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Abstract

Biosystem variations may occur as a consequence of climate change. Analysis of
both modern and paleo-proxy climate data indicates several places on Earth that
show biosytem variations possibly resulting from changes in climate. In this thesis, a
global land cover classification data set is used to partition the globe into seven re-
gions to study surface temperature changes over different vegetation/surface classes.
Statistically significant warming is found from the year 1900 over all regions (except
for the ice sheets over Greenland and Antarctica). Outputs from three coupled cli-
mate models (CGCM2, HadCM2 and Parallel Climate Model) are then adopted to
examine the detection and attribution of surface temperature trends over the vari-
ous vegetation classes for the past half century. An anthropogenic warming trend is
detected in six of the seven regions, which means that anthropogenic activities may
have caused detectable influences in the regional surface temperature changes of the
past half century. Observed trends are consistent with those simulated in response
to greenhouse gas and sulphate aerosol forcing except over tropical forest and water
where the models overestimate the warming. The similarity between the resultant
scaling factors for each region from the different models underscores the reliability of

our detection results.
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Chapter 1

Research Background and Study Mo-

tzvation

1.1 Climate change in the 20th and 21st century

1.1.1 Observed changes in surface air temperatures during

the 20th century

In the past few years, intense disasters such as floodings, droughts and heat waves have
occurred all over the world. The general public naturally associates these extreme
climate and weather events with global warming since global warming has been one of
the most attention-grabbing scientific phenomenon. From a scientific point of view,
the consequences of global warming are still uncertain.

IPCC Third Assessment Report (TAR) (Folland et al. 2001) reports that globally-
averaged instrumental records of surface temperatures show increases estimated to
be 0.4 — 0.8°C since the late 19th century to the year 2000 (Figure 1.1 (c)). This
warming is very unusual compared with the past 1000 to 2000 years of variation
shown by proxy temperature data, which are reconstructed from tree rings and ice
cores (Mann et al. 1999, Mann and Jones 2003). This warming trend also does not
show any sign of ceasing as we enter the 21th century. Annual land-air and sea surface
temperature anomalies (Figure 1.2), which are calculated based on the 1961 — 1990
climatology, indicate that the observed temperature anomalies after 2000 still remain
highly positive.

In the background of recent global warming trends, there are substantial spatial

and temporal variations in surface air temperatures. At the hemispheric scales, sur-
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Figure 1.1: Smoothed annual anomalies of combined land-surface air
and sea surface temperatures (°C), 1861 to 2000, relative to 1961 to 1990,
for (a) Northern Hemisphere; (b) Southern Hemisphere; and (c) Globe.
Reprint of Figure 2.7 from Folland et al. (2001).

face air temperatures show general warming trends since the start of the Industrial
Revolution in both northern and southern hemispheres (Figure 1.1 (a) and (b)). At
other planetary-scale levels, such as over land and ocean, average surface air tem-

peratures also show warming trends during the same period (Folland et al. 2001).
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Figure 1.2: Time series of the globally averaged annual mean tempera-
ture anomalies from 1861 to 2004. Smooth curve is a ten-point binomial
filter with “padded ends”. Original data are available on http://www.met-
office.gov.uk/research /hadleycentre/obsdata/.

In smaller regions, a surface cooling may exist. Giorgi (2002) examined monthly
surface air temperatures from the CRU (Climate Research Unit of the University of
East Anglia) dataset and found that the observed temperatures showed significant
warming trends throughout the 20th century over the majority of the 22 land regions
of sub-continental scale (Figure 1.3). The exceptions were central America, eastern
Africa and east Asia in summer. Another surface cooling example is from Doran
et al. (2002). Their research suggests a net continental cooling of Antarctica over the

period 1966 — 2000 based on spatial analysis of Antarctic meteorological data.

1.1.2 What causes the variations in temperature?

The temperature trends are calculated based on a collection of various local tem-
perature records from the corresponding regions. The temperature record of a place
depends on several factors (Peixoto and Oort 1992, Ahrens 1994). The most impor-

tant factor is latitude, which combines the intensity of incoming solar radiation and
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Figure 1.3: Sub-continental regions used in analysis of surface temper-
ature. Reprinted of Figure 10.1 from Giorgi et al. (2001).

the length of daylight hours. The other basic factors include the prevailing winds,
the underlying surface types such as land or ocean, the influence of ocean currents,
the local elevation, the orientation of slopes, local cloud climatology, etc.

These influencing factors determine the variation in surface air temperature dis-
tribution and may play an important role in the documented coolings at small spatial
scales that are noted above. However the atmosphere as a whole and its average
temperature at the Earth’s surface are determined by only two factors, i.e. the
intensity of the incident sunlight and the greenhouse effect of the atmosphere (Phi-
lander 1998). The atmosphere lets in the incident short-wave solar radiation. In
the greenhouse effect, the outgoing infra-red radiation from Earth can be trapped by
the greenhouse gases in the atmosphere. This process eventually warms the surface
atmosphere (Ahrens 1994). In Appendix A, I solved an idealized radiative balance
model (Philander 1998) to show the greenhouse gas effect. In this idealized system,



the surface temperature of Earth increases by about 48°C when the greenhouse effect
is considered (Appendix A.1 and A.2).

Total solar irradiance has an annual mean variation of approximately 0.08% and
is influenced by the solar cycle and other factors such as variations in the Earth’s
orbit (Ramaswamy et al. 2001). In a period as long as a century or more, but
shorter than an ice age, temperature variation due to solar radiation change may still
be small. Several studies have shown that the effect of variation in solar radiation
(combined with volcanic influences) is small on the warming of the 20th century Earth
(Folland et al. 2001). Therefore, it is reasonable to attribute a large amount of the
overall warming of surface air temperatures during the 20th century to the increase
in the concentration of greenhouse gases in the atmosphere. As for the relation
between greenhouse gases and surface temperatures, analysis of paleo-climate data
constructed from ice cores shows that during the past 400,000 years, temperature
changes are highly consistent with the concentration change of carbon dioxide (CO5)
and methane (CH4) — the most important greenhouse gases (Figure 1.4) (Petit et al.
1999).

Direct observation and ice-core air measurement shows that the concentrations
of major atmospheric greenhouse gases such as COy and CH4 have increased dra-
matically during the industrial era (Moore et al. 2001). The abundance of CO5 has
increased from a relatively constant value of 280 ppm (parts per million by volume)
in the 1700’s up to 370 ppm in the year 2000. The current methane concentration is
even further from its value before the Industrial Revolution.

Increased levels of greenhouse gases have been demonstrated by General Circu-
lation Models to be the major contributors to the recent global warming. Early
warming in the 20th century may have been influenced by solar variability and a lack
of volcanic activity (Hegerl et al. 1997, Tett et al. 1999). However Stott et al. (2000)
and Tett et al. (2000) demonstrated, through a coupled atmosphere-ocean model
HadCM3, that solar and volcanic only forcing cannot simulate the whole warming
trend (Figure 1.5 (a)). Only when well-mixed anthropogenically emitted greenhouse

gases (often represented by an equivalent increase in COs) are included, is the ob-
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Figure 1.4: Variations in temperatures, CH, and CO, concentrations
derived from air trapped within ice cores from Antarctica. Reprinted of
Figure 2.22 from Folland et al. (2001).

served warming in the 20th century explained (Figure 1.5 (b)), especially the warming

since 1976.

1.1.3 Projected changes in temperatures for the 21st century

Studies conducted with terrestrial/oceanic carbon cycle models or coupled GCM-
carbon models suggest that the change of climate and changes in CO, levels have
had substantial effects on ecosystems (Prentice et al. 2001). For example, one model
simulated that C4 grassland will partially replace the Amazon rainforest (Prentice
et al. 2001). It is of interest to estimate the possible future changes in climate and
hence determine the potential ecosystem evolution in response to this climate change.
Among all natural and anthropogenic climate-sensitive forcings such as solar forcing,
volcanic aerosol forcing, changes in greenhouse gas, sulphate aerosol, land-use, mineral
dust, black carbon, perhaps the most important one is the change in greenhouse gas
concentrations.

The simple idealized model used in Appendix A can still be used to estimate the



changes in surface temperatures forced by increased greenhouse gases. In this model,
a doubling of greenhouse gas concentrations in the atmosphere has a risk of causing
the Earth’s surface temperature to increase about 32°C. Several shortcomings of this
model make the estimated temperature extremely high (Appendix A.4).

Future climate changes until 2100 can be more realisticly assessed by compli-
cated climate models such as the Atmosphere-Ocean General Circulation Model that
includes a range of more realistic scenarios (external forcing estimations) for pro-
jected changes, mainly in greenhouse gas concentrations and sulphate aerosol loadings
(Cubasch et al. 2001). Although uncertainties exist and different models may produce
different results under various scenarios (Weaver and Zwiers 2000, Zwiers 2002), there
is still great similarity between the projections of a global warming for the near term.
The climate of such a period “results from the climate’s adjustment to changes in the
greenhouse-gas content of the atmosphere that have already occured, due to the large
thermal inertia of the oceans” and indicates that the influences of greenhouse gases
and sulphur dioxide partially offset each other (Zwiers 2002). In the long run, the
uncertainty range of the warming trend is large. In 2100, relative to 1990, projected
surface air temperature increases could range from 1.0 to 5.8°C (combined from two
ranges given in Cubasch et al. (2001), i.e. 1.0 ~ 3.5°C and 1.4 ~ 5.8°C).

The IPCC TAR concluded that “most of the warming observed over the last 50
years is attributable to human activities” (Mitchell et al. 2001). As mentioned at
the start of this section, if the substantial observed changes in ecosystems under
observed historical climate change can be linked to human activities, further changes
in ecosystems can be expected under continued anthropogenic global warming in
the future. What’s more, we may still expect anthropogenic impacts on the future

ecosystems regardless of whether these impacts have already been documented.

1.1.4 Detection and attribution of climate change

The anthropogenic influence on the Earth’s surface air temperature changes has been
intuitively analyzed in Section 1.1.2, and it can be further quantitatively studied

through a climate change detection and attribution study.

T



The observed temperature changes can result from temperature variation arising
from climate variability caused by the natural interactions between the five major
components of the climate system. They can also be the consequence of climate
changes which are driven by external mechanisms that influence one or more of the
climate system components (Hasselmann 1997). As previously mentioned in Section
1.1.3, the external forcings have both natural and anthropogenic sources. Natural
forcings include fluctuations of the solar constant and aerosol emissions to the at-
mosphere from volcanic activities. Anthropogenic forcing indicates human-activity-
driven concentration changes in atmospheric components such as greenhouse gases
and sulphate aerosols as well as changes in underlying surface conditions of the at-
mosphere due to land-use and deforestation.

The observed space-time-dependent climate variations since the late 19th century
are not believed to be generated by the ensemble of climate variability or natural
external forcing alone (Section 1.1.2). A signal detection and attribution study can
statistically distinguish, from the natural variability, the significance of the detection
of climate change signal patterns and the consistency level of climate change attri-
bution to external forcing mechanisms (Hasselmann 1993, 1997). Here, the exact
meaning of detection is “the process of demonstrating that an observed change is
significantly different than that which can be explained by natural internal variabil-
ity”; attribution is the process of attributing a detected climate change signal to the
involved external forcings (Mitchell et al. 2001).

In the IPCC TAR, climate change detection and attribution studies have mainly
concentrated on the global scale, with the issue of regional-scale detection still in its
infancy (Mitchell et al. 2001). Several global climate change detection and attribution
studies have been conducted. Tett et al. (1999), Stott et al. (2001) and Mitchell
et al. (2001) found that the anthropogenic emitted greenhouse gases and tropospheric
sulphate aerosols have had a detectable effect on surface air temperatures in the latter
half of the 20th century. The research of Barnett et al. (2001) and Levitus et al. (2001)
suggests a consistency between the observed ocean heat-content changes of the past

half century and those that are simulated by coupled climate models in response



to anthropogenic forcing. Gillett et al. (2003) found that anthropogenic greenhouse
gases and sulphate aerosols have had a detectable influence on sea-level pressure over
the second half the 20th century. Similar climate change detection and attribution
studies can also be found in Hegerl et al. (1997), Hegerl et al. (2003) and Hegerl et al.
(2004).

Regional-scale detection remains difficult because signal to noise ratios diminish
with scale (Stott and Tett 1998). Recently, however, a number of studies concerning
the potential impact of climate change on smaller scales have appeared. Through
the analysis of indices of several continental patterns, Karoly et al. (2003) found
that the observed 1950-1999 North American surface temperature trend is consistent
with the modelled response associated with anthropogenic changes in greenhouse
gases and sulphate aerosols. In addition, the combined influence of anthropogenic
greenhouse gas and sulfate aerosol forcing on surface temperature changes was found
to be detectable on the continental scale for the second half of 20th century (Zwiers
and Zhang 2003). Stott (2003) also found that an increasing surface temperature
trend due to greenhouse gases could be detected in six continental regions. Zhang
et al. (2005) found clear detectable anthropogenic forcing effects in nine spatial regions
from global scale to country-wide (such as southern Canada and China). Finally,
Gillett et al. (2004a) demonstrated that anthropogenic greenhouse gases and sulphate
aerosols have had a detectable influence on fire-season warming of the Canadian forest
region, while Karoly and Wu (2005) detected anthropogenic warming trends over

many parts of the globe at scales of 500 km.

1.2 Research motivation

The purpose of this research is to quantitatively understand the anthropogenic in-
fluence on recent surface temperature changes at regional scales through a detection
and attribution study. The regions used here are divided based on the biome features
of the surface types of the region.

It is well known that different land surface types can affect climate in a variety of



ways, perhaps the most important being their effects on surface albedo, evapotranspi-
ration, and the terrestrial carbon cycle. In addition, the regional biomass distribution
is known to respond to, as well as feed back upon, climate change. Paleo-proxy records
and paleoclimate modelling studies have been particularly helpful in assessing such
vegetation responses and feedbacks (McAvaney et al. 2001, Meissner et al. 2003).
Over long periods, climate change can cause important changes in the geographic
distribution and abundance of major land cover types and animal habitats (Melillo
1999, Parmesan and Yohe 2003, Thomas et al. 2004). Hughen et al. (2004), for exam-
ple, found a rapid shift between arid grassland and wet forest in the Cariaco region
during deglacial high-latitude North Atlantic climate oscillations. Meta-analysis con-
ducted by Root et al. (2003) has also revealed a discernible trend in the population of
both animals and plants as a consequence of climate warming over the past century.
O’Reilly et al. (2003) provided further evidence that climate warming has the poten-
tial to modify aquatic biota and ecosystems through its influence on the stability of
the water column and hence nutrient transport.

Temperature changes over different biotic regions play an important role in climate
impacts and feedbacks within the climate system. For example, the atmospheric
methane concentration has a close relationship to the atmospheric temperature record
(Wuebbles and Hayhoe 2001), and the emission of methane from melting tundra
increases in association with surface warming of this region. Different biota also
respond to surface temperature changes through different mechanisms. As such, the
analysis of simulated and observed changes over these separate regions may enhance
our understanding of biotic feedbacks operating within the climate system. Since
temperature changes over specific biome regions have not been systematically studied,
it is necessary to systematically study how the observed surface temperatures change
over major biome regions. It is also necessary to determine if the observed change
(signal) in the past century is significantly different from that which can be explained
by natural climate variability and to study if the anthropogenic activities have caused

detectable effects in these regional temperature changes.

10



1.3 QOwutline of the research

In Chapter 1, we learned that there is an unusual global surface temperature warming
from the start of the Industrial Revolution. There is a very high probability that this
unusual warming largely results from the increase in the abundance in anthropogenic
emitted greenhouse gases to the atmosphere. However, changes in surface air temper-
atures on regional scales show both warming and cooling trends. We also learned that
there is substantial evidence to show that the Earth’s ecosystem responds to changes
in its surrounding climate, especially changes in temperature. Temperature changes
over specific biome regions have not been systematically studied. Therefore, in Chap-
ter 2, temperature conditions over specific biome regions will first be systematically
examined and assessed for significant warming or cooling trends over the major biotic
regions on Earth.

To understand whether these observed temperature changes are a result of natural
internal variability of the climate system, or due to external forcings, Chapter 3 is
dedicated to an investigation of the influence of anthropogenic emitted greenhouse
gases and sulphate aerosols on regional temperature changes. A detection and attri-
bution study is conducted to examine if the anthropogenic emission of the combined
greenhouse gases and sulphate aerosols or the greenhouse gases alone have had a
detectable influence on the regional temperature changes of the second half of the
20th century. In this section, there is also a comprehensive discussion of the optimal

fingerprinting method.

11
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Figure 1.5: Global mean surface temperature anomalies relative to the
1880 to 1920 mean from the instrumental record, compared with ensembles
of four simulations with a coupled ocean-atmosphere climate model invol-
ing (a) solar and volcanic forcing only, (b) anthropogenic forcing including
well mixed greenhouse gases, changes in stratospheric and tropospheric
ozone and the direct and indirect,_ effects of sulphate aerosols, and (c) all
forcings, both natural and anthropogenic. Reprinted from Figure 12.7 in
Mitchell et al. (2001).
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Chapter 2

Climate Change over Different Land

Surface Vegetation Classes

2.1 Partitioning of land surface types

In this thesis, the National Aeronautics and Space Administration (NASA), Interna-
tional Satellite Land Surface Climatology Project (ISLSCP), and Global Data Sets for
Land-Atmosphere Models (GDSLAM) vegetation class data set (DeFries and Town-
shend 1994) is adopted as the basis to define the biotic regions. The NASA-ISLSCP-
GDSLAM-Vegetation class dataset describes the geographic distribution of 16 major
land cover typés on a 1°x1° (latitude x longitude) grid, based on data collected in
1987 (upper panel of Figure 2.1). Though the c4 grassland is named as a surface
type, its distribution is not included in the dataset, thus, the original dataset only
includes 15 kinds of surface types. In addition, sea ice is not identified separately,
but rather was included in global water.

Allowing for the analysis of climate change on scales sufficiently large to allow
regional scale climate change detection, the original 15 surface types are re-grouped
into seven larger different types (Table 2.1): (1) water (including sea ice), (2) tropical
forest (including subtropical forest), (3) temperate forest,(4) bare ground (including
desert, bare ground, and grassland), (5) tundra, (6) cultivated land, and (7) conti-
nental ice (bottom panel of Figure 2.1). As the purpose of this thesis is to analyze
regional temperature changes, when defining the subregions, a major consideration
is the latitude and spatial continuity of the candidate smaller surface classes. Some
other features are also considered, but generally it is not possible to consider all influ-

encing factors. For example, when groﬂuping shrubs, desert, bareground, c¢3 wooded



Table 2.1: Partitioning of 16 land surface classes, as identified by NASA-
ISLSCP-GDSLAM-Vegetation class dataset, into 7 re-grouped classes

Original surface | Original surface Re-grouped surface | Re-grouped
class number | class type class type number
0 Water Water 1
1 Broadleaf forest Tropical forest 2
2 Broadleaf deciduous
6 Forest and woodland
7 Wooded c4 grassland
g Mixed coniferous Temperate forest 3
&broadleaf deciduous
4 Coniferous forest
&woodland
5 High latitude deciduous
9 Shrubs and bareground | Bare ground 4
11 Desert and bareground
14 C3 wooded grassland
15 C3 grassland
i Tundra Tundra B
12 Cultivated land Cultivated land 6
15 Ice Continental ice 7
8 C4 grassland P —

grassland and c3 grassland together, both the spatial continuity and similar albedos

are considered, while the surface roughness and evapotranspiration have been ignored.

2.2 Analysis of regional surface air temperature

changes

The surface air temperature trends over the seven broad classes defined in Section 2.1
were analyzed using the variance-adjusted 1870 — 2004 monthly mean surface temper-
ature anomaly dataset (HadCRUT2v — Jones et al. (2001)) with a spatial resolution
of 5°x5° (latitude x longitude). This monthly dataset provides temperature anoma-
lies relative to 1961 — 1990. The latitudes and longitudes of the grid points for the

temperature data coincide with those of surface cover type data on every 5°x5° grid.
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Fifteen Biotic Regions of the Global Surface
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Figure 2.1: Upper: Distribution of original 15 surface types in the
NASA-ISLSCP-GDSLAM-Vegetation class dataset. Bottom: Re-grouped
seven subregions based on different vegetation/surface types.

Since the value of the temperature anomaly on each point represents the average
temperature anomaly of the whole 5°x5° area around this point, all 25 of the 1°x1°
vegetation grid boxes in this area were assigned the same temperature anomaly as the
center point. In this way there was a corresponding temperature anomaly record for
each vegetation box. Figure 2.2 shows that the re-allocated 1°x1° temperature dis-
tribution (bottom panel) is virtually identical to the 5°x5° temperature distribution
(upper panel).

Area-weighted, annual-mean temperature anomalies were calculated for each of
the seven biotic regions. The weighting coefficient at the corresponding latitude is

given by cosf, where 6 is the latitude (in radians). The temperature anomaly for
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Average Surface Air Temperature using 5*5 Grid

Figure 2.2: An example of decadal average surface air temperature
anomalies using 5°x5° (latitude x longitude) box (upper) and 1°x1° (lati-
tude x longitude) box (lower) for 1986 — 1996 dataset.

a specific grid box was treated as missing if even one month within the year was
missing at this grid. An ordinary least squares fit regression analysis was applied to
estimate the linear trends of temperature over these regions from the start of the 20th

century and from the mid-20th century. A student’s t-test was applied to test the
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Table 2.2: Autocorrelation coefficients of the 7 regional surface air tem-
perature anomalies for the time series lag-1, lag-2, lag-3

Surface class | Surface class lag-1 | lag-2 | lag-3
number type
1 Water 0.65 | 0.38 | 0.36
2 Tropical forest 048 | 0:17 | 0.22
3 Temperate forest || 0.14 | 0.14 | -0.04
4 Bare ground 0.58 | 0.44 | 0.40
5 Tundra 018 | 817 | Qi1
6 Cultivated land 0.31 | 0.14 | 007
7 Continental ice 0.56 | 0.42 | 0.38

null hypothesis that the temperature trends were not changing during the period of
examination (von Storch and Zwiers 1999).

The autocorrelation coefficients of the seven regional surface air temperature
anomalies indicate that the regional mean temperature time series do not behave as
white noise (Table 2.2) (von Storch and Zwiers 1999). The lag-1 year, lag-2 year, and
lag-3 year autocorrelations are significantly different than zero indicating that the
annual mean temperature anomaly is quite persistent. Thus, when estimating the
95% confidence intervals, an effective sample size N, = n(1 — p)/(1 + p) is assumed,
where n is total years of observations and p is the lag-1 autocorrelation coefficient
of annual anomalies. Assuming the process is auto-regressive (AR-1) is reasonable
— the estimated effective sample N, size is reduced a bit since the lag-1 correlation
coefficient is a bit bigger due to external forcings. Tests using a smaller number of
effective degrees of freedom will be more conservative (personal communication with
Francis Zwiers).

The regression coefficients, which are given in Table 2.3, reflect a general warming
trend from 1900 to 2004 over all regions, with warming trends being even greater over
the period from 1950 to 2004. No significant warming trend was observed over the
continental ice sheet region during either time period. The warming trends in the

other six surface classes were found to be statistically significant at the 5% significance



Table 2.3: Regression coefficients for regional surface temperature
trends over two 20th century time periods

Surface class | Surface class 1900 — 2004 | P-value || 1950 — 2004 | P-value
number type

1 Water 0.67£0:16 | <0.05 0.774£0.38 | <0.05
2 Tropical forest 0.61£0.19 <0.05 1.1240.43 <0.05
3 Temperate forest | 1.07£0.29 | <0.05 2.26+0.64 | <0.05
4 Bare ground 0.87£0.26 <0.05 1.8640.50 <0.05
5 Tundra 0.951+0.41 <0.05 1.98+0.84 | <0.05
6 Cultivated land 0.72+0.21 <0.05 1.37+0.57 | <0.05
7 Continental ice 0.15+0.97 0.75 0.33=£0.77 0.39

The amplitude of the surface temperature trends (°C/100yr) for the periods from
1900 to 2004 and from 1950 to 2004; £95% confidence intervals and the P-values for
trend tests in the seven biotic classes.

level. As shown in Table 2.3, the P-values for each of these six regions all meet the
threshold 0.05. For these six regions, there is strong evidence in support of the
warming trends for both periods of study. The warming trends increased in the
second half of the 20th century (Figure 2.3). The greatest warming happened over
tundra and the temperate forest region and these trends are more apparent from 1950
onward. This is consistent with Giorgi et al. (2001) whose results suggest that nearly
all land areas warm more rapidly than the global average, especially at high latitudes.
The high latitude land region warming in the cold season plays an important role in
its annual change (Giorgi et al. 2001), but seasonal changes are not a concern in this
thesis. Furthermore, the warming in the water region is smaller than over the land
areas during this period, as expected from the high heat capacity of water relative to
land.

Though the trends over all regions are constant, generally, the uncerainty in the
continental region is too large to determine whether the trend is significant at the
region. The smaller the fraction of the total number of 1°x1° boxes that is used
to calculate trend for that region, the larger the sampling variability in the regional
mean temperature is. This can be clearly reflected by the largest uncertainties in the

continental ice region. Although the area of the continental ice region is much larger
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than some of the other regions, the available instrumental records that can be used to
do temperature trend analysis are always less than those of the other regions due to
the scarce observation in this region. The fractions of the available data in all regions
increase with time as more and more instrumental observations are available.

There is a period of cooling from 1946 to 1975 in all regions except bare ground
(Figure 2.4). These regional coolings are generally consistent with the global changes
of the same period. The global cooling of this period can be reproduced with climate
models only when natural forcing mechanisms are also included in addition to the
greenhouse gas and sulphate aerosol concentration changes in climate simulations of
the 20th century (Figures 1.5 (c)). Therefore natural factors such as solar or volcanic
activities may play an important role in the regional cooling shown in Figure 2.4.
In addition, cooling in the continental ice region during the period 1930 — 1975 was
found to be statistically significant (-0.31£0.12°C/decade) with the 95% confidence
interval. Unfortunately, it is still unclear whether aggregation of station data over
the continental ice region into 5°x5° boxes is credible in light of the very sparse data

available to compute the spatial average over the whole region.
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Figure 2.3: Surface warming trends in 6 of 7 biotic regions, as shown
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time periods.
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Figure 2./: Regional-average surface cooling from 1946 to 1975 in five
biotic regions as shown by temperature anomaly data and linear trend
lines for 1946 to 1975. Regional-average surface cooling from 1930 to 1975
over the continental ice region.
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Chapter 3

Detection and Attribution Analysis
of Regional Climate Change Using
Optimal Fingerprinting

3.1 Introduction

In this section, a detection and attribution analysis using optimal fingerprinting is car-
ried out to quantitatively examine the response of the observed temperature changes
to anthropogenic greenhduse gases and sulphate aerosols.

According to the definitions of climate change detection and attribution given in
Section 1.1.4, we need to separate climate variability and the climate changes from the
mean climate state. Therefore, I will first provide a brief introduction regarding the
process of this separation, and illustrate how climate variability and climate changes
affect the quantitative detection and attribution analysis.

A quantitative detection and attribution analysis requires the exact space-time
structure of climate variability and climate changes (Hasselmann 1997). In practice,
a spatially and temporally continuous climate trajectory U can be decomposed into a
finite dimensional phase space with dimensions mxnxt, where m is the total number
of latitudes, n is the total number of longitudes, and ¢ indicates the total number of
time repetitions. Due to this huge dimension, the space-time covariance structure of
natural variability is difficult to be estimated. An EOF representation of U can be
adopted to effectively diminish the dimension and to filter minor variations which only

contribute “noise” for a climate change detection and attribution study (Hasselmann



1997, Hegerl et al. 1997).

The task of detection and attribution studies is to determine whether the observed
climate change signal is internally generated by the climate system itself or forced
by one of the various external factors. For this purpose, we are going to assume
internal climate variability and the responses to the various external forcings con-
tribute linearly to observed climate change. It has been shown acceptable at least
for greenhouse gas and aerosol forcing to introduce linear assumptions (Santer et al.
1995, Gillett et al. 2004b, Hasselmann 1993, 1997, 1998, Hegerl et al. 1997, Allen and
Tett 1999, Allen and Stott 2003) for U such that

U™ L e U 4 U, (3.1)

where UY?" is internal climate variability (also called noise) and Uh? is climate change
(also called signal) caused by the it* (i = 1,2,..., k) external forcing mechanism. So
far, these linear accumulations ignore two kinds of nonlinear interactions: nonlinear
interactions between climate variability and climate change, and nonlinear interac-
tions between different climate changes. The k climate change signals are generally
additive, while in practice the response to different forcing patterns computed by a
given model can be quite similar (Hegerl et al. 1997, North and Stevens 1998, Tett
et al. 1999, Mitchell et al. 2001). For example, the simulated spatial pattern of the
greenhouse gases forcing might be similar to that of the sulphate aerosol forcing, al-
though the amplitudes of these responses would be different, and the responses could
well be of opposite sign (positive in the case of greenhouse gases forcing and negative
in the cases of aerosol forcing). For a successful detection, Hasselmann (1997) indi-
cated that k£ should not be greater than three. When discriminating a climate change
signal in the observed data, the significance of the signal decreases as the dimension
of the problem increases (Bell 1986). Based on prior knowledge regarding the physical
mechanism of the influences, the main anthropogenic influences expected to have the
largest influence on the climate system are greenhouse gases and aerosol emissions,

deforestation, and land-use changes. Also note that the chosen U for detection and
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attribution studies need not be a “dynamically integrated” climate state, although
this might reduce detection power (Hasselmann 1993). Surface temperature, vertical
temperature, precipitation, and other variables or indices have been individually used
for this study in recent years.

To complete the detection and attribution analysis, the following components
are necessary: observations, externally forced climate changes, and climate internal
variability. The externally forced climate state and internal variability need to be
simulated from climate models (simple models or GCMs). It may not be appropriate
to estimate climate variability from observed records because currently available in-
strumental data might not be long enough (less than 150 years) to cover variability
at all time scales, and their spatial coverage is limited. It is also hard to accurately
exclude potential externally forced climate changes from the observations. Paleo-
climate proxy data restructed from tree rings, coral records, and ice cores are also
not suitable for estimating climate variability, the reason is that the proxy data are
sparsely scattered on Earth and largely indicator of local climate variations (Barnett
et al. 1999).

Figure 3.1 illustrates the relationship between climate variability and climate
change signals in a two-dimensional vector space. As indicated, once the end point of
U (or U™ starting from end point of U#) lies in the consistency ellipse of U,
the retrieved climate change signal is said to be consistent with (caused by) U,
in that there is no detectable climate change in the observation. If UP™ lies outside
of the consistency region of UY" then it implies that a climate change due to the
external forcing is detected. If the observation lies in the consistency region of UPrd
(not consistent with climate change forced by other sets of external factors) and out
of consistency region of U"%", the observed climate change is then attributed to this
forcing mechanism.

Figure 3.2 shows five outcomes for these three vectors (or more than three, if
more externally generated climate state are included) based on the above determin-
istic judgment of detection and attribution (Hasselmann 1997). Their quantitative

relationships can be revealed by projecting U°* onto UP" space (Allen and Tett 1999,
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retrieved climate change
chn
predicted climate change

Figure 3.1: Climate internal variability (noise) U"", observed climate
state U, and model simulated climate state U?"¢ forced by some external
forcing mechanism. Ellipses indicate regions consistent with respective

inner vectors. This vector representation is an extension of Hasselmann
(1997).

Mitchell et al. 2001, Stott et al. 2001, Allen and Stott 2003). In Case 1 of Figure 3.2,
U is not consistent with U"%", there is a detected climate change in the observation
and 3 > 0 (for a definition of 3, see Section 3.2); U* is not consistent with the signal
forced by the external mechanism — 3 is inconsistent with 1. In Case 2 of Figure 3.2,
U is not consistent with UY%", 8 > 0; it is consistent with predicted climate change
forced by external mechanism-1, but not consistent with all other responses to ex-
ternal mechanisms other than mechanism-1, therefore, an attribution of the observed
climate change to mechanism-1 is declared. In Case 3 of Figure 3.2, the detected
observed climate change (not consistent with U"*", § > 0) is consistent with more
than one external forcing mechanisms, thus, no attribution can be declared. In Case
4 of Figure 3.2, U is consistent with both U"%" and UP™?, the confidence region of 3
includes both 0 and 1, there is neither detection nor attribution evidence. In Case 5 of
Figure 3.2, U is consistent with U"%", but not consistent with any externally forced

signals, or predictions and the observation have opposite directions; 3’s confidence
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region includes 0, or upper limit of (3 is less than 0. Given that model system errors
have been ignored then all uncertainties about the structure and magnitude will come
from internal variability, i.e. from model control simulation. Therefore, the predicted
climate change signal will be assumed to be realistic (Hasselmann 1993, Hegerl et al.
1997). In addition, the influence of measurement errors in detection analysis has been
shown to be small (Hegerl et al. 2000). Therefore, each set of analysis shows a distri-
bution of internal variability, (assumed to be Gaussian or other known distributions)
(Hegerl et al. 1997, Allen and Stott 2003). The confidence limits for estimated climate
change signals can thus be determined.

* casel: detected, not attributed case2: detected, attributed tomechanism-1

A o ] Beos%)

1 Beesw)

retrieved climate change
yetn
predicted climate change

case 5: not detected,
or wrong direction

uobu

Figure 3.2: Vectors and shadows have the same meaning as in Figure
3.1, the vertical bar on best guess of 3 shows its 5-95% confidence interval.
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3.2 Methodology of optimal fingerprinting used
in climate change detection study

To understand the information in the subsequent Sections 3.3 and 3.4, the concepts
and components related to the methodology, optimal fingerprinting, are introduced
in this section.

“Fingerprinting” is the process of distinguishing internal climate variability from
externally forced climate signal patterns (Barnett and Schlesinger 1987). In optimal
fingerprinting, an optimal space-time-dependent linear filter function is applied to ob-
served or simulated climate signals to maximize the signal-to-noise ratio (Hasselmann
1993). Figure 3.3 illustrates the rotation of the original signal to reach the maximized
signal-to-noise ratio (Mitchell et al. 2001). There are other optimal approaches which
have the same essential ideas as that of Hasselmann (1993, 1997) for the same pur-
pose (Hegerl and North 1997). These approaches are the optimal weighting approach
by Bell (1982, 1986) and the optimal filtering approach by North et al. (1995). In
Hasselmann (1993), the fingerprint is given by the product of the assumed signal pat-
tern and the inverse of the climate variability covariance matrix. If using Empirical
Orthogonal Function (EOF) representations, the weighting factor is then replaced by
the inverse of the square of the noise eigenvalues in order to scale the signal in the
direction of low-noise EOFs (Santer et al. 1993). In Allen and Tett (1999) and Allen
and Stott (2003), the optimal process is reached through introducing a pre-whitening
coordinate transformation to the linear system. The detailed description of the opti-
mal fingerprinting methodology can be found in Hasselmann (1993, 1997) and Allen
and Stott (2003).

A multi-linear least squares solution of the above problem has been given by Allen
and Tett (1999), Stott et al. (2001) (Ordinary Least Squares solution) and Mitchell
et al. (2001), Allen and Stott (2003) (Total Least Squares solution). This solution
explicitly quantifies the relationship between the model simulated signal and the

observed signal. Assuming that the observations y can be expressed as a linear sum
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IR

Figure 3.3: An illustration of the rotation of the original signal to obtain
the maximal signal-to-noise ratio. The shaded area is the 95% confidence
region where the amplitude of the two spatial patterns of internal variabil-
ity along OX and OY lie. There is a signal along OB whose signal-to-noise
ratio is given by OB/OBn, OC is OB’s projection along OC direction, the
signal-to-noise ratio OC/OCn is larger than OB/OBn, since OB lies close
to the direction of the main component of variability, while OC overlaps
less with this main component. Therefore, the OC direction will be cho-
sen to conduct the optimal detection. Reprinted from Box12.1 of Mitchell
et al. (2001).

of the scaled simulated responses to external forcings x, and residual variability u,
then:
y=x08+u. (3.2)

In OLS, x is typically obtained from an ensemble of transient climate simulations
of the 20th century involving greenhouse gases, aerosols, and other external forcing

changes (based on estimates of historical forcing changes over the 20th century). In
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TLS, x is the noise-reduced response pattern which is obtained from a hypothetical
infinite ensemble, i.e. x should be represented as the difference between the finite
model responses and an additional noise term. ( is assumed to be a constant over the
period of interest (Berliner et al. 2000). The best guess of 3 is calculated by minimiz-
ing the estimated least squares residual from the true signals, while the significance
(for example, 90% confidence limits) of 3 are estimated based on the assumed distri-
bution of the internal variability.

The conclusions about the signal detection and signal attribution can be drawn
based on the amplitude of the regression coefficient 3 (Figure 3.2). The externally
forced signal pattern is said to be detected in the observed data if the estimate of 3 is
significantly greater than zero. Otherwise, the observed changes might be caused by
other mechanisms like natural internal climate variabilities or forcings that are not
included in the simulations. The attribution of a detected climate change signal to a
particular forcing agent is obtained if the amplitude of (3 is consistent with unity, that
is, the observed signal is consistent with the model-simulated response to the specified
external forcing, after accounting for all plausible forcing agents. “The scaling factor
[ adjusts the signal amplitude so that the scaled signal best matches the observations”
(Zwiers and Zhang 2003). The forced simulation underestimates the amplitude of the
observed signal if # >1 while it overestimates the observed signal if § <1 (Mitchell
et al. 2001).

3.3 Observed data and model outputs used in the
climate change detection study

In this thesis, a five-decade sequence of decadal mean regionally-averaged surface air
temperatures will be used as the detection variable (detector) to conduct an optimal
detection study through an OLS method. This five-decade sequence covers the pe-
riod from 1946 to 1996. The three temperature-related components necessary for a

successful climate change detection study will be introduced in this section. These
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three components are (1) the internal variability of temperature, (2) the observed
temperature change signal, and (3) the simulated (predicted) temperature change
signal.

As indicated in Section 3.1, it may not be appropriate to estimate internal variabil-
ity from the observed temperature records. Therefore simulations from three climate
models: PCM (Washington et al. 2000), HadCM2 (Johns et al. 1997), and CGCM2
(Flato and Boer 2001), are used as an alternative to estimate the internal variability.
These climate models include control integrations of 1009 years with PCM, 1700 years
with HadCM2, and 1000 years with CGCM2. The long control simulations of each
model are used to estimate the covariance matrix of the internal climate variability.
This matrix is used to derive the EOF basis for truncation of the signal patterns and
signal-to-noise optimisation (Gillett et al. 2002). Since the decadal means of region-
ally averaged temperatures are used in this study, the data vector starts out with
dimension 5, five EOFs are thus used without doing any dimension reduction. The
model control runs are also used to estimate the uncertainty range of the regression
coefficient (.

Each of these three models also has several transient integrations with either green-
house gas (G) forcing, or combined GS (greenhouse gases and and sulfate aerosols)
forcing, which are available for estimating optimal fingerprints of temperature changes
for the second half of the 20th century. In this thesis, only the separate GSO (O:
ozone) forcing runs of PCM are available, the separate GS runs are not available.
However, the surface warming influence of ozone is too small to offset the cooling
effect of sulphate aerosols. That is, a GS simulation of PCM will be nearly the same
as the GSO run of PCM. Therefore, when analyzing the responses to GS forcing in
PCM, actually the GSO forcing results are used and the O forcing is assumed to be
so small that can be neglected.

For each model, the transient run outputs are averaged to reduce the noise gener-
ated by simulated signals based on the natural climate variability. Unfortunately this
average still cannot avoid all sampling errors. The fields of each model are masked in

the same manner as the observations so-that places without adequate observations are
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masked out of the model output. Mitchell et al. (2001) confirmed that the warming
in the latter half of the 20th century is unlikely to be explained by the combination
of internal and naturally forced climate variability. Therefore, similar to Gillett et al.
(2002), this study regresses five optimised observed decadal-mean surface temperature
anomalies (1946 — 1956, 1956 — 1966, 1966 — 1976, 1976 — 1986, 1986 — 1996) onto the
G or GS simulated anomaly patterns of surface temperatures over the same period.
A mean temperature anomaly over each region is taken and a total least squares fit
is used to estimate 8 (Allen and Stott 2003). The best guess of [ is calculated by
minimizing the estimated least squares residual from the true signals, while the 90%
confidence limits for 3 are estimated based on the assumed normal distribution of the
internal variability, i.e., control integration of climate models, since both observed
and simulated signal associated uncertainties arise from climate noise contamination

(Hegerl et al. 1997).

3.4 Results

The regression coefficients of the GS forcing experiments for the seven biotic regions
are shown in Figure 3.4. The regression coefficients are significantly different from
zero, except for the tropical forest regions in the HadCM2 case, the tundra regions in
the PCM case, and the ice region in all three models. This implies that the observed
temperature changes are not likely to be explained by natural climate variability alone.
The significant positive values of § over these regions suggest that an anthropogenic
influence is detected in these cases. Both PCM and CGCM2 significantly overestimate
the amplitude of the temperature anomaly response to the combined influence of
increased greenhouse gases and sulphate aerosols in the water and tropical forest
regions. An overestimation is also found in cultivated land regions by PCM. For the
temperate forests and bare ground regions, the regression coefficients are significantly
consistent with unity in all three models. This implies that thé observed temperature
changes in these two regions may be caused by changes in atmospheric greenhouse

gas and sulphate aerosol concentrations.
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Figure 3.4: Best estimate of the regression coefficients 3 and their 5-
95% uncertainty ranges, of observed surface temperature changes against
simulated changes in three climate models forced by external forcings. Ex-
ternal forcings are combined GS in HadCM2 and CGCM2, and combined
GSO in PCM.

In Figure 3.4 we can also see that the uncertainty in the scaling factors varies be-
tween models. This follows since the simulated internal climate variability also varies
between the models. The width of the uncertainty bars also tends to increase with
a decrease in effective spatial scale of the land surface class (IDAG - International
ad hoc Detection and Attribution Group 2005). This is further amplified in regions
where there is a lack of observational data. Nevertheless, estimates of the regression
coefficients using different models are similar to each other in all regions. This con-
sistency provides enhanced confidence in the detection of an anthropogenic influence
on regional warming.

We can further search for the detection of a greenhouse gas signal in the observed
temperature record over the different vegetation classes (Figure 3.5). With the excep-
tion of the tropical forest in HadCM2, tundra in PCM, and continental ice in all three
models, a greenhouse gas influence on surface temperatures is found to be detectable.
G alone forced climate models generate an overestimation of surface temperatures.

In this study, in regions where the G alone signal has been detected, the upper limits
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Figure 3.5: Best estimate of the regression coefficients 3 and their 5-
95% uncertainty ranges, of observed surface temperature changes against
simulated changes in three climate models forced by external forcings.
External forcings are greenhouse gas alone.

of 3 are less than one. The three models typically overestimate the warming signal
and provide results that are remarkably consistent with each other like before. Still
for these regions, the amplitudes of the estimates of 3 from the combined GS forcing
detection are generally closer to unity. This phenomenon can be explained by the
compensation of the cooling effect of sulphate aerosols to the greenhouse gas warm-
ing effect on surface temperatures. External forcing that includes both G and S is
closer to the real forcing in the atmosphere than G-forcing alone.

A two-way detection analysis using outputs from G simulations along with outputs
from GS simulations relaxes the assumption that the relative magnitude of the G and
S response is correctly simulated by the climate model (Gillett et al. 2002). In this
case, Equation 3.2 has the form y = fBgXg + Bsxs + u and an OLS regression is
used here. According to Gillett et al. (2002), the estimated response to S forcing
in each model is often computed as the difference between its GS simulation and G
simulation, as a linear assumption generally is appropriate (personal communication
with Nathan Gillett). Here both the integrations from the three individual models and

a multi-model approach are used to separately estimate the amplitudes of the G and
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Table 3.1: Separately detected G and S signals in surface
warming by three climate models and the multiple model

class based

Surface class | Surface class HadCM2 | CGCM2 | PCM Multi-
number type model
1 Water G G G G
2 Tropic forest - G,S G,S G
3 Temperate forest G,S G G,S G
4 Bare ground G G G,S G
5 Tundra G G — G
6 Cultivated land G = G,S G,S
7 Continental ice - - - -

S regression coefficients, through a two-way regression approach. In the multi-model
approach, two GS and two G forced simulations from all the three individual models
are used to estimate the scaling factors. In addition, 800 years of control segments
from all the three individual models (CGCM2, HadCM2 and PCM) are concatenated
to derive the EOF basis and to estimate the uncertainties of the regression coefficients.

G or S are listed in Table 3.1 if either pattern has been detected. The signal from
greenhouse gases G has been separately detected in at least two individual models
over every vegetation type except continental ice. G has also been detected over
all regioné but the continental ice by the multi-model approach. For G, the multi-
model results provide a consensus between the individual model results. S signal is
separately detectable by PCM for all land regions except continental ice. Although
S signal is not strong in other individual or multi-model cases, as we can expected,
the detection of S over water region is failed since the influence of S is usually in land
area within a short term.

To examine whether the observed temperature changes can instead be explained
by natural climate influences such as changes in solar radiation or volcanic activities,
we repeated the detection analysis using the solar and volcanic runs of PCM and
checked whether the residual test that the control run of the model adequately can
represent the variability of the observed temperature in the real world failed over each

region. The results show that none of the regression coefficients, within its 90% con-
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fidence range, are found to be positive in all seven regions and thus natural forcing is
not detectable in the observed temperature change (Figure 3.6). The failure of resid-
ual tests tells us that natural forcings alone do not provide an adequate explanation

of the observed temperature changes in all the seven biotic regions.
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Figure 3.6: Best estimate of the regression coefficients 3 and their 5-
95% uncertainty ranges, of observed surface temperature changes against
simulated changes in PCM forced by external forcings. External forcings
are solar and volcanic influences.
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Chapter 4

Conclustons

The evolution of local biota as well as the influences of local climate are closely related
to local surface temperature changes. Since surface temperatures at regions smaller
than continental scales display both warming and cooling trends in the past century,
and this divergence has been found over regularly divided regions of the globe (Giorgi
2002), the surface temperature trends at biotic regions are also expected to vary. The
subsequent influences of these climatic changes on bio-systems may be very different
from region to region. It is therefore necessary to examine how the instrumental
surface temperature changes over major biome regions, as this examination has not
been systematically conducted. It is also necessary to determine if there have been
detectable signals of anthropogenic activities in these regions showing témperature
changes. If there are, we may then be able to conclude that the substantial changes
in ecosystems over the corresponding period may be due to anthropogenic influences.
This study is also valuable for studies on climatic effects on future ecosystem evolution
such as shifts of plant distribution and wild animal habitat.

The detection of warming or cooling trends and the extent to which the trends are
controlled by the anthropogenic emission of greenhouse gases and sulphate aerosols
was examined here. The analysis of instrumental records of surface temperatures
revealed pronounced warming trends over the major biotic regions on Earth, start-
ing from the beginning of the 20th century. Superimposed upon this overall global
warming trend were some periods of regional cooling.

Using three different climate models we found a detectable combined anthro-
pogenic greenhouse gas and sulphate aerosol signal over water, tropical forest, tem-
perate forest, bare ground, tundra and cultivated land regions. The warming effect

of greenhouse gases alone on surface temperatures is also detectable over different



regions by all climate models. Over every vegetation type except tundra and con-
tinental ice, at least two climate models have separately detected the influence of
greenhouse gases. The G signals in six regions except continental ice have also been
detected through a multi-model approach. S signal is separately detectable by PCM
for all land regions except tundra and continental ice. The observed temperature
changes in all the seven regions can not be explained by natural forcing alone.
Observed regional climate change signals are consistent with combined G and S
forcing over temperate forest, bare ground, and tundra both in three separate cli-
mate models and in the multiple model. The same consistency has been found over
cultivated land regions by both HadCM2 and CGCM2, while over global water, a con-
sistency between climate change signal and GS forcing can only be found in HadCM2.
We found that over temperate forest regions, the observed warming trend during the
latter half century is also consistent with a greenhouse gas forcing mechanism alone
by all three models through both the one-signal detection and two-signal detection.
This consistency has also been revolved by the multi-model approach. Although re-
gional scale climate features simulated by climate models are not as reliable as those
at a global scale (Hasselmann 1993), the rather remarkable inter-model consistency
of our detection results increases our overall confidence in the detectability of the

anthropogenic signals at surface-type-based regional scales.
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Appendix A

An idealized greenhouse effect model

This model is taken from Philander (1998) while physical laws and constants in the
solution are taken from Peixoto and Oort (1992). In this model, Earth is assumed to
be a blackbody, the isothermal atmosphere is assumed to be entirely transparent to
incident solar radiation and ”black” to infra-red radiation, as the greenhouse gases
in the atmosphere have the ability to trap long-wave energy emited from both the
Earth’s surface and from those components inside the atmosphere such as clouds.

Stefan-Boltzmann Law: Q = oT*, where o = 5.67 x 10 8Wm 2K 4.

Qin: incident solar flux (solar constant), assumed to be 1370W/m?;

Q*: the average solar flux reached at the top of the atmosphere;

R: radius of Earth;

Tg: the Earth’s surface temperature;

Qg the energy received at Earth’s surface;

a: planetary albedo of Earth, assumed to be 0.3;

The Earth intercepts solar radiation like a disk with a radius R, thus total solar
radiation received by Earth is E = mnR2Q;, E is also equal to the total solar energy
received by the spherical Earth, i.e. E = 47R%*Q*, then Q* = 0.25Q;,. Therefore,
@, the average solar flux being absorbed by the Earth-atmosphere system is @ =
Q*(1—a)=Q*(1 —0.3) = 1370 x 0.25 x 0.7 = 239.75W/m?.

A.1 No atmosphere — no greenhouse gases

The temperature of the Earth’s surface is determined by the amount of energy it
receives. As Earth is assumed to be a blackbody, the energy it receives is only solar

radiation which is Q = 239.75W/m?2. Applying Stefan-Boltzmann Law, Q = oT*,



the Earth’s surface temperature is Tg = v/239.75/0 = 255.0022K = —17.9978°C.

A.2 One layer atmosphere — with normal green-

house gas concentration

Considering the greenhouse gases, the energy arriving at the Earth’s surface includes
both incoming sunlight and the emission of infra-red light. Over a long term equilib-
rium, the Earth-atmosphere system must radiate as much energy out as it receives
from the sun, i.e. @ = Qo (left panel of Figure A.1). Since the atmosphere is isother-
mal, the temperature at the top of the atmosphere is same as that at the bottom,
thus, Qout = Qous-

The energy received at the Earth’s surface is then Qg = Q+@Q},, = 2Q). According

to Stefan-Boltzmann Law, (Energy equilibrium at Earth’s surface is @' = @ + Q%)

out

Tz = Y Qrloc = Y2 x Qlo = {/2 x 239.75/(5.67 x 10-8) = 303.25K = 30.25

%
Although 30.25°C is much larger than the observed surface air temperature 15°C,

this result has clearly illustrated the influence of the greenhouse gases.

A.3 Two layer atmosphere — with doubled dou-
bled greenhouse gases

Here the doubling of the greenhouse gas concentration is simply assumed to add
another layer of isothermal atmosphere (right panel of Figure A.1). Applying the
Stefan-Boltzmann law and consider the equilibrium of radiation energy at the Earth’s
surface, at the top of the atmosphere, and in the two layers of atmosphere. When
greenhouse gas concentration is doubled, the earth surface temperature will almost be

doubled as well, as solved in the following paragraph. Note that a tribled greenhouse
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Earth Earth

Figure A.1: Anidealized model of the greenhouse effect in Earth’s atmo-
sphere. Atmosphere is assumed to be isothermal and entirely transparent
to sunlight, it is also assumed to be entirely opaque to the infra-red heat.
The left panel is for the normal greenhouse gas concentration in Earth’s
atmosphere. The right panel illustrates the atmosphere with a doubled
greenhouse gas concentration.

gas will not induce the surface temperature to be tribled by this model.

Similar to the analysis in section A.2, @ = Qout, then Quu = @ Since the layer

Zut‘
“Atmosphere-2” receives Qo1 and radiates out 2Qout, Qiyy = Qoutr and Qou1 =
Qout + Qe = 2Qou:, the energy received at the Earth’s surface is then Qg = Q +

b T Qi = 3Q. According to Stefan-Boltzmann Law,

T = ¢/Qrlo = /3 x Q/c = ¥/3 x 239.75/(5.67 x 10-8) = 335.6 K = 62.6

&

After the abundance of the greenhouse gases is doubled, the Earth’s surface tem-
perature will be up to 62.6°C, about twice the surface temperature under the normal
greenhouse gas condition. (Note: generally an additional 3 — 4°C are expected for

CO; doubling in the real atmosphere on Earth).

A.J Discussion of shortcomings

While the actual magnitude of the numbers in Section A.2 and A.3 are not meaningful,

the simple model is illustrative of the processes involved in the greenhouse effect.
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Compared to the real Earth-atmosphere system, there are several shortcomings in this
model. For example, the assumption that the atmosphere is completely transparent
to the incoming sunlight and completely “black” to the infra-red radiation causes too
much radiation to be received on Earth. This is one reason why the computed surface
temperature is higher than the observed average temperature of 15°C.

The second major shortcoming is that the atmosphere is completely transparent
to incoming solar radiation. This assumption has ignored the part reflected and
scattered by clouds and Ogj in the atmosphere. This part doesn’t reach the Earth’s
surface in reality. Therefore, this is another reason that causes a higher estimated
temperature.

The third shortcoming is that the atmosphere is not isothermal, i.e. the temper-
atures at the bottom and top of the atmosphere are in fact different and outgoing
radiations are also different. In addition, the effects of a doubled CO5 climate can
not be equivalent to adding another layer of atmosphere.

Although this idealized model is far from accurate for a real Earth-atmosphere sys-
tem, it illustrates the greenhouse gas effect, and the influence of increased greenhouse

gas concentrations in the atmosphere.
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Appendix B

Deriwation of optimal fingerprint-
ng

In this section, the solution to the standard detection model (3.2) is given, i.e. es-
timating B by Total Least Squares (Mitchell et al. 2001, Allen and Stott 2003) or

Ordinary Least Squares (Allen and Tett 1999, Stott et al. 2001).

The general representation of the regression model is:
y =x0+u. : (B.1)

where, y is a column vector with rank [ and represents the observed climate change
signal. x is a Ixm matrix, with n columns of externally forced signal patterns. In
OLS, x is the n finite model-simulated response patterns. In TLS, x is the noise-
free response pattern which is obtained from a hypothetical infinite ensemble, i.e. x
should be represented as the difference between the finite model responses and an
additional noise term.

B is a column vector with n scaling factors for n response patterns in x. u
is a column vector with rank [, its covariance matrix Cn (Equation B.2) can be
estimated from long control runs of climate models (Section 3.3). u can be assumed
to have a multivariate normal distribution (Section 3.1). Cy is not equal to o?I.
The estimated errors in 3 will be strongly biased when applying the unweighted least
squares regression (Allen and Stott 2003). To avoid this problem and find the lowest

variance estimator of 3, a “pre-whitening” operator — coordinate transformation P



with rank k is introduced (Equation B.3).

Cn = e(uuT) (B.2)
e(PuuTPT) =1 (B.3)
prp - (B.4)

If C' exists, then Equation B.3 is satisfied.

Note € is the expetation operator. In climate models, the small-scale noise variance
usually is poorly simulated, therefore, k is then usually smaller than [.

Pu is independent, identically distributed (i.i.d), it is indistinguishable from white
noise.

Assume e(u) = 0, there is,

e(y) = e(xB) + e(u) = xf (B.5)

The sum of the squared residuals are then minimized, in optimal treatment and,
the transformed u substituted for the original u. Here it is to minimize ||Pul® .
Substitute the Equation B.1 into this expression, there is, ||Pul|®> =||P(y — z8)|* .

Set the derivate of the expression with respect to 8 equal to zero and solve for 3, we

have:

8= (XTPTPX) ' XTPTPy = (XTC*X)1XTCRly = FTy (B.6)

We have assumed that the model simulated signal x is true, i.e. all potential
uncertainties in x have been included in the uncertainties in u. Since u is multivariate
normally distributed, B also has a multivariate normal distribution with the mean (3

and the inflated covariance (14 1/M)V(3), where, M is the number of transient runs

ensembled to reduce the variance of the forced response pattern.

B = ¢€(B) (B.7)

V(B) = e(B - B)(B - B)T = (XTPTPX) ! = (XTC{'X)™? (B.8)

o1



Equation B.8 then implies that a (1 — a) x 100% confidence region for § is given by
(B-B)"XTC'X(B - B) < X} _a (B.9)

Where x3_,, is the (1 — a) critical value of the chi-squared distribution with n degrees
of freedom. For one-signal detection, if the lower limit confidence interval is positive,
then the signal is said to be detected at the a/2 x 100% significance level. For two-
signal detection, the observed change signal is said to be consistent with the two

external forcing mechanism if the confidence ellipsoid contains the unit vector.
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