CIRCLE PROBABILITIES

by

BRUCE R. JOHNSON

DMS-558-IR

September 1990

CIRCLE PROBABILITIES

(American Mathematical Monthly Problem E3401)

E3401. Proposed by James A. Davis, Michael Kerckhove, and J. Van Bowen, University of Richmond, VA.

Suppose n points are independently chosen at random on the perimeter of a circle. What is the probability that all the points lie in some semicircle?

Solution by Bruce R. Johnson, University of Victoria, Victoria, B.C., Canada. More generally, we will show that the n points chosen independently at random on the perimeter of a circle of radius r will all lie in some arc of length $p\pi r$ with probability $n(p/2)^{n-1}$, where p is a fixed parameter such that 0 . The answer to the proposed problem is given by the special case <math>p = 1.

With probability one no two of the n randomly chosen points will coincide; so these points will partition the perimeter of the circle into n arcs with the chosen points as endpoints of the arcs. We distinguish the n points by labeling them from 1 to n arbitrarily, and for each $j \in \{1,2,\cdots,n\}$ we let the arc extending from point j counterclockwise to the next chosen point on the perimeter be called arc j. Since positive parameter p is no larger than 1, at most one of the n arcs will be longer than $(2-p)\pi r$; so the events A_1,A_2,\cdots,A_n are mutually exclusive, where A_j denotes the event that arc j is longer than $(2-p)\pi r$. Hence, by the additive property of probability

Also, for each j the event A_j will occur if and only if each of the n-1

distances measured from point j counterclockwise around the perimeter to each of the other n-1 chosen points is between $(2-p)\pi r$ and $2\pi r$. Since these n-1 distances are distributed independently and uniformly over the interval $(0,2\pi r)$, it follows that

$$P(A_j) = (p/2)^{n-1}.$$

Therefore,

P (the n chosen points lie in some arc of length $p\pi r$) = $n(p/2)^{n-1}$.