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CIRCLE PROBABILITIES
(American Mathematical Monthly Problem E3401)

E3401. Proposed by James A. Dauvis, Michael Kerckhove, and J. Van Bowen,
University of Richmond, VA.

Suppose n points are independently chosen at random on the perimeter of a
circle. What is the probability that all the points lie in some semicircle?

Solution by Bruce R. Johnson, University of Victoria, Victoria, B.C., Canada.
More generally, we will show that the = points chosen independently at random on
the perimeter of a circle of radius r will all lie in some arc of length p7rr with
probability n(p/2)n_1, where p is a fixed parameter such that 0 < p < 1. The
answer to the proposed problem is given by the special case p = 1.

With probability one no two of the n randomly chosen points will coincide; so
these points will partition the perimeter of the circle into n arcs with the chosen
points as endpoints of the arcs. We distinguish the n points by labeling them
from 1 to n arbitrarily, and for each j € {1,2,---,n} we let the arc extending
from point j counterclockwise to the next chosen point on the perimeter be called
arc j. Since positive parameter p is no larger than 1, at most one of the =
arcs will be longer than (2-p)rr; so the events Al,A2,---,An are mutually
exclusive, where Aj denotes the event that arc j is longer than (2-p)7r.

Hence, by the additive property of probability

P (the n chosen points lie in some arc of length prr) = P(A;UA,U-- -U4 )

Also, for each j the event Aj will occur if and only if each of the =n -1
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distances measured from point j counterclockwise around the perimeter to each of
the other n — 1 chosen points is between (2-p)rr and 2ar. Since these = — 1
distances are distributed independently and uniformly over the interval (0,27r), it

follows that

P(4;) = (o2

Therefore,

P (the n chosen points lie in some arc of length prr) = n(p/2)n_1.



