Dobell, A.R.
"Some Characteristic Features of Optimal Control Problems in Economic Theory.”
IEEE Transactions on Automatic Control AC-14.1 (1969): 39-48.

Reprinted with permission from
The Institute of Electrical and Electronics Engineers



1EEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. Ac-14, No. 1, FEBRUARY 1969 39

Expository Papers

Some Characteristic Features of Optimal Control
Problems in Economic Theory

A, R. DOBELL

Absiract—This paper formulates the system equations, state and
control space constraints, and a criterion functional for an ele-
mentary example of a problem in economic growth, and discusses
some further interpretation of the undetlying economic structure.
Several examples are presented to illustrate particular features of
control problems in economics; references to futher examples, and
to more general work in mathematical economics, are cited.

I. INTRODUCTION

New developments in the theory of economic growth raise & num-
ber of issues of interest to control theorists. This paper suggests a
framework which may be helpful in studying economic growth models
and gives reference to mathematical discussions of the principles
underlying some of the economic problems to which control theory
can usefully be applied.

The material divides roughly into four sections:

1) formulation of a simplified but typical control problem in
economic theory;

2) economic interpretation of some features of the control problem;

3) some examples of further applications; and

4) some comment on features which might be peculiar to economic
examples and which warrant further study.

This paper begins, then, with a brief consideration of how economic
theory leads naturally to the formulation of some problems which
appear familiar to people interested in optimal eontrol.

I1. TyricaL ExaMPLE

A. State of an Economic System

The description one might take of the state of an economie system
is a record, at the specified instant, of its inventory of machines and
equipment of all kinds, its stock of buildings and structures, its pop-
ulation and labor foree and their composition, its inventories of
natural resources, and its stockpiles of finished goods, along with a
record of flows and transactions between various agents or groups
within the economy. Features of a standard “position and velocity”
description are evident, even though the dimensionality may seem
formidable.

However, one feature in economic models is not standard and per-
mits drastic reduction in the number of state variables to be con-
sidered. For most economic examples, it is assumed that a ‘‘static
allocation problem’’ can be solved to the point where the flow rates
of change at any moment are either determined by the position
variables (the stock levels) at that moment, or are themselves control
variables or functions of control variables, subject to choice at that
moment.! The result is that one can take the position variables or
stock levels at any moment as a complete specification of the state.

In discussing stocks of assets, a distinction is made frequently be-
tween capital goods, such as machines and buildings, which are pro-
duced within the system at rates subject to control, and primary fac-
tors, such as land and labor, the growth rates of which are not under
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1 Discussion of this static allocation problem is given in more detail in Section
I1I. The implicit assumption that the distribution of asset stocks among in-
dividuals or classes of individuals can be ignored, should be noted. Although this
assumption is common in aggregate economies, it is obviously quite extreme.

the control of the hypothetical economic planner. Obviously, to the ex-
tent that one can reclaim land and train labor to higher productivity,
this distinetion is somewhat fuzzy, but the presence of primary
factors may have the effect of introducing some nondizcretionary ele-
ment into the evolution of the system. At any rate, most recent
growth models have tended to deal with one primary factor, labor,
whose growth is not influenced by any control variables, and a small
number of distinct eapital goods which are produced within the sys-
tem. The state is thus specified by a finite-dimensional vector whose
components represent the levels of these various eapital stocks and
labor.? (Inventories of raw materials and stockpiles of finished goods
are ignored in these analyses.) In particular, for the sake of example,
it may be assumed that it is not necessary to distinguish different
kinds of machines, so that one may describe the level of the capital
stock (measured as a number of machines of specified capacity) by
the symbol K (¢), and the number of (indistinguishable) laborers by
the symbol L(z). In this simplest example the state is represented,
then, by the vector (K (¢), L(t)).3

B. System Eguations or Transition Equations

Taking the vector (K, L) to specify the state at any time, it is
required that economic theory explain the determination of K and
L. The underlying economic characteristic to be reflected in the exam-
ple is, first, that the rate of increase of the labor force is to a large
extent determined by two factors which are themselves the product
of noneconomic considerations. These two factors are the rate of
population growth and the proportion of the population which par-
ticipates in production as members of the labor force. The rate of
population increase presumably depends on sociological considera-
tion, psychological issues, and moral pressures, all usually considered
outside the realm of economic theory. The labor force participation
rate, while clearly responding to economic considerations, is fre-
quently assumed to be near enough constant as to justify, as a
rough approximation, taking the labor foree to be a constant fraction
of the population. (Of course, these assumptions can be weakened.)
The upshot of such argument is that one system ejuation in the ex-
ample takes the form

L) (men/year) = n(t) (per year)-L{t) (men) (1)

where it is usually assumed that n(f) is a given positive constant.

On the other hand, while the labor force may be a matter which is
determined by eonsiderations outside the influence of economists or
social planners, it is clear that the rate of increase of the capital stock
which is what the economist calls “net investment’’—is decidedly
a product of economic decisions.

On the one hand, there is the whole set of considerations stemming
from the fact that directing resources to the production of new
machines and equipment to be added to the capital stock means
diverting resources from the production of goods which could be used
for current consumption and enjoyment. Since the purpose of ac-
cumulating capital goods now must be to create eapacity to produce
consumer goods in the future, the decision becomes one of trading
off consumption now for the sake of consumption later. This saving
decision determines the resources which ecould be made available for
producing additions to the capital stock.

But new machines and equipment have to be ordered, or at least
orders for them have to be anticipated, before anyone is willing to

2 A problem arises with one class of growth models (the so-called “vintage'
models) in which capital goods produced at different times bave different char-
acteristics. In general, it will no longer be possible to adopt such a finite state-
space description for these models, and so far there are few results other than
steady-state results available. See [54. 9al.

2 Since it is assumed that labor force growth is not influenced by any control
variable, the second component of this vector is a simple funetion of time alone.
Later the reduction of this system to a single state variable will be made explicit,
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produce them. Thus against the resource availability side, the saving
side, one has to place the demand for new equipment, the investment
side. From the two independently determined quantities—the re-
sources demanded by producers desiring to invest in new capacity and
the resources potentially available from savers prepared to defer cur-
rent consumption to acquire a claim against future consumption—a
realized flow rate of additions to capacity is determined (assuming de-
preciation and required replacement are made good separately).

One simplified set of hypotheses supposes that the community in
the aggregate makes available, for purposes of investment in new
eapacity, resources equal to some specified fraction of national in-
come. At the same time it is supposed that, by suitable national
policy, demand for investment goods is brought into line with avail-
able saving, so saving decisions are always realized. These assump-
tions may be expressed, ignoring depreciation, by the equations:

K (machines/year) = I ($/year)-1 machine/$ (2)

which expresses the way in which investment expenditures I are trans-
lated into increases in productive capacity measured in physical
units;

S (§/year) = sY ($/year) 3)
which expresses the saving decision of the community; and
I ($/year) = S ($/year) 4)

which expresses the equilibrium condition that the desired rate of
investment expenditure be reconciled, presumably by some monetary
or fiscal policy of the central government, with the saving behavior of
the community.? These equations thus lead to the simple system
equation

K = sY (5)

where s is a positive (dimensionless) constant and Y is national in-
come measured in $/year.’

To express national income in terms of the state variables is the
final task in developing system equations for the simplified model.
For this, one goes to a body of the economic literature dealing with
“production functions.” Solow [91] surveys this literature, which at-
tempts to derive empirically the form of statistical relationships
(corresponding in principle to engineering functions) linking output
to inputs of machine services and labor services. From such study is
derived a relationship

Y = F(K, L) (6)

where the function F is usually assumed to be a positive function hav-
ing at least two continuous derivatives with

Fe(K, L) > 0, Fy(K, L) > 0
Fpr(K, L) < 0, Fr (K, L) < 0

and to be positively homogeneous of degree one in K and L. (To
be precise, the variables K and L entering the function F should be
interpreted as multiplied by a utilization factor of unity, having
dimensions machine-years/year /machine and man-years/year/man,
respectively.)

Assuming the existence of such a production function, one may then
write the basie system equations purporting to describe the aggregate
economy (i.e., the “‘plant” the economist studies) in this example as

K =sF(K, L), EO0) = K, 0
L =nlL, L) = L, (8)

+ Equation (4) may be interpreted as a condition that must be satisfied if the
economy is to be operating at full employment, that is, it is an equation which
assumes that the problems of short-run economic stabilization have been ade-
quately solved. For purposes of studying the long-run evolution of an economy,
this may be a justifiable assumption. . i

5§ Here the unit $ is to be interpreted simply as a unit of homogeneous physical
produet. There is no provision in this simple example for changing prices.
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C. Constraints on Conirols and State Space

If the aggregate saving rate s is completely determined and social
policy is directed in such & way as to ensure realization of that saving
rate through investment decisions, then the evolution of the whole
system is itself completely determined once initial conditions are
specified. (Study of the behavior of this system with specified saving
rate, which is often referred to as the Solow model [92], has been ex-
tensive, as has been discussion of similar models with slightly differ-
ent theories determining individual saving.® See [33].) Suppose, on
the other hand, that the saving rate of individuals can be influenced
by various incentives or short-run social policies, so that the aggre-
gate saving rate becomes an instrument of long-run social policy or a
control variable. Then the problem becomes a conventional problem
in control theory with one obvious constraint, namely, that the saving
rate s is only to take on values which could in fact be realized by
some feasible social policy. Since s is a proportion of output saved and
directed toward capital accumulation, it is, in a closed system, clearly
limited to values in the unit interval and may, in fact, be still further
restricted for economic reasons.

Moreover, economic quantities generally share the feature belong-
ing to concepts like miss distance or aircraft height above ground:
they cannot assume negative values. Hence we must impose the con-
ditions

K >0 L >0

along with the control space constraint 0 < s < 1. Thus we have a
state-space description, system equations, and control and state-
space constraints. What is required now is a2 method to evaluate the
desirability of various trajectories satisyfying all the imposed condi-
tions.

D.  Criterion

In discussions of economic growth it is usually assumed that
ultimate concern attaches to the welfare of households, not firms or
other intermediate agents created only as part of a system to serve
households. This suggests that the performance of an economy
should be measured by the final consumption levels it makes possi-
ble. (Of course, this criterion must be tempered by consideration of
the distribution of consumption and of wealth, but it is often assumed
in problems of the type considered here that these matters can be
taken care of by some political process—that a higher rate of con-
sumption flow can be appropriately redistributed so as to leave
everybody better off.)

But since an economy produces many different goods for consump-
tion purposes, one must consider how to evaluate various output
combinations. Therefore, consider for a moment a (column) vector C,
whose components indicate the rates of consumption desired by one
individual of each of the many goods available. To explain the deter-
mination of this veetor, that is, to explain an individual’s demand for
goods and services, early theorists proposed that each individual
possessed a utility function U(C) defined on this consumption space
or space of consumption bundles. These theorists then viewed the
consumer’s decision as one of maximizing this indicator U subject to
restrictions on total expenditure and to non-negativity restrictions.
Specifically, the problem was: for given p, E, where p is a given row
vector of positive prices and F is a given positive constant, maximize
U(C) subject to pC < £, C > 0. The resulting value U(C) was to be
taken as an indicator of consumer satisfaction.

This was the classical problem of consumer’s choice, a static prob-
lem in possibly many dimensions. With sufficient regularity assumed
for the function U, some meaningful propositions may be obtained
about changes in the solution vector C in response to changes in the

6 It is also possible that saving decisions of individuals may be made in aceord
with individual integral eriterion functionals, thus leading to a descriptive model
in which explicit individual long-run maximizing behavior is part of the uncon-
trolled system. But discussion of this issue must be deferred to Section III.
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parameters p, E. For discussion of such “laws of demand,” one can
see Houthakker [40], and Samuelson [74].

More recent work has been directed toward replacing the utility
funetion U with a general preference ordering defined on the vector
space of consumption bundles C and to investigating the axiomatic
basis for such ranking procedures. The interesting questions of deter-
mining the mathematical properties of the choice functions C(p, E),
which would imply the existence of an underlying preference order
having the desired regularity, and the conditions under which this
ranking in turn may be represented by a numerical-valued function,
have largely been resolved. See Debreu [19], Houthakker [41],
Richter [71], Samuelson [75], and Uzawa [102] for examples of this
discussion.

Despite its mathematical elegance, this literature has two defects
for present purposes. One is that it applies to individuals and appro-
priate workable procedures for aggregation are not obvious. The
second, and for the moment more important, is that it is foo static;
it says nothing about decisions to forego consumption and aceum-
ulate purchasing power for later use. One can, however, think of a
dynamic counterpart to the preceding problem. Let C(t) be a vector-
valued function of time ¢, for 0 < ¢ < 7. (In the simplest case, one
takes C(¢) to have one component only, representing the consump-
tion path with a single consumption good.) One then seeks, in analogy
with the previous approach, a procedure for ordering the elements
(110Wl funetions) in this space of consumption paths {C’(t): 0<%
S T] .

The most general procedure would be to establish some axiomatic
basiz for a preference ordering on the space. For examples of this
work, one may see Diamond [21] and the references cited there.

A slightly less ambitious scheme would be to search for any map-
ping, any functional, from this consumption space to the real line.
This seems unworkable in general. (But see Radner [111].) There-
fore, a still less general scheme is to suppose that there is an in-
stantaneous utility function of the previous sort U(C, £), which at any
time ¢ provides the basis for ranking consumption bundles just as be-
fore, and then to suppose further that a suitable functional on the
space {C(): 0<t<T } to the real line R is the additive form

T
J = f u(c, vdt.
0

It should be emphasized that specialization of the functional to
this form assumes a very strong independence (additivity) through
time.”

Further specialization entails the assumption that the influence of
time works uniformly on all goods, so that U(C, t) may be decomposed
into a timeless utility function U(C) and a discount factor «(¢). Thus

the criterion beeomes
T
J = U(C)ea(t)dt
0

and if it be assumed that the diseount factor «(¢) has exponential
form, then one obtains the common criterion

T
J =f U(C)e=+tdt.
[

This applies still to an individual.® However, by a leap of faith,
one could say that all components of the consumption vector are to

7 It can also be noted that any monotonically increasing transformation of the
index J will preserve the ranking assigned by the criterion, but that any trans-
formation of U’ other than a linear transformation will amount to changing the
weighting scheme attached to utilities and, therefore, will not preserve the order
assigned by J. This means that the function U must be thought of as a numeri-
eal, rather than simply an ordinal, measure.

8 In the microeconomic theory of the individual consumer, the work of Yaari
[107] and oihers builds on such “life-cyele’” or “permanent income” concepts.
Similar concepts are useful in theories of individual portfolio management or in
problems of investment in education and so-called “human capital.” It is a chal-
lenging exercise to bring this type of theory of individual behavior into an ag-
gregate growth model.
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be interpreted in per capita terms, denoted by lower case letters, and
that the utility function U(c) may be interpreted as appropriate for
a representative man or for the community as a whole.

Three issues involved in this leap are troublesome, however. For an
individual, it may be appropriate to take 7" to be the expected lifetime
or, perhaps, to take 7" to be a random variable with finite expected
value. (Yaari [107] studies this latter approach.) But for an entire
community, what is the appropriate value to be assigned to 7T?
Secondly, individuals may in fact display impatience and systema-
tically disecount future enjoyment in ecomparison to present. But can
this be appropriate for enlightened direction of the community as a
whole? Finally, if the criterion is expressed in terms of per capita
consumption, should not the integrand be weighted by the popula-
tion size to ensure that all individuals receive equal attention whether
they live at a time of many people or few? On these issues there is still
discussion, for example, in Ramsey [70], Koopmans [48], Samuelson
[77]1, Lerner [53], and others.

If the horizon is taken as infinite and a zero discount rate—or
weighting by a population growth rate in excess of the discount rate—
is assumed, then the convergence of the integral J cannot be taken for
granted. In the borderline case of zero discounting, it is possible that
the simple trick of measuring U(c) from an equilibrium or ‘‘bliss’’ level
U may yield a meaningful ordering. (This trick is used by Ramsey
[70] and discussed in detail by Koopmans [48].) Otherwise, the
criterion J does not define a sensitive ordering on all of {e(t): 0 <
t < T}, but rather assigns the value 4+ = to distinet paths among
which the analyst may be able to express an unambiguous preference.
To meet this problem, the so-called “overtaking” or “partial sum”
criterion was suggested: one seeks a path ¢(t), 0 < ¢ < 7T, such that
for any other path ¢(i), there exists 7%such that

T T
J = f U, tdt > f Ulc, t)dt, for all T > 7.
0 0

Weizsicker [105] and McFadden [59] discuss this criterion and the
conditions under which rankings under it might agree with rankings
under the earlier criterion.

Before leaving discussion of the performance index for an econ-
omy, it may be observed that C at any time can be taken to be a
function of the state and the control variables, so that the criterion
functional really depends only on the time paths for these variables
and the initial state. Thus if one wished not to commit himself on the
claim that only final consumption is relevant to social welfare, he
could formulate the utility indicator simply as a function of state
and control variables, without altering any of the preceding com-
ments significantly,

Thus one has a state description, system equations with given ini-
tial conditions, and a eriterion functional to be maximized subject to
imposed state and control constraints. Each of these components of
the control problem is seen to arise naturally in the context of stan-
dard economic theory. Before passing to some specific examples, it
may be appropriate to look briefly at some further interpretation of
the problem.

III. FurtHER EcoNoMIiCc INTERPRETATION

In the preceding example, the final formulation of the system to be
studied was

K=sY, K0O=K, K@ >0
L =nL, LO)=L L& >0
Y = F(K, L)

0 <s <1

This simple example illustrates some features of a fairly general case,
which might be written as
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K=fK, Y, ut)
0 <GK, Y, u,t)
u EQ

where K, Y, and u are all to be vectors. The additional constraints in
the system @ stem from the “static allocation problem’ referred to
before. To explain the significance of this issue in economic problems
requires a short digression into static economic theory.

One of the characteristic features of an economic system is that it
is driven by a mechanism involving many conscious individual de-
cisions, all somewhat interdependent and simultaneously undertaken.
There is, therefore, need for an explicit theory to explain how the
system configuration is determined at any given instant, before even
considering the evolution of the economic system over time.

To simplify the issue, the economic theorist introduces the notion
of competitive markets and thereby succeeds in treating as inde-
pendent a number of decisions which previously were highly inter-
dependent. This remarkable analytical device, which permeates
economic theory, will prove to be closely related to the central
analytical deviece in systematic treatment of optimal control problems.
(Precisely in the cases where the assumption of competitive markets
is untenable, one has to deal with all the intractable problems of
interdependent decisions which in economies go under the names of
oligopolistic or duopolistic warfare, undue exercise of market power,
or rivalrous competition and which in theory might have to be
deseribed by immense problems in differential games or something
similar.)

The idea is straightforward. One introduces auxiliary variables
(prices) which each decision maker treats as given parameters, in the
light of which he makes his individual decisions. A “market” mecha-
nism is imagined to tally all individual decisions and to adjust the
auxiliary variables until all individual decisions are consistent one
with another.® It usually turns out also that under these circum-
stances the resulting system configuration satisfies some principle of
efficiency analogous to the principle of least action, sometimes de-
scribed as the prineiple of the invisible hand.®

As an analytical technique the trick cannot be bettered. What is
particularly interesting is that it was not in fact developed as an
analytical trick, but actually was intended as a description of the
way in which an economic system seems to operate. The auxiliary
variables, in other words, may not be simply analytical constructs
determined by substitution into some equality constraint, but ex-
tant observable quantities capable of being read from a catalog or a
ticker tape; not only conceptually determined but visible and capable
actually of guiding a system to a configuration in which innumerable
individual decisions are all mutually consistent.

What makes up the “system’” referred to previously? How is it
to be described? In a simplified breakdown one might separate de-
cision-making agents into only two classes, “household~"’ and *firms,”’
with primary importance attaching to the welfare of the former, the
firms ultimately being merely instruments to serve the needs of house-
holds by organizing production activities. For the moment it will not
hurt to talk also as if ownership of all capital and labor resides with
households.

Furthermore, one might postulate that firms transform the ser-
vices of existing machinery and equipment and of labor into output
of new machinery and also of goods for households on terms estab-
lished by the existing technology. Households in turn acquire goods
and offer services for production. (See Fig. 1.) Thus one could deal in
the simplest case with only three markets—for goods, for capital

9 This notion of “‘groping” toward static equilibrium prices which clear all
markets will be elaborated later.

10 At least four technical issues have to be considered in formal anslysis of such
price systems, namely, the existence of an equilibrium configuration, its unique-
ness if it exists, its welfare significance, and the convergence or stability of
adjustment processes secking the equilibrium configuration. On these questions
one may refer, for example, 1o Debreu [19], Arrow and Debreu [2], Arrow and
Hurwiecz [3], and Arrow, Block, and Hurwicz [5].

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, FEBRGARY 1969

Y1 PreS0—Dy mar K, (1)
.
'L(T)k ’Lmdf L{t
Ls
e —— e — -
HOUSEMOLD BLOCK : -
Maximize  U(YS YA, KF K, L)
Subjectto 1'YA+P YK Wolf + W K?
| Smplest excmple K=K, |
Yo L=L
RY! = s WK, + sl
o bt K w ¢l e
| R I A S R
i 1
Vo] adstr A v | | Adustw | | Sk eree
| uril il wiil | mecranism
: Yud'_—Yns =K, U= : assumed
! i [
Comdoc ] ——d
i R} YiP) wy K w) ¢
i PRODUCTION BLOCK:
Maximize TT = R ¥+ YS—W K- w5l
Subject 1o Y§ = F°(Ky,Lo)
v ¥ =FK,.L)
- KitHKe<K'
Lo+l <t
Fig. 1. Simplified flow diagram for economic model.

services, and for labor services.!* On each market a price is defined for
the flow of goods, the flow of capital services, and the flow of labor
services, respectively. Taking the price received for his output and
the prices paid for rental of equipment and labor serviees, all as
given, each firm’s manager decides, in the light of his technological
capacity, on the amounts of inputs it is appropriate for him to pur-
chase and the amounts of output he shall produce. Because of the
intervention of the price mechanism, it is unnecessary and irrelevant
for him to ask who wants his product or what they want. All such
relevant information is summed up in the price he treats as a param-
eter; likewise, all relevant information on the supply of inputs is
contained in the prices for these. Thus the firm enters the goods
market, as a supplier of output and the market for services as a de-
mander of labor or machinery services.!?

On the other hand, households, facing the same prices, decide on
what services they will offer, thus determining their income, and on
what goods they will buy. Again, the price quotations contain all the
information necessary and thus permit complete separation of
household decisions from firm decisions.!® Unless the resulting de-
cisions of all firms and all households are jointly consistent, the price
quotation must be adjusted. (Clearly, it is a nice question to deter-
mine the conditions under which the existence of any equilibrium
price vector is guaranteed and the mechanisms under which con-
vergence to the equilibrium price vector would be assured. For refer-
ence to such discussion see Debreu [19], Arrow, Block, and Hurwicz
[5], and a slightly less technical treatment by Kuenne [49].)

The simplifying assumption which is crucial to almost all growth
models is that the system is always in static equilibrium in the sense’
that prices are always at the values which clear all markets described
in Fig. 1. That is, it is assumed, in a sense, that it is legitimate to
work as if time could be stopped, with no transactions taking place
and no growth of assets, until the price adjustment process within the
blocks labeled static price adjustment in Fig. 1 has converged to the

1 These markets are shown in Fig. 1 in the dashed inner block labeled static
price adjustment.
bl ‘2];1‘he role of the firm is represented in Fig. 1 by the block labeled production

ock.

13 The household decision is illustrated in Fig. 1 by the block labeled house~
hold block.
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Fig. 2. Flow diagram for economic model with two durable traded assets.

momentary solution. It is this assumption that enables the growth
theorist to treat “‘equilibrium dynamics’ (see Hahn [32]) in concen-
trating on long-run evolution of the system rather than short-run
market adjustment.

In most early growth models, as in the simple example developed
above, this problem of momentary equilibrium was trivially solved.
Assuming that households offer all available eapital and labor for
production, the amount of oufput is determined and only the distri-
bution of output between consumption and investment remains at
issue. Letting prices for capital and labor services settle at whatever
rates absorb available supplies and specifying the saving rate s
completes determination of the momentary equilibrium, and atten-
tion then focuses on the growth of assets, represented by the portion
of Fig. 1 above the dashed line. More recent work, however, has dealt
with models which produce distinet goods in distinct sectors of the
economy, and in such cases the problem of allocating available re-
sources between different uses and determining the output flows of all
products entails consideration of a fairly large nonlinear programming
problem (or at best a nonlinear simultaneous equations system).

One further issue demands brief comment. It has long been recog-
nized that markets for durable assets (capital markets) differ from
markets for flows of good and services precisely because such markets
involve traders required to hold assets. In a model with one capital
good this causes no trouble because there is only one kind of durable
good, only one store of value which can be held. In more recent
growth models with many distinet capital goods or with money and
other financial assets as well as eapital goods, there are different
ways to hold assets, and decisions must be made as to appropriate
portfolios to be held and appropriate holding periods for items in the
portfolio. The standard argument (see Hotelling [39], and Samuelson
[761) has been that, in a perfect capital market, if there were a yield
or discount rate r(¢) specified at each time ¢, then an asset with a
current earnings flow R:(f) at time ¢ would in principle command a
price equal to the present discounted value
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pit(t) = f R(r)e™#tndr 4 8(T)e~ 4T
¢

o, ) = ﬁ " r(s)ds

and 8(7T') is some scrap value at the terminal date T. Assuming a zero
scrap value and differentiating, one finds that this perfeet asset price
should change over time in such a way that

where

Hi*(t) = —R@) + rot)ps*(t).

This basic “zero profit” relationship says that capital gains or losses
should always be such that the total return (current earnings plus rate
of price change) is netther more nor less than the imputed interest re-
turn on the asset value ps*(f). Unless the preceding differential equa-
tion were satisfied for all assets in the system, traders would pre-
sumably be attempting to dispose of those assets with lower yield in
exchange for those with higher. Existing stocks of all assets are vol-
untarily held only when all of these differential equations are satis-
fied.1¢

It may be noted in passing that these conditions are appropriate
only when concerns about liquidity, transactions costs, and so on can
be ruled out. Introducing a more satisfactory portfolio theory into the
analysis at this point would entail treating a growth model with im-
portant stochastic components; this topic is an open research problem.

Fig. 2 sets out the structure of one possible model in which capital
markets are important, The basic market structure for services of
capital goods and labor and for distribution of nondurable consumer
goods remains unchanged; what is added is a portfolio decision for
households (it makes little difference to introduce portfolio decisions
for firms as well) and a recognition that the saving decision of house-
holds may determine the currently acceptable yield 7(¢). As before, if
this saving decision is considered as subject to influence, then the
control variable may be viewed as determining the yield ro(f). But
it should be noticed that then the planner must take the price equa-
tions as given; control would be limited to choosing a value for rq at
each instant and initial conditions p,*(0) to begin.

In Fig. 2, as before, the decision of the firm is represented by the
block labeled production block. Information inputs info this block
are the prices W, W, W, established for services of productive
factors, and the prices Po (by convention set at unity), Pi, Ps, estab-
lished for the goods produced. The firm then determines the actual
inputs of productive factors and the actual output of goods, so as to
make expected profits a maximum. The prices Wy, Wy, W, are them-
selves established, as before, on a market (enclosed in dashed lines in
Fig. 2) to which households offer factor services according to the
household expenditure decision and from which firms demand these
services. The prices P; and P, on the other hand, are established on
capital markets by the condition that prices must be such that all
asset stocks must be willingly held. For this condition to hold, the
prices P, and P, must coincide with the perfect asset prices Pi* and
P* computed according to the differential equations at the top of
Fig. 2. When this coincidence is attained, the household portfolio
deecizion has established the prices P,, P., taken as data by the firm.
The household saving decision may then be thought of as determin-~
ing the instantaneous yield or return on assets 7y (¢), which is necessary
in the differential equations for P; and P Given this yield rq, the

14 Again note the implicit assumption that time ean be stopped while these
capital markets adjust fully to the ideal values defined at each time ¢, There is
room for research into properties of growth models where complete adjustment
is not achieved before the system moves on. The differential equations are thus
derived as a description of a market process, not as a condition that any single
criterion be optimized (although, of course, the market process itself reflects in-
dividual optimizing behavior in portfolio management). Nevertheless it will furn
out that these descriptive equations in many cases coincide with the Euler—
Lagrange equations in an optimizing problem. It is in this important sense that
Samuelson’s dynamic efficiency conditions [76a] extend the principle of the
invisible hand from static economics to dynamic: the equations deseribing
equilibrium on a market governed by individual attempts to0 maximize the value
of individual portfolios coincide with 2 subset of the necessary conditions for
maximizing some overall welfare function.
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rentals (prices of factor services) W and W, and the existing prices
P, and P», the differential equations at the top of Fig. 2 are com-
plete. Given the output flows ¥; and Y, established by the firm, the
remaining differential equations governing the growth of asset stocks
are also complete, and the long-run evolution (governed by the equa-
tions displayed above the dashed line in Fig. 2) of the system is fully
determined.

The upshot of the preceding discussion is that one can often view
optimal control problems in economics in the following summary way.
Production theory, entailing at each moment efficient static alloca-
tion of existing resources, determines 2 set of feasible or attainable
output vectors. Demand conditions, which will generally involve a
number of control variables or instruments, serve to pick out a unique
point from the attainable set. These demand conditions may be
derived from some optimizing criterion, that is, the control variables
may be selected in the light of some criterion purporting to represent
individual or social welfare. Obvious questions arise: Is there a unique
positive equilibrium so determined? What kind of price mechanism or
decentralized procedure could sustain the equilibrium? These ques-
tions, which have been studied atlength in economic theory, properly
belong to what might be called static economics. Growth theory in
economics now builds on this material to investigate what kind of
growth in stocks comes about as a result of the instantaneous equi-
librium established. Until quite recently, growth theory was relatively
simple because it suppressed almost all the structure connected with
the determination of instantaneous equilibrium. But it is clear that as
growth theory matures, all this hidden structure has to come back
into view.

Thus, to summarize:

1) The static allocation problem enables all relevant variables to be
written as functions of relatively few underlying “endowment” levels
or levels of factor stocks. If, in an optimizing problem, the control
variables were taken to include allocations of available resources to
possible uses, then the maximization of the usual Hamiltonian ex-~
pression would entail solution of this static allocation problem and
might, therefore, involve solution of a large-scale nonlinear program-
ming problem at each moment.

2) If a decentralized system is assumed, then the static allocation
problem might be left to a market mechanism, with control being
exercised only over saving rates or similar variables. In this case it
must be recognized that the assumption that the static equilibrium
configuration is achieved instantaneously at each moment is a crucial
idealization.

3) If the decentralized system involves several distinet durable
assets, then capital market trading will, in principle, bring about
satisfaction of differential equations for asset prices which prove to be
of the same form as the Euler-Lagrange equations for the state vari-
ables in the system. In this case control need not be exercised directly
over rates of accumulation of each asset separately, but may be left toa
market mechanism with profit-maximizing producers, provided only
that a value rg is optimally selected at each instant and prices p+*(0)
are selected appropriately at the initial time. Again, the idealization
that perfect asset prices are always maintained should be noted.

These observations may be illustrated with a few examples, to
which the next section is devoted.

IV. ILLUSTRATIVE EXAMPLES

Example 1: Solow Model [92] and Ramsey Problem [70]

Section II adopted a state-space description consisting of the
vector (K, L) and transition equations

sF(K, L) — 8K, K(0) = K,

K:

(where the term 8K is added as a simplified provision for replacement
and depreciation) and

L =nL L) = L
subject to the control constraint

0<s<1
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and the state-space constraints
0<K, 0LIL

Study of this nonoptimizing model for various specified savings funec-
tions determining s has been extensive. (See Solow [92], Swan [97],
and many other references cited by Hahn and Matthews [33].)

The problem of optimal economic growth in this context is to
determine a saving policy which maximizes some performance index.
The eriterion function suggested in Section IT is

J = ﬁ) U(C/L)e™*dt

where T might be infinite and p might be positive, zero, or negative
depending on the decision as to whether “time preference’ or popula-
tion weighted utility is appropriate. One must, therefore, write (' in
terms of the state variables by observing that if the only use of out-
put is for consumption or for savings and s is the fraction of output
saved, then

C=FK,L)y—sF(K,L)=(1—s)F(K,L)

follows immediately. Thus one obtains the system

J = j; Ul(1 — s)F(K, L)le™ *dt

K =sF(K, L) — 8K
L =nL

where p, 8, and » are constants with § and n definitely positive. Trans-
forming to per capita terms by introducing & = K /L and

i) = Flk, 1)
yields

J = fo Ul(L — 8)f(k)]e™*dt

E=sfk) — (n+ o)k
0<s<1 0<Ek

For fixed s and p, the integrand function and the Hamiltonian H =
ULl — s)fk)le™ Pt +plsf(k) — (n + 8)k] are concave in k. This is a
straightiorward problem, solved by straightforward methods. There
is no point here in going into the details, which ean be found in Cass
[11], [12], Koopmans [48], Ramsey [70], Samuelson [80], and Shell
[87].

Analytical solution is generally not feasible, but complete informa-
tion can be obtained from a phase diagram, which need not be drawn
here. Introducing ¢ = pe®, one may then write the two equation sys-
tem

d=(p+n+08g— [A—s)+ sqlf'k)
E = sfk) — (n + &)k

which has an equilibrium point (k* 1), where &* is defined by f’(%*)
= p + n 4 3. When the utility funection is linear, the point (%*, 1)
represents a singular arc along which the optimal control s is not
immediately determined by maximization of the Hamiltonian, but is
determined by a condition that the system remain at the equilibrium
point. It may be easily shown that the point (k*, 1) has saddle-point
properties, and thus that, for any initial value &, there is a unique
initial price g(0) such that the system point satisfying the preceding
equations converges to (k¥ 1). Details of the analysis may be found
elsewhere.

15 Since » i3 assumed to be a positive constant, one could easily drop L alto-
gether from the state description, and for Ly > 0, satisfaction of the last state-
space constraint is guaranteed. (This observation justifies division by L to place
all variables in per capita terms, as willbe done.)
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What are the interesting things about this problem? First, consider
the time horizon and the question of transversality condition. When
the horizon is infinite, but p is positive and U{(c) is bounded above on
any feasible path, then the integral converges and it is observed that
the price variable tends to zero in the limit (as one might expect by
analogy with transversality conditions for the finite horizon case).
When 7 is infinite and p is zero, the integral diverges, but it is possi-
ble to show that

j; (U@ — 8)f(k) — U — s*)f(s*)]dt

has a finite upper bound and that, therefore, a ranking may be based
on the measure of divergence from bliss (the maximum sustainable
utility level U*). One observes in this case that prices do not tend to
zero. (See Koopmans [48].) When 7 is infinite and p is negative, the
integral diverges and the criterion J yields no satisfactory ordering.
In this case one may go over to a partial sum eriterion of the sort
studied by Weizsicker [105] Gale [29], and MeFadden [59] and de-
seribed in the preceding.

For cases in which the horizon is infinite, then, the question as to
appropriate terminal conditions seems open in general, although in
particular problems it is possible to show that vanishing of the value
of the terminal capital stock is a necessary condition for optimality.

For finite horizon problems, the difficulty is simply that there is no
natural stopping time and no natural set of terminal conditions to im-
pose. (See the discussion by Chakravarty [16] and Maneschi [57].)

The second interesting feature illustrated by this first example
is the characteristic form of the solutions which emerge. Because of
the saddle-point equilibrium, the optimal paths display a catenary or
“turnpike’” property which has greatly fascinated economists. One
version of this eatenary property is worked out in the author’s dis-
sertation [21a] and the entire problem is worked out in detail in
Samuelson [78], {80] and Cass [11], [12]. The original turnpike con-
jecture is due to Dorfman, Samuelson, and Solow [26] ; its mathema-
tical significance is discussed in Inada [42].

Finally, an interpretation of the auxiliary variable is interesting to
the economist. On economic grounds one can argue that the current
earnings of a capital good must setile at the net value of an extra
unit of machine service, so that earnings of the capital good in this
example can be written as

R(t) =

a()Fx(K, L) = a()f'(k)

where «(¢) is the value of a unit increase in the flow of output. If one
were to take the consumption good as the standard of value, measur-
ing all prices in units of the consumption good, and fo assign to
the capital good an imputed price ¢(f), measured also relative to the
consumption good as standard, then it could be argued that the value
of an increase in the flow of output (which is split in the proportions
s, 1 — s between capital goods and consumption goods) ought
to be simply the weighted average

a(t) = (1 — 8)-1 + sq(t).

With this interpretation, it can be seen that the differential equation
satisfied by the auxiliary variable ¢(¢) is identical to the capital
market trading condition satisfied by the perfect asset price p*({)
described in Section III.%

Erample 2: Two-Sector Model

Example 1 focused on the question of how much the community
should save; the production specification was artificially simplified by

6 In the case of the linear utility function, the interpretation can be fairly
direct since it makes sense to measure all variables, including auxiliary variables,
in physical units. When the utility function is not linear, the auxiliary variable
takes on units of marginal utility (that is, of the derivative of the utility func-
txon) which is not constant. Nevertheless, the mterprebatlon is helpful in sug-
gesting the nature of optimal trajectories and permits one to think of the maxi-
mum principle as a technique for determining the appropriate asset prices which
transform the entire intertemporal maximization problem into a static maxi-
mization problem which might be solved by competitive markets, once suitable
terminal conditions have been established.

45

the assumption that one could in the model simply divide the output
flow between investment and consumption, as if output were a single
homogeneous commodity. More realistically, the division is accom-
plished by diverting resources from one sector to the other, and some
resources might be well adapted to only one use. Recognition of this
fact entails considering an economy with two distinet sectors and
imperfeet transferability from output of one to output of the other.
In this case there is still a single state variable k, but there are several
additional variables associated with the determination of instantane-
ous equilibrium. Leaving all details of the derivation to Uzawa [104]}
and Shell [87], we may write the system equation in per capita form as

= fl’(kl)(srk + Smw) — nk

where now %; and w are components of the solution vector z to a set of
equilibrium conditions

v, k) = 0

to be satisfied at all times and s;, s,y are controls. Written explicitly,
the system is

Ay
Dy TR T =0
flle)
Dy R0

3 oki+ (1 —ae—k=0
4) afilk1) — fi’ (k1) (sk + sw0) = 0

where 0 < o = I;/L <1 is the fraction of the labor force assigned to
the first sector, which produces investment goods. Constraints 3) and
4) represent market clearing conditions, while 1) and 2) represent
necessary conditions for the maximization of the apprapriate Hamil-
tonian H when ki, ks, and o are considered control variables chosen
subject to 3) and 4), and to non-negativity constraints on all vari-
ables.
The criterion to be maximized is

f (1 — o)ye— L.
0

The point of this example is only to illustrate that, as was remarked
in Section III, the complex character of the momentary equilibrium
will generally mean that the maximization of the Hamiltonian at each
moment is & nontrivial problem in concave programming,.

J =

Ezample 3: Two Capital Goods Model

Examples 1 and 2 both illustrate models which eontain only one
durable good and which, therefore, involve no capital market trading.
The present example deals with two distinet capital goods, labeled (in
per capita form) %; and ks, and, therefore, must deal somehow with
capital market equilibrium conditions (auxiliary equations) as a part
of the complete descriptive system to be optimized.

Letting subscripts on f now denote partial differentiation, define

¢ = flky, ko) — kifilky, ka) — kafo(ler, k2)

(which already incorporates some nonoptimizing saving behavior)
and let the system equations be

olkify + kofs) — Mo
(1 _ U)(klfl + szz) - Ake

Determine the control  so as to maximize

f c(t)e™ Pidt,
0

This problem, which is drawn from Shell and Stiglitz [88], is strue-
turally little different from Example 5. The feature which is of interest
at the moment is only that the optimal control in this case must in-
volve auxiliary variables p; and p; such that if

b
ks

I
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Fig. 3.
m>p, o=1
p1<py o=0
PL = Py UE[O) 1]’

Since the:_'a.uxiliary variables p: and p: in fact correspond to (ideally)
observable market prices, one could imagine realizing a decentralized
control through a market which satisfied ¢ = Ulp, — po], where U
is a unit step. This is in principle precisely what a competitive market
for capital goods is supposed to do. Yet if one substitutes o = U[p1 —
P2] in the system of the preceding two differential equations together
with the usual equations governing the auxiliary variables, the
system becomes unstable in the sense that arbitrary initial prices will
lead ultimately to the worst rather than the best of all possible
worlds.?” Only a transversality condition related to some distant
terminal date can rule out assignment of the arbitrary initial prices
leading away from equilibrium; Shell and Stiglitz [88] attempt to
determine whether a competitive system has any natural way to guar-
antee satisfaction of such transversality conditions. The matter is
further discussed by Kurz [50] and Hahn [109].

Ezample 4: Renewal M odel

The preceding examples largely ignore the question of timing of
returns from investment. More detailed analysis of investment
projects, however, emphasize this issue, in part because reinvestment
of intermediate cash throw-off is an important source of financing in
itself. To illustrate this kind of question, drawn more from micro-
economics than growth theory itself, consider a possible extension of
a renewal model studied by Chipman [18]. The system may be illus-
trated as follows. (See Fig. 3.)

From gross output x is deducted a depreciation charge u. From the
remainder y is deducted a saving sy. The remainder (1 — s)y = ¢
is available for consumption. The two deductions are pooled to obtain
asumy = sy + w available for reinvesiment. Gross output z and the
depreciation charge u depend on all past investments as shown.

Problem: Let a(t) be a given function such that 0 < fom ia(t)]dt < .

Let
J = f e~ e(t)dt
4]

where ¢ is defined as before. Then determine the functions s(¢), 8(2), so
as to yield a maximum for J. As subsidiary problems, if either s(i)
or 3(¢) be arbitrarily given, determine the optimal form for the other.

The point of this example is that renewal or vintage models may
require the economist to go to methods which do not depend on the
possibility of a finite-state representation. See also Levhari and
Sheshinski [54].

Ezample 5: Training Costs Associated with a Nonproduced Factor

Dobell and Ho [22] give a solution to one version of a model where
there may be unemployment and costs to hiring or training labor.

17 If one adds the auxiliary differential equations and this control rule to the
system, but fails (as the market might fail) to add the transversality conditions
appropriate to “‘shadow’ prices, taking instead initial values historically given for
market prices, then the system in general diverges from its saddle-point equilib-
rium. This cbservation was first explicitly made by Hahn [3¢].
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An obvious extension is to admit the finite time lag in training as
well as the resource cost of training. This, of course, entails solution of
systems of differential difference equations, but such extension may
be helpful in dealing satisfactorily with some of the fascinating
questions involved in optimal alloeation of resources for investment
in education or research, where gestation lags may be crucial.

Example 6

Consider as a final example a case in which there is a delay, but of
a smoother type. Such a problem, which might be referred to as a
problem of indirect control, is illustrated by the following:

maximize J = f (1 — o)fk)e~"idt
0

subject to
k= o(BR)f(k) — nk, ko = k(0)
R=np(r—R), Ry = R(0)
ro=1u re = r(0)
0<u<l 0Lr, 0LZR

where ¢ is a given smooth function; f(k) is the usual well-behaved per
capita production funetion; v, n, and g are positive constants; and u
is a control variable. The problem here, of course, is that the control
w is “far away” from the importani state variable . In a preliminary
paper [23] on this problem, Dobell and Ho suggest that the optimal
trajectory may require switching infinitely fast. In some computed
examples with a smoothed version employing a penalty function on
rather than inequality constraints, an oscillatory solution is demon~
strated. Interesting extensions to cases where there may be error in
implementing control or imperfect observation of present state are
obvious.

Y. CoxcrLuping CoMMENTS

1t is silly to spend much time speculating about future applications
of control theory in economies; unexpected new directions will un-
doubtedly emerge. But this quick survey might suggest a few of the
issues likely to be of interest.

1) The technical question of the transversality conditions neces-
sary in a free endpoint problem with infinite horizon seems yet 1o be
fully resolved.

2) Selection of an appropriate intertemporal welfare function will
continue to be a challenge.

3) Renewal or vintage models in economics lead to a class of prob-
lems different from the usual problems with finite state space dis-
cussed previously. Perhaps recent work on programming in linear
spaces will prove relevant here, but the apparent restriction thus far
to linear systems is stringent—probably fatal—in most economic
applications,

4) The introduction of lags, through “double integrators” or
related higher order systems, will lead fo problems in which the
optimal control is oscillatory, and this result should lead to further
elaboration of political and economic costs involved in frequent
changes in control variables themselves. Problems where time delays
depend on control variables or on parameters to be optimally selected
also arise naturally in the study of public investment decisions.

5) Turning from the so-called one-sector model to a two-sector
one capital good model, one finds nothing particularly new in the
character of the optimal paths, but already sees a hint of computa-
tional difficulties which may be crucial as numerical work proceeds.
These difficulties arise because the static equilibrium configuration,
for given values of state and auxiliary variables, is obtained by
solution of a system of nonlinear simultaneous equations. Equiv-
alently, maximizing the Hamiltonian involves the solution of a
nonlinear programming problem at each moment. Perhaps, because
of continuity considerations, the solution from one instant, stored,
will prove a good starting point for an iterative computation at the
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next instant. But in any case, it seems that numerical solution must
involve step-by-step integration with solution of a (possibly large)
constrained maximization problem at each step, the step size itself
being taken small near points of discontinuity in the controls.
Kendrick and Taylor {45] are tackling some of these problems in work
on numerical methods for economic models,

6) Aoving from the two-sector to the two capital good model, one
encounters fascinating questions about the significance of price
behavior. In contrast to the usual control problem, the economist
thinks naturally in terms of realizing eontrol through the auxiliary
variables or prices. A true feedback control implies centralized
direction of the system; almost any scheme for decentralization
depends precisely on computing values for the auxiliary variables and
requiring the system to respond to these. For the economist, indeed,
this is precisely the decentralization which can, in some cases at least,
be achieved through competitive markets. But then, without per-
petual recomputation of prices in the face of shocks, the decentral-
ized system will show unstable development. Sinece the whole ques-
tion of the effectiveness of, and means to realize, decentralized control
in large syste nis is very topieal just now, this issue may have signifi-
cance outside econornies.

Moreover, these considerations emphasize that the “plant’” which
the economist studies may include the usual auxiliary equations as a
part of the system. That is, optimizing behavior by individuals with
respect to portfolio decisions may force asset prices to satisfy the
auxiliary (Euler-Lagrange) equations, bringing yields on all assets
into equality. Onece the common yield is itself determined (perhaps
by the condition that total resources offered for investment by house-
holds mateh total resources demanded for eapital formation by firms),
then the determination of asset prices is complete (given initial con-
ditions). Profit-maximizing decisions by producers realize the
optimum composition of output and thus satisfy the requirement
that the Hamiltonian be maximized at each instant.

Under these circumstances, control by an economic planner is
limited to influencing the common yield on assets (by offering some
other security as an alternative store of value, bringing saving or
investment into line through tax policies, or by operating directly on
saving or investment desires), and perhaps to establishing initial
asset, prices consistent with the appropriate transversality conditions.

At any rate, the point is that the economic planner may have to
take as given both the usual system equations and the usual Euler-
Lagrange auxiliary equations, and initial conditions for each, as well
as a side condition which already maximizes H with respect to pro-
duction decisions. Only relatively few indirect control variables,
and pcrhaps some parameter optimization, remain to provide a chan-
nel for ir luencing the economy. (Perhaps in the United States this
will be thought to be just as well.)

7) Without elaboration, we can observe that the preceding con-
siderations give a prominent role to decisions of portfolio theory.
But portfolio problems make little sense except in an explicitly
stochastic context; hence, even abstracting from problems of errors
in observations of state or in implementation of econtrol (which one
probably should not do anyway), problems of stochastic control will
be central in economic applications to come.

8) Finally, this discussion displays one common theme in looking
at various consequences of the fact that economic systems involve
extensive conscious decision making. In part, this fact simplifies
the realization of optimal control because, by Adam Smith’s principle
of the invisible hand, individual decisions made in the light of self-
interest also help to maximize H at each instant, and trading of assets
on capital markets helps to bring about satizfaction of Samuelson’s
dynamic efficiency conditions, which are also the auxiliary equations
of Pontryagin. But letting the system take matters into its own hands
has its dangers: if initial price quotations are wrong, it is unclear
when the market has to face up to that fact, and divergence toward
a stable minimum rather than a saddle-point maximum may result.
Moreover, conscious decision making by components of the system
will result in responses to control which act to cushion the effect,
to insulate each component as much as possible from the control.

The effectiveness of control may be reduced, therefore, and the con-
trollability of the system may itself come into question.

These considerations, particularly of the dual-stability feature
inherent in the decentralized system, give impetus to the search for
control rules which may depart a little from optimality, but which are
robust and stable in the face of minor shoeks or errors and which may
relieve Congress of the need to implement new tax policies infinitely
quickly or infinitely often.

There are many other extensions currently under study: introdue-
tion of the notion that technical improvement is generated within
the system in various ways (see Uzawa [103] for one example); intro-
duection of a labor force structure and a finite training time for labor,
leading to formulation of control problems with time delays; study of
systems in which control is incomplete or very indirect; introduction
of uncertainty either in observation of the state or implementation of
control; and so on. Applications in microeconomies to saving and
portfolio decisions of the individual consumer or to investment and
other operating decisions of individual firms, or applications of the
theory of differential games to problems of bargaining and economic
rivalry have not been emphasized, but certainly should not be over-
looked. The list is long, but perhaps this discussion illustrates the
kinds of intriguing control problems economists may be talking about
when the presidential campaign of 1972 rolls around.
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