

6 days. Note that 6 days is 8640 minutes. We notice that workload imbalance has a

big impact on the S4GE runtime. Except for amazon, we see a big speedup for all the

datasets. For amazon, the runtime is too short and the overhead for the distributed

computing is larger than the gain. The runtime of dewiki is longer than the others

93

because it has a higher maximum degree.

Dataset S4GE D4GE/S4GECD Speedup

enron 1.28 0.18 7.1

cnr 2933 132 22.2

amazon 0.23 0.37 0.6

hollywood09 > 6 days 204 /

dewiki > 6 days 2328 /

hollywood11 > 6 days 864 /

orkut > 6 days 390 /

ljournal 1367 47 29

Table 6.2: The enumeration time (minutes) of D4GE/S4GECD with ρ = 16, 120
workers, against S4GE (single machine) with 24 threads.

PSE/S4GE vs D4GE/S4GECD

Next, we modified PSE and replaced VF2 with S4GE in the PSE. We then com-

pared D4GE/S4GECD against PSE/S4GE. For this experiment, we set ρ = 16 and

use the same cluster configuration for both. The enumeration times are listed in Ta-

ble 6.3. We found that D4GE/S4GECD is more efficient for all of the tested graphs,

and D4GE/S4GECD is able to achieve up to 11x speedup, which is on the cnr dataset.

A significant speedup is achieved on cnr, hollywood09, hollywood11, orkut and

ljournal. For dewiki, we can deduce that the speedup is > 3.7 (i.e., 8640/2328). For

these datasets, the number of wedges plus triangles is much greater than the number

of edges, as can be seen in Table 6.1. According to expressions 6.6 and 6.9, PSE’s

performance is penalized by the number of triangles from type-1 sub-problems and

wedges, whereas D4GE’s performance is penalized no more than the number of edges

from the symmetrised graph. This gives advantage to D4GE/S4GECD compared to

PSE/S4GE.

94

Dataset PSE/S4GE D4GE/S4GECD Speedup

enron 0.55 0.18 3.1

cnr 1446 132 11.0

amazon 0.37 0.37 1.0

hollywood09 2190 204 10.7

dewiki > 6 days 2328 /

hollywood11 9186 864 10.6

orkut 3799 390 9.7

ljournal 432 47 9.2

Table 6.3: The enumeration time (minutes) of D4GE/S4GECD against PSE/S4GE,
with ρ = 16, 120 workers.

PSE/VF2 vs D4GE/CF4CD

Lastly, we compare the performance of Park et al.’s PSE/VF2 implementation on

4-clique query, against our D4GE/CF4CD. The results are shown in Table 6.4. Com-

paring our D4GE/CF4CD suite against one of the state-of-the-art sub-graph enumer-

ation algorithm, up to 5.2 fold speedup is observed on a small graph such as amazon,

and > 20 fold speedup on a large graph such as hollywood09.

Dataset PSE/VF2 CDext/CF4CD Speedup

enron 0.7 0.15 4.7

cnr 1.1 0.33 3.3

amazon 1.3 0.25 5.2

hollywood09 324 16 20.3

dewiki 4.5 1.5 3.0

hollywood11 288 31 9.3

orkut 16 5.0 3.2

ljournal 11 2.5 4.4

Table 6.4: Enumeration time (minutes) of D4GE/CF4CD against PSE/VF2, with
ρ = 16

We emphasize that the overall speedup of D4GE against PSE is also because

95

D4GE guarantees no duplication during the enumeration. We obtained Park et al.’s

PSE+VF2 implementation 3, version 3.0.1, and we modified the source code to count

the number of duplicate emissions. We list the percentages of duplicate emissions from

PSE/S4GE, PSE/CF, and PSE/VF2. For PSE/S4GE, we list the median percentage

of the duplications for all six types of 4-node graphlets, and we query 4-clique against

VF2. The results are presented in Table 6.5. We can see that the PSE partitioning

scheme, when combined with the S4GE algorithm, emits around 300% of duplicates.

The percentages are around 40% for PSE/CF4, and lower for PSE/VF2. From this

table, we might deduce that PSE was indeed designed to work together with VF2,

but not suited for S4GE.

Dataset S4GE CF4 VF2(K4)

enron 255% 36% 19%

cnr 245% 32% 14%

amazon 270% 36% 1.2%

hollywood09 379% 41% 29%

dewiki / 39% 25%

hollywood11 305% 41% 29%

orkut 246% 41% 29%

ljournal 309% 41% 26%

Table 6.5: Duplicated emissions from PSE partitioning scheme with different local
algorithms.

Comparing the second and the third column of Table 6.5 on duplicate emissions,

we can see that localized VF2 algorithm emits fewer duplicated 4-cliques than CF4,

when both are using the same PSE partitioning scheme. Yet, still up to 29% of

duplicates are emitted by VF2, from both hollywood and orkut datasets.

The overall results show that D4GE/CF4CD has better performance than PSE/VF2

for enumerating 4-cliques. However, we also acknowledge that PSE/VF2 might suffer

3From https://datalab.snu.ac.kr/pegasusn/download.php

https://datalab.snu.ac.kr/pegasusn/download.php

96

from its generality in this particular comparison. D4GE/CF4CD is tuned to enu-

merating 4-cliques only whereas VF2 is capable of answering any k-order sub-graph

query.

We also want to emphasize that the comparison here is aimed to show the per-

formance gain of D4GE over PSE; while D4GE/S4GECD can be revised to query

4-cliques, it is designed for a bigger goal - enumerating all 4-node graphlets.

The Output of D4GE/S4GECD

Here we summarize the results of our experiments with D4GE/S4GECD. We list

the counts of graphlets in Tables 6.6 and 6.7.

Graphlet enron cnr amazon hw09

3-path 2.51B 6.12B 372M 21.4T

3-star 8.04B 41.4T 610M 16.7T

4-cycle 21.6M 37.9B 2.69M 168B

tailed-triangle 583M 79.4B 92.3M 8.87T

diamond 46.1M 43.0B 13.1M 635B

4-clique 5M 160M 4.19M 1.39T

Running Time (min): 0.18 132 0.37 204

Table 6.6: The outputs of D4GE/S4GECD with ρ = 16, on a cluster of 120 workers.

For the largest datasets, uk02, enwiki18 and indochina, we employed a larger

cluster of 672 workers with 4 GB RAM per worker. On this cluster, we set ρ

to 25, which gives us 15,250 sub-problems. The results are shown in Table 6.8.

D4GE/S4GECD was able to complete uk02 in about 30 hours, enwiki18 in 82 hours,

and indochina in 124 hours, enumerating more than 2, 7.5 and 10 quadrillion

graphlets in total. We emphasize that, to the best of our knowledge, there is no

existing algorithm that can enumerate all the 4-node graphlets in a dataset of this

97

Graphlet dewiki hw11 orkut ljournal

3-path 10.4T 104T 18.6T 1.81T

3-star 661T 92.8T 97.8T 8.85T

4-cycle 13.1B 643B 70.1B 8.55B

tailed-triangle 993B 26.8T 1.51T 190B

diamond 11.9B 1.88T 47.8B 27B

4-clique 158M 728B 3.22B 16.1B

Running Time (min): 2328 864 390 47

Table 6.7: The outputs of D4GE/S4GECD with ρ = 16, on a cluster of 120 workers.

scale in a feasible amount of time. We estimate that, for each, PSE/S4GE would take

more than 7 days to run using the same cluster, which is impractical. Note that 1

day = 24 hours = 1440 minutes.

Graphlet uk02 enwiki18 indochina

3-path 1.9T 66.2T 7.6T

3-star 1.97Q 7.4Q 10.01Q

4-cycle 238B 76B 617B

tailed-triangle 6.1T 5.1T 9.3T

diamond 1.8T 61.7B 3.3T

4-clique 157B 876M 99.3T

Running Time (min): 1800 4885 7416

Table 6.8: The outputs of D4GE/S4GECD with ρ = 25, on a cluster of 672 workers.

6.2.7 Discussion

It is common in the literature that performance or scalability is measured against

the size of the input graph, either by the number of vertices or more commonly the

number of edges. We would like to point out that in the context of 4-node graphlet

enumeration, using the S4GE algorithm, the number of vertices or edges should not

98

be the primary consideration when it comes to the amount of computation. In [63]

it was shown that S4GE algorithm is bounded by T3g + (|∠|+ |∆|)dsym
max, where T3g is

the time to enumerate all the wedges and triangles. As a consequence, a small graph

such as dewiki can have a much longer runtime than graphs of larger size, such as

ljournal. As can be seen in Table 6.3, ljournal, which is three times larger than the

dewiki in size, has a runtime that is only 2% of the dewiki’s. Notice that dewiki has

a much larger number of graphlets, in particular the 3-stars. We plot the enumeration

time of eight small-medium datasets against dsym
max(|∆|+ |∠|) in Figure 6.4. From our

experiments, the enumeration time demonstrates a high correlation with respect to

dsym
max(|∆|+ |∠|). This shows that the total number of graphlets is an important metric

to measure the performance of an enumeration algorithm. The correlation also shows

that the D4GE performs as expected, i.e. it does not distort the single-machine

solution expectation.

1010 1011 1012 1013 1014 1015 1016

10−1

100

101

102

103

enron

cnr

amazon

hw09

dewiki
hw11

orkut

ljournal

dsym
max(|∆|+ |∠|)

R
u
n
n
in

g
T

im
e

(m
in

) R2 = 0.979

Figure 6.4: Strong correlation between the enumeration time and dsym
max(|∆|+ |∠|) on

the small-medium datasets.

Another question that the readers might ask is why enumerate all types of 4-node

graphlets in a single run? Why not just one type at a time, like many other solutions?

Our answer is that we can turn off any pattern that we do not want in the S4GE,

99

and do some optimization for each. However, if we need all types of graphlets, for a

complete analysis, it will be more efficient to do them all at once rather than do them

one by one. Notice that due to its design, the running time of S4GE is less than the

sum of the times for enumerating the six graphlet types individually.

6.3 Distributed Triad Enumeration

While Algorithm 10 (FPTE) is already parallelized (line 2), its scalability is limited

to a single machine-shared memory model. In order for the FPTE to enjoy the

multi-machine - discrete memory computing clusters with a much higher degree of

parallelism, we fit FPTE under the duplication-free partition scheme that D4GE

proposed earlier. To achieve this, we modified D4GE to handle 3-node sub-graphs

and modified FPTE algorithm to work with directed edgesets.

Because the D4GE partitioning scheme operates independently of the serial algo-

rithm, there are only three minor changes required. First, the generated sub-problems

and color-assignments are reduced from size 4 down to size 3, so the total number of

sub-problems is now
(
ρ
2

)
+
(
ρ
3

)
. Second, there is no need for symmetrization. Third,

because FPTE operates on both G and GT , the partitioning is applied to both G and

GT as well, and for each single sub-problem, the directed edgesets of G and GT are

loaded into memory. The modified partitioning scheme is described as Algorithm 19.

Modification to FPTE is also minimal. The modification here follows the same

fashion as migrating S4GE to S4GECD: instead of the entire graph G and its trans-

pose GT , modified FPTE enumerates over directed edgesets E∗pq and ET∗
pq given a

color-assignment ijk. Specifically, given color-assignment ijk, line 2 and 3 of FPTE

(Algorithm 10) requires edgesets E∗ij and ET∗
ij ; and line 7 of FPTE requires edgesets

E∗ik and ET∗
ik for knowledge of (N+(u) and N−(u)), and E∗jk and ET∗

jk for knowledge

100

Algorithm 19 D3GE

Input: A directed graph G(V,E) and its transpose GT (V,ET); number of colors ρ

1: Construct
−→
G(V,

−→
E) and

−→
GT (V,

−→
ET) by edge-orientation of G(V,E) and GT (V,E)

2: Partition
−→
E and

−→
ET into directed edge sets E∗ij and ET∗

ij using ρ
3: Generate ordered color assignments and sub-problems {SCs 7→ {Kijkl}}
4: for all SCs, {Kijkl} do . Distributed-for
5: Emap, E

T
map ←ReadEdgeSetsCD (SCs, 3)

6: for all Kijkl ∈ {C0, C1, ...} do
7: FPTECD (Emap, E

T
map, ijkl)

of (N+(v) and N−(v)). The rest of FPTE stays unmodified, as the edgesets solely

supply the corresponding neighbourhood information but do not alter the behavior of

the algorithm. We call this modified version of FPTE as FPTECD, and is summarized

as Algorithm 20.

Algorithm 20 FPTECD

Input: Two mappings from the colors of directed edge set to the edge set Emap ≡
{(i, j) 7→ E∗ij} and ET

map ≡ {(i, j) 7→ ET∗
ij }; ordered color assignment ijkl

Output: The number of each type of triads in Emap and ET
map, ∆i.

1: ∆1 ← 0, . . . , ∆7 ← 0
2: E∗ij ≡ Emap[ij], E∗ik ≡ Emap[ik], E∗jk ≡ Emap[jk]
3: ET∗

ij ≡ ET
map[ij], ET∗

ik ≡ ET
map[ik], ET∗

jk ≡ ET
map[jk]

4: for all u ∈ E∗ij ∪ ET∗
ij do

5: while there is next do
6: N+(u) ≡ E∗ij[u], N−(u) ≡ ET∗

ij [u].
7: Find next neighbour in N+(u) and/or N−(u): v.
8: Code the link uv as e1: either 01, 10 or 11
9: while there is next do

10: N+(u) ≡ E∗ik[u], N−(u) ≡ ET∗
ik [u].

11: N+(v) ≡ E∗jk[v], N−(v) ≡ ET∗
jk [v].

12: Find next common neighbour of u and v: w, in (N+(u), N−(u)) and
(N+(v), N−(v)).

13: Code the links vw as e2, and wu as e3.
14: Look up triad type i using e1, e2, e3.
15: enum(u, v, w, e1, e2, e3)
16: ∆i ← ∆i + 1

101

6.3.1 Experiment

For the experiments, we used a Compute Canada cluster with 4 compute nodes,

each node with 32 cores and 128 GB RAM per node. This configuration effectively

gives us 128 workers with 4 GB RAM per worker. We set ρ to 12, yielding 286

sub-problems. For comparison, we also ran experiments on a single machine. The

configuration of the machine is of dual Intel Xeon E5620 CPUs, for a total of 16

threads, and 64 GB RAM. The datasets are listed in Table 6.9. These are selected to

cover the comparison against the ones already in [64], plus five additional datasets of

varying sizes.

Dataset n m dmax dTmax deff
max dT eff

max

cnr 326K 3.2M 2,716 18,235 1,336 81

dewiki 1.5M 36M 5,032 117,908 5,032 409

ljournal 5.4M 79M 2,469 19,409 1,257 397

enwiki18 5.6M 128M 7,948 247,628 7,620 311

indochina 7.4M 194M 6,985 256,425 6,870 6,821

uk02 18.5M 298M 2,450 194,942 2,288 942

arabic 22.7M 640M 9,905 575,618 6,646 3,126

uk05 39.5M 936M 5,213 1,776,852 5,213 584

twitter 41.7M 1.5B 2,997,469 770,155 2,896 5,745

Table 6.9: The numbers of vertices n, edges m, maximum degree of the original
graph dmax and its transpose dTmax, and the effective maximum degrees after the
preprocessing, deff

max and dT eff
max, of the graph datasets.

The enumeration times are listed in Table 6.10. The last five graphs were not

listed in the FPTE paper. Even for the largest graph, twitter, with 42M ver-

tices and 1.5B edges, D3GE/FPTECD is able to enumerate all seven types of triads

within 8 minutes, delivering a very strong performance. With eight times the paral-

lelism, compared against the single machine FPTE, for cnr, ljournal, uk05, dewiki,

enwiki18 and uk02, the speedups are less than 4 fold. While the performance is still

102

improved, these low speedups do not meet the expectation. This is because the

original FPTE, while limited on a single machine, has the advantage of the shared-

memory model, which makes the computation efficient - no partitioning is required.

D3GE exposes FPTE to a cluster of workers, and this bears a cost. Because of the

discrete-memory model of the clusters, we have to pre-partition the input graph into

overlapping and independent sub-graphs (sub-problems) and let the workers solve

each of the sub-problems. The overlapping of the sub-graphs is necessary because,

in the discrete-memory model, the workers cannot access each other’s memory con-

tent. In other words, if D3GE/FPTECD and FPTE are given the same number of

workers/threads, D3GE/FPTECD inherently does more work per worker, due to the

overlap. Additionally, the overlapping portion grows with respect to ρ, further dis-

counting the distributed solution as compared to the shared-memory model. However,

we would like to stress that this problem is not particular to D3GE/FPTECD. All

known partition schemes suffer from the inevitable overlap. Note that this compari-

son here only shows the performance improvement over the single machine, not the

scalability. The true scalability of D3GE will be discussed later.

Dataset FPTE D3GE/FPTECD Speedup

cnr 3.0 2.2 1.36

ljournal 81 24.4 3.3

arabic 2961 107.9 27.4

uk05 796 207.1 3.8

dewiki 30.3 14.0 2.16

enwiki18 136.4 34.5 3.95

indochina 9,228.8 57.2 161.3

uk02 191.5 92.7 2.07

twitter 51,984.0 445.6 116.7

Table 6.10: The enumeration time (seconds) of D3GE/FPTECD with ρ = 12 and 128
workers, against original FPTE with 16 threads on a single machine.

103

On the other hand, D3GE/FPTECD is able to achieve a 27.4 speedup on the

arabic dataset, a 161.3 speedup on the indochina dataset, and a 116.7 speedup

on the twitter dataset. However, this is not because D3GE/FPTECD works much

faster on these datasets, but rather it reflects the poor performance of FPTE. Upon

inspecting the datasets in Table 6.9, we can see that these three datasets have rela-

tively large maximum effective degrees. FPTE suffers from having to do all the work

for the node with the highest effective degree on a single thread. This is similar to

‘the curse of the last reducer problem’ as pointed out by Suri and Vassilvitskii [69].

D3GE/FPTECD avoids this problem through a partitioning scheme that leads to a

better workload balance.

Next, we experimented on the scalability of D3GE/FPTECD by plotting the enu-

meration time over the arabic and uk02 datasets, using varying numbers of dis-

tributed workers from 32 to 256. The results are shown in Figure 6.5. Similar to

Figure 6.3, FPTECD fitted under D3GE scales almost perfectly with respect to the

degree of parallelism: the slopes are -0.894 and -0.866 respectively. This means that

every time the number of the distributed workers doubles, the enumeration time is

reduced by factors of 20.894 = 1.858 and 20.866 = 1.822 respectively. We re-confirm

that the scalability of our proposed distributed partitioning scheme is on-par with

the SotA Map-Reduce-based ones [48] and [50].

104

32 64 128 256

102

103

Number of distributed workers

R
u
n
n
in

g
T

im
e

(s
ec

) arabic: -0.894
uk02: -0.866

Figure 6.5: Scalability of D3GE/FPTECD on uk02 and arabic. D3GE/FPTECD

again presents very strong scalability with slope -0.866 and -0.894.

105

Chapter 7

Future Work

We have done a comprehensive study on graphlet enumeration and proposed many

efficient algorithms and solutions. Nonetheless, there is still more work that can be

done in the future. This includes, but is not limited to:

• Building an algorithm for and implementing directed 4-node graphlet enumer-

ation.

• Conducting more experiments on our 5-node graphlet enumeration solution,

S5GE. Also, deploying this onto a distributed platform, similar to what we did

with S4GE and D4GE.

• Exploring higher-order graphlets (with six or more nodes), and searching for

efficient enumeration for some special types.

• Extending our study to probabilistic graphlets.

• Extending our study to typed and labeled graphs.

We expand these ideas a bit further below.

106

7.1 Larger Directed Graphlets

We have laid the foundation for building an enumeration program for 4-node

directed graphlets in Section 5.3. However, we still need to build the algorithm and

the code implementation. This would be an extension of our triad enumeration FPTE,

combined with the 4-node graphlet enumeration S4GE. We can continue our effort

on the 5-node directed graphlets as well. The work might be tedious, because of the

large number of graphlet types, but should be quite straightforward following our

methods.

7.2 5-node Graphlet Enumeration

Up to now, we have completed our experiments on our 5-node graphlet enumera-

tion algorithm S5GE only on a few graphs. We can do more experiments by applying

it to other various graphs and checking, for example, the running time, and its scala-

bility. As we have mentioned before, the running time of any enumeration program is

bounded below by the number of graphlets. This, in practice, would limit the size of

the graphs that we can process using a single machine. For this reason, we may want

to bring our solution to the distributed platform as well, through a similar method

used in D4GE.

7.3 Larger Order Graphlets

The number of graphlet types grows rapidly with the order of the graphlet. How-

ever, this, in principle, should not stop us from considering higher-order graphlets.

Using triangles and wedges as the base, we have shown that it is not difficult to

discover all of the graphlets in an input graph. The bigger problem is on avoiding

107

multi-listings, as some graphlets can be discovered in many ways. So far, we have not

found a systematic way to avoid double-counting. In S5GE, we solve this problem

ad-hoc, by looking at case by case. To be able to do higher order graphlets we need

a better way.

On the other hand, we can also look at how to enumerate graphlets of some special

types. Triangles are easier to enumerate than wedges because triangles have higher

symmetries. In general, cliques are easier to enumerate compared to other graphlets of

the same order. So, there have been efficient solutions to enumerate cliques, e.g., [22].

We can look at other types of graphlets as well, to see if we can enumerate those

types more efficiently than the rest, although less efficient than cliques.

7.4 Probabilistic Graphlets

Throughout this dissertation, we have talked solely about deterministic graphs,

where the number of nodes and edges are fixed. In a probabilistic graph, edges are

not definite, but probabilistic. Consequently, graphlets are also probabilistic. The

problem that we want to solve is as follows: Given a probabilistic graph G̃ = (G,P),

we want to enumerate all graphlets that have a probability to occur more than a

certain value (or threshold), γ. Notice that answering this question would also answer

the question of how many that has a probability greater than the threshold, i.e. the

counts for each type of graphlet.

The naive solution for probabilistic graphlets enumeration is to post-filter out the

graphlets whose probabilities are less than the threshold. However, this approach does

not take advantage of the probabilistic nature at all. In fact, with this approach, any

γ will yield the same enumeration time, while in principle a large γ should require

much less computing power as it has less number of graphlets to enumerate.

108

We found that S4GE is suitable to answer this question. We leverage the fact

that S4GE is an intersection-based algorithm and that it discovers 4-node graphlets

gradually: from edges to wedges/triangles, and then to 4-node graphlets. This gives

us a hint that we can apply probability-based pruning at each stage of the discovery

pipeline. First and foremost, only edges whose probabilities pe ≥ γ need to be

considered. Upon the discovery of wedges/triangles, only those with a probability

greater than γ need to be processed further. Lastly, the surviving wedges/triangles

are used to discover 4-node graphlets. The final probability of the 4-node graphlets

is checked against γ before being emitted.

We have done some preliminary work on this possible solution in [38]. However,

we still need to do a more detailed analysis of the theoretical framework.

7.5 Typed and Labeled Graphs

A typed graphlet is a graphlet that has more than one type of nodes [59, 58].

This is illustrated by the example in Figure 7.1. A graphlet enumeration, therefore,

needs to keep track of the types. The algorithms that had been proposed in those

papers are estimation algorithms. To the best of our knowledge, there has not been

an algorithm that fully enumerates typed graphlets.

Figure 7.1: Typed triangles with two types of nodes.

Another interesting topic is how to compute graphlets in a weighted graph [30].

In a weighted graph, each edge has a weight. An example is shown in Figure 7.2. In

a real-world network, the weights can be an important characteristic that needs to

109

be incorporated when we search for graphlets.

1
1

3

2
4

1

Figure 7.2: Two weighted graphlets of the same type, but with different sets of
weights.

We can also take a look at multidimensional or multiplex graphs [26], where now

the edges are the ones that have types, and each type represents a relationship.

Furthermore, two nodes can have many edges of various types between them. An

illustration is shown in Figure 7.3. In graphlet enumeration we may want to look

for graphlets in each type, or graphlets in all types, or some combinations. More

generally, we can also consider graphlets in multilayer graphs [60], where the edges

can traverse the dimensions.

Figure 7.3: A multidimensional graph. Each edge has a type based on the dimension,
represented by color and line-type.

110

Chapter 8

Conclusion

Graphlet enumeration is an important component in graph analysis. There have

been many studies in the literature about this topic. Nevertheless, this task is not

trivial when the input graph is large, requiring high efficiency in both the running

time and the memory space. Not many papers deal with this particular problem,

especially for graphlets of order four or higher, and for directed graphlets.

We have contributed to the progress in this field by proposing several algorithms

and solutions. Up to now, we are able to enumerate all types of 3, 4, and 5-node

graphlets in a single run using only a single commodity machine, even on some graphs

of the order of a million nodes. Note, however, that the running time depends on the

maximum degree. Thus, not all graphs of a million nodes can be processed within a

limited time. More generally, we cannot avoid the fact that the running time of any

enumeration algorithm, no matter how efficient they are, is bounded from below by

the number of graphlets. With a single machine, we were able to enumerate trillions

of graphlets in less than a day.

This limitation can be alleviated by using a distributed computing platform. We

have been, up to now, able to deploy our 4-node graphlet enumeration solution on

111

a distributed platform, and we were able to enumerate quadrillions of graphlets in

a few days. Experimentally we showed that the scheme that we use yields a good

scalability, of around 0.9.

Nevertheless, there are still many challenges that we would like to study in our

future work. These include enumerating higher-order graphlets, for both directed and

undirected cases, and how to avoid multiple-listing in a systematic way.

Enumeration provides us with rich information about a graph. This can be used

to build features that can then be used as input to some graph machine learning

solutions. It could lead to a potentially significant improvement in the machine

learning performance.

112

Bibliography

[1] Carlo Abrate and Francesco Bonchi. Counterfactual graphs for explainable classi-

fication of brain networks. In Proceedings of the 27th ACM SIGKDD Conference

on Knowledge Discovery & Data Mining, pages 2495–2504, 2021.

[2] Nesreen K Ahmed, Jennifer Neville, Ryan A Rossi, and Nick Duffield. Efficient

graphlet counting for large networks. In 2015 IEEE International Conference on

Data Mining, pages 1–10. IEEE, 2015.

[3] Albert-László Barabási. Network science. Philosophical Transactions of

the Royal Society A: Mathematical, Physical and Engineering Sciences,

371(1987):20120375, 2013.

[4] Vladimir Batagelj and Andrej Mrvar. A subquadratic triad census algorithm for

large sparse networks with small maximum degree. Social Networks, 23(3):237–

243, 2001.

[5] Vladimir Batagelj and Matjaž Zaveršnik. Short cycle connectivity. Discrete

Mathematics, 307(3-5):310–318, 2007.

[6] Smriti Bhagat, Graham Cormode, and S Muthukrishnan. Node classification in

social networks. arXiv preprint arXiv:1101.3291, 2011.

113

[7] Pooja Bhojwani. Triangle enumeration in massive graphs using Map Reduce.

Master’s thesis, University of Victoria, 2018.

[8] Mansurul A Bhuiyan, Mahmudur Rahman, Mahmuda Rahman, and Mohammad

Al Hasan. Guise: Uniform sampling of graphlets for large graph analysis. In 2012

IEEE 12th International Conference on Data Mining, pages 91–100, 2012.

[9] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. Ubi-

crawler: A scalable fully distributed web crawler. Software: Practice & Experi-

ence, 34(8):711–726, 2004.

[10] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. Layered label

propagation: A multiresolution coordinate-free ordering for compressing social

networks. In Proceedings of the 20th international conference on World Wide

Web, pages 587–596. ACM Press, 2011.

[11] Paolo Boldi and Sebastiano Vigna. The WebGraph framework I: Compression

techniques. In Proc. of the Thirteenth International World Wide Web Conference

(WWW 2004), pages 595–601. ACM Press, 2004.

[12] Paolo Boldi and Sebastiano Vigna. The WebGraph Framework II: Codes for

the world-wide web. In Data Compression Conference, 2004. Proceedings. DCC

2004, page 528. IEEE, 2004.

[13] John Adrian Bondy and Uppaluri Siva Ramachandra Murty. Graph theory.

Springer Publishing Company, Incorporated, 2008.

[14] Matthias Bröcheler, Andrea Pugliese, and Venkatramanan S Subrahmanian.

Cosi: Cloud oriented subgraph identification in massive social networks. In 2010

International Conference on Advances in Social Networks Analysis and Mining,

pages 248–255. IEEE, 2010.

114

[15] Coen Bron and Joep Kerbosch. Algorithm 457: finding all cliques of an undi-

rected graph. Communications of the ACM, 16(9):575–577, 1973.

[16] Gary Chartrand, Linda Lesniak, and Ping Zhang. Graphs & digraphs, volume 39.

CRC press, 2010.

[17] Chi Chen, Weike Ye, Yunxing Zuo, Chen Zheng, and Shyue Ping Ong. Graph

networks as a universal machine learning framework for molecules and crystals.

Chemistry of Materials, 31(9):3564–3572, 2019.

[18] Hongzhi Chen, Miao Liu, Yunjian Zhao, Xiao Yan, Da Yan, and James Cheng.

G-miner: an efficient task-oriented graph mining system. In Proceedings of the

Thirteenth EuroSys Conference, pages 1–12, 2018.

[19] Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing algo-

rithms. SIAM Journal on computing, 14(1):210–223, 1985.

[20] George Chin Jr, Andres Marquez, Sutanay Choudhury, and John Feo. Scal-

able triadic analysis of large-scale graphs: Multi-core vs. multi-processor vs.

multi-threaded shared memory architectures. In Proceedings of the 24th Interna-

tional Symposium on Computer Architecture and High Performance Computing

(SBAC-PAD), pages 163–170. IEEE, 2012.

[21] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A (sub)

graph isomorphism algorithm for matching large graphs. IEEE transactions on

pattern analysis and machine intelligence, 26(10):1367–1372, 2004.

[22] Maximilien Danisch, Oana Balalau, and Mauro Sozio. Listing k-cliques in sparse

real-world graphs. In Proceedings of the 2018 World Wide Web Conference on

World Wide Web, pages 589–598. International World Wide Web Conferences

Steering Committee, 2018.

115

[23] James A Davis and Samuel Leinhardt. The structure of positive interpersonal

relations in small groups. Sociological Theories in Progress, 2:218–251, 1972.

[24] Mukund Deshpande, Michihiro Kuramochi, Nikil Wale, and George Karypis. Fre-

quent substructure-based approaches for classifying chemical compounds. IEEE

Transactions on Knowledge and Data Engineering, 17(8):1036–1050, 2005.

[25] Vinicius Dias, Carlos HC Teixeira, Dorgival Guedes, Wagner Meira, and Srini-

vasan Parthasarathy. Fractal: A general-purpose graph pattern mining system.

In Proceedings of the 2019 International Conference on Management of Data,

pages 1357–1374, 2019.

[26] Tamara Dimitrova, Kristijan Petrovski, and Ljupcho Kocarev. Graphlets in

multiplex networks. Scientific reports, 10(1):1–13, 2020.

[27] Jean-Pierre Eckmann and Elisha Moses. Curvature of co-links uncovers hidden

thematic layers in the world wide web. Proceedings of the National Academy of

Sciences, 99(9):5825–5829, 2002.

[28] Katherine Faust. A puzzle concerning triads in social networks: Graph con-

straints and the triad census. Social Networks, 32(3):221–233, 2010.

[29] Thomas Gaudelet, Ben Day, Arian R Jamasb, Jyothish Soman, Cristian Regep,

Gertrude Liu, Jeremy BR Hayter, Richard Vickers, Charles Roberts, Jian Tang,

et al. Utilizing graph machine learning within drug discovery and development.

Briefings in bioinformatics, 22(6):bbab159, 2021.

[30] Hongyu Guo, Khalique Newaz, Scott Emrich, Tijana Milenkovic, and Jun Li.

Weighted graphlets and deep neural networks for protein structure classification.

arXiv preprint arXiv:1910.02594, 2019.

116

[31] William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on

graphs: Methods and applications. arXiv preprint arXiv:1709.05584, 2017.

[32] Tomaž Hočevar and Janez Demšar. A combinatorial approach to graphlet count-

ing. Bioinformatics, 30(4):559–565, 2014.

[33] Paul W Holland and Samuel Leinhardt. Local structure in social networks.

Sociological methodology, 7:1–45, 1976.

[34] Haiyan Hu, Xifeng Yan, Yu Huang, Jiawei Han, and Xianghong Jasmine Zhou.

Mining coherent dense subgraphs across massive biological networks for func-

tional discovery. Bioinformatics, 21(suppl 1):i213–i221, 2005.

[35] Shweta Jain and C Seshadhri. The power of pivoting for exact clique counting.

In Proceedings of the 13th International Conference on Web Search and Data

Mining, pages 268–276, 2020.

[36] Tommaso Lanciano, Francesco Bonchi, and Aristides Gionis. Explainable clas-

sification of brain networks via contrast subgraphs. In Proceedings of the 26th

ACM SIGKDD International Conference on Knowledge Discovery & Data Min-

ing, pages 3308–3318, 2020.

[37] Matthieu Latapy. Main-memory triangle computations for very large (sparse

(power-law)) graphs. Theor. Comput. Sci., 407(1-3):458–473, 2008.

[38] Xiaozhou Liu, Yudi Santoso, Venkatesh Srinivasan, and Alex Thomo. Distributed

enumeration of four node graphlets at quadrillion-scale. In 33rd International

Conference on Scientific and Statistical Database Management, pages 85–96,

2021.

[39] R Duncan Luce and Albert D Perry. A method of matrix analysis of group

structure. Psychometrika, 14(2):95–116, 1949.

117

[40] Dror Marcus and Yuval Shavitt. Rage–a rapid graphlet enumerator for large

networks. Computer Networks, 56(2):810–819, 2012.

[41] Daniel Mawhirter, Sam Reinehr, Connor Holmes, Tongping Liu, and Bo Wu.

Graphzero: Breaking symmetry for efficient graph mining. arXiv preprint

arXiv:1911.12877, 2019.

[42] Frank McSherry, Michael Isard, and Derek G Murray. Scalability! but at what

{COST}? In 15th Workshop on Hot Topics in Operating Systems (HotOS XV),

2015.

[43] Tijana Milenković and Nataša Pržulj. Uncovering biological network function

via graphlet degree signatures. Cancer informatics, 6:CIN–S680, 2008.

[44] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii,

and Uri Alon. Network motifs: simple building blocks of complex networks.

Science, 298(5594):824–827, 2002.

[45] Mark EJ Newman, Duncan J Watts, and Steven H Strogatz. Random graph

models of social networks. Proceedings of the National Academy of Sciences,

99(suppl 1):2566–2572, 2002.

[46] Sindhuja Parimalarangan, George M Slota, and Kamesh Madduri. Fast parallel

graph triad census and triangle counting on shared-memory platforms. In 2017

IEEE International Parallel and Distributed Processing Symposium Workshops

(IPDPSW), pages 1500–1509. IEEE, 2017.

[47] Ha-Myung Park and Chin-Wan Chung. An efficient mapreduce algorithm for

counting triangles in a very large graph. In 22nd ACM International Conference

on Information and Knowledge Management, CIKM’13, pages 539–548, 2013.

118

[48] Ha-Myung Park, Sung-Hyon Myaeng, and U Kang. Pte: Enumerating trillion

triangles on distributed systems. In Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages 1115–

1124. ACM, 2016.

[49] Ha-Myung Park, Francesco Silvestri, U. Kang, and Rasmus Pagh. Mapreduce

triangle enumeration with guarantees. In Proceedings of the 23rd ACM Interna-

tional Conference on Conference on Information and Knowledge Management,

CIKM 2014, pages 1739–1748, 2014.

[50] Ha-Myung Park, Francesco Silvestri, Rasmus Pagh, Chin-Wan Chung, Sung-

Hyon Myaeng, and U Kang. Enumerating trillion subgraphs on distributed sys-

tems. ACM Transactions on Knowledge Discovery from Data (TKDD), 12(6):1–

30, 2018.

[51] Ali Pinar, C Seshadhri, and Vaidyanathan Vishal. Escape: Efficiently counting

all 5-vertex subgraphs. In Proceedings of the 26th International Conference on

World Wide Web, pages 1431–1440. International World Wide Web Conferences

Steering Committee, 2017.

[52] Nataša Pržulj. Biological network comparison using graphlet degree distribution.

Bioinformatics, 23(2):e177–e183, 2007.

[53] Nataša Pržulj, Derek G Corneil, and Igor Jurisica. Modeling interactome: scale-

free or geometric? Bioinformatics, 20(18):3508–3515, 2004.

[54] Filippo Radicchi, Claudio Castellano, Federico Cecconi, Vittorio Loreto, and

Domenico Parisi. Defining and identifying communities in networks. Proceedings

of the National Academy of Sciences, 101(9):2658–2663, 2004.

119

[55] Mahmudur Rahman, Mansurul Alam Bhuiyan, and Mohammad Al Hasan. Graft:

An efficient graphlet counting method for large graph analysis. IEEE Transac-

tions on Knowledge and Data Engineering, 26(10):2466–2478, 2014.

[56] Liva Ralaivola, Sanjay J Swamidass, Hiroto Saigo, and Pierre Baldi. Graph

kernels for chemical informatics. Neural networks, 18(8):1093–1110, 2005.

[57] Xuguang Ren, Junhu Wang, Wook-Shin Han, and Jeffrey Xu Yu. Fast and robust

distributed subgraph enumeration. arXiv preprint arXiv:1901.07747, 2019.

[58] Ryan A Rossi, Nesreen K Ahmed, Aldo Carranza, David Arbour, Anup Rao,

Sungchul Kim, and Eunyee Koh. Heterogeneous graphlets. ACM Transactions

on Knowledge Discovery from Data (TKDD), 15(1):1–43, 2020.

[59] Ryan A Rossi, Anup Rao, Tung Mai, and Nesreen K Ahmed. Fast and accurate

estimation of typed graphlets. In Companion Proceedings of the Web Conference

2020, pages 32–34, 2020.

[60] Sallamari Sallmen, Tarmo Nurmi, and Mikko Kivelä. Graphlets in multilayer

networks. arXiv preprint arXiv:2106.13011, 2021.

[61] Yudi Santoso. Triangle counting and listing in directed and undirected graphs

using single machines. Master’s thesis, University of Victoria, 2018.

[62] Yudi Santoso, Xiaozhou Liu, Venkatesh Srinivasan, and Alex Thomo. Four node

graphlet and triad enumeration on distributed platforms. Distributed and Parallel

Databases, pages 1–38, 2022.

[63] Yudi Santoso, Venkatesh Srinivasan, and Alex Thomo. Efficient enumeration

of four node graphlets at trillion-scale. In 23rd International Conference on

Extending Database Technology, pages 439–442, 2020.

120

[64] Yudi Santoso, Alex Thomo, Venkatesh Srinivasan, and Sean Chester. Triad

enumeration at trillion-scale using a single commodity machine. In 22nd Inter-

national Conference on Extending Database Technology. OpenProceedings.org,

2019.

[65] Thomas Schank and Dorothea Wagner. Finding, counting and listing all trian-

gles in large graphs, an experimental study. In Proceedings of 4th International

Workshop on Experimental and Efficient Algorithms, WEA 2005,, pages 606–

609, 2005.

[66] Comandur Seshadhri, Ali Pinar, and Tamara G Kolda. Fast triangle count-

ing through wedge sampling. In Proceedings of the SIAM Conference on Data

Mining, volume 4, page 5, 2013.

[67] Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and

Karsten Borgwardt. Efficient graphlet kernels for large graph comparison. In

Artificial Intelligence and Statistics, pages 488–495, 2009.

[68] Francesco Silvestri. Subgraph enumeration in massive graphs. arXiv preprint

arXiv:1402.3444, 2014.

[69] Siddharth Suri and Sergei Vassilvitskii. Counting triangles and the curse of the

last reducer. In Proceedings of the 20th International Conference on World Wide

Web, pages 607–614. ACM, 2011.

[70] Benjamin M Tabak, Marcelo Takami, Jadson MC Rocha, Daniel O Cajueiro,

and Sergio RS Souza. Directed clustering coefficient as a measure of systemic

risk in complex banking networks. Physica A: Statistical Mechanics and its

Applications, 394:211–216, 2014.

121

[71] Nilothpal Talukder and Mohammed J Zaki. A distributed approach for graph

mining in massive networks. Data Mining and Knowledge Discovery, 30(5):1024–

1052, 2016.

[72] Carlos HC Teixeira, Alexandre J Fonseca, Marco Serafini, Georgos Siganos, Mo-

hammed J Zaki, and Ashraf Aboulnaga. Arabesque: a system for distributed

graph mining. In Proceedings of the 25th Symposium on Operating Systems Prin-

ciples, pages 425–440. ACM, 2015.

[73] Pinghui Wang, Yiyan Qi, Yu Sun, Xiangliang Zhang, Jing Tao, and Xiaohong

Guan. Approximately counting triangles in large graph streams including edge

duplicates with a fixed memory usage. Proceedings of the VLDB Endowment,

11(2):162–175, 2017.

[74] Stanley Wasserman and Katherine Faust. Social network analysis: Methods and

applications, volume 8. Cambridge University Press, 1994.

[75] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ’small-world’

networks. Nature, 393(6684):440–442, June 1998.

[76] Sebastian Wernicke and Florian Rasche. Fanmod: a tool for fast network motif

detection. Bioinformatics, 22(9):1152–1153, 2006.

[77] Serene WH Wong, Nick Cercone, and Igor Jurisica. Comparative network anal-

ysis via differential graphlet communities. Proteomics, 15(2-3):608–617, 2015.

[78] Feng Xia, Ke Sun, Shuo Yu, Abdul Aziz, Liangtian Wan, Shirui Pan, and Huan

Liu. Graph learning: A survey. IEEE Transactions on Artificial Intelligence,

2(2):109–127, 2021.

[79] Da Yan, Guimu Guo, Md Mashiur Rahman Chowdhury, M Tamer Özsu, Wei-

Shinn Ku, and John CS Lui. G-thinker: A distributed framework for mining

122

subgraphs in a big graph. In 2020 IEEE 36th International Conference on Data

Engineering (ICDE), pages 1369–1380. IEEE, 2020.

[80] Zhi Yang, Christo Wilson, Xiao Wang, Tingting Gao, Ben Y Zhao, and Yafei Dai.

Uncovering social network sybils in the wild. ACM Transactions on Knowledge

Discovery from Data (TKDD), 8(1):2, 2014.

[81] Hao Zhang, Jeffrey Xu Yu, Yikai Zhang, Kangfei Zhao, and Hong Cheng. Dis-

tributed subgraph counting: a general approach. Proceedings of the VLDB En-

dowment, 13(12):2493–2507, 2020.

123

Appendix A

Graph Datasets

For our experiments, we used several data sets that we retrieved from the Web-

Graph website [11, 10, 9]:

http://law.di.unimi.it/datasets.php

Most of those graphs are directed and come in pairs of graphs and transpose

graphs. For experimenting on undirected graphs, we symmetrize the graphs using

the mechanism described in Section 2.1. In the experiments, we use the same names

(abbreviated) for both the directed graphs and the undirected graphs (after sym-

metrization). However, it should be clear from the context which ones we refer to.

Here we collect all graphs that we used in various experiments. Note that any

one of the experiments does not use all of the graphs listed here, but only a subset

of them.

A.1 Directed Graph Datasets

The summaries of the directed graphs are shown in Table A.1. We sort the graphs

in ascending order, |V |. Note that the sorting will be different if we use the size,

http://law.di.unimi.it/datasets.php

124

|E|, instead. The smallest graph is the wordassociation-2011, which we often

abbreviate as word and has about ten thousand nodes and seventy two thousand

edges. The largest one is the clueweb12, or clueweb for short, with almost a billion

nodes and forty two billion edges. In between, we have graphs of various orders and

sizes. They are grouped roughly on the magnitude of the orders. The clueweb is in

its own class, as it is much larger than the others.

Name |V | |E| d+
max d−max

wordassociation-2011 10.6K 72.2K 34 324
enron 69.2K 276.1K 1,392 1,394
uk-2007-05@100000 100K 3.05M 3,753 55,252
cnr-2000 325.6K 3.22M 2,716 18,235
amazon-2008 735.3K 5.16M 10 1,076

dewiki-2013 1.53M 36.72M 5,032 117,908
ljournal-2008 5.36M 79.02M 2,469 19,409
enwiki-2018 5.62M 128.8M 7,948 247,628
indochina-2004 7.41M 194.1M 6.985 256,425

uk-2002 18.52M 298.1M 2,450 194,942
arabic-2005 22.74M 640.0M 9,905 575,618
uk-2005 39.46M 936.4M 5,213 1,776,852
twitter-2010 41.65M 1.47B 2,997,469 770,155

webbase-2001 118.1M 1.02B 3,841 816,127

clueweb12 978.4M 42.57B 7,447 75,611,690

Table A.1: Properties of the directed graphs.

A.2 Undirected Graph Datasets

The summary of the undirected graphs is shown in Table A.2. Most of them are

the symmetrized version of the directed graphs above, except for the two hollywood,

dblp, and orkut datasets which are originally undirected. Here we just use abbre-

viated names when not ambiguous. The orkut dataset was retrieved from https:

https://snap.stanford.edu/data/com-Orkut.html

125

//snap.stanford.edu/data/com-Orkut.html.

Name |V | |E| dmax davg

words 10,617 63,788 332 12.0
enron 69,244 254,449 1,634 7.35

uk-2007 100,000 2,779,575 55,252 55.59
cnr 325,557 2,738,969 18,236 16.83
amazon 735,323 3,523,472 1,077 9.58
dblp-2011 986,324 3,353,618 979 6.80

hollywood09 1,139,905 113,891,327 11,468 199.83
dewiki 1,532,354 33,093,029 118,246 43.19
hollywood11 2,180,759 228,985,632 13,107 210.00
orkut-2007 3,072,626 234,370,166 33,313 152.55
ljournal 5,363,260 49,514,271 19,432 18.46
enwiki18 5,616,717 234,488,590 248,444 83.7
indochina 7,414,866 301,969,638 256,425 82.0
uk-2002 18,520,486 261,787,258 194,955 28.27
arabic 22,744,080 553,903,073 575,628 48.71
uk-2005 39,459,925 783,027,125 1,776,858 39.69
twitter 41,652,230 1,202,513,046 2,997,487 57.74
webbase 118,142,155 854,809,761 816,127 14.47

clueweb 978,408,098 37,372,179,311 75,611,690 76.39

Table A.2: Properties of the undirected graphs. Note that davg = 2|E|/|V |.

https://snap.stanford.edu/data/com-Orkut.html
https://snap.stanford.edu/data/com-Orkut.html

126

Appendix B

Algorithms for 5-node Graphlet

Enumeration

Below are the algorithms for S5GE, a solution to enumerate 3, 4, and 5-node

graphlets simultaneously. Here, we denote a wedge by ∠(a, b, c), where b is the center

node and a < c. If b < a we have a type 1 wedge, if b > a we have a type 2 wedge.

We can attach a subscript when we want to make the type obvious. Suppose we have

u < v and u < w, then ∠1(v, u, w) is a type 1 wedge, and ∠2(u, v, w) is a type 2

wedge. We denote a triangle by ∆(a, b, c), where a < b < c.

127

Algorithm 21 S5GE

Input: An undirected graph G(V,E) in an adjacency list representation
1: for all vertex u ∈ V (G) do
2: for all vertex v ∈ N(u) do
3: if u < v then
4: for all u′ ∈ N(u) and v′ ∈ N(v) do
5: if (u′ > u) ∧ (v′ > u) then
6: if u′ = v′ > v then
7: ExtendedExploreTriangle (u, v, u′)

8: if ((u′ < v′) ∨ (v′ = u)) ∧ (u′ > v) then
9: ExtendedExploreWedgeType1 (v, u, u′)

10: if (u′ > v′) ∧ (v′ 6= u) then
11: ExtendedExploreWedgeType2 (u, v, v′)

128

Algorithm 22 Extended Explore Triangle

Input: A triangle ∆(u, v, w), u < v < w, N(u), N(v), N(w).
1: N1(u), N1(v), N1(w), N2(u, v), N2(u,w), N2(v, w), N3(u, v, w)← ∅
2: for all z ∈ N(u) ∩N(v) ∩N(w) do
3: N3(u, v, w)← N3(u, v, w) ∪ {z}
4: if z > w then
5: Enumerate4Clique (u, v, w, z)8

6: for all z ∈ N(u) ∩N(v) and z /∈ N(w) do
7: N2(u, v)← N2(u, v) ∪ {z}
8: if z > w then
9: EnumerateDiamond (.)7

10: for all z ∈ N(u) ∩N(w) and z /∈ N(v) do
11: N2(u,w)← N2(u,w) ∪ {z}
12: if z > v then
13: EnumerateDiamond (.)7

14: for all z ∈ N(v) ∩N(w) and z /∈ N(u) do
15: N2(v, w)← N2(v, w) ∪ {z}
16: if z > u then
17: EnumerateDiamond (.)7

18: for all z ∈ N(u) only do
19: EnumerateTailedTriangle (.)6

20: N1(u)← N1(u) ∪ {z}
21: for all z ∈ N(v) only do
22: EnumerateTailedTriangle (.)6

23: N1(v)← N1(v) ∪ {z}
24: for all z ∈ N(w) only do
25: EnumerateTailedTriangle (.)6

26: N1(w)← N1(w) ∪ {z}
27: Call 5GT functions

129

Algorithm 23 Extended Explore Wedge Type-1

Input: A type-1 wedge ∠1(v, u, w), u < v < w, N(u), N(v), N(w).
1: N1(u), N1(v), N1(w), N2(u, v), N2(u,w), N2(v, w)← ∅
2: for all z ∈ N(v) ∩N(w) with z /∈ N(u) do
3: N2(v, w)← N2(v, w) ∪ {z}
4: if z > u then
5: EnumerateRectangle (u, v, z, w)5

6: for all z ∈ N(u) ∩N(v) with z /∈ N(w) do
7: N2(u, v)← N2(u, v) ∪ {z}
8: for all z ∈ N(u) ∩N(w) with z /∈ N(v) do
9: N2(u,w)← N2(u,w) ∪ {z}

10: for all z ∈ N(u) only do
11: N1(u)← N1(u) ∪ {z}
12: if z > u and z > w then
13: Enumerate3Star (u, v, w, z)4

14: for all z ∈ N(v) only do
15: N1(v)← N1(v) ∪ {z}
16: if z > u then
17: Enumerate3Path (w, u, v, z)3

18: for all z ∈ N(w) only do
19: N1(w)← N1(w) ∪ {z}
20: if z > u then
21: Enumerate3Path (v, u, w, z)3

22: Call 5GW1 functions

130

Algorithm 24 Extended Explore Wedge Type-2

Input: A type-2 wedge ∠2(u, v, w), u < v, u < w, N(u), N(v), N(w).
1: N1(u), N1(v), N1(w), N2(u, v), N2(u,w), N2(v, w)← ∅
2: for all z ∈ N(v) ∩N(w) with z /∈ N(u) do
3: N2(v, w)← N2(v, w) ∪ {z}
4: for all z ∈ N(u) ∩N(v) with z /∈ N(w) do
5: N2(u, v)← N2(u, v) ∪ {z}
6: for all z ∈ N(u) ∩N(w) with z /∈ N(v) do
7: N2(u,w)← N2(u,w) ∪ {z}
8: for all z ∈ N(u) only do
9: N1(u)← N1(u) ∪ {z}

10: for all z ∈ N>u(v) only do
11: N1(v)← N1(v) ∪ {z}
12: if z > u and z > w then
13: Enumerate3Star (v, u, w, z)4

14: for all z ∈ N>u(w) only do
15: N1(w)← N1(w) ∪ {z}
16: if z > u and z 6= v then
17: Enumerate3Path (u, v, w, z)3

18: Call 5GW2 functions

131

Algorithm 25 5GT-uu

Input: ∆(u, v, w), with u < v < w, and N1(u), N1(v), N1(w).
1: for all z1, z2 ∈ N1(u), z1 < z2 do
2: if z2 ∈ N(z1) then
3: if z1 > v then
4: Enumerate g18(.)

5: else
6: Enumerate g14(.)

7: for all z1, z2 ∈ N1(v), z1 < z2 do
8: if z2 ∈ N(z1) then
9: if z1 > u then

10: Enumerate g18(.)

11: else
12: Enumerate g14(.)

13: for all z1, z2 ∈ N1(w), z1 < z2 do
14: if z2 ∈ N(z1) then
15: if z1 > u then
16: Enumerate g18(.)

17: else
18: Enumerate g14(.)

Algorithm 26 5GT-uv

Input: ∆(u, v, w), with u < v < w, and N1(u), N1(v), N1(w).
1: for all z1 ∈ N1(u), z2 ∈ N1(v) do
2: if z2 ∈ N(z1) then
3: Enumerate g21(.)
4: else
5: Enumerate g12(.)

6: for all z1 ∈ N1(u), z2 ∈ N1(w) do
7: if z2 ∈ N(z1) then
8: Enumerate g21(.)
9: else

10: Enumerate g12(.)

11: for all z1 ∈ N1(v), z2 ∈ N1(w) do
12: if z2 ∈ N(z1) then
13: Enumerate g21(.)
14: else
15: Enumerate g12(.)

132

Algorithm 27 5GT-u2uv

Input: ∆(u, v, w), u < v < w, N1(u), N1(v), N1(w), N2(u, v), N2(u,w), N2(v, w).
1: for all z1 ∈ N1(u), z2 ∈ N2(u, v) do
2: if z2 /∈ N(z1) then
3: if z2 > w then
4: Enumerate g17(.)

5: for all z1 ∈ N1(u), z2 ∈ N2(u,w) do
6: if z2 /∈ N(z1) then
7: if z2 > v then
8: Enumerate g17(.)

9: for all z1 ∈ N1(v), z2 ∈ N2(u, v) do
10: if z2 /∈ N(z1) then
11: if z2 > w then
12: Enumerate g17(.)

13: for all z1 ∈ N1(v), z2 ∈ N2(v, w) do
14: if z2 /∈ N(z1) then
15: if z2 > u then
16: Enumerate g17(.)

17: for all z1 ∈ N1(w), z2 ∈ N2(u,w) do
18: if z2 /∈ N(z1) then
19: if z2 > v then
20: Enumerate g17(.)

21: for all z1 ∈ N1(w), z2 ∈ N2(v, w) do
22: if z2 /∈ N(z1) then
23: if z2 > u then
24: Enumerate g17(.)

133

Algorithm 28 5GT-u2vw

Input: ∆(u, v, w), u < v < w, N1(u), N1(v), N1(w), N2(u, v), N2(u,w), N2(v, w).
1: for all z1 ∈ N1(u), z2 ∈ N2(v, w) do
2: if z2 ∈ N(z1) then
3: if z2 > u then
4: Enumerate g25(.)

5: else
6: Enumerate g19(.)

7: for all z1 ∈ N1(v), z2 ∈ N2(u,w) do
8: if z2 ∈ N(z1) then
9: if z2 > v then

10: Enumerate g25(.)

11: else
12: Enumerate g19(.)

13: for all z1 ∈ N1(w), z2 ∈ N2(u, v) do
14: if z2 ∈ N(z1) then
15: if z2 > w then
16: Enumerate g25(.)

17: else
18: Enumerate g19(.)

134

Algorithm 29 5GT-2uv2uv

Input: ∆(u, v, w), u < v < w, N2(u, v), N2(u,w), N2(v, w).
1: for all z1, z2 ∈ N2(u, v), z1 < z2 do
2: if z1 > w then
3: if z2 ∈ N(z1) then
4: Enumerate g26(.)
5: else
6: Enumerate g22(.)

7: for all z1, z2 ∈ N2(u,w), z1 < z2 do
8: if z2 ∈ N(z1) then
9: if z1 > w then

10: Enumerate g26(.)

11: else
12: if z1 > v then
13: Enumerate g22(.)

14: for all z1, z2 ∈ N2(v, w), z1 < z2 do
15: if z2 ∈ N(z1) then
16: if z1 > w then
17: Enumerate g26(.)

18: else
19: if z1 > u then
20: Enumerate g22(.)

135

Algorithm 30 5GT-2uv2uw

Input: ∆(u, v, w), u < v < w, N2(u, v), N2(u,w), N2(v, w).
1: for all z1 ∈ N2(u, v), z2 ∈ N2(u,w) do
2: if z2 ∈ N(z1) then
3: if z1 > w then
4: Enumerate g27(.)

5: else
6: Enumerate g24(.)

7: for all z1 ∈ N2(u, v), z2 ∈ N2(v, w) do
8: if z2 ∈ N(z1) then
9: if z1 > w then

10: Enumerate g27(.)

11: else
12: Enumerate g24(.)

13: for all z1 ∈ N2(u,w), z2 ∈ N2(v, w) do
14: if z2 ∈ N(z1) then
15: if z1 > v then
16: Enumerate g27(.)

17: else
18: Enumerate g24(.)

136

Algorithm 31 5GT-u3uvw

Input: ∆(u, v, w), u < v < w, N1(u), N1(v), N1(w), N3(u, v, w).
1: for all z1 ∈ N1(u), z2 ∈ N3(u, v, w) do
2: if z2 ∈ N(z1) then
3: if z2 > v then . Allow z2 < w
4: Enumerate g26(.)

5: else
6: Enumerate g23(.)

7: for all z1 ∈ N1(v), z2 ∈ N3(u, v, w) do
8: if z2 ∈ N(z1) then
9: if z2 > v then . Allow z2 < w

10: Enumerate g26(.)

11: else
12: Enumerate g23(.)

13: for all z1 ∈ N1(w), z2 ∈ N3(u, v, w) do
14: if z2 ∈ N(z1) then
15: if z2 > w then . To avoid double counting
16: Enumerate g26(.)

17: else
18: Enumerate g23(.)

Algorithm 32 5GT-2uv3uvw

Input: ∆(u, v, w), u < v < w, N2(u, v), N2(u,w), N2(v, w), N3(u, v, w).
1: for all z1 ∈ N2(u, v), z2 ∈ N3(u, v, w) do
2: if z2 /∈ N(z1) then
3: if z1 > w and z2 > w then
4: Enumerate g26(.)

5: for all z1 ∈ N2(u,w), z2 ∈ N3(u, v, w) do
6: if z2 /∈ N(z1) then
7: if z1 > w and z2 > w then
8: Enumerate g26(.)

9: for all z1 ∈ N2(v, w), z2 ∈ N3(u, v, w) do
10: if z2 /∈ N(z1) then
11: if z1 > w and z2 > w then
12: Enumerate g26(.)

137

Algorithm 33 5GT-3uvw3uvw

Input: ∆(u, v, w), u < v < w, N3(u, v, w).
1: for all z1, z2 ∈ N3(u, v, w), z1 < z2 do
2: if z2 ∈ N(z1) then
3: if z1 > w then
4: Enumerate g29(.)

5: else
6: Enumerate g28(.)

Algorithm 34 5GW1-uu

Input: ∠1(v, u, w), with u < v < w, and N1(u).
1: for all z1, z2 ∈ N1(u), z1 < z2 do
2: if z2 /∈ N(z1) then
3: if z1 > w then
4: Enumerate g11(.)

Algorithm 35 5GW1-uv

Input: ∠1(v, u, w), with u < v < w, and N1(u), N1(v), N1(w).
1: for all z1 ∈ N1(u), z2 ∈ N1(v) do
2: if z2 /∈ N(z1) then
3: if z1 > w then
4: Enumerate g10(.)

5: for all z1 ∈ N1(u), z2 ∈ N1(w) do
6: if z2 /∈ N(z1) then
7: if z1 > v then
8: Enumerate g10(.)

Algorithm 36 5GW1-vw

Input: ∠1(v, u, w), with u < v < w, and N1(v), N1(w).
1: for all z1 ∈ N1(v), z2 ∈ N1(w) do
2: if z2 ∈ N(z1) then
3: if z2 > u and z1 > u then
4: Enumerate g15(.)

5: else
6: Enumerate g9(.)

Algorithm 37 5GW1-u2vw

Input: ∠1(v, u, w), with u < v < w, and N1(u), N2(v, w).
1: for all z1 ∈ N1(u), z2 ∈ N2(v, w) do
2: if z2 /∈ N(z1) then
3: Enumerate g16(.)

138

Algorithm 38 5GW1-v2uw

Input: ∠1(v, u, w), with u < v < w, and N1(v), N1(w), N2(u,w), N2(u, v).
1: for all z1 ∈ N1(v), z2 ∈ N2(u,w) do
2: if z2 /∈ N(z1) then
3: if z2 > w then
4: Enumerate g13(.)

5: for all z1 ∈ N1(w), z2 ∈ N2(u, v) do
6: if z2 /∈ N(z1) then
7: if z2 > v then
8: Enumerate g13(.)

Algorithm 39 5GW1-2vw2vw

Input: ∠1(v, u, w), with u < v < w, and N2(v, w).
1: for all z1, z2 ∈ N2(v, w), z1 < z2 do
2: if z2 /∈ N(z1) then
3: if z1 > u and z2 > u then
4: Enumerate g20(.)

Algorithm 40 5GW2-vv

Input: ∠2(u, v, w), with u < v, and u < w; N1(v).
1: for all z1, z2 ∈ N1(v), z1 < z2 do
2: if z2 /∈ N(z1) then
3: if z1 > w then
4: Enumerate g11(.)

Algorithm 41 5GW2-uv

Input: ∠2(u, v, w), with u < v, and u < w; N1(u), N1(v), N1(w).
1: for all z1 ∈ N1(v), z2 ∈ N1(u) do
2: if z2 /∈ N(z1) then
3: if z1 > w then
4: Enumerate g10(.)

5: for all z1 ∈ N1(v), z2 ∈ N1(w) do
6: if z2 /∈ N(z1) then
7: if z1 > u then
8: Enumerate g10(.)

Algorithm 42 5GW2-uw

Input: ∠2(u, v, w), with u < v, and u < w; N1(u), N1(w).
1: for all z1 ∈ N1(u), z2 ∈ N1(w) do
2: if z2 /∈ N(z1) then
3: Enumerate g9(.)

139

Algorithm 43 5GW2-v2uw

Input: ∠2(u, v, w), with u < v, and u < w; N1(v), N2(u,w).
1: for all z1 ∈ N1(v), z2 ∈ N2(u,w) do
2: if z2 /∈ N(z1) then
3: Enumerate g16(.)

Algorithm 44 5GW2-u2vw

Input: ∠2(u, v, w), with u < v, and u < w; N1(u), N1(w), N2(v, w), N2(u, v).
1: for all z1 ∈ N1(u), z2 ∈ N2(v, w) do
2: if z2 /∈ N(z1) then
3: if z2 > w then
4: Enumerate g13(.)

5: for all z1 ∈ N1(w), z2 ∈ N2(u, v) do
6: if z2 /∈ N(z1) then
7: if z2 > u then
8: Enumerate g13(.)

Algorithm 45 5GW2-2uw2uw

Input: ∠2a(u, v, w), with u < v, and u < w; N2(u,w).
1: for all z1, z2 ∈ N2(u,w), z1 < z2 do
2: if z2 /∈ N(z1) then
3: if z1 > v and z2 > v then
4: Enumerate g20(.)

140

Appendix C

Directed 4-node Graphlets

In this appendix, we compute the number of types of directed 4-node graphlets.

We use Burnside’s Lemma (see for example https://en.wikipedia.org/wiki/Burnside’

s_lemma) to derive our results. It states that the number of orbits (or distinct objects)

is equal to

|X/G| = 1

|G|
∑
g

|Xg| (C.1)

where X is the set of all possible configurations, and G is the symmetry group. Here,

Xg is the subset of X that is left invariant by the operation g ∈ G.

C.1 Directed 3-path

For the three path (g3)

M

aside from the identity or the null symmetry, there is only one symmetry, which is

the mirror symmetry (M) with respect to the dashed line above. Thus, we have G =

https://en.wikipedia.org/wiki/Burnside's_lemma
https://en.wikipedia.org/wiki/Burnside's_lemma

141

{Id,M}, so |G| = 2. With 3 links and 3 possible link types, we have |X| = 33 = 27.

Counting the invariant configurations, we have
∣∣X Id

∣∣ = 27 and
∣∣XM

∣∣ = 3. The three

configurations that are invariant under M are

,

,

.

Thus, for the 3-path, the number of non-isomorphic directed graphs is

|X/G| = 1

2
(27 + 3) = 15

C.2 Directed 3-star

For the 3-star (g4)

M1

M2

M3

the symmetry group is G = {Id, R120, R240,M1,M2,M3} where Rx is rotation over x

degrees, and Mx is mirror operation that exchanges the two nodes other than the x

node. Thus, |G| = 6. With 3 links, we have |X| = 33 = 27. We have,∣∣X Id
∣∣ = 27∣∣XR120
∣∣ =

∣∣XR240
∣∣ = 3∣∣XM1

∣∣ =
∣∣XM2

∣∣ =
∣∣XM3

∣∣ = 9.

Thus, for 3-start,

|X/G| = 1

6
(27 + 3 + 3 + 9 + 9 + 9) = 10

142

C.3 Directed 4-cycle

For 4-cycle (g5)

MV

MH

MD1MD2

we have |X| = 34 = 81. The symmetry group is

G = {Id, R90, R180, R270,MV ,MH ,MD1 ,MD2}, where MV (MH) is the mirror symme-

try with respect to the vertical (horizontal) axis, and MD1 and MD2 are the mirror

symmetry with respect to the two diagonal axes. We can check that there is no other

symmetry by making sure that G satisfies the closure property. Thus, |G| = 8. We

have the following:∣∣X Id
∣∣ = 81∣∣XR90
∣∣ =

∣∣XR270
∣∣ = 3∣∣XR180

∣∣ = 9∣∣XMV
∣∣ =

∣∣XMH
∣∣ = 3∣∣XMD1

∣∣ =
∣∣XMD2

∣∣ = 9

Thus, for 4-cycle,

|X/G| = 1

8
(81 + 3 + 3 + 9 + 3 + 3 + 9 + 9) = 15

C.4 Directed tailed-triangle

Attaching a tail to a triangle breaks the triangle symmetry, and we are left with

only one mirror symmetry, M, as shown below

143

M

So, for tailed-triangle (g6) the symmetry group is G = {Id,M}. hence |G| = 2. We

have |X| = 34 = 81,
∣∣X Id

∣∣ = 81, and
∣∣XM

∣∣ = 9. Thus, for a tailed triangle,

|X/G| = 1

2
(81 + 9) = 45

C.5 Directed diamond

For diamond (g7)

MV

MH

there are two mirror symmetries, which we denote by MV and MH . We also have one

rotational symmetry over 180 degrees. Thus, G = {Id, R180,MV ,MH}, hence |G| = 4.

We have |X| = 35 = 243, and∣∣X Id
∣∣ = 243,∣∣XR180
∣∣ = 9,∣∣XMH
∣∣ = 9,∣∣XMV
∣∣ = 27,

144

Thus, for diamonds, we have

|X/G| = 1

4
(243 + 9 + 9 + 27) = 72

C.6 Directed 4-clique

For 4-clique (g8)

it is no longer easy to see all of the symmetries geometrically, at least not with only

one picture. This graphlet can also be drawn differently, as

which indicates different symmetries (i.e., double transpositions and four-cycles).

The symmetry group is the permutation group of four objects, S4 (https://en.

wikiversity.org/wiki/Symmetric_group_S4).

There are 24 members of this group: the identity, eight 3-cycles, six transpositions,

three double transpositions, and six 4-cycles. There are 6 links in a clique, leads to

|X| = 36 = 729 =
∣∣X Id

∣∣.
For each of the transpositions (swapping a pair of nodes) |Xg| = 27,

for each of the double transpositions |Xg| = 9,

https://en.wikiversity.org/wiki/Symmetric_group_S4
https://en.wikiversity.org/wiki/Symmetric_group_S4

145

for each of the 3-cycles |Xg| = 9, and

for each of the 4-cycles |Xg| = 3.

Thus, for 4-clique, we have

|X/G| = 1

24
(729 + 6 ∗ 27 + 3 ∗ 9 + 8 ∗ 9 + 6 ∗ 3) = 42

	Supervisory Committee
	Abstract
	Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	Introduction
	Theoretical Background
	Graphs and Digraphs
	Graph Representations
	Subgraphs and Subgraph Patterns
	Wedges, Triangles, and Triads
	Cliques
	Graphlets
	Orbits and GDV
	Induced and Non-Induced Subgraphs

	Related Works
	Triangles
	Triads
	Graphlets
	Cliques
	Distributed Enumeration

	Undirected Graphlet Enumeration
	Triangles
	Algorithms
	Analysis
	Experiment

	Four-Node-Graphlets
	Algorithm
	Analysis
	Experiment

	Five-Node Graphlets
	Idea
	Algorithm
	Analysis
	Experiment

	GDV
	Beyond 5 Nodes

	Directed Graphlets Enumeration
	Directed Triangles
	Algorithms
	Analysis
	Experiment

	Triads
	Algorithm
	Experiment

	Directed Graphlets

	Distributed Enumeration
	Graph Partition and Subproblems
	Distributed Four-node Graphlet Enumeration
	Previous Distributed Enumeration
	Generalized Color-Direction
	S4GE with Color Direction
	Compact-Forward for 4-clique listing
	Analysis
	Experiment
	Discussion

	Distributed Triad Enumeration
	Experiment

	Future Work
	Larger Directed Graphlets
	 5-node Graphlet Enumeration
	Larger Order Graphlets
	Probabilistic Graphlets
	Typed and Labeled Graphs

	Conclusion
	Bibliography
	Graph Datasets
	Directed Graph Datasets
	Undirected Graph Datasets

	Algorithms for 5-node Graphlet Enumeration
	Directed 4-node Graphlets
	Directed 3-path
	Directed 3-star
	Directed 4-cycle
	Directed tailed-triangle
	Directed diamond
	Directed 4-clique

