SageFS: The Location Aware Wide Area Distributed Filesystem

by

Stephen Tredger
B.Sc., University of Victoria, 2013

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in the Department of Computer Science

(© Stephen Tredger, 2014

University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

SageFS: The Location Aware Wide Area Distributed Filesystem

by

Stephen Tredger
B.Sc., University of Victoria, 2013

Supervisory Committee

11

Dr. Yvonne Coady, Supervisor

(Department of Computer Science)

Dr. Rick McGeer, Departmental Member

(Department of Computer Science)

111

Supervisory Committee

Dr. Yvonne Coady, Supervisor

(Department of Computer Science)

Dr. Rick McGeer, Departmental Member

(Department of Computer Science)

ABSTRACT

Modern distributed applications often have to make a choice about how to main-
tain data within the system. Distributed storage systems are often self- contained
in a single cluster or are a black box as data placement is unknown by an applica-
tion. Using wide area distributed storage either means using multiple APIs or loss
of control of data placement. This work introduces Sage, a distributed filesystem
that aggregates multiple backends under a common API. It also gives applications
the ability to decide where file data is stored in the aggregation. By leveraging Sage,
users can create applications using multiple distributed backends with the same API,
and still decide where to physically store any given file. Sage uses a layered design
where API calls are translated into the appropriate set of backend calls then sent to
the correct physical backend. This way Sage can hold many backends at once mak-
ing them appear as the same filesystem. The performance overhead of using Sage is
shown to be minimal over directly using the backend stores, and Sage is also shown
to scale with respect to backends used. A case study shows file placement in action

and how applications can take advantage of the feature.

Contents

Supervisory Committee

Abstract

Table of Contents

List of Tables

List of Figures

Acknowledgements

Dedication

1 Introduction

2 Related Work

2.1
2.2
2.3
24
2.5
2.6

Filesystem Concepts
Distributed Filesystem Key Ideas
Centralized Management
Distributed Metadata Management
Existing Filesystem Aggregation and other Concepts

SageF'S comparisono Lo

3 Sage Archetecture

3.1
3.2
3.3
3.4

Design Goals

OVErview

v

ii

iii

iv

vi

vii

ix

B IS S

3.4.2 File Lockingo
3.4.3 Metadata Management
3.44 Replication
3.5 Considerations

4 Implementation

4.1 Overview
4.2 File Objects
4.3 Backends.

4.3.1 Swift . ..o

4.3.2 MongoDB

433 Local
4.4 Translator Objects o
4.5 SageFS
4.6 Configurationo
4.7 Using Sageo

5 Experiments and Evaluation

5.1 Microbenchmarks
5.1.1 File Put Benchmarks
5.1.2 File Get Benchmarks

5.2 Scalability
5.2.1 Listing Files oo
5.2.2 Creating Fileso o
5.2.3 Removing Files oo

5.3 Application Case Study

5.4 Application function and Sage
5.4.1 Leveraging Sage
54.2 Burdened by Sageo

6 Conclusions
6.1 Future Work
6.2 Finishing Thoughts

A Additional Information

Bibliography

30
31
31
33

34
34
35
37
37
39
39
39
41
44
45

47
48
49
26
57
99
62
63
66
68
68
70

72
72
75

76

111

List of Tables

Table 2.1 Distributed Filesystems Overview
Table 2.2 Centralized Management Filesystems
Table 2.3 Distributed Management Filesystems
Table 2.4 Distributed Management Filesystems

Table 5.1 Microbenchmark results for file Put times in milliseconds
Table 5.2 Microbenchmark results for file Get times in milliseconds
Table 5.3 Times Overhead for File Put Times
Table 5.4 Times Overhead for File Get Times

vi

vii

List of Figures

Figure 3.1 Sage Archetecture 25
Figure 3.2 File Interaction in Sage 27
Figure 3.3 Sage File Placement Component 29
Figure 4.1 Example Sage Deployment 35
Figure 4.2 SageFile inheritance graph 36
Figure 4.3 SageFile write function. 37
Figure 4.4 The OpenStack Swift Ring Structure 38
Figure 4.5 The Swift Translators open() Method Signature 40
Figure 4.6 SageF'S Constructor 42
Figure 4.7 The SageFS API copy method 43
Figure 4.8 Configuration dictionary for Swift backends 44
Figure 4.9 Builtin Open Overwrite 45
Figure 5.1 File Put Multiplot 49
Figure 5.2 Local Put Scatterplot 53
Figure 5.3 Swift Put Scatterplot 54
Figure 5.4 Median File Put Overhead 56
Figure 5.5 File Get Multiplot, 57
Figure 5.6 Median File Get Overhead 58
Figure 5.7 Median file list times 59
Figure 5.8 File list time overhead. 60
Figure 5.9 Scatterplot for list times in Swift. 61
Figure 5.10Median file create times 62
Figure 5.11File create time overhead. 64
Figure 5.12Median file remove times 65
Figure 5.13File remove time overhead. 66

Figure A.1 Local Get Scatterplot 76

viii

Figure A.2 Mongo Get Scatterplot 7
Figure A.3 Mongo Put Scatterplot, 78
Figure A.4 SageMongo Get Scatterplot 79
Figure A.5 SageMongo Put Scatterplot 80
Figure A.6 Swift Get Scatterplot 81
Figure A.7 SageSwift Get Scatterplot, 82
Figure A.8 SageSwift Put Scatterplot, 83
Figure A.9 Mongo Create Scatterplot 84
Figure A.10Mongo List Scatterplot 85
Figure A.11IMongo Remove Scatterplot 86
Figure A.125ageMongo Create Scatterplot 87
Figure A.135ageMongo List Scatterplot 88
Figure A.14SageMongo Remove Scatterplot 89
Figure A.155wift Create Scatterplot, 90
Figure A.16Swift List Scatterplot 91
Figure A.17Swift Remove Scatterplot 92
Figure A.18ageSwift Create Scatterplot 93
Figure A.19ageSwift List Scatterplot 94
Figure A.205ageSwift Remove Scatterplot 95
Figure A.21SageRandom Create Scatterplot. 96
Figure A.225ageRandom List Scatterplot 97
Figure A.235ageRandom Remove Scatterplot 98
Figure A.24Median List Times Without Random Test 99
Figure A.25Median Create Times Without Random Test 100
Figure A.26Median Remove Times Without Random Test 101
Figure A.27Mean List Times Without Random Test 102
Figure A.28Vlean Create Times Without Random Test 103
Figure A.29Mean Remove Times Without Random Test 104
Figure A.30Max List Times Without Random Test 105
Figure A.31Max Create Times Without Random Test 106
Figure A.32Max Remove Times Without Random Test 107
Figure A.33Min List Times Without Random Test 108
Figure A.34Min Create Times Without Random Test 109
Figure A.35Min Remove Times Without Random Test 110

Figure A.36Python Write Ptrace 110

ACKNOWLEDGEMENTS

I would like to thank:

Yvonne Coady and Rick McGeer, for their endless support and enthusiasm.

1X

DEDICATION

To Oach, Alex, Max, Kyle, Stu, Maudes, Bo P, Brown Town, and the Stick for

getting me through my time at University.

Chapter 1
Introduction

Distributed applications are becoming ubiquitous in our everyday lives. We send mail
with Gmail, communicate with friends and family through Facebook, seek entertain-
ment with Netflix, and get directions with Google Maps. These types of applications
take advantage of distributed storage to help with issues including load balancing,
parallel data access, durability, accessibility, and size constraints.

Distributed storage can be leveraged by smaller scale applications as well. In 2012,
a group of us at UVic decided to make an interesting application for the upcoming
Geni Engineering Conference that calculated the amount of green space contained
within a city. While the actual green space counting was a fun result, the application
was a demonstration of big data on a GENI environment [7]. Called Green Cities,
we took satellite imagery that spanned the entire globe and essentially counted pixels
within city limits to find the amount of green space. We had over 460GB of images
that we stored in an OpenStack Swift [4] storage cluster. The application was ex-
tremely parallelizable and allowed us to partition the computation over the nodes we
had. Each node needed access to all files, and since we did not have enough space on
a single Swift cluster, we had to spread data out over a number of nodes. Eventu-
ally, we brought the experiment down to give other users access to the resources we
were using. So the next time we attempted to revive the application all the systems,
including the file storage, had to be set up again. It was clear that having access
to data in a globally accessible filesystem would be a great asset to these types of
experiments.

Experiments and applications use a wide array of storage devices. We used Swift
but could have easily used Amazon Simple Storage Service [1] or any other distributed

storage environment. Furthermore, Swift is an open source application, but many

users do not have access to or do not want to use a Swift cluster. Other distributed
storage services may be more convenient for a user, physically closer, or provide guar-
antees (security, availability, or otherwise) that a user highly values. Taking into
consideration the diverse selection of concerns and distributed resources, an appli-
cation normally chooses the best set of resources to address their concerns, often
resulting in having to interface with multiple different APIs.

Here 1 present the Sage filesystem. Sage is a lightweight Unix-like filesystem
abstraction on top of backend storage devices. Instead of providing a heavyweight
client-server system, Sage is designed to sit on top of existing storage backends intro-
ducing minimal overhead while providing a common interface for applications to use.
A key point of Sage is that it can abstract any number of backends into a single usable
filesystem under a common API. A user does not need to use backend specific APIs.
Instead, they use the Unix- like Sage interface to store files remotely in independent
systems. Sage works over the wide area so it can aggregate backends distributed
across the globe into a single filesystem. Different backends have different character-
istics such as location, robustness, and security to list a few, so to some applications,
placing files in a specific backend may be very important. Sage provides transparency
into the system that allows users to access individual components of the filesystem.
Much like how each filesystem mounted on a Unix system is still addressable, Sage
allows users to address specific backends individually within the system. If users do
not want to choose a specific backend or simply do not care then Sage takes over and
places the file for them. This way Sage provides an API to aggregate backends into a
single distributed filesystem, but still offers the flexibility for applications to control
file placement throughout the system.

This raises a few questions about what Sage can do:

e Can the system be made transparent enough to give users control over the

location of file data on a per file basis?

e Can the system provide enough flexibility so users can access many different

remote storage platforms?

e Can the system be made to scale while providing aggregate storage to multiple
backends?

e Does aggregating storage introduce significant overhead to the system compared

to using resources separately?

The remainder of the dissertation is organized as follows, Chapter 2 gives back-
ground and related work on distributed filesystems and filesystem concepts. We look
at central and distributed filesystem management as well as aggregation in distributed
filesystems. Chapter 3 gives the architecture of Sage. I outline the design goals of
Sage and decisions on what distributed features (such as replication, and consistency)
Sage provides. Chapter 4 details the prototype implementation of Sage. I discuss each
Sage component and how it interacts with the system, as well as how applications
can use and take advantage of Sage. Chapter 5 gives experimental results with Sage
using two backends Swift and MongoDB [3]. The results report on the performance
and scalability with microbenchmarks, a case study looking at file placement, and
finally an examination on what applications make good use of Sage versus those that

do not. Chapter 6 has concluding remarks as well as some directions for future work.

Chapter 2

Related Work

2.1 Filesystem Concepts

Before we dive into the background on distributed filesystems, let’s take a small aside
to define some common filesystem terms and concepts. A filesystem is traditionally
an abstraction over some storage device used to store data. A filesystem partitions a
device’s available space into many blocks. Blocks normally have a fixed size (which
varies from filesystem to filesystem) and are the atomic unit of most traditional filesys-
tems. A file is stored as a collection of blocks, but there is a problem here. Files vary
in size while blocks have a fixed size. So either the block size has to be sufficiently
large so we can fit all reasonably sized files into a single one or we break up a file
into a collection of blocks. If we use the former case, this means blocks must be large
enough to store 1GB files. If we ignore the issues of handling 1GB buffers, the large
block size means a 1B file will use the same amount of space as a 1GB file!

Using multiple blocks allows us to represent files of arbitrary size without much
wasted space, however now we have to consider how we keep track of file blocks.
As a user, we do not want to have to remember how many blocks an individual
file has or where they are located to access a file. As a result, we want to store
some information about the blocks. This information is known as file metadata and
is traditionally stored in a structure called an inode. Inodes store metadata about
files in a filesystem, not only where blocks are located but things like access times,
permissions, and total file size.

Using inodes and blocks we can describe files in a filesystem, but we still need

to be able to describe the filesystem as a whole. Filesystems reserve some space for

metadata about the entire filesystem itself that describes which blocks are free, where
the root of the filesystem is, and other data about the filesystem layout. Filesystems
are structured as a tree, with directories as nodes and actual files as leaves. The root
of the directory tree (also known as the directory hierarchy) is called the root of the
filesystem. Now that we have a general idea about what a normal filesystem does

let’s examine what distributed filesystems are.

2.2 Distributed Filesystem Key Ideas

Distributed filesystems have an abundant history in computer science. The idea that
resources could be accessed over the network has great traction as it gives machines
access to a potentially enormous wealth of information, not available on a single disk.
One of the first successful distributed filesystems is The Sun Network Filesystem [40].
Known as NFS it was developed to allow a user to access the same filesystem from
multiple workstations and share files with other users. NFS relies on a client server
architecture where a central server holds all filesystem data and metadata, and clients
connect to the server to access the filesystem remotely. NFS uses a remote procedure
call (RPC) protocol, also developed by Sun, to allow clients to perform operations on
the server.

Clients mount NF'S locally interacting with their systems virtual filesystem (VFES)
layer allowing clients to see the NF'S mount as a local filesystem. Clients can cache
reads and writes for files, but must specifically check for invalidation with the server.
As an aside NSV v3 allows clients to use weak consistency for improved performance.
However, this consistency model allows clients to use stale data, so a tradeoff exists
for clients to consider [38]. Since the server handles all client transactions, it can
perform file locking, which it does at the inode level (as opposed to individual file
blocks) to avoid write conflicts. NFS works very well, but the central server becomes
a bottleneck at high loads as it is a central component of the entire system.

Another big player in distributed filesystems is the Andrew Filesystem (AFS).
Originally developed for the Andrew computing environment at Carnegie Mellon Uni-
versity [23, 24, 25|, AFS takes a different approach than NFS. Tt tries to move away
from the central server of NSF and spread out filesystem operation over many smaller
servers. These “file servers” are each responsible for sets of files logically called vol-
umes. Each file server can be responsible for multiple volumes, but each volume is

managed by one server. File servers store access control lists to handle authorization

Management Filesystems Discussed

Centralized NFS, SGFS, Cegor, Fast Secure Read Only,
TidyFS, EDG, Panasas, XtreemFS, Lustre,
GPFS, PARTE, GFS, HDFS, MooseFS
Distributed Deceit, Echo, G-HBA, Gluster, BlobSeer,
zFS, xFS, Tahoe, JigDFS, Coda, DNM,
DMooseFS, Ceph

Aggregation InterMezzo, TDFS, IncFS, Gmount, Chirp,
TLDFS

Table 2.1: Distributed Filesystems Overview

and hand out file locks and authentication tokens to clients to handle file access.
A location database holds a mapping of files to file servers, which is organized into
logical paths. Each file server has a location database that, when queried, can either
return the requested file if present or return the file server that holds the requested
file. AF'S uses client side caching to store files, when a client opens a file, a copy of it
is sent to the clients machine and cached where it can be manipulated locally. The
cached file is pushed back to the server when the file is closed. A client side cache
manager handles cache consistency and filesystem namespace lookups. The cache
manager keeps a copy of the filesystem directory tree so file lookups can be done
without contacting the file servers. File servers are responsible for invalidating the
cache managers contents including any cached files or filesystem structure.

NFS and AFS demonstrate two different designs in distributed filesystems. NFS
has distributed clients but one central component that deals with filesystem requests.
This simplifies dealing with consistency and locking issues, but introduces a single
bottleneck. AFS distributes requests over multiple servers but must now have some
structure describing how to access files, in this case a location database, which must
be managed by the system. These two ideas have been the major driving force behind
distributed filesystem development. In the next sections, we survey the landscape of
distributed filesystems. Table 2.1 shows an overview of all the distributed filesystems
we examine in this chapter. First we will take a look at filesystems that use centralized
management, then examine those with decentralized management, and finally visit

those that aggregate resources together.

Filesystem Replication Locking Data

NFES RAID Centralized | Centralized
SGFS RAID Centralized | Centralized
Cegor RAID Centralized | Centralized
Fast Secure Read Only | Whole Filesystem | N/A Distributed
TidyFS Data Blocks Centralized | Distributed
EDG Whole Files Centralized | Distributed
Panasas RAID Centralized | Striped
XtreemF'S Whole Files Distributed | Distributed
Lustre Data Blocks Centralized | Striped
GPFS RAID Centralized | Distributed
PARTE Metadata Distributed | Distributed
GFS Data Blocks Centralized | Distributed
HDFS Data Blocks Centralized | Distributed
MooseF'S Data Blocks Centralized | Distributed

Table 2.2: Centralized Management Filesystems

2.3 Centralized Management

New classes of applications that require high throughput access to file data, either
reads or writes, has spurred developments for centralized filesystems. In this section,
we examine filesystems with centralized management. Table 2.2 gives an overview of
the filesystems examined in this section.

The user level secure Grid filesystem (SGFS) [57] modifies the NFS protocol to
use SSL to ensure secure communication in a grid environment. It modifies NFS by
adding proxies at the endpoints of communication that encrypt NSF traffic using SSL.
SGFS allows users to choose between encrypting and digitally signing messages for
security or just digitally signing to improve performance over the former. Additionally
the protocols used to encrypt and sign messages can be chosen by the user.

Cegor [44] is an NFS like filesystem, where clients interact with servers to handle
both file data and metadata requests. Connections in Cegor revolve around the
notion of semantic views. Normally connections are handled through the TCP/IP
stack of the server, but in Cegor both clients and servers store information that
allows communication even when network connections disconnect and reconnect with
a different TCP connection. This allows clients to move between networks and not
lose connection to the filesystem, or have to reconnect entering credentials again. The
actual filesystem consists of an NFS like server to serve files and communicate with

clients. Clients are allowed to cached data and take out read/write leases on files. If a

client disconnects, a reconciliation step happens where the client validates its cache,
and then performs the modifications on the new cache contents.

The fast secure read only filesystem [19] is a read-only filesystem that focuses on
availability and security. To achieve high availability it uses replication of a central
database. This database of files is created on a single server, which is then replicated
to other machines that actually serve files to clients. Clients interact by mounting a
modified NF'S drive on their local filesystem, which allows them to communicate with
one of these replica databases. Clients only have read access on files provided by the
replications. The system extensively uses hashing to ensure file integrity, and whole
filesystem integrity. The central system hashes file and its entire directory tree which
is then handed to the replicas. This ensures that clients can verify the replica has
not been modified by the server that is hosting it. The filesystem is great for content
delivery to many clients as the replicas are all identical and the client library (the
modified NFS mount) can find the best (lowest latency in this case) replica database
to make requests to.

TidyFS [18] is specifically targeted at write once high throughput parallel access
applications. According to TidyFS files are abstracted into streams of data, which
means files are actually composed of many parts. In TidyFS a part is the smallest
unit of data that can be manipulated, however the part size is not fixed and is actually
controlled by the client. When a client wants to write a file it first chooses which
stream to write in, if it chooses to write a new stream then it can then choose a part
size for the stream. Each part in a stream is lazily replicated and stored on multiple
OSDs. It uses a centralized metadata server (MDS) to keep track of which parts
make up a stream, as well as where each part replica is located. Part metadata is
essentially a key value store mapping part name to data in the MDS. Each part is
written only once (called immutable) and is given a time to live (ttl). When a parts
ttl expires it is deleted. An updated file is actually rewritten (at least the part that
was updated), and the metadata server is updated to ignore the old parts of the file.
To access a file, a client contacts the MDS and is given the location of the closest
up to date replica, which it then reads directly off of the OSD or set of OSDs if
multiple parts reside in different locations. A virtual directory tree is implied by file
pathnames, but no hierarchy actually exists. Since the filesystem is highly coupled to
the MDS, it too is replicated, and decisions are made based on the Paxos algorithm.
Clients communicate with the MDS (or an MDS in this case) through a client library
which can help with load balancing by directing to any replica of the MDS. Parts

are replicated lazily (implying replication does not block file access to the original)
and placed pseudorandomly on a set of machines, trying to choose machines with
the most available storage. The replica placement generates a set of three machines
based on the name of the replica to place, then chooses the machine with the most
available storage to place the file. If this is not done then small parts may get all
replicas placed on the same machine, which defeats the purpose of replication. An
interesting feature of TidyFS is clients can actually query for part location to discover
where the part physically exists.

The EU DataGrid Project (EDG) [30], [12] uses Reptor [29] for replication man-
agement. Reptor uses replicas to improve file availability to grid applications, and
uses a central service to keep track of replicas of files. When a client asks for a
file Reptor finds the best replica, and sends the location back to the client. Reptor
is implemented as a collection of modules (called services), which interact together
to provide replication, consistency, and security to the EDG. Having different ser-
vices allows Reptor to be extended and easily customized to fit the desired workload
and application. The remaining services in the EDG host the central replica catalog
service, as well as the replica optimization service called Optor. Optor can gather
network information about the grid and decide which link should be used to trans-
fer a file stored in Reptor. When a file is to be replicated a request is sent to the
Replica Manager (Reptor), which then contacts a Replica Metadata Catalog. The
catalog translate the logical file name into a unique identifier and sends it back to the
manager. The Replica Location Service is then contacted to find all replica locations
for the file identifier. The locations are then passed to the Replication Optimization
Service (Optor) to choose the best location for the new replica. The file is then repli-
cated to the new location and the new copy is registered with the Replica Location
Service.

The Panasas ActiveScale Storage Cluster [36] is a cluster storage system with
a central MDS, and many OSDs (object storage devices) which actually store files.
Panasas uses an abstraction it calls an object to store file data. Objects contain file
data as well as some metadata about RAID parameters and data layout and things
normally found in an inode such as file size and data blocks. This allows the OSD
to handle each object differently and manage some metadata of the file. The MDS is
responsible for the filesystem structure which points clients to the OSDs where the file
contents are stored. Files can be striped in multiple objects over multiple OSDs. To
do this the MDS holds a map of each file which describes where the file components

10

are located. The MDS also handles client cache consistency. Clients are allowed to
cache file maps, but it is the responsibility of the MDS to tell a client if its data is
stale invalidating the cache. The last thing the MDS is in charge of is file access. It
hands out capabilities to clients (which can be cached) that describe what a client
is able to do to a file. Since capabilities can be cached it is the MDS which must
invalidate the capability when needed. Apart from caching file maps and capabilities
the OSDs can cache writes and reads. Panasas has specific hardware requirements
that take advantage of hardware disk caching to improve file throughput. Finally
as perviously mentioned all metadata not related to the MDSs functions (which are
mainly directory structure and file access) is stored with the file itself on the OSDs.
This along with caching of the file map can allow many metadata operations to bypass
interacting with the MDS thus alleviating load. Clients interact with Panasas through
a kernel module which allows the filesystem to be mounted on the clients machine.

XtreemF'S [27] is a filesystem that like Panasas also uses the object abstraction
for files, and attempts to improve grid filesystem performance using file objects. The
filesystem is partitioned into volumes which are completely separate from each other,
have their own directory structure, and their own set of access and replication policies.
An overall metadata service (called the directory service) in a central server handles
organization of volumes as well as structures called metadata and replica catalogs
(MRCs). MRCs hold all the metadata for a set of volumes in a database which
has an internal replication mechanism, which can replicate data to other MRCs. This
means any given volume can be present in more than one MRC (the volumes metadata
simply has to be in the MRCs database). A volume has a set of policies which allows
the MRC to control the consistency of the replicas differently in each volume. This
allows XtreemFS to have volumes with different policies that restrict placement of
files (or replicas in this case) to a specific set of OSDs. The directory service connects
clients to MRCs and is the only centralized component of the filesystem. A client
interacts with an MRC which describes the volumes where the actual data resides,
which the client can then contact to perform operations on. Volumes physically
reside on OSDs. Consistency of a file object is handled by the containing OSD, not
the volumes MRCs. When given a request the OSDs act in a peer to peer manner with
other replica holders to serve a file and maintain consistency. OSDs also maintain
leases for files which along with version numbers for files helps maintain consistency,
and resolve data conflicts.

Lustre [35] is a distributed filesystem that in 2003 ran on three of the eight largest

11

clusters in the world [43]. It uses a centralized MDS to handle metadata with many
client object storage servers (OSSs) which store actual data. Data is grouped into
logical volumes maintained by the MDS which are then seen by clients like normal
filesystems. A standby MDS provides redundancy in case the active MDS encounters
a problem and all requests done on the active MDS are done on the standby as well.
Files are represented as a collection of objects on the MDS, which are physically
stored on the OSSs. Objects belonging to the same file can be stored on different
OSSs to provide parallel access to parts of a file (called object striping). Lustre
uses file locking to ensure file consistency through its distributed lock manager [43].
The lock manager is a centralized component that grants locks to distributed clients.
Locks can be read, write, and some interesting variations that allow clients to cache
many operations to lower communication costs between the MDS and the client. In
really high contention spots in the filesystem (such as /tmp) the lock manager will
not give out a lock, and will actually perform the clients operation itself. This avoids
having to pass a lock back and forth rapidly. Clients are actually able to cache the
majority of metadata operations locally and only have to check consistency when a
new lock is requested.

GPFS [42] is a large filesystem which uses unix like inodes and directories, but
stripes file blocks over multiple storage nodes to improve concurrent access to the file.
File blocks are typically 256KB and a single file may be striped over multiple nodes
with block placement determined in a round robin format around the nodes in the
filesystem. Every file has a metanode which is somewhat equivalent to a standard
filesystem inode and contains the locations of all the blocks of the file. A single node
in the system known as the location manager handles allocation of new space on other
nodes in the filesystem using a map structure that identifies unused space. To achieve
high throughput and ensure consistency GPFS uses distributed file locking. A central
lock manager is responsible for handing out smaller locks for parts of the filesystem.
These smaller locks can be broken up into even smaller locks by the files metanode, all
the way down to byte range sizes on files. By locking down to byte range granularity
GPEFS can easily support parallel file access to the same file. All metadata updates
to nodes are handled by the metanode. Other nodes will update metadata in a local
cache then send the contents to the metanode which pieces the updates together.
GPEFS does not replicate files, instead it uses a RAID configuration. GPFS can also
run in a mode if POSIX semantics are not needed for the filesystem. Called data

shipping mode, no locks are handed out and instead, nodes become responsible for

12

specific blocks of data. When operations are performed on the data, the request is
forwarded to the handling node and carried out on it.

PARTE [34] is a parallel filesystem that focuses on high availability through an
active and standby metadata server, as well as metadata striping. PARTE uses
a central MDS to handle file requests and several object storage servers which it
calls OSTs. When a client wants to perform an operation on a file it first contacts
the MDS, which then grabs the inode of the requested file, and updates the inode
metadata with unique client and log ids and the file version number if needed. The
inode is then written and the metadata response is sent back to the client which
can then perform operations on the file. The MDS replicates stripes of its metadata
on OSTs to improve availability and allow the MDS to recover in case of failure.
Synchronization of metadata on the OSTs is done by the client and log ids that are
stored with a file, along with the version number. In fact if an MDS is recovering
from failure (said to be in recovery mode), the OSTs holding metadata can process
metadata requests from client admittedly at a slower rate.

The Google File System (GFS) [20] was developed by Google to support dis-
tributed applications. Typical google applications are large scale, require built in
fault tolerance and error detection, automatic recovery, and deal with multi gigabyte
files. An example of such an application is Bigtable [14], which is a large key-value
store system where data is addressed by a key. A key is composed of identifiers in-
cluding a columns key, row key, and time stamp. Bigtable provides very fast access
to data as it is essentially a sorted map, of all the keys and values, but ultimately
stores data in GFS. Googles goals were to support many large files of 100MB or more,
with files being written to a small number of times, and read a large number of times.
Additionally files are mostly appended to rather than randomly written to, and reads
are usually large sequential reads. To meet these goals the GFS provides a POSIX
(Unix) like interface, with files referenced in hierarchical directories with path names,
and supports create, read, write, amd delete operations. Interestingly the GFS imple-
ments an atomic append operation, which helps simplify locking on files. GFS has a
single master that stores metadata for the entire filesystem and multiple chunkservers
that store data. Files are broken up into chunks of 64MB which are replicated (to
avoid using RAID and still provide data durability) and stored on chunkservers. The
metadata stored for the cluster includes namespace information like paths, permis-
sions, and mappings from files to chunks as well as location of the individual chunks.

Applications interact with the GFS through client code which implements a file sys-

13

tem API, but does not go through the operating system. When performing operations
on files, clients interact with the master to get the appropriate chunkservers, then in-
teract directly with the chunkservers to access data. All metadata is maintained in
RAM by the master, but is also flushed to disk periodically. It does not flush chunk
locations to disk however. In case of a failure the master asks each chunkserver which
chunk they have which alleviates the need of the master to verify the locations of all
chunks. The master also contacts each chunkserver periodically through a heartbeat
message through which it can collect the chunkservers state. File locks are done via
read and write leases, on a per file basis given out and maintained by the master.
When files are deleted they are not immediately reclaimed, instead they are marked
for garbage collection, which is then done by the master. No caching of file data is
performed on clients, as typical workloads require data to large to be cached, but
chunk locations can be cached. Although clients still need to contact the master for
leases if they have expired.

The Hadoop Distributed File System (HDFS) [45] is an integral part of the Hadoop
Map Reduce Framework, and was created to service the need for large scale MapRe-
duce jobs. HDFS is designed to support a very large amount of data distributed
among many nodes in a cluster and provide very high I/O bandwidth. HDF'S consists
of a single NameNode that acts as a metadata server, and multiple DataNodes which
store file data. DataNodes are used as block storage devices, and do not provide data
durability with RAID. Instead data is replicated on different DataNodes distributed
across the filesystem to provide durability in case of node or disk failure. In addition
to providing robustness distributing data also increases data locality in HDF'S. Local-
ity is a unique design goal of the HDF'S as storage nodes are also frequently running
MapReduce jobs and high data locality improves the latency of transferring data. The
NameNode stores metadata for files and directories in an inode structure which, like
in a normal filesystem, store permissions, access times, namespace, and other such
attributes. The NameNode also stores locations of file replicas as well as the directory
tree. The directory tree is all kept in main memory and periodically written to disk
at a checkpoint. A journal is kept of operations performed between checkpoints so
the NameNode can recover by taking the last checkpoint and replaying the journal.
Much the opposite of Googles GFS the DataNodes send heartbeat messages to the
NameNode to ensure they are still reachable. HDFS is not mounted in a normal
Unix fashion, instead clients interact through the filesystem Java api which supports

create, read, write, and delete operations. The clients are also exposed to the physical

Filesystem | Replication | Locking Data
Deceit Whole Files | Centralized | Distributed
Echo Whole Files | Distributed | Distributed
G-HBA N/A Distributed | Distributed
Gluster Whole Files | None Distributed
BlobSeer Versioning N/A Distributed
zFS N/A Distributed | Distributed
xF'S Data Stripes | Distributed | Striped
Tahoe N/A Distributed | Distributed
JigDF'S N/A Distributed | Distributed
Coda Whole Files | Distributed | Distributed
DNM N/A Distributed | Distributed
DMooseFS | Whole Files | Distributed | Distributed
Ceph Whole Files | Distributed | Distributed

14

Table 2.3: Distributed Management Filesystems

location of files so the MapReduce framework can schedule jobs close to data. File
locking is done by acquiring read and write leases on files from the NameNode. The
leases are essentially locks that time out after a given period of time.

MooseFS [15] uses a central server to store metadata and multiple chunk servers
to store data much like Google’s GFS and HDFS. Data is replicated on chunk servers
and can be set per file. MooseFS uses other metalog backup servers to log metadata
operations and periodically grab the metadata out of the central MDS, much like the
checkpoints done in HDF'S. Clients interact with MooseF'S through a FUSE module,

mounted on their local system.

2.4 Distributed Metadata Management

In this section we look at filesystems with distributed management, as well as some
techniques to do so. Table 2.3 gives an overview of the filesystems discussed.

Deceit [46] is a filesystem that extends NFS. Normally to access a given server a
client has to mount the NF'S server locally, in Deceit as long as a client has mounted
the Deciet filesystem, then they have access to all servers mounted within. Each
server still must be mounted to a client, but servers communicate with each other
and propagate information between them. In other words the actual client only
has to contact one server in the set of servers provided by Deceit to access the entire

filesystem, while in NF'S the client would have to mount each server separately. Deceit

15

replicates files over the set of servers and has a single write lock on each file. A file
can only be updated by the server when it has the write lock for the file.

In the Echo [22] distributed filesystem the directory structure is maintained in two
parts. The upper levels of the directory tree (ie. the root and directories close to the
root) are described in a global table called the global name service. The lower levels
of the tree are each handled by a separate server, so a server is responsible for a given
subtree of the entire filesystem. The servers that store data are replicated, but there
is an arbitrarily designated primary node that handles requests on a given file. The
primary takes a majority vote of all the file replicas to ensure it is serving the correct
version. Clients can cache files for quick access and it is the primaries responsibility
to notify the client if the cached copy needs to be invalidated. The global name
service is also replicated, but has weaker consistency than replicated files. When the
global name service is updated updates are propagated to all replicas but service does
not stop. This implies that clients may contact an older version of the global table
and can get two conflicting answers from two different tables, however upper level
directories are modified much less than the leaves of directory trees.

Group-based Hierarchical Bloom filter Array (G-HBA) [26] is a scheme to manage
distributed metadata using bloom filters to distribute metadata over a number of
Metadata Servers (MDSs). Bloom filters are structures which can be used to check if
an element is a member of a set. While space efficient, bloom filters are probabilistic
so they can not be certain a given element is a member of a set, however they do not
produce false negatives (only false positives) so they can be used to determine if an
element is not in a given set. G-HBA uses a group of MDSs to hold file metadata
where a single given MDS is responsible for a set of files. A file that a given MDS is
responsible for is called the files home MDS. Each MDS hold arrays of bloom filters
which point to other MDSs so when a file is queried at a given MDS, if the MDS is
not the files home, then the request gets forwarded to another MDS predicted by the
bloom filter. Clients can therefore randomly choose an MDS to query for any file as
they will get forwarded to the files home MDS.

Gluster [21] is a filesystem that has no metadata server. Metadata is stored with
a file which is located by an elastic hash function. Little information is present on
the Gluster created elastic hash function, however the idea boils down to hashing
files over a set of resources. This means Hash values are used to place files on a set
of logical volumes within Gluster. When a client requests a file, they hash the path

of the file to determine which logical volume the file resides on, they then consult

16

a map to find which physical server to contact. Volumes are in fact replicated so a
given file is also replicated over all servers responsible for the volume it belongs to.
Not having a metadata server removes a single point of failure in the system, but
also makes it so that last write wins in consistency semantics, as there is no watchdog
over how many clients are reading and writing a given file. Clients can mount Gluster
filesystem through a FUSE module. OpenStack Swift works in a similar way using a
hash function to partition data over nodes. Swift however is an object storage system
and clients interact over a REST interface to contact the storage system.

BlobSeer [37] is a filesystem heavily based on versioning to provide consistency and
concurrency. The architecture consists of: several storage servers, one storage service
which is queried to find free space, several metadata servers, and one version manager
which keeps information on file snapshots. A main concept in BlobSeer is that data
is never modified, it is only added and superseded. Data is written in chunks, which
receive a unique chunk id and are striped over storage servers. files are described
by structures called a descriptor map which list the set of chunks that belong to a
specific file. These descriptor maps also receive a unique id and are stored in a global
map. Versioning is then done by addressing a specific descriptor map, which in turn
addresses specific chunks, and since data is never deleted we are always guaranteed
to find the correct version of the file pointed to by the desired descriptor map. A
file can have many descriptor maps and the maps along with the related chunks are
referred to as a snapshot of a particular file. Like file data Metadata is never deleted
either. Metadata for a file is stored as a distributed segment tree, where each branch
of the tree is responsible for a different segment (byte range) of the file (or snapshot
of the file in this case). Descriptor maps belonging to the specific byte ranges are
stored with the leaves of the tree, so to get the correct maps required for an operation
the tree is walked returning the descriptor maps at the resulting leaves. The segment
trees are stored in a global structure distributed over all metadata servers along with
all other global structures.

The ideas presented by [9] aim to utilize client caching to reduce load on filesystem
servers. Here caches are used to store data on clients, but if there is a cache miss
clients are allowed to look in other clients caches for the desired data. To do this cache
hierarchies are constructed either statically or dynamically. In a static hierarchy a
determined set of clients are contacted in case of cache misses (usually in multiple
layers), while in dynamic hierarchies they are built on the fly. Clients can cache

heavily shared files up to a certain number of copies. Once this number has been

17

reached the server hands out a list of clients with a cached copy of the requested file
to the requesters. The requester can then choose from the list of cached copies to read
the file, and can keep the list of clients with a real copy cached. Cache invalidations
are propagated the same way from the server to the set of machines caching the file,
then from those machines to the next in the hierarchy. In this sense each node can
act as a mini server for a file where other nodes can read a file from its cache and
invalidations are passed the readers when necessary.

zFS [39] is a distributed file system design with a traditional Unix like interface.
It uses object storage to store files, but does not distinguish between directories and
regular files. zF'S is designed to support a global cache to improve performance. Files
and directories are stored as objects on storage servers. Directories contain pointers
to other objects, much like a directory in Unix storing inode numbers, and results
in metadata being stored with files much more like a traditional Unix file system.
The metadata for an object does not have to be placed on the same node so object
lookups take place separately from object reads and writes. zFS clients can directly
access objects once a lookup has been done. No replication is done by the filesystem,
instead data durability is left to the object store to handle (either RAID, or replication
at the object level). Each node in zFS is responsible for objects located on it, and
generates leases when an object is to be read or written by a client. zF'S keeps a global
cooperative cache, which exists in memory on each machine. The observation is that
it takes less time to fetch from other machines memory over the network, than it
does through the local machines disk. When an object is requested it is first searched
for in the cooperative cache for all machines. If it is found it can be read from the
cache rather than where it is stored on disk. The cache is managed for consistency,
and only data that is not being modified on other hosts (queryable via leases on the
object) is cached which provides strong cache consistency.

xFS [5] distributes management of the filesystem with metadata managers, and
storage servers. The metadata managers hold metadata for the filesystem, while the
storage servers hold actual data. Additionally all clients participate in a global cache
to provide high data availability. Metadata is distributed according to a Manager
Map, which is globally replicated on all clients and servers. The Manager Map is
essentially a table that maps groups of files to specific metadata managers and can be
updated on the fly. Metadata managers contain collections of imaps, which describe
which storage server a file resides on, where the file is located on disk, and the location

of all cached copies of the file. Any given file is represented by an index number.

18

Looking up a file in a directory returns the index numbers of the files contained
within, which can then be used to find the desired files manager, which is then used
to get the imap and access the file. Portions of files are striped across many storage
servers by grouping files into stripe groups. If a file stripe exists on a given storage
server, then it will exist on all storage servers in the stripe group. Stripe groups are
identified by a Stripe Map, which is globally distributed throughout the filesystem.
Managers are responsible for file stripe consistency and keep track of all cached copies
(seen before in the imap). When a stripe is updated the manager must invalidate all
cached copies of a stripe and update the stripes imap.

The authors of [47] lay out a set of protocols for high replication in distributed
filesystems where files are replicated at multiple servers. Clients are allowed to cache
files, but before an operation is performed they query a set of servers to see if their
copy is up to date. The servers will check all replicas of the file queried, and return
the most up to date version of the file (based on majority), and inform other replicas
that they are now obsolete. If a file is to be modified a timestamp is generated and
updates to the file are serialized according to the timestamps in a write queue. This
ensures that all up to date replicas have applied the updates in the same order.

Tahoe [55] is a distributed metadata filesystem with emphasis on file security.
Files and directories (as metadata are just files in Tahoe) are distributed throughout
hosts in the filesystem using erasure coding. As an aside erasure coding is a way of
encoding data which is very failure resilient. Erasure coding takes a message with K
symbols and expands it to N symbols, N = K + M, where M are redundant symbols.
To reconstruct the message from N we only need K symbols out of the N. Tahoe uses
the two erasure parameters N, the number of hosts a file is distributed to, and K, the
number of hosts required to be available for the file to be available. This way Tahoe
can distribute files over N hosts but only require K of them to be available to recover a
file. Tahoe also heavily encrypts data with AES and uses SHA256 signatures to ensure
data integrity. Individual files have capabilities stored with them which address what
clients can do (or not do) to files.

JigDF'S [8] is a distributed filesystem with a high emphasis put on security. Much
like Tahoe, JigDFS splits up files using erasure codes and stored on multiple ma-
chines, however the erasure codes are used iteratively and with a hash chain to avoid
information leakage. To find all the parts of a given file a chain of hash values each
depending on the previous result is used. A distributed hash table keeps track of

where files are located (at least to start the hash chain), which is globally maintained

19

by the nodes of the system. Nodes act in a peer to peer manner maintaining files
in the filesystem. Each node is responsible for the parts of files stored there, and a
portion of the distributed hash table.

Coda [41] is a distributed file system with the overall goal of constant data avail-
ability, and takes a different approach than the previously examined file systems.
Coda uses a few trusted servers to handle authentication, but allows clients to ag-
gressively cache data. Coda also uses server replication to provide high availability.
A client uses a working set of servers for file system operations, and is said to be
connected if it can communicate with at least one of the servers. While connected
files are pushed to the servers from a local cache when mutated. If a client loses its
connection to all of the servers it starts operating in disconnected mode, and operates
solely out of its local cache without pushing changes. When the client reconnects to a
server, it pushes the local cache to the file system. Coda uses an optimistic replication
strategy, meaning it pushes changes from the cache without knowing the files state the
in the file system. Coda provides conflict detection to identify when a file is updated
on two separate clients. If the files modifications do not conflict, Coda automatically
resolves the conflict, otherwise a new file is created and the conflict must be resolved
manually. Interestingly Dropbox takes the same approach to resolving conflicts and
disconnected operation.

DNM [50] attempts to distribute metadata namespace over metadata servers
(called DNM servers) using a global table. The table is globally replicated and con-
tains the root and the first level of subdirectories (much like Echo), the rest of the
namespace is partitioned over metadata servers into subtrees, which are then handled
independently by DNMs. The global table holds a mapping of directory to the ap-
propriate DNM server so when a client makes a request to the filesystem it queries a
server which will look up the correct server in the name table and forward the request
to it. Clients aggressively cache lookup results and the client caches not only the final
result of the lookup, but all intermediate directories in the request. This creates a
tree like cache on the client which it can then use to facilitate further requests to files
that share a portion of past ones. DNM servers hold file locations, which again can
be cached, and are revalidated when a lookup fails on file serving nodes.

DMooseF'S [56] aims to distribute metadata around MooseF'S using multiple inde-
pendent metadata servers to host filesystem metadata. Each MDS is responsible for
only a portion of filesystem metadata. The directory structure is distributed among

the metadata servers using a hash table. When a client sends a request to the filesys-

20

tem, the path of the file is hashed which will determine which MDS the request is
sent to. The MDS then tells the client which set of chunkservers to contact for the
file data. The directory structure is only partially hashed (much like how Echo and
DNM split up the directory hierarchy) so an MDS is responsible for a given subtree
of the directory structure, as each MDS is oblivious to others.

Ceph [52] relies on metadata nodes and storage nodes to provide a distributed
file system, and maintains them as two clusters, a metadata cluster and a storage
cluster. Clients interact with the metadata and storage clusters separately to perform
operations. Metadata for the cluster contains a mapping of files to locations as
well as other file metadata (size, etc), but to locate a file a distribution function is
used. Any entity that knows the distribution function can compute where in the
storage cluster a file is located. A hash function is a simple distribution function
used by Gluster and Swift, but erasure codes like in Tahoe and JigDFS can also
be used. This eliminates object lookups for locating files, however a lookup is still
required to manipulate a file’s metadata. Ceph distributes the metadata in a cluster
as a hierarchy, where a given server is responsible for a portion of the filesystems
structure. The portion of the filesystem each metadata server is responsible for can
be dynamically updated, which allows flexibility and load balancing in the metadata
cluster. MDSs hand out capabilities to clients that allow them to read and write
files from the storage servers OSDs. Files are replicated and distributed over the
OSDs using the CRUSH algorithm. CRUSH or Controlled Replication Under Scalable
Hashing [51] is an algorithm for file placement specifically developed to place object
replicas in a distributed environment. CRUSH takes an object identifier as input
(could be a path name or id) and outputs a list of storage devices to place the
replicas. CRUSH tries to optimize replica placement according to assigned storage
device weights, where a more heavily weighted device will end up with more objects
(well, more replicas of different objects). For CRUSH to work it needs to know
about the storage cluster layout, the weights of each node in the cluster, and makes
use of a mapping function to essentially hash the object identifiers. Looking back
at Ceph each OSD stores data locally in an Extent and B-tree based Object File
System (EBOFS) which supports atomic transactions (writes and attribute updates
are atomic) and allows Ceph to take control of the physical machines block device.
The storage cluster is directly accessed by clients once they have file locations and
capabilities to manipulate files. Clients can interact with Ceph through client code

either linked into applications, or through a kernel module.

Filesystem | Replication | Locking Data

InterMezzo | RAID Centralized | Distributed
TDFS RAID Distributed | Distributed
IncF'S RAID Distributed | Distributed
Gmount N/A None Distributed
Chirp N/A Centralized | Distributed
TLDFS N/A Distributed | Distributed

21

Table 2.4: Distributed Management Filesystems

2.5 Existing Filesystem Aggregation and other Con-
cepts

In this section we look at filesystems that aggregate components together to form
a larger system. Sage fits into this category as it aggregates many backends into a
single system. Table 2.4 shows the filesystems observed in this section.

The InterMezzo [10] filesystem is a layered filesystem that organizes file sets into
logical volumes. An entire file set resides on a single server and clients mount in-
dividual volumes onto their system. A central database described which server a
volume resides on. Clients can mount multiple volumes to create a local directory
tree. Any mounted volume can be the root of the clients filesystem, and other vol-
umes are mounted inside the root. Metadata for file objects are stored with the files
themselves which makes volumes very similar to local filesystem volumes. When an
object is updated a permit must be acquired for consistency, which then allows the
update to be propagated from the updating client to the server. Clients cache data
and are allowed to operate on the cached data while it is still fresh. The cache is
managed by a separate process (called Lento) that communicates with the server of
the cached file set.

The Trivial Distributed Filesystem (TDFS) [48] is a simple distributed filesystem
aiming to implement remote storage using a simple client server model. TDF'S consists
of two processes, a master and a slave process. The master process is mounted on
a client system and attaches to a slave process that is running on a remote host.
The master forwards operations performed on the clients system over to the host
the slave is running on blocking until the operation has completed. A master may
only connect to a single slave process, therefore to mount multiple remote machines
multiple master processes have to be run, creating multiple mount points on the client

system. The slave process is also only connected to one master process.

22

IncFS [58] creates a distributed filesystem by combining many NFS deployments
into a single filesystem. A single NFS server is designated as the meta server which
stores all the metadata information about the filesystem, and the remaining NFS
deployments store actual data. IncFS is implemented through a virtual filesystem
layer which intercepts all independent NF'S mounts and combines them into a single
mountable volume. The volume can be mounted by any number of clients and appears
just like a single NSF mount. Under the hoods IncFS simply mounts all NFS instances
and uses one as the metadata server to translate logical filenames into physical ones
actually present in the other NF'S mounts.

GMount [17] allows users to mount directories from many remote machines into
a single local location. By using multiplexing and ssh, remote connections are es-
tablished to remote machines which transfer files over sftp when accessed. Entire
directory trees can be mounted on multiple clients using GMount, which uses last
write wins semantics to handle conflicts. The architecture is more of a peer to peer
model in the sense every machine can mount directories from each other. No caching
is done by clients.

Chirp [16] is a user level distributed filesystem that allows the aggregation of
many other filesystems to be mounted as a single entity. Clients mount the chirp
filesystem locally and interact with the Chirp server. The Chirp server is a centralized
component that handles requests from all clients to the Chirp filesystem. The server
forwards client requests to containing filesystems, managing access control lists on files
and authentication with Chirp itself. Chirp is very concerned with authentication and
does so by passing around authentication tokens to make sure clients can only access
data they are authorized for.

TLDFS [49] is a layered distributed filesystem consisting of a block device layer,
which handles where actual data blocks reside, and a system layer which handles lock-
ing and communication between different filesystem components. The block device
layer aggregates all the physical storage of the nodes in the filesystem and makes it
appear as one large resource (when it is in fact a pool of smaller resources). This
layer is responsible for converting logical addresses from the system layer into physical
addresses of individual machines. The layer also sends out heartbeat messages to all
connected storage machines in order to keep track of who remains in the filesystem.
This allows machines to attach dynamically without having to notify the system level
of the filesystem. The system layer manages filesystem components in both userspace

and kernel space of client machines. Each node has lock server which is used to

23

manage consistency. The lock server maintains queues of locks on individual inodes
(called blocks) within the filesystem with a given lock server responsible for a set of
blocks. Locks are either read or write, and have the classic multiple reader one writer
semantics. When a client writes a file, it acquires a write lock, performs file modifi-
cations in a local buffer, then flushes the buffer back to the server when the lock is
released. The filesystem layer also contains an interconnect module which contacts
all other client nodes within TLDFS using heartbeat messages. The interconnect
module allows client nodes to request locks from the lock manager present on others,

and therefore manipulate files maintained in other parts of the filesystem.

2.6 SageFS comparison

SageF'S is an aggregation based filesystem focused on flexability and exposing back-
ends to applications. The flexability of SageF'S allows any of the filesystems mentioned
in this chapter to become backends for SageF'S, as well as data stores not traditionally
viewed as filesystems. In Chapter 5 MongoDB and Swift are used as backend stores
which are quite different, but to an application they appear to have the same func-
tionality. Sage sets itself apart from the systems mentioned here by; being flexable
allowing many backends, exposing backend location to applications, and by being

lightweight.

24

Chapter 3
Sage Archetecture

In this Chapter we take a look at the architecture of SageFS. We first get a high
level overview of the entire system, then dive into each component for more details.
Finally, we examine some of the missing features of Sage and discuss how they could

be introduced into the architecture.

3.1 Design Goals

Sage was originally designed for use on the GENI Experiment Engine (GEE). The
GEE allows users to get nodes on a remote network and is designed to be a very
easy to use, flexible system for experimenters to quickly run an experiment. As such
the filesystem design inherited the same principles, namely simplicity and flexibility.
From a simplicity point of view, I wanted Sage to be extremely lightweight and be
only a thin layer between an application and the actual backend store.

Although Sage was originally part of the GEE, there is no reason for it to exists
strictly in that environment. The first Sage prototype used OpenStack Swift as a
backend store. At this time, I discovered I needed to include more than a single Swift
site as we were running out of storage space and finding persistent nodes proved
challenging. From those observations I decided Sage should be transparent enough
to allow users to place files where they choose, as well as add or remove backends on

the fly. The design goals for Sage are as follows:

e Introduce as little overhead as possible compared to directly using a given back-

end.

e Be flexible enough to support many diverse backends.

25

e Allow users to explicitly place files in backends if they so choose.

3.2 Overview

Sage is designed as a client library that abstracts away any given backend stores API
into posix like semantics. Applications use the client library to communicate with
backend stores and perform file operations. The backend store needs no modifica-
tions to communicate with Sage, instead Sage translates filesystem operations into
the appropriate set of operations for the backend store through components called

translators. As shown in Figure 3.1 the design of Sage has four layered components:
e SageFiles, files opened through Sage.
e SageF'S, the central Sage component.
e Translators, convert Sage operations to backend operations.

e Backends, existing storage systems.

Application

SageFiles

Translator Sage

Figure 3.1: Sage Archetecture.

26

An application sees Sage as one filesystem, where within Sage many translators
may exist connecting to many different backends. To do this applications interact
with SageF'S to perform filesystem operations like listing, opening, or removing files,
and interact with SageFiles for individual file operations like reading and writing.
SageFiles behave exactly like normal files opened normally through the operating
system with one exception. They hold Sage specific metadata which allows Sage
to place the file in the correct backend using the appropriate translator. SageFiles
only interact with SageFS, not translators; this means Sage can move SageFiles be-
tween translators without the file knowing. Sage can then move files easily inbetween
backends as shown in Figure 3.2.

SageF'S is the only component that interacts with the various translators. Inter-
nally SageFS holds a collection of translators. When an application makes a Sage
filesystem call, SageF'S selects the appropriate translator and forwards the request.
This approach lets us define an API for SageF'S, which is then implemented by the
translators. The Sage API currently contains seven methods open(), remove(), list(),
stat(), copy(), move(), and upload(). A translator must implement all seven API calls
and convert them into the appropriate set of backend calls. A translator is connected
to exactly one backend. The open() call retrieves file data from the connected backend
store and returns it in a SageFile. It is also used to create a new file. The remove()
call removes file data while list() lists all files present in the backend. stat() returns
file metadata such as size, copy() duplicates a files contents, and move() moves a file
around in the backend store. The actual implementation by the various currently

implemented translators is discussed in Chapter 4.

3.3 SageFS

SageFS creates a common API to many backends systems, but also integrates the
backends to look like a single filesystem. SageF'S holds a collection of translators
that convert filesystem commands into the appropriate set of backend commands.
Filesystem commands are performed on paths just like in a posix system, where the

©w»

root of the path maps to a translator (here we consider an empty path). For
clarity let’s examine what happens when an application calls open() on the path
“/vic/test.tat”. SageFS considers the root to be everything from the leading slash
to the second slash of the path, which in this case is “vic”. SageFS then maps the

root to a translator and calls the translators open with the remaining path, namely

27

MongoDB

[

SwiftTR MongoTR

MongoDB

[

SwiftTR MongoTR

Figure 3.2: File Interaction in Sage. On the left the file F is stored in Swift. SageF'S
(purple) forwards file requests to the SwiftTR translator. On the right F is stored in
MongoDB.

“test.tzt”. Of course, the path could be much larger with many directories. It is the
translator’s job to map the remaining path to the appropriate data in the backend.
In this sense, one of the translator’s main functions is to act as a name server for the
backend storage service.

List and stat are the only commands that take the empty path as a valid argument.
If we look at list, it normally takes a directory as an argument, which prompts SageF'S
to call the appropriate translators list. However, with no argument SageFS will
call list on all the translators it knows about, returning a list of all files within the
filesystem. Stat performs the same way.

From the above example it may become clear that Sage knows nothing about
which backend files belong to initially. In fact, all file metadata is stored with the
backend store. This allows Sage to avoid consistency issues where a backend and Sage
disagree on the state of a file. Furthermore, this allows the backend to be manipulated
through other channels of operation (not through Sage) without interfering with Sage
itself. It also allows multiple Sage instances to connect to the same backends and not
have to know about one another. As an aside, all current Sage backends use REST
calls to communicate. A backend requiring a constant connection should behave the

same way as a REST based one, but this has not been attempted within Sage.

28

An instance of Sage is a collection of translators that communicate with backend
storage services. A single translator talks to a single backend, so if for example
we have two backend stores both using Swift, we need two translators one for each
Swift instance. We do this as each translator must be independently addressable. If
we want to take advantage of each Swift instance independently, we need a way to
differentiate between the two. The way Sage holds translators also allows us to add
and remove backends by modifying the set of translators in the Sage instance. In
fact, when a Sage instance is initially instantiated, the set of translators is empty!
It gets populated during operation as backends are addressed. Although more of an
implementation detail to reduce initialization time, it demonstrates how resources
can be added on the fly to Sage by manipulating the set of translators.

Applications can take advantage of the translator set by explicitly requesting cer-
tain backends via the path. By doing this applications can choose where files are
placed within Sage. Having control over file placement is beneficial to applications
where file location matters, but many applications do not care where their files are
placed. Sage can determine file placement if the application does not, and does so
through a file placement function. This function takes a full file path and returns a
translator within Sage, which is forwarded the request. The default file placement
function is primitive. It simply randomly chooses a translator to return, but ap-
plications can overwrite the default. Figure 3.3 shows the interaction between an
application, Sage, and the file placement function. The file placement function can

be defined by an application and used to write custom file placement logic.

3.4 Filesystem Concepts

In this section we examine common distributed filesystem concepts, and how they

look within Sage.

3.4.1 Caching

Distributed filesystems normally have some form of caching mechanism on clients.
Caching helps improve overall performance by providing local copies of resources, so
clients do not constantly have to contact storage devices. Sage translators cache file
data when a given file is opened within an application. Data is pushed to the backend

store when the open file is written to or the closed in Sage. A file is only pulled from

29

Application Defines
Function
App TS

Placement
Logic

MongoDB

Figure 3.3: Sage File Placement Component. Applications can supply a function to
overwrite the default file placement logic in Sage.

the backend when it is opened within Sage, so to revalidate a cached file, the file must
first be closed then reopened. More aggressive caching could be performed, where a
set of files is kept locally even after they are closed. To do this a timestamp would
have to be stored along with the file that could be used to check for staleness by asking
the backend store when the cached file was last updated using the stat command.
Sage has no form of cache invalidation. If a stale file is modified on a client and
written back to the storage device, the modified stale file will be the authoritative
copy of the file. Again Sage could check for timestamps using stat, however a race
condition exists here. Suppose we have two clients A and B that want to write a
file in the same backend. Client A asks the backend for the time the file was last
modified. At the same time Client B asks the backend for a timestamp as well. The
backend processes both requests and returns the same timestamp. A and B conclude
the file is safe to write when there is a conflict, and the last write will win. This
problem comes from a lack of atomicity in the timestamp request. A client can not
assume the file has not been modified in the time it takes to get the timestamp from
the backend. File locking is normally used to avoid this issue which Sage leaves this
up to the backend to handle. If a backend store uses file locking then the translator
using the backend will also have file locking, however Sage makes no guarantees about

locking in general.

30

3.4.2 File Locking

As we previously saw, file locking is a way to ensure file consistency with concurrent
access. In Sage file locks would either have to be given out by backend stores or each
client would have to be aware of each other client and synchronize locking between
them. The latter solution is unattractive as clients are allowed to change networks,
be behind NAT routers, or perform any other mischief that a traditional network con-
nection would dislike. Furthermore, the filesystem namespace is unique to each client,
which would require translation to a common namespace between clients. Moreover,
if above problems were not enough of a deterrent the actual locking process would be
much worse.

Clients could hold locks for files but must check first if any other client had a lock
on the same file. In the ideal case we, a client, request a file lock and get replies
from all others saying they do not have a lock on the specified file. However, what
happens if a client does not reply? Do we assume the unresponsive client does or does
not have a lock? If the former then we could be waiting for the lock for a while, if
the latter then the unresponsive client could assume it has the only lock and commit
conflicting changes to the filesystem. Furthermore what if during our lock request we
get a request from another client for a lock on the same file. In this case who takes
the lock? If we back off and try again (with a random back off or similar strategy), we
could potentially get into livelock where we are constantly waiting for locks. This is
essentially an instance of the Byzantine Generals problem [32, 31]. Distributed clients
must agree on some value (the lock in this case), in an environment with Byzantine
failures. Unfortunately, the problem is unsolvable if one-third of the clients fail as
consensus requires at least n/2 + 1 clients to agree on the value.

Distributed locking is extremely difficult and in fact most distributed lock man-
agers use a central component to avoid such issues. Locking is left to backends in
Sage for those reasons. Translators decide how to handle locked files and locks. Since
the open call in Sage takes optional arguments locking parameters could be passed
into Translators to request locks either blocking or nonblocking. Locks would persist
until the file is closed within Sage unless some modification to the API were made,
or the application interacted directly with the Translator.

One other issue to consider with locking is Deadlock. Deadlock is a hard issue
and normally handled by having locking orders, or by some detection mechanism.

Unfortunately in Sage locking orders would be difficult to implement as each client

31

could have a different collection of backends (or the same collection with different
names). Hostnames could be used to create a lock order. This way clients get locks
from the lexicographically least host first. However, backends can use proxy servers
so clients could potentially interact with different hosts to access the same backend.
Distributed deadlock detection can be used to track down deadlocks while the system
is running by constructing a wait-for-graph [13]. A wait-for-graph is built between
nodes by tracking lock requests and adding edges between nodes that are currently
waiting for another. Deadlocks are represented by cycles in the graph. Unfortunately,
the graph has to be built at a central component and requires knowledge of all nodes
in the system.

Clearly locking poses many problems within the architecture of Sage and is why
it is left to the backends. Not only does it simplify the architecture but it also makes

Sage more flexible as a system, two key design goals of Sage.

3.4.3 Metadata Management

In Sage metadata is stored with files, much like in a normal filesystem. Filesys-
tem metadata is either stored in the client or queried from the backends. Normally
filesystem metadata is stored in a central server, or distributed over a few metadata
servers (known as MDSs). With a central MDS, the system has a single point of
failure, however with distributed metadata we need to make sure the metadata re-
mains consistent. Sage does not maintain metadata as its flexibility allows backends
to be added on the fly which would require a merging of metadata if one were added.
Additionally backends can be modified out of band, which could result in files being

deleted or modified without the MDS knowing and inconsistencies in the system.

3.4.4 Replication

Replication is usually done in distributed filesystems to improve availability of files.
Files are replicated to allow concurrent access, improve locality, or increase durability.
If a file is replicated to multiple copies, updates must propagate to all copies or appli-
cations may see inconsistent data (and may modify the inconsistent copy). To enforce
consistency systems usually opt for either weak or strong consistency models. Weak
or eventual consistency as it is sometimes called guarantees consistency throughout
the system eventually. Updates are propagated throughout the system and processed

asynchronously by nodes. Operation is not stopped so applications can potentially

32

see stale data if their request is handled before the update. For many applications this
is good enough. However some need a better guarantee of consistency. Strong con-
sistency guarantees that once a change is committed, all copies will have the change
applied before other applications can access them. This is useful if applications need
up to date data, such as a filesystem. It does however impact availability as replicas
will be unavailable while a change is being applied.

Keeping the above two schemes in mind Sage could implement replication by
assigning replication groups within the client. A replication group is a collection of
translators that would perform the same file operations in parallel when one of the
members is accessed within Sage. For example, imagine we have a collection of six
translators (1 ... 6). We can set up replication groups as subsets of the translator
collection with group size according to the replication factor. With a factor of three
we can set up groups (1,2,3), (4,5,6). When a file is accessed through translator
1, it can be read normally, however when changes are made the file is pushed back
through translators 2 and 3 as well. This way if translator 1 fails, copies are still on
2 and 3. Updates are done in parallel and should only succeed if updates to all the
translators succeed. This is a form of strong consistency as updates are done to all
copies and only committed if all replications are updated. There is one caveat here;
no file locking is done so it would be possible for two copies to be updated at the
same time and writes to overlap differently at different locations. As an illustration
assume a file is modified at two places and pushed to the translator group (1,2,3) at
the same time. Since last write wins, whichever request is process last is the definitive
version of the file. However, each backend could receive modifications in any order
and therefore the last update could be different at different nodes. The pushes would
succeed, but the file may be inconsistent. Replication groups would have to be the
same over all clients or implemented inside translators as clients should know about
all replicas of a file to avoid updating only a fraction of the file replicas.

The lack of a dedicated metadata server means replica placement must be com-
putable by a client. Sage could also use hashing to distribute replicas via a consistent
hashing algorithm such as CRUSH (previously seen in Chapter 2). A filename could
be hashed to produce a set of backends to replicate the file to. The set of backends
again benefit from being static as adding new backends requires files to be rebalanced
to their new hash values. This would involve moving many files between backends,

would have to be done by the clients, and cause significant overhead in the filesystem.

33

3.5 Considerations

Many of the systems currently left to the backends could be implemented if filesystems
could not be changed on the fly and were defined for all clients. A static Sage
deployment could implement some of the systems discussed. Some design ideas in this
chapter could make logical starting points for an implementation, but no prototypes
have been developed. The next chapter presents the implementation of Sage. Further

discussion of some of the features and ideas presented here are addressed in Chapter
6.

34

Chapter 4
Implementation

In this chapter, we take a look the implementation of the Sage prototype. We examine

each filesystem object in detail and finally look at how Sage is used.

4.1 Overview

Sage is implemented as a Python client library and is used by importing into a Python
project. I chose to use a client library instead of an operating system (OS) component
because a client library is much easier to use and deploy. One important thing to
notice here is that Sage does not go through the OS for normal operation. The OS is
used for networking and to put opened files on disk (if they are requested not to reside
in memory). However, if a translator does not go through the OS, an application can
use normal Python file operations and never go through the OS.

Once imported into a project, a SageF'S object can be created to interact with
Sage. This SageF'S object contains a number of translator objects used to communi-
cate with backends. Currently, there are only two types of translators, SwiftTr and
MongoTr that connect with Swift object stores and MongoDB instances respectively.
Translators are filesystem components that interact with backend stores, and trans-
late Sage filesystem commands into the appropriate set of commands for the backend
store. The SageF'S object forwards filesystem commands to the translators, which
the perform filesystem operations on backends. For example, when a SageFS object’s
open() method is called on a file in a Swift backend, SageFS calls the containing
SwiftTr’s open(). The translator then downloads the file and stores it in a SageFile
object for use by the application.

35

SageFile objects are file abstractions built on top of Python files. SageFiles have
two subclasses, SageMemFiles and SageDiskFiles. Both have the same functionality;
however, SageMemFiles reside in memory, while SageDiskFile objects are written to
disk. Applications communicate with Sage through the SageF'S object and SageFiles.
An application never has to communicate with translators. Using SageFS to forward
filesystem requests allows Sage to make multiple backends appear as a single entity,

with a common API.

Application

Sage | Sage | Sage
File File File

SageFS

SwiftTr MongoTr SwiftTr

Mongo

Figure 4.1: An Example of a possible Sage deployment with the current Implemen-
tation

4.2 File Objects

We start looking at the filesystem by examining the actual file objects. There are two
types of Sage file objects, SageMemFiles and SageDiskFiles. Both classes inherit from
the SageFile class, but SageMemFile also inherits from the StringlO class while the
SageDiskFile inherits from the base Python file class. Figure 4.2 shows the inheritance
hierarchy of SageFiles. Subclassing StringlO allows SageMemFiles to reside as buffers

in memory, excellent for smaller files that do not need to be put to disk. SageDiskFiles

36

are written as temporary files on the client system. Temporary files are written to

/tmp by default, however the location is configurable.

———

'
i

i

i

i

t---1 Base fileclass

i

:

'

i

Instantiated File

Sage Sage
DiskFile MemFile ' Objects

When write() is called on a File Object, the inherited write method
of SageFile is called, which calls the write() from the base fileclass,
then calls sync() if necessary.

Figure 4.2: SageFile inheritance graph

The base SageFile object has a few key variables and methods that facilitate inter-
action with Sage. Each SageFile knows which backend it belongs to. This information
is used in the sync() method, which re-uploads (pushes) file contents into its back-
end. sync() can be called within an application, but it is also called within the write()
family of methods for SageFile objects. If we take write() as an example, we see it
takes three arguments as shown in Figure 4.3. The first argument self is a reference
to the calling object. Python makes this explicit, while in a language like Java the
self-reference ‘this’ is always the first argument to a method, but not explicitly stated
in the method signature. The second argument arg is the argument to the underlying
file object’s write() method. This argument contains the actual data to write to the

file. The third is an optional flag indicating whether or not the file should call sync()

37

at the end of the write operation. The flag is included in case we only want to update
the local copy and not write back into the backend repository after every write (ie.

cached writes).

def write(self, arg, sync=True):
"t Calls the underlying write function for the file.
Will sync with remote storage by default,
will not 4if sync 4is False """
self .fileclass.write(self, arg)
if sync: self.sync()

Figure 4.3: SageFile write function

Closing SageFiles also calls the sync() method. The close() method looks similar
to write() except it only takes the optional sync flag argument. When a file is closed,
it is first synced back to its backend repository, then removed from a local file cache
within Sage. The file is only removed from the cache if sync() was successful so If
an error occurs, the file will still reside in Sage and no data is lost. Of course if the
sync flas is false then the file is simply removed from the cache. A special method for
SageFiles called todisk() takes the file from Sage and persists it to the local system.

This convenience method allows files to be easily taken from Sage.

4.3 Backends

Before we examine translator objects lets first take a look at the backend stores that

translators connect to, and how Sage views them as filesystems.

4.3.1 Swift

Swift is an object store system developed by OpenStack as an open source alternative
to Amazon’s S3. Clients interact with Swift’s RESTful API through HTTP using
PUT and GET to access files. Swift has two main types of nodes, storage that store
data, and proxies that handle requests to Swift. The set of Swift processes on a
given machine makes it a storage or proxy node, and in fact a single machine can be
both a storage and proxy if all Swift processes are running on it. Swift distributes
and replicates files across all storage nodes using structures called rings. Rings are

abstractions over a set of values that Swift that maps to a set of storage nodes. Figure

38

4.4 shows an object being placed within a Swift cluster. The object is sent through
a partition function and placed onto Swift’s object ring. The ring is broken into a
number of partitions, each of which point to a set of storage nodes. The Proxy node
handles the partitioning of the file based on the ring configuration and sends data to
the storage nodes. The number of nodes a file is distributed to is called the replication
factor of the cluster. All requests go through proxy nodes, so clients never directly
contact storage nodes. A cluster can have multiple proxies, and each request goes to

exactly one of them.

Object

|
A 4

Partition f(n)

4 Node1l

Node 2

™ Node 3

3 Node N

Figure 4.4: The OpenStack Swift Ring Structure

Swift also contains accounts and containers which logically separate files into
groups. In the Swift translator, I use accounts and containers to implement users
and groups in Sage. Each account is a group, and each container is a different user.
As a side note, the group implementation is incomplete in Sage as applications must
interact with translators to view other users files. I use full paths to store files in
Swift, but do not store directories. Directories are implied by file paths in the trans-
lator so if all files are removed in a given directory, the directory is removed as well.
The Swift client allows partial name matching which I use to search for all files log-

ically grouped in a directory. I do this by querying the path name (not including

39

file name) as a substring. I use the swiftclient Python module to communicate with
Swift specifically using the put_object() and get_object() function calls to upload and

download data.

4.3.2 MongoDB

MongoDB is a database that uses document oriented storage to store objects. Doc-
uments are data structures that store information in key-value pairs. Documents are
organized into collections to allow efficient querying and indexing. Data is stored
as Binary JavaScript Object Notation (BSON), a superset of JavaScript Object No-
tation (JSON), which allows MongoDB to store arbitrary bytes of data. MongoDB
can exist as a standalone database on one machine, or can be distributed in a clus-
ter. When distributed, MongoDB has Config Servers that hold metadata, and Shards
that house the data. A given document collection can be distributed across Shards
much like disk striping. Config Server metadata is held in a config database that
maps documents to Shards. Shards must contact Config Servers to access document
metadata.

In the MongoDB translator, I make use of databases and collections to implement
users and groups. Files are stored as key value pair documents, with the key being
the full file path, and the value being the files binary data. In the document, I
store path and file name as two separate fields as I want to be able to search for
paths and partial paths when listing files. I use the Python module pymongo to
communicate with MongoDB using the collection.insert() and collection.find_one()

functions to upload and download data.

4.3.3 Local

A very rough implementation exists to incorporate the local filesystem into Sage.
Developed mostly for testing purposes, this translator is missing functionality other
than reading and writing files. Files are created in the temporary directory /tmp/sage,

which acts as the root for the translator.

4.4 Translator Objects

Translator objects are Sage components that convert SageF'S API calls into a set of

backend calls to perform the actions of the API call in the backend. Translators must

40

implement the methods upload(), open(), stat(), copy(), move(), list(), and remove().
Additionally the translator must keep a cache of open files. Files are downloaded from
translators using the open() call. As we can see from the method signature in Figure
4.5 the open() call has one required parameter and two optional; create which defaults
to false, and inmem which defaults to true. If the file specified at path does not exist
in Swift, and create is true, then an empty file will be created in the translators cache.
The file is not created in the backend until its sync() method is called. The second
argument specifies whether the file should reside in memory or on disk on the local
system. If inmem is true then the file is opened as a SageMemFile, otherwise it is
opened as a SageDiskFile. If open() is called on an already open file, the translator
returns the open file descriptor for the file, not a new one. This is done to avoid
having two sets of the same file downloaded, and the consistency issues associated
with that. It would be possible to implement file pointers within the SageFile object
which would allow two file descriptors for the same file. However, this functionality

does not exist in the current implementation.

def open(self, path, create=False, inmem=True):

Figure 4.5: The Swift Translators open() Method Signature

The rest of the translator is convenience methods or methods for connecting to
the backend repository. For example, SwiftTr holds all the relevant info to connect
to Swift, as well as interface back with SageFS. The actual Swift repository knows
nothing about the translator and communicates via the RESTful interface provided.
Using REST commands makes implementing translators simple since the six methods
just have to be translated into appropriate REST calls. The translator also converts
filesystem paths into actual locations in the backend store. Since both Swift and
MongoDB are not natural filesystems, paths and directories are faked within them.
To do this I simply incorporate the full path as the actual name of the file in the
backend store. These paths allow Sage to separate files into a virtual directory tree,
and query based on a fragment of the path. Both Swift and MongoDB translators

can handle queries on partial paths.

41

4.5 SageFS

The SageFS object is the central component of Sage and implements the seven API
methods (open(), remove(), list(), stat(), copy(), move(), and upload()) exported for
use by applications. Of course, an application could use any part of the sagefs.py
Python module, but the intended use is to interact with the SageFS object. The
SageF'S object holds a dictionary mapping names to translator objects, as well as
a list of all the available backend repositories called sites. The SageF'S constructor
and connect_to_filesystem() methods are shown in Figure 4.6. We see the filesystems
dictionary is initially empty. The actual translator objects are not instantiated until
the site is accessed within Sage. When a site is accessed for the first time, Sages
connect_to_filesystem() method is called which creates a translator object and stores
the object in the filesystems dictionary. The lists swiftrepos and mongorepos hold
the backend host info required to connect to the backend, which is examined later in
Section 4.6.

Currently, we see only two translators in connect_to_filesystem(), identified as
SwiftF'S and MongoF'S in the code for legacy reasons. If I wanted to implement more
translators for Sage, the connect_to_filesystem() method would need to be modified
to handle the creation of these new translator objects. I could create a new list
of backend hosts for the new repository type in the SageFS object, however this
approach is not very scalable. A more scalable approach would be to make the
SageF'S constructor take a dictionary mapping site names to the constructor method
of the appropriate backend instead of lists of site names for each backend individually.
This way connect_to_filesystem() can index into the site name-constructor map and
call the correct translators constructor without going through a long chain of if/else
statements.

Now let us examine the API calls in the SageF'S object. From a high level, when a
method is called on a SageF'S object, the method first chooses the correct translator
based on the file placement logic, then calls the underlying translators method to
perform the call. In the current implementation file placement is done by path name
via the method split_location_from_path() (which is easily extended as discussed in
Chapter 3 and Chapter 6). The method returns an index into SageFSs filesystem
dictionary, which is then used to grab the appropriate translator to perform the
method call. Some methods operate over multiple translators. stat() and list() can

be used to probe all backends, while copy() and move() may involve two different

42

class SageFS():
""" The main filesystem object which holds a collection of SwtftFS
and MongoFS objects. Connections are only established when they
are used the first time. The SageFS object %1s designed to be the
only object that must be ezplicitly created to use the SageFS. """

def __init__(self, swiftrepos=hosts.swift, mongorepos=hosts.mongo)

self.filesystems = {}

self.swiftrepos = swiftrepos
self .mongorepos = mongorepos
self.sites = self.swiftrepos.keys() + self.mongorepos.keys()

def connect_to_filesystem(self, site):
mnt-Creates a translator object 1f we correctly connected """
fs = None
if site in self.swiftrepos.keys():
repo = self.swiftrepos[site]
fs = SwiftFS(repo.get_authvli_url(), repo.group, repo.user,
repo.key)
elif site in self.mongorepos.keys():
repo = self.mongorepos[site]
fs = MongoFS(repo.host, repo.port, repo.database, repo.
collection)
else: raise SageFSException(% (site))
self .filesystems[site] = fs
return fs

Figure 4.6: The SageFS constructor and connect_to_filesystem methods. The class
instance variable self filesystems holds the SageF'S objects collection of translators.

backends. To get a better understanding of how methods are handed to translators
in SageF'S, let us examine the copy() method, shown in Figure 4.7. While copy() it
is the most complicated call in Sage, it demonstrates the power of the aggregation of
multiple translators in SageF'S.

The method takes three arguments; origpath the path to the original file to copy,
newpath the desired path for the new copy, and an optional argument overwrite that
specifies whether the copy should overwrite an existing file if it exists. copy() first
checks if we are trying to copy to the same path to avoid redundant work, if we
actually need to copy then we determine which translators the old file and new file
belong to (or should belong to). If the copies will use the same translator we forward
the copy() call to the containing translator. If they do not use the same translator

we continue. We check if a file exists at the new location and overwrite is false. If

43

def copy(self, origpath, newpath, overwrite=False):
- Copy a file from ’origpath’ to ’‘newpath’.
Will mnot owverwrite unless specified """

if origpath == newpath: return

origlocation, origresource = self.split_location_from_path
origpath)

newlocation, newresource = self.split_location_from_path(newpath)

origfs = self.get_filesystem(origlocation)

if origlocation == newlocation:

1f both resources use the same fs use the fs’s copy
origfs.copy(origresource, newresource, overwrite)
return

newfs = self.get_filesystem(newlocation)

check to see if we are overwriting anything

if not overwrite and newfs.file_exists(newresource):
raise SageFSFileExistsException(% (

newpath))

local = True

if origresource not in origfs.localfiles:
make sure the ortg file %s local to its fs

local = False
origfs.open(origresource)
origfd = origfs.localfiles[origresource]

upload as a new resource
try: newfs.upload(newresource, origfd)
except swiftclient.client.ClientException as e:
raise SageFSException(
% (e.http_status, e.http_reason))
if not local: origfd.close()

Figure 4.7: The SageFS API copy method

so raise an exception saying that the file already exists. If no exception is raised we
check to see if the SageFile is open in Sage. If not then we open the file and set
the variable local to false. The value of local tells us whether we should close the
file after the copy is complete as we want to keep the set of opened files the same as
when the copy was started. We then call upload on the new translator, giving the
new file name and the old files data as arguments. This makes a copy of the file in
the new backend without opening the file that ensures the set of open files in the new
translator remains unchanged. We finally close the original file if it was not local to
the original translator as again we want the set of open files to remain unchanged.
SageF'S uses its own exceptions for error handling. As we can see in Figure 4.7
the Swift exception swiftclient.client. ClientException is converted into a SageF'SEz-

ception. All errors coming from client libraries are converted into SageF'SFExceptions

44

as well as filesystem errors such as trying to overwrite a file or open a non existent
file.

4.6 Configuration

SageF'S takes a collection of repositories as arguments, which can either be passed to
the constructor or defined in the configuration file hosts.py included in SageF'S. Sage
configuration is done with a dictionary of Host objects, in this case SwiftHosts and
MongoHosts. These objects define connection parameters to each of the backends and
a key which identifies the backend. As an example Figure 4.8 shows a configuration
dictionary for Swift backends. The dictionary shown is passed by default to the
SageF'S constructor previously shown in Figure 4.6. The dictionary contains three
keys wvic, tor, and carl that map to three SwiftHost objects. A SiwftHost object
defines parameters to connect to a Swift repository. Here we see the IP addresses
of three Swift clusters used as Sage backends. The dictionary shown was used in
the deployment of SageF'S for the genome searching case study described in Chapter
5. SageF'S uses the hosts in the configuraton file by default, but can also be passed

dictionaries in the constructor.

swift = {
:SwiftHost (s s s)
:SwiftHost (s s s
:SwiftHost (s s)

.
-

Figure 4.8: Configuration dictionary for Swift backends

Currently, the SwiftHost and MongoHost objects are the only SageHost objects
defined in hosts.py. SwiftHosts require a hostname (or IP address), user, group, and
key to connect to a Swift backend, while MongoHosts require a hostname, database
name, and collection name. Translators use these parameters to authenticate with

their respective backend.

45

4.7 Using Sage

To use Sage from a client perspective we only need to import the sagefs Python module
into a Python project. This allows us to use SageF'S with the default backends as the
default user provided in the hosts.py configuration file. As discussed previously, to use
different backends we can either modify hosts.py or pass in our own dictionary. One
thing to note is that if we define a filesystem that does not exist or does not accept
the connection parameters we provided, SageF'S will not fail until it tries to access the
dysfunctional backend. We can also define a backend twice with a different dictionary
key. SageFS will think the two backends are different, create two translators, and
allow file operations on both. If we open the same file in both backends, Sage will
have two copies of the same file. If we write different things to each copy, the copy

with the last sync() operation will remain in the backend.

import sagefs
fs = sagefs.SageFS()
__builtins__.open = fs.open

Figure 4.9: An interesting hack to overwrite Pythons builtin open call to use Sage’s
instead.

Once the module has been imported we create a SageF'S object which allows us
to perform operations on the filesystem. To interact with files we call the SageFS
objects open() which returns a SageFile object, which is then used normally like any
other Python file object. In fact, if we wanted to use Sage in an existing Python
application we could accomplish it in a few lines of code as shown in Figure 4.9.
We would only need to import the sagefs module, instantiate a SageFS object, then
overwrite Python’s builtin open() function with Sages open(). After doing this all calls
to open() will go through Sage and all file objects will be SageFiles. We could also go
a step further and define a closure around Sages open() to extract information about
the file. The information could be passed through open() to allow interesting file
placements with a custom file placement function. Of course, other operations from
other Python modules that utilize the builtin open(), or modules that manipulate
the local filesystem will remain unchanged so more work may be required on a more
complicated system. Additionally Sages open() will throw different exceptions than
the builtin so applications could suffer from unexpected exceptions.

The client side of SageF'S is implemented as a Python package, which can be

46

downloaded from github. I also developed server side deployment scripts for Swift,
which will install and configure Swift on a cluster of machines (either Ubuntu or
Fedora) using the Fabric Python module. Once the Swift cluster (or clusters) are
running, the hosts.py file can be edited to make the clusters the default backends, or

backends can be passes as a dictionary to a SageF'S object.

A7

Chapter 5
Experiments and Evaluation

In this Chapter we examine the performance of Sage as well as how Sage performs
in terms of the design goals. Specifically we look at the overhead of filesystem calls
from within Sage versus performing the same calls outside of Sage. File reads and
writes are measured to see the overhead on file operations, and file lists, removes, and
creates are measured to see the overhead on filesystem operations. All measurements
are made with the current implementation using two backends Swift and MongoDB.
The experiments use the same data schema for Swift. The directory heirarchy is
implied by the stored object names in Swift. For MongoDB however the schemas are
slightly different. Going directly to MongoDB files are stored as fullpath:data pairs,
while going through Sage to MongoDB files are stored as path:filename:data. 1 do this
as the most natural way to store files in MongoDB is to use fullpath:data, so going
directly to the backend uses that schema. The translator does not as I wanted to make
paths queryable within the translator. This implementation detail reinforces the fact
that the translator implementation makes a difference to the filesystem performance
as we will see later in the chapter. Finally, all microbenchmark experiments were
performed on Emulab as I wanted the results to be as reproducible as possible [54].

After the microbenchmarks we then look at a case study of an application using
Sage to perform analysis on human and viral genomes, specifically looking at how an
application can take advantage of file placement within Sage. Finally, we conclude
with an examination of types of applications that could take advantage of what Sage
offers, and those that would be better off using a different system.

In the spirit of reproducibility, all the benchmarks are scripted and can be found
at https://github.com/stredger/sagebench, while the case study can be found at
https://github.com/stredger/dnasearch. Scatterplots for all data presented in

48

this section can be found in Appendix A.

5.1 Microbenchmarks

I ran microbenchmarks on the Emulab computing platform using an Ubuntul2 64-
bit OS image. Emulab allows us to run on bare metal, not inside a VM so we
can ignore any artifacts a VM may produce. I wanted to see how much overhead was
incurred by going through Sage instead of directly accessing files from their respective
backends. Additionally I wanted to see the differences between the two implemented
backends Swift and MondoDB. Both MongoDB and Swift were set up on the Emulab
experiment nodes. Mongo used a single node configuration while Swift had one proxy
node and one storage node. Swift needed two nodes as using a single node for both
storage and proxy, two components Swift requires, was causing crashes when running
the larger tests. For these microbenchmarks, I used Emulabs d710 machines that are
64-bit and have 2GB of memory.

I ran tests by writing a simple Python script that performed file uploads and
downloads using the sync() and open() calls from SageFS. The put_object() and
get_object() calls were used from the swiftclient Python module to measure interaction
with Swift, and db.collection.insert() and db.collection.find_one() from the pymongo
module to interact with MongoDB. These library calls are used internally by Sage so
are used to measure time to go through the module versus the time to go through
Sage. Timestamps are taken just before a call and just after it returns. Timestamps
are stored in a list that is written to disk after the experiment has completed.

I ran each test 100 times for a range of file sizes 1KB, 10KB, 100KB, 1MB, and
10MB. I also attempted to run a 100MB test, but unfortunately MongoDB imposes an
arbitrary file size limit of 16MB so I did not run the 100MB test using the MongoDB
backend. I could have split up the file into smaller chunks, and in fact this is what
MongoDB recommends for large files. However, I made the decision not to perform
the test as normal usage in this case is to upload ten 10MB files, which is simply the
10MB file test with more runs.

The Emulab nodes had a small disk size, so the 100MB tests were performed
slightly differently. The hundred iterations were split up into runs of ten. A run
uploaded ten files, then deleted them to free up disk space so the next run could
proceed.

The platforms I measured were Swift, MongoDB, Sage using a Swift backend,

49

Sage using a MongoDB backend, and the local disk. I chose these to look at the
performance overhead of going through Sage compared to Swift and Mongo. The
local disk is used as a measuring stick to put the measurements into context.

Tables 5.1 and 5.1 summarize the micro benchmark test results for all file sizes

and backend stores. All times reported in the tables are in milliseconds.

5.1.1 File Put Benchmarks

Median File Put Times Mean File Put Times
L L]

o labels & labels

0.100 - 0.100 -

local + local

™+

mongo + I mongo

= sagemongo = sagemongo

+ sageswift + sageswift
0.001 -
swift swift

0.001 -

Log File Put Time
"
Log File Put Time

) i i] i i] i i) i i
1KB 10KB 100KB 1MB 10MB 100MB 1KB 10KB 100KB 1MB 10MB 100MB
File Size File Size

Max File Put Times Min File Put Times

+ labels labels
| 1 T + 0.100 -
1.00 local local

+ + mongo mongo

= sagemongo = sagemongo

+ sageswift + sageswift

0.001 -
swift swift

Log File Put Time
-
+

Log File Put Time
.

) i i] i i] i i) i i
1KB 10KB 100KB 1MB 10MB 100MB 1KB 10KB 100KB 1MB 10MB 100MB
File Size File Size

Figure 5.1: Multiplot for file Put times showing Median, Mean, Max, and Min times

Figure 5.1 shows the results for all platforms to upload, or ‘put’, a file into their
respective backends. We use the log of the file upload time so we can see the overall
trend as the file size increases by an order of magnitude for each test. We look at the
median of each value to get a good representation of the upload time. Outliers tend
to skew the mean and, being deterministic, computer measurements tend to clump
in stratifications. The median is an attempt to use the most common stratification
to represent the test result. Furthermore, the minimum times are quite similar to the

medians, which implies the mean is skewed by some significant outliers. The outliers

Swift 1k 10k 100k lm | 10m | 100m
min 47.07 9.249 11.30 | 21.14 | 110.2 | 974.3
max 07.37 16.56 18.35 | 31.84 | 661.2 | 5432
median 47.99 9.911 11.96 | 25.34 | 1154 | 9924
mean 48.37 10.01 12.09 | 25.36 | 145.5 | 1173
stddev 1.562 0.7766 | 0.7780 | 1.410 | 101.2 | 660.7
Sageswift 1k 10k 100k Im | 10m | 100m
min 63.20 23.18 23.41 | 3841 | 129.9 | 1048
max 167.9 74.83 88.26 | 194.5 | 1380 | 3479
median 63.94 24.13 25.94 | 41.66 | 140.2 | 1067
mean 65.20 24.70 26.61 | 44.47 | 170.3 | 1208
stddev 10.60 5.087 6.256 | 19.35 | 143.6 | 405.1
Mongo 1k 10k 100k Im | 10m | 100m
min 0.4420 | 0.5200 | 0.5520 | 4.626 | 46.67 | NA
max 0.7420 2.917 2.837 | 37.10 | 9549 NA
median 0.5315 | 0.5700 | 0.8370 | 6.445 | 51.19 | NA
mean 0.5436 | 0.6071 | 0.8679 | 6.571 | 354.7 | NA
stddev 0.05715 | 0.2361 | 0.2185 | 3.234 | 1336 NA
Sagemongo 1k 10k 100k Im | 10m | 100m
min 1.883 2.068 2.080 | 7.782 | 68.85 | NA
max 4.364 07.61 1121 2107 | 26500 | NA
median 2.599 2.588 2.675 |9.144 | 7563 | NA
mean 2.569 3.130 13.94 | 30.77 | 922.3 | NA
stddev 3.740 5.507 111.8 | 209.8 | 3696 NA
Local 1k 10k 100k Im | 10m | 100m
min 0.04600 | 0.05800 | 0.1590 | 1.259 | 14.19 | 181.9
max 0.2140 | 0.2160 | 0.5640 | 2.917 | 24.47 | 12120
median 0.06900 | 0.06100 | 0.1630 | 1.311 | 14.85 | 345.5
mean 0.06537 | 0.07503 | 0.1866 | 1.378 | 15.35 | 1188
stddev 0.01914 | 0.02798 | 0.05609 | 1.889 | 1.889 | 2205

Table 5.1: Microbenchmark results for file Put times in milliseconds

20

Swift 1k 10k 100k 1m 10m | 100m
min 4.201 4.791 5.966 15.52 | 10.45 | 957.8
max 10.11 7.110 8.339 19.70 | 116.3 | 3271
median 0.833 5.712 6.640 16.46 | 106.6 | 960.8
mean 5.666 5.742 6.663 16.68 | 106.8 | 1021
stddev 7.341 3.701 2.989 6.757 | 16.06 | 308.4
Sageswift 1k 10k 100k 1m 10m | 100m
min 51.84 13.74 17.49 36.94 | 207.2 | 1936
max 117.7 79.44 82.27 759.9 | 810.1 | 3132
median 55.91 15.94 18.51 42.09 | 213.2 | 1957
mean 57.30 16.55 19.19 50.56 | 228.3 | 2096
stddev 7.891 6.373 6.390 72.67 | 83.87 | 261.4
Mongo 1k 10k 100k 1m 10m | 100m
min 0.4110 | 0.4530 | 0.3950 2.768 [26.39| NA
max 0.8670 | 0.6940 | 0.7430 4.603 |40.26 | NA
median 0.5165 | 0.5370 | 0.6130 3.601 | 3160 NA
mean 0.5213 | 0.5461 | 0.6149 3.441 | 31.68| NA
stddev 0.06117 | 0.05003 | 0.05270 | 0.03799 | 1.999 | NA
Sagemongo 1k 10k 100k 1m 10m | 100m
min 1.062 1.077 1.080 10.97 | 109.1 | NA
max 2.191 2.629 2.373 3310 2662 | NA
median 1.514 1.522 1.725 12.17 | 1209 | NA
mean 1.505 1.528 1.735 45.26 | 200.7 | NA
stddev 0.2062 2.283 2.192 329.8 | 3781 | NA
Local 1k 10k 100k 1m 10m | 100m
min 0.03500 | 0.03900 | 0.05800 | 2.170 | 2.406 | 58.73
max 0.1040 | 0.1530 | 0.2080 1.504 | 6.642 | 12560
median 0.03600 | 0.04000 | 0.06100 | 2.290 | 2.531 | 1072
mean 0.04021 | 0.04187 | 0.06464 | 2.729 | 2.592 | 1270
stddev 0.01135 | 0.01295 | 0.01948 | 1.382 | 4.250 | 1295

Table 5.2: Microbenchmark results for file Get times in milliseconds

51

52

are shown in the max times with some being orders of magnitude larger than the
medians.

The local disk had the lowest put times for all file sizes, followed by MongoDB,
Sage using Mongo, Swift, and finally Sage using Swift. The local disk trend shows a
fairly consistent increase in time as we increase the file size. Taking a closer look at
the local test, Figure 5.2 shows all 100 runs of each file size. As expected, we see an
increase in upload time as file size increases. We see a significant amount of variance
in the plot, especially at the 100MB test. This is not surprising however as some runs
have cache misses and buffer flushes causing delays while others operate smoothly.
Most tests follow the same trend. An interesting anomaly is for 1KB files, where all
tests involving Swift have 1KB times equal to or higher than 10KB file times. This
could be due to the file buffer in Python, which batches 1/O operations. However,
python I/O uses the default glibc buffer size, which in this case is the 8KB buffer
defined by BUFSIZ in stdio.h. The python buffer size is verified by a ptrace shown
in Figure A.36 in Appendix A. Unless the system buffers /O operations beyond
Python’s 8KB, I/O buffering is not a likely culprit. However, if the buffer size was
a problem it can easily be increased by passing an optional buffer size parameter to
Python’s builtin open().

The larger times we see using Sage over the direct backend stores could be due to
having to copy the files contents into a SageFile object. Data is first copied into an
in memory file, then upload, as opposed to just uploaded directly. This is the most
likely the bulk of the additional time as the tests are very similar except a few extra
function calls in Python as Sage calls the same client the direct tests used.

The median MongoDB times are slightly higher than the local times; however
MongoDB has the largest max time for 10MB files. This could be due to MongoDB
filling up and having to extend the storage area as MongoDB pre-allocates files for
collections with a default size, and must grow the file as it fills up. Additionally
MongoDB indexes data using B-Trees, so the high max times could be when the
index has to grow the B-Tree. However, splitting a B-Tree leaf node most likely
doesnt add as much overhead as allocating new space so it is not a likely cause.
Finally MongoDB stores data in BSON, which is a JSON extension for binary data.
When we upload data into MongoDB, it must first be encoded into BSON, which
may add noticeable overhead for larger files.

As expected SageF'S using MongoDB had slightly larger median upload times than
just MongoDB. Sage using MongoDB also has some of the largest max times of all

23

Local File Put Times

le+01-

le-01-

Log Request Time

i i i i i i
1KB 10KB 100KB 1MB 10MB 100MB
File Size

Figure 5.2: Scatterplot of all times to put files locally. 100 runs were performed for
each filesize.

the measurements. Obviously Sage using MongoDB encounters the same performance
issues as just plain MongoDB, but also the implementation of the translator causes
some additional overhead. SageF'S stores files in MongoDB based on the filename
and path, while internally MongoDB identifies every record by assigning a unique
id. To write to a file, the MongoDB translator must first check if the requested path
and filename exists within MongoDB. If the path exists the translator modifies the
record, else it creates a new file at the specified path. If we simply try to upload the
same path to modify a file without addressing by id, a new record will be created
with the same path name, and we end up with duplicate records. File lookups are
handled quite efficiently by MongoDB’s internal indexing, however in the worst case it
could add noticeable overhead. For future implementations, if the file lookup overhead
becomes a serious bottleneck an id could be generated by hashing the path name with
a collision resistant hash function. However, there is always the risk of a collision that
would cause two files to be mapped to the same id!

Swift times were consistently the slowest over all the runs, however the Swift

setup was the only backend that used two machines so communication between the

54

two comes into play. Regardless the test are not to show a comparison between Swift
and Mongo, rather to show a comparison between using Swift or using SageF'S with
a Swift backend. All the measurements for Swift were quite consistent with each plot
Median, Mean, Max, and Min having the same shape. One thing to note is that the
time to put 1k files is larger than 10k, 100k and even 1MB files. Figure 5.3 shows a
scatterplot of all Swift measurements. Surprisingly we actually see that the variance
is quite small for 1k files as well, which means the larger times are most likely not due
to random network fluctuations. Regardless the Swift setup I used has problems with
smaller files, either the actual file placement by Swift or the files on the underlying
xfs filesystem that Swift uses.

Swift File Put Times

1.00 - (]

Log Request Time

0.01- 1
| | | | | |
1KB 10KB 100KB 1MB 10MB 100MB

File Size

Figure 5.3: Scatterplot of all times to put files into Swift. 100 runs were performed
for each filesize.

The overhead of going through Sage is shown in Figure 5.4 and the times overhead
is found in Table 5.1.1. From these visualizations we can see the times overhead
decreses for both experiments. While the overhead does increase, it increases slower

than the actual operation times so the times overhead decreases.

Swift Overhead

Mongo Overhead

1k
10k
100k
Im
10m
100m

1.3z
2.4x
2.2z
1.6z
1.2x
1.1z

4.9z
4.5x
3.2z
1.4x
1.5z
NA

Table 5.3: Times Overhead for File Put Times

5}

26

Sage Overhead for Median File Put Times

labels
0.04 -
sagemongo

4 sageswift

Difference in File Put Times

0.02 -

i i i i i i
1KB 10KB 100KB 1MB 10MB 100MB
File Size

Figure 5.4: Overhead of performing a file Put going through Sage using Median times.

5.1.2 File Get Benchmarks

The second microbenchmarks measured times to get files using read() or the appro-
priate backend call to download file data into Sage. The plots, shown in figure 5.5,
look very similar to the put times; we still have the local disk with the lowest times
and backends using Swift with the highest. SageF'S tests using Swift and MongoDB
backends were slightly slower than using the backends without Sage. We do see that
Sage using MongoDB had very high max times, but this time MongoDB by itself did
not show the same large maximums. The MongoDB time discrepancies may be due
to reading returned data into a SageFile as the contents must be decoded from BSON
when placed into a SageFile. However, could also just be an outlier in connecting to
MongoDB.

The overhead to get a file through Sage is shown in Figure 5.6 and the times
overhead is found in Table 5.1.2. From these visualizations we can see the times
overhead decreses for Swift, while it increases for Mongo. This is most likely due to
placing the downloaded data from MongoDB into a SageFile. Since the download

times are so small for MongoDB, moving data into buffers is the bulk of the Get

Median File Get Times

+
2 0.100 - L
£
= +
=
8 ot
<
L_L L]
"
80.001 -
-
i i i i i
1KB 10KB 100KB 1MB 10MB
File Size
Max File Get Times
le+01-
N L]
° + +
£
[
gle01- L
0]
<
iy
j=2
3 . "=

le-03 -

+
labels
local
mongo
= sagemongo
+ sageswift
swift
i
100MB
#
labels
local
mongo

= sagemongo
+ sageswift

swift

| i | | 1 |
1KB 10KB 100KB 1MB 10MB 100MB

File Size

Mean File Get Times

+
L
(v} -t
Eo.loo T
=
=
© + +
G}
o
[y
2o.00 AR
50,001~
i i i i i i
1KB 10KB 100KB 1MB 10MB 100MB
File Size
Min File Get Times
+
+
20.100 - n
£ +
[+
-
+
@
[iny
0001~ = (] (]
-

] i i i i i
1KB 10KB 100KB 1MB 10MB 100MB
File Size

o7

labels
local
mongo
= sagemongo
+ sageswift

swift

labels
local
mongo
= sagemongo
+ sageswift

swift

Figure 5.5: Multiplot for file Get times showing Median, Mean, Max, and Min times

times. Luckily however, the increasing overhead stops at 10MB files as this is the

max size that MongoDB supports.

5.2 Scalability

The second set of benchmarks tested the scalability of Sage and the backend stores

Swift and MongoDB. T also wanted to test how Sage performed when it made file

Swift Overhead

Mongo Overhead

1k
10k
100k
1m
10m
100m

9.6x
2.8x
2.8z
2.6z
2.0z
2.0z

2.9z
2.8x
2.8z
3.4x
3.85x
NA

Table 5.4: Times Overhead for File Get Times

o8

Sage Overhead for Median File Get Times

0.75 -

labels
sagemongo
4 sageswift

Difference in File Get Times
o
3

0.25-

0.00 - 4 =

| | | | 1 |
1KB 10KB 100KB 1MB 10MB 100MB

File Size

Figure 5.6: Overhead of performing a file Get going through Sage using Median times.

placement decisions. To test random performance, I ran a test (sagerandom) where
Sage chose to place a file randomly in either Swift or Mongo. For all other tests
involving Sage, files are explicitly requested to be placed in either Swift or Mon-
goDB backends. I do not test the scalability in terms of number of backends. I do
this because all the implemented backends communicate with REST calls, and most
filesystem operations use only one or two backends. Using REST means backends are
only contacted when they are involved in a filesystem operation, and no connections
have to be maintained within Sage. Currently, file operations that do use all the
backends iterate through them performing the operation and collecting the results.
Future implementations could use caching or perform the operations asynchronously.

The scalability tests measure times to create, list, and remove files as the number
of files increases in the backend. The create test successively added up to 1000 1KB
files, so the first iteration had zero previously existing files while the last had 999. I
did the testing on Emulab that has an experiment limit of 16 hours. Unfortunately,
I could only gather ten iterations of each run within the time. I could have run more

iterations over multiple experiment times (or in parallel), but I wanted to have results

29

from the same experiment that could be easily reproduced.

5.2.1 Listing Files

Figure 5.7 shows the median times to list files and Figure 5.8 shows just the overhead.
We can see listing files in MongoDB took a very short amount of time compared to
the other backends. Additionally MongoDB listing had little variation over all 10000
iterations. Sage using MongoDB however took the largest amount of time. We can see
the very first iteration, where only one file exists already, was larger than just using
Mongo. Like most operations in Sage, when we list files we can directly address a
backend or choose not to. In the list test, I called the list() method on the entire Sage
filesystem so list() connected to both backends Swift and MongoDB. Even though
there were no files present in the Swift repository, Sage still had to connect to Swift
and get back a list on the empty backend. This explains why both Sage tests have

similar times for zero existing files, which seems to be limited by Swift.

Median File List Times

02- test
mongo
+ sagemongo
« sagerandom

List Time

« sageswift
swift

0.0 -

i i)) i i i i i]
100 200 300 400 500 600 700 800 900 1000
Number of Existing Files

Figure 5.7: Median times to perform list for each test run. Each test was performed
10 times with an increasing number of files already existing from 0 to 999.

For tests using Sage, the objects returned from the Swift and MongoDB client li-

60

braries have to be manipulated to return reasonable paths for Sage. Sage manipulates
a list of Python dictionaries returned from the backends to extract the path name
from other data. In MongoDBs case, Sage sees the entire record including data. So
a list on MongoDB returns all files in the backend! This solution obviously does not
scale with larger files; however it is an implementation detail of list() in the MongoDB
translator. Furthermore with MongoDB, Sage has to concatenate two fields in a re-
turned MongoDB record to construct a file path. This Python manipulation makes
Sage using Mongo have the largest increase in time as the number of files grows, by

a large margin.

Median File List Time Overhead

0.10-

test
0.05 -
sagemongo overhead

+ sageswift overhead

List Time Overhead

0.00 -~ ey ot o, 0

-0.05- 1 1 1 1 1 1 1 1 1 1
100 200 300 400 500 600 700 800 900 1000
Number of Existing Files

Figure 5.8: File list time overhead.

Sage using Swift and Swift by itself showed fairly consistent results with each
other. Sage times were slightly larger, most likely due to the aforementioned Python
object manipulation. Swift did have some anomalies where times increased, then
became stable again (stable meaning following the trend visible in the plot). Most
likely these are due to Swift getting overwhelmed while flushing data to its underlying
xfs filesystem, or clearing some cached data somewhere. Interestingly, such trends are

not visible in Sage using Swift. Either the number of iterations was low enough that

61

I did not encounter the anomalies in the Sage runs or going through Sage allowed
enough time for Swift to handle all requests without overloading. The only other
noticeable points are the high median times with zero files present. This could be due
to caching issues within Swift. Figure 5.9 shows that all times had variability, and the
zero times were by no means the highest, so the very first run could be encountering
more cache misses than others. As always though the times could be an artifact of

the small number of runs.

Median File List Times

0.2-

List Time

0.1-

i i i i i i i i i i
100 200 300 400 500 600 700 800 900 1000
Number of Existing Files

Figure 5.9: Scatterplot for list times in Swift.

Finally, we take a look at Sagerandom. In this test, files were randomly assigned
to the Swift or MongoDB backends. Interestingly we see the times are in between
Sageswift and Sagemongo. Since approximately half the files are in each backend,
it makes sense that placing files randomly essentially splits the difference and ends
up approximately halfway in between. This shows the scaling is tied to the backends
and unsurprisingly the overhead of having the filesystem naively choose the location is
insignificant. More sophisticated file placement could incur more overhead depending

on the complexity of the file placement function within Sage.

62

5.2.2 Creating Files

Figure 5.10 summarizes the results of creating files for each test. Sageswift had the
largest times, and MongoDB had the lowest. Again Sagemongo shows an increase in
times while MongoDB does not. We see something similar in the microbenchmarks
where we discuss how Sagemongo must search for existing files before it creates a new
one. Here we see the cost of searching for existing files increase as more are present in
the backend. All other tests create times did not increase significantly as the number
of files increased.

Swift is relatively consistent but again we see bumps not present with Sageswift.
Like before, this is most likely overloading Swift or again variation we missed in
Sageswift with the small number of runs. Since we do see the bumps in all Swift plots

overloading is a likely culprit however the exact cause remains unknown.

Median File Create Times

0.075 -

test
mongo

ime

0.050 - . o - sagemongo

DA s L et Y et 2 RIS e T e Y S e (T Tl i ™ L sagerandom

Create Ti
&)
LY
rl

« sageswift
swift

0.025 -

coviv.d ow

L e @ e L IT Tl A T Ly D e el irlasad
TP TIETL RIS e e -

0.000 -

i i i) i i) i i]
100 200 300 400 500 600 700 800 900 1000
Number of Existing Files

Figure 5.10: Median times to create a file for each test run. Each test was performed
10 times with an increasing number of files already existing from 0 to 999.

Sageswift was by far the slowest, with median times about three times larger than
normal Swift. Previously I argued that Sage needed to read data into a SageFile

(and therefore an extra buffer) to upload to the desired backend. While this is true,

63

Sagemongo also has to move data into a SageFile so we can not attribute all the
overhead to SageFiles. I also argued that Swift had trouble with small 1KB files,
which again we see here; however we would expect Swift and Sageswift to be closer if
these were the only factors influencing the create time. To create a file in Sageswift,
we call SageF'S’s open(), which is forwarded to the Swift translator. In the translator
Sage first tries to download the file from Swift to ensure the file is not accidentally
overwritten. The swiftclient module throws an exception if the file does not exist;
which Sage then catches and can now safely create the file. So to create a file Sage
must contact Swift twice much like Sagemongo talks to MongoDB twice. The good
news is that the overhead of talking to Swift is fixed and should become a smaller
portion of the overall time the larger the file becomes. However, this does mean that
communicating with Swift (or MongoDB) is noticeable. Even more so with create
calls as we incur the cost twice.

Next, we look at Sagerandom. The plot has three stratifications, two matching
the Sageswift and Sagemongo plots closely while the third sits in the middle of the
two. Since with Sagerandom files are randomly placed in either Swift or MongoDB,
we would not expect to find middle values as no actual values exist between Swift
and MongoDB. However, since I used ten iterations, if half of the files are using Swift
and the other half using MongoDB, the median point will be a split between them,
which is precisely what we see.

Figure 5.11 shows the overhead for the create tests. Swift has a somewhat stable
overhead, while MongoDB has a slightly increasing overhead for create times. Again
this is most likely due to how the translator is implemented, having to search files as

previously mentioned.

5.2.3 Removing Files

Finally, we take a look at remove file times, which measures the time to remove a file
as an increasing number of files are present in a given backend. The remove test first
gets a list of all files present in the desired backend then removes them one by one
measuring the time after each removal.

The results are summarized in Figure 5.12 and the overhead shown in Figure 5.13.
Again we see the MongoDB instance is quicker than Swift, but this time MongoDB
scales with the number of files present, while Swift does not. Sagemongo scales

slightly worse than MongoDB by itself, which is somewhat surprising as on the client

64

Median File Create Time Overhead

'--.-_'._-a.'.-, 2 ~Boay
O iy e T

0.06 -

test
0.04 - sagemongo overhead
« sageswift overhead

Create Time Overhead

0.02 -

0.00 -
i i i i i i i i i]
100 200 300 400 500 600 700 800 900 1000
Number of Existing Files

Figure 5.11: File create time overhead.

side Sagemongo only performs an extra string split and a few function calls than
MongoDB by itself. However, there is a difference in how Sagemongo and MongoDB
stores test data. Sagemongo stores file path and name separately, while directly using
MongoDB stores the full path as one entity. I store the file path and name separately
in Sagemongo as it is easier to support queries on paths with the two split.

We see another bump in the Swift times and again it is absent from Sageswift. We
do, however, see some variation in Sagerandom with many files. This variation may
be similar to the bumps we see in Swift, but it would be incorrect to assume so with
the amount of variation we see. Sageswift and Swift have very similar performance,
with Sageswift slightly lower than Swift. This could be attributed to how I wrote
the scalability test. To test Swift I have to perform a dictionary lookup to get the
correct path name while Sageswift is supplied the path already. I do this as the list
call returns either a list of paths, such as with Sageswift, or the raw objects from the
swiftclient library as done with Swift.

Sagerandom follows Sagemongo until the midpoint; then has a few points in the

middle (the medians when exactly 50% of the points were in each backend), and finally

65

Median File Remove Times

0.02 -

mongo
+ sagemongo

« sagerandom

Remove Time

- sageswift
swift
0.01-

0.00 -

i i i i i i i i i]
100 200 300 400 500 600 700 800 900 1000
Number of Existing Files

Figure 5.12: Median times to remove a file for each test run. Each test was performed
10 times with an increasing number of files already existing from 0 to 999.

follows Sageswift. Again this shows scaling exactly like the backend the random part
is using. The reason we see the three stratifications separated comes from the way
list actually returns results. For the remove test we list all files. Since each backend
responds separately, the returned list is ordered according to backend. The files in
Swift were first in the list followed by MongoDB so from right to left we see files is
Swift are removed first, followed by those in MongoDB.

Overall the scalability of Sage is mostly tied to the backend, or more specifically
the backend translator implementation done in Sage. The differences we see are over-
heads caused by a few issues. Checking if files exist causes overhead for create() calls
and formatting returned data causes overhead for list(). The most drastic difference
in backends we see is how SageMongo scales for list() compared to MongoDB itself.
list() was the only call that increased in time as file size increased for all tests. cre-
ate() and remove() times were quite static for Swift backends. Mongo create() was
static, but SageMongo increased in time as more files were present. Both tests using

Mongo showed an increase in remove() time as the number of files increases.

66

Median File Remove Time Overhead

0.005 -

o
=}
S
S

© test

sagemongo overhead
Ten, + sageswift overhead

Remove Time Overhead

-0.005 -

i i i i i i i i i]
100 200 300 400 500 600 700 800 900 1000
Number of Existing Files

Figure 5.13: File remove time overhead.

5.3 Application Case Study

In this section, we look at a case study to show SageFS in use and how applications
can take advantage of file location. The application we examine aligns viral DNA
sequences to the human genome using the sequence alignment tool Bowtie2 [33].
The application wants to compare viral genomes to ours, so naturally each virus
comparison is independent of all others. Knowing this fact, we can break up the
computation into many sub jobs and run them independently on several machines.
This partitioning makes it easy to construct a distributed system to perform the
alignments. The experiment environment uses the Geni Experiment Engine to provide
three nodes for computation [6]. Nodes are controlled through a master using the
Fabric python module [2]. Fabric allows shell commands to be run on remote machines
through a python interface, which makes managing remote machines very simple. I
use SageF'S to manage files across the GEE nodes. The SageF'S deployment had Swift
backends on three clusters of machines on the Savi research network [28]. The Sage
backends are located across Canada in Victoria, Toronto, and Carlton, while the GEE

nodes are located across the US in Utah, Illinois, and Maryland.

67

I wrote a simple web crawler in python that crawled the NCBI web interface and
downloaded all virus genomes [53]. The genomes were stored in Sage. Since the Sage
deployment was already physically partitioned into three locations, I decided to have
three crawlers running in parallel. One crawler was deployed on each of the GEE
nodes. I distributed the work so that each node would process approximately one
third of all the viral genomes in the NCBI. Each crawler was assigned a location,
which was used to place the downloaded genomes within Sage. After the database
was crawled Toronto ended up housing 1864 genomes, Carlton 1729, and Victoria
1942. The genome split was not entirely symmetrical as the work was partitioned
on the number of links to follow, not the genomes themselves. Any given link could
contain a genome, multiple genomes, or none at all.

I wrote a separate Python script to perform the genome alignments. Using the
Sage list call, the script grabs a list of all virus genomes at a given location (either
Victoria, Toronto, or Carlon in this case). The list is then iterated through, opening
each genome file locally and aligning it against a human genome reference index
using Bowtie2. Each node has to have a local copy of the reference index which the
script grabs from the Bowtie2 SourceForge site. Sage could store the reference index;
however it is 3.5GB, and there was not enough space in the Swift repositories used
to store it. Normally 3.5GB would not be a problem, but since Sage is a prototype,
and the Savi machines are shared, I wanted to have a minimal footprint within the
machines. Therefore, I did not create large disks for Swift to use in the backend.

After the reference is downloaded, a node can start processing. For a given virus
genome, a node grabs it out of Sage and transfers it to the local filesystem (a function
provided with Sage). I have to transfer to the local fileystem as the Sage client is
a Python module, and Bowtie2 is a standalone binary which uses the system read
and write calls. It is possible however to directly use Sage on the local system using
FUSE, but this feature remains unimplemented and is discussed as potential future
work in Chapter 6. After the virus genome is local to a machine Bowtie2 is run
with default local scoring parameters. Bowtie2 looks for a local alignment comparing
virus to human sequence. One complete the output file is placed back into Sage.
I chose to upload results back into the same location the original viral sequence
was from. This decision was made in an attempt to even the load at each Swift
repository. I am guaranteed that while an upload is taking place at a given location,
a download is not occurring at the same time as each node is responsible for all

sequence at only one location. It took upwards of 36 hours to to align all 5534

68

sequences and produce the results. Only 36 probable alignments were found, but
the actual results are unimportant. What is important is that the application was
able to take advantage of the physical location of files in Sage, and process based on
that information. Additionally the application was able to choose where to upload
the results enabling the application to distribute server load across the filesystem
backends.

This application was ideal to show off the file placement features of Sage. The
application can partition computation based on querying file locations within Sage,
and distribute load across Sage backends when uploading files. The application can
use file locations as the translator names I defined refer to actual locations. Appli-
cations can get the hostname or IP address of backends, but not specific latitude on
longitudes. In the next section, we take a look at types of applications that can take

advantage of Sage’s features, and those that can not.

5.4 Application function and Sage

The architecture of Sage allows applications to access files with a common API re-
gardless of the actual API of the backend store. This feature allows us to build
applications that can use an assortment of backends, but stay ignorant of the un-
derlying API. Furthermore, Sage exposes the location of backends (through the IP
address) that allows applications to take advantage of file location and control file
placement. There are many types of applications that could take advantage of Sages
features. In this section we take a look at a few types of applications that would

benefit from using Sage, and others that would not.

5.4.1 Leveraging Sage

Sage makes a very suitable filesystem for embarrassingly parallel applications. Sage
works well with DropBox like functionality, where files live independently on a remote
host. Sage abstracts away the details of dealing with underlying stores so applications
can aggregate backends into a single resource, and access files the same way regardless
of where they are stored. In the genome searching application, this feature was
extremely useful when parsing results. Result files were uploaded into a specific
location. However, when parsing the results to find matches, I wrote a simple python

script that iterated over all .sam output files (the file format output by Bowtie2) by

69

calling fs.list(). List with no arguments returns all files in the filesystem regardless of
location, so the result parser saw different locations simply as different directories.

Another benefit of using Sage is applications that write many independent files
can do so easily. The way I wrote the genome searching app the result of a sequence
alignment is uploaded to the same backend as the original viral genome. Applications
can write to the same filesystem but have the load distributed over multiple sites.
Furthermore, the application could have let the filesystem decide where to place
result files. Again distributing load across backend sites, or distributing with respect
to another factor such as latency, remaining backend space, or location to name a
few.

Applications that use read only files can also benefit from using Sage. Sage allows
file access from remote locations via client REST calls. If data is never written to
an opened file, Sage never runs into any consistency issues, and multiple readers
can have access to the same file. In the genome searching application, the human
reference genome indexes is a great candidate for this functionality. Each remote site
needs an identical copy of the reference and can grab it from the filesystem directly,
instead of having to pull it from a different service. In both cases it may seem like just
downloading a file, but consider that interacting with Sage uses posix like filesystem
commands, while downloading something from the web requires an HT'TP client. The
application has to communicate with two separate protocols, the filesystem API and
HTTP. Using Sage, the application only has to use the filesystem API. Additionally
if Sage had a FUSE implementation, applications could mount a Sage instance then
read and write remote files using normal operating system calls.

Applications that can take advantage of the exposed location of files can also
benefit from using Sage. In the genome searching application, I partitioned the viral
genome files placing approximately one third at each of three locations. I was then
able to partition the alignment computation based on the physical partitioning of
the files. Now consider the Green Cities application from Chapter 1. Suppose the
application partitioned images across multiple Sage backends, and had distributed
nodes like the genome searching application. Using Sage would allow the application
to move its greenspace computation to nodes closes to required images to reduce file
transfer times. If for example, the application had the same backend Swift stores as
the genome searching application, and had compute nodes in Seattle and New York,
Sage would allow the compute nodes to work on the closest subset of satellite images.

This could be accomplished by partitioning computation on image path name, which

70

to the application looks just like two directories of images.

Another example application is one where sensitive data is partitioned across
Canada and the US. Consider an application that handles financial records or school
grades. For this application Canadian records must be stored in Canada while US
records must reside in the US. Using Sage, the application can safely place sensitive
files in the correct location while still being able to access all files as part of a larger
filesystem.

Finally, consider a user with a collection of remote resources. An account on
cloud storage platforms Dropbox, Google Drive, and Amazon S3. Suppose the user
has limited capacity on each cloud platform, but wants to store more files than can
fit on one platform. Using Sage the user can aggregate all their cloud storage into
a single filesystem. This aggregation is especially useful in personal or smaller cloud

environments where physical resources are not especially abundant.

5.4.2 Burdened by Sage

Sage is great for location aware applications or aggregating resources. However, Sage’s
architecture makes unsuitable for some types of applications. Since Sage relies on
backends to handle things like replication, metadata management, and file locking,
if a backend store mishandles or does not handle one of the features, Sage does
not either. This design makes the current implementation of Sage unsuitable for
applications that concurrently write to the same file. Swift and MongoDB provide
no file locking mechanism. If a distributed application opens a file at two different
locations and makes edits, the resulting file data will be the whatever was written
last (last write wins). Therefore, applications that reduce results to a single file, will
likely not want to use Sage. If, for example, in the genome searching application I
wanted to process results in parallel, I would have to make sure no two processes
were writing to the results file at the same time. Additionally each time I wanted to
update the result file, I would have to make sure I had the latest copy.

Unfortunately file locking and consistency are difficult problems to solve and as
discussed in Chapters 3 and 6 there needs to be some guarantee of atomicity at some
level to implement solutions. As seen in Chapter 2 GFS works around this by having
an atomic append operation while other filesystems behave like Sage with last write
wins semantics.

Applications that rely heavily on performance will also struggle using Sage. We

71

saw earlier this Chapter in sections 5.1 and 5.2 that Sage has some performance
overhead. The goal of Sage is to aggregate remote storage together and to expose
location to the application, not raw performance. If an application heavily relied on
the performance of a backend store, the application should directly access the backend

rather than go through Sage.

72

Chapter 6
Conclusions

Sage was originally developed to be a Unix filesystem like API on top of OpenStack
Swift. As we saw in Chapter 1 this came from the cumbersome way we accessed
files from Swift during the Green Cities application which added traction to the idea
of a globally accessible, wide area filesystem. Sage was designed to be lightweight
causing little overhead, flexible enough to allow multiple backends, and transparent
to give applications power over where to place files. We achieve lightweight execution
by having the bulk of Sage exist as a client library with a layered design. Clients
see a simple filesystem API with familiar calls like open, list, and copy. Internally
Sage converts client API calls into the appropriate set of backend commands using
translators. Sage holds a collection of translators for each backend in the filesystem
which are used to perform file operations in the backend on the user’s behalf. This
way Sage can interact with any backend that has a translator turning the backend
into a component of the filesystem. A dictionary holds translators in Sage, which are
addressed by name. This name is used by applications to address files and can be

used to place files in a specific backend.

6.1 Future Work

As we saw in Chapter 5 the Sage prototype is usable for real experiments. However,
there are many features that could be investigated to improve Sage.

Even though Sage is quite usable, existing applications have to be modified if
they want to take advantage of it. A FUSE implementation would allow Sage to

be mounted within a Unix system and used like any other filesystem mount. FUSE

73

intercepts normal filesystem calls and redirects them into userspace where they can
be handled by user level programs (such as Sage). This way applications could use
Sage without having to include Sage specific code, although, as we saw in Chapter
4 not much is needed. A downside to using FUSE is that applications use system
calls to interact with the filesystem so no Sage specific arguments could be used.
This means applications could not modify Sage parameters without remounting the
filesystem. Additionally Sage normally doesnt go into the VFS layer and therefore
doesnt go through the operating system, using FUSE would send requests through
the OS.

Caching in Sage is done strictly on files, which works well for its purpose however
files are flushed from the cache when closed. Improving caching by holding onto files
longer could improve file access times. The client would still have to check with the
backend (easily done with stat) before reopening a cached file to see if it were modified.
Along with files, directory hierarchies could be cached within Sage to improve file list
times. Currently, no caching is done on file listings, so Sage contacts the backend
every time list is called. Cached lists could be used to reduce times (such as listing
the entire directory tree as done in Chapter 5) and again only if the cache validity were
maintained by the client. Caching could be implemented either at the translator level
or in SageFS. If maintained by SageF'S, then a list cache revalidation would require
each backend to resend its listing. If done in the translators, each could validate its
cache independently which makes it the most logical place to implement extended
caches. Furthermore, this also allows for backend specific behavior in the caches
which could ease implementation and take advantage of specific backend features.

A primitive authentication prototype exists for Sage with Swift backends, but
otherwise users authenticate with the respective backends via parameters passed to
SageF'S. Users require an existing account on the backends to use them. This is fine for
deployments controlled by a single user, but for larger deployments, like the one used
for GEE, a more scalable solution would work much better. A robust authentication
system could also help implementing groups in Sage as it is cumbersome in its current
state. Users have to change parameters in the translators to examine other users files
as shared content currently does not exist. Translators do define how users and groups
are implemented, but no scheme currently exists to place shared files in a given users
directory hierarchy.

An interesting feature of Sage is that users can place files in a given backend, or

Sage can place files for users. Currently, the logic for placing files randomly chooses

74

a location from the set of translators but can easily be extended to make decisions
based on various parameters. This idea was the driving factor behind making the
open call in Sage take additional arguments. Placement logic is simply a function
in SageFS that takes a filename and any optional arguments from open and make
decisions about where to place the given file. The function could be extended to pick
a backend based on latency, file size, access patterns, or any other file attributes. As
an example assume we have an application that produces two types of files, small
quickly consumed files and large files written as backups. In Sage, placement logic
could place all small files in the backend with the lowest latency, and place larger
files in the most reliable backends for durability. In fact, the placement logic was
specifically written as a single function so it could be overwritten by any application
if they so choose. This feature allows applications to define how data is placed either
by specifying in the path name or providing a function that defines it based on some
set of parameters. Smarter placement logic could use machine learning to examine
file access patterns on the fly and adapt file placement while the system is running.

As previously discussed in Chapter 3 a static Sage deployment would benefit the
design of key filesystem components such as locking, metadata management, and
replication. Translators could implement file locking along with an extra component
deployed with backends. Backends could use distributed locking services such as the
chubby lock manager [11] to provide coarse-grained file locking. Translators could
then check with the backends locking service before contacting the backend for file
requests. This modular approach fits Sage very well as it maintains the flexibility
of the system and could easily allow the lock manager to be directly queried by
applications to help make decisions about file placement.

In Sage, replication could be handled by replication groups (either in SageFS or
directly in the translators) or consistent hashing as we saw in Chapter 3. Versioning
could also be done to improve file availability. In many of the filesystems we examined
in Chapter 2 files are superseded instead of deleted. Sage could implement versioning
by appending filenames with timestamps and keeping the last N versions of a file.
Translators could then poll backends and take the definitive file to be the version
present in the majority of backends, or use the latest version that all backends agree
on. Unfortunately, the solution described is not sufficient in the presence of failures as
pointed out by the distributed consensus problem [31, 32|, so a consensus algorithm
may be required to achieve consistency with the versions.

Finally since the performance (not just latency but availability) of Sage is closely

75

coupled to the backend used, different translators lead to different tradeoffs in perfor-
mance. Increasing translator diversity by implementing more for different backends
would increase the diversity of the filesystem as a whole and make it much more

flexible than it is at the moment.

6.2 Finishing Thoughts

The Sage prototype hit the design goals very well. The layered design makes it very
flexible as layers communicate over a small API, and adding a new backend entails
implementing a translator with seven functions. It is simple to use as the API seen
by clients is modeled after Unix calls. Moreover, the system allows clients can define
where files are placed and modify the system on the fly. System deployment is very
simple as the client is a Python package, installed like any other, and scripts can be
used to set up a Swift cluster for use as a Sage backend. Very real experiments can be
done with the prototype as shown with the genome searching case study in Chapter
5 and performance scales with the backends of the system. Hopefully in the future
Sage is used by researchers in the GEE, users aggregating cloud storage, students to
test filesystem concepts, and anyone else who could use a location aware wide area

distributed filesystem.

76

Appendix A

Additional Information

Local File Get Times

Log Request Time

] i i) i i
1KB 10KB 100KB 1MB 10MB 100MB
File Size

Figure A.1: Scatterplot of all times to get files locally. 100 runs were performed for
each filesize.

7

Mongo File Get Times

Log Request Time

0-010 --

0.001

100KB 1MB
File Size

Figure A.2: Scatterplot of all times to get files from MongoDB. 100 runs were per-
formed for each filesize.

78

Mongo File Put Times

1.00 ==

Log Request Time

100KB
File Size

Figure A.3: Scatterplot of all times to put files in MongoDB. 100 runs were performed
for each filesize.

79

Sagemongo File Get Times

1.00 -

Log Request Time

0.01-

:
1 1 | 1 1
1KB 10KB 100KB 1mMB 10MB

File Size

Figure A.4: Scatterplot of all times to get files from Sage using a MongoDB backend.
100 runs were performed for each filesize.

80

Sagemongo File Put Times

-

Log Request Time

0.1- <
|

i i i i i
1KB 10KB 100KB 1MB 10MB
File Size

Figure A.5: Scatterplot of all times to put files in Sage using a MongoDB backend..
100 runs were performed for each filesize.

81

Swift File Get Times

1.00

Log Request Time

0.01

File Size

Figure A.6: Scatterplot of all times to get files from Swift. 100 runs were performed
for each filesize.

82

Sageswift File Get Times

1.0 ----

Log Request Time

100KB 1MB
File Size

Figure A.7: Scatterplot of all times to get files from Sage using a Swift backend. 100
runs were performed for each filesize.

83

Sageswift File Put Times

1.0

Log Request Time

0.1

100KB 1MB
File Size

Figure A.8: Scatterplot of all times to put files in Sage using a Swift backend. 100
runs were performed for each filesize.

84

File Create Times

Create Time
o
]

0.0 -k

i i i i i i i i J
100 200 300 400 500 600 700 800 900 1000
Number of Existing Files

Figure A.9: Scatterplot of all times to create files in MongoDB. The test was per-
formed 10 times with an increasing number of files already existing from 0 to 999.

85

File List Times

5e-04 -

4e-04 -

List Time
w
s
Q
)

i i i i i
300 400 500 600 700 800
Number of Existing Files

Figure A.10: Scatterplot of all times to list files in MongoDB. The test was performed
10 times with an increasing number of files already existing from 0 to 999.

86

File Remove Times

Remove Time

0.5-

0.0

i i i i i i i i J
100 200 300 400 500 600 700 800 900 1000
Number of Existing Files

Figure A.11: Scatterplot of all times to remove files in MongoDB. The test was
performed 10 times with an increasing number of files already existing from 0 to 999.

87

File Create Times

0.015 -

0.012 -

Create Time

))) i)) J
100 200 300 400 500 600 700 800 900 1000
Number of Existing Files

Figure A.12: Scatterplot of all times to create files in Sage using a MongoDB backend.
The test was performed 10 times with an increasing number of files already existing

from 0 to 999.

88

File List Times

t Time

IS|

Li

| |
900 1000

i)))
400 500 600 700 800
Number of Existing Files

| | |
100 200 300

Figure A.13: Scatterplot of all times to list files in Sage using a MongoDB backend.
The test was performed 10 times with an increasing number of files already existing

from 0 to 999.

89

File Remove Times

0.006 -

0.004 -

Remove Time

i i i i i i i i]
100 200 300 400 500 600 700 800 900 1000
Number of Existing Files

Figure A.14: Scatterplot of all times to remove files in Sage using a MongoDB back-
end. The test was performed 10 times with an increasing number of files already
existing from 0 to 999.

90

File Create Times

2.0~

Create Time

=}
|

i i i i i i i i J
100 200 300 400 500 600 700 800 900 1000
Number of Existing Files

Figure A.15: Scatterplot of all times to create files in Swift. The test was performed
10 times with an increasing number of files already existing from 0 to 999.

91

File List Times

1.0-
Q
£
£
B
-
r
0.5-
e
. . . g - o . S . s .) oz,
X aan. aial e St o,
0.0~
100 200 300 400 00 700 800 900 1000

500 6
Number of Existing Files

Figure A.16: Scatterplot of all times to list files in Swift. The test was performed 10
times with an increasing number of files already existing from 0 to 999.

92

File Remove Times

Remove Time

.. . [o .. W

atha B SRS S T) sindinanis .

0.0

i i i i i i i i J
100 200 300 400 500 600 700 800 900 1000
Number of Existing Files

Figure A.17: Scatterplot of all times to remove files in Swift. The test was performed
10 times with an increasing number of files already existing from 0 to 999.

93

File Create Times

Create Time

0.25 -

0.00 -

i) i)) J
100 200 300 400 500 600 700 800 900 1000
Number of Existing Files

Figure A.18: Scatterplot of all times to create files in Sage using a Swift backend.
The test was performed 10 times with an increasing number of files already existing
from 0 to 999.

94

File List Times

List Time

i) i J
100 200 300 400 500 600 700 800 900 1000
Number of Existing Files

Figure A.19: Scatterplot of all times to list files in Sage using a Swift backend. The
test was performed 10 times with an increasing number of files already existing from

0 to 999.

95

File Remove Times

H
o
|

Remove Time

0.0-

)) i i)) i i J
100 200 300 400 500 600 700 800 900 1000
Number of Existing Files

Figure A.20: Scatterplot of all times to remove files in Sage using a Swift backend.
The test was performed 10 times with an increasing number of files already existing
from 0 to 999.

96

File Create Times

20-

Create Time

P b, 5 . P

i i i i i i i]
100 200 300 400 500 600 700 800 900 1000
Number of Existing Files

Figure A.21: Scatterplot of all times to create files in Sage using a random Swift or
MongoDB backend. The test was performed 10 times with an increasing number of
files already existing from 0 to 999.

97

File List Times

List Time

| | | |
700 800 900 1000

i i i i i i
100 200 300 400 500 600
Number of Existing Files

Figure A.22: Scatterplot of all times to list files in Sage using a random Swift or
MongoDB backend. The test was performed 10 times with an increasing number of

files already existing from 0 to 999.

98

File Remove Times

o

o

<]
|

Remove Time

0.25-

0.00

i i i i i i i i]
100 200 300 400 500 600 700 800 900 1000
Number of Existing Files

Figure A.23: Scatterplot of all times to remove files in Sage using a random Swift or
MongoDB backend. The test was performed 10 times with an increasing number of
files already existing from 0 to 999.

99

Median File List Times

0.

w

0.2
) = mongo
E ¢
= -+ sagemongo
k7] . i
2 sageswift

< swift
0.1
0.0
1000

400 500 600
Number of Existing Files

Figure A.24: Median List times for scalability tests without the sagerandom test

100

Median File Create Times

0.075 -
test
[}
1S - mongo
= 0.050 -
] - sagemongo
8 - sageswift
o
© - swift
“acye -
0.025- * .~:!*;'-'.',- o
- SORT LR FERNT N AL e PR VRIS R Py,
2
0.000 -*
' | ' ' ' ' ' ' ' '
100 200 300 400 500 600 700 800 900 1000

Number of Existing Files

Figure A.25: Median Create times for scalability tests without the sagerandom test

101

Median File Remove Times

test

g
£ + mongo
[- sagemongo
g - sageswift
9])
x - swift
0.01 -
P
0.00 -
' | | ' ' ' | | ' '
100 200 300 400 500 600 700 800 900 1000

Number of Existing Files

Figure A.26: Median Remove times for scalability tests without the sagerandom test

102

Mean File List Times

0.3-

0.2- test
) © mongo
E ¢
[= + sagemongo
-
%] . i
5 sageswift

< swift

0.0

' ' ' | ' ' ' | ' '
100 200 300 400 500 600 700 800 900 1000
Number of Existing Files

Figure A.27: Mean List times for scalability tests without the sagerandom test

103

Mean File Create Times

0.2-

test
o
1S * mongo
(= .
4] + sagemongo
2 .
o - sageswift
o . . . o b
o 1 ° ¢ vg 1 L . | . . - swift
0.1 eea — . 1 ..-.'.-'.".”_,:. oo e N .‘.. - .-" .~. = - o 4 r
E . .a . .aa .l- vy M ‘ St ;. F‘ﬁ. M .” B POV S PN ~."ﬂﬁ M‘*ﬁﬂ.ﬂM»
: S i
..: S © .« 8. ."
0 pa i ~ Y »
0.0
| ' | | ' | ' | | '
100 200 300 400 500 600 700 800 900 1000

Number of Existing Files

Figure A.28: Mean Create times for scalability tests without the sagerandom test

104

Mean File Remove Times

0.25 -

0.20 -

0.15-
® test
_E < mongo
g + sagemongo
g 0.10 - = -+ sageswift
[o] . | . .
o < swift

.
0.05 - s - = a

et . o £ P

PRSP TF UF SR VL SOR U W ST TIPOIPE I KLU U TR 05 o e T AP

0.00

' ' ' ' ' ' ' ' ' '
100 200 300 400 500 600 700 800 900 1000
Number of Existing Files

Figure A.29: Mean Remove times for scalability tests without the sagerandom test

105

Max File Llst Times

1.

o

1.0

ﬂE> * mongo
£ -+ sagemongo
k7] . i
2 sageswift
< swift
0.5
0.0
1000

400 500 600
Number of Existing Files

Figure A.30: Max List times for scalability tests without the sagerandom test

106

Max File Create Times

25 1 T T T 1 1 1 1 1

20

1.5

test

)
£ = mongo
=

o -+ sagemongo
g .
15 « sageswift
SRy - swift

0.5

0.0

400 500 600 1000
Number of Existing Files

Figure A.31: Max Create times for scalability tests without the sagerandom test

107

Max File Remove Times

15

=
o

mongo
sagemongo
sageswift
swift

Remove Time

0.5

0.0

100 200 300 400 500 600 700 800 900 1000
Number of Existing Files

Figure A.32: Max Remove times for scalability tests without the sagerandom test

108

Min File List Times

test

GE, < mongo

£ + sagemongo

-

1] . .

2 sageswift
< swift

0.00 | | |

400 500 600 1000

Number of Existing Files

Figure A.33: Min List times for scalability tests without the sagerandom test

109

Min File Create Times

0.05 -
0.00 test
)
1S * mongo
=
) + sagemongo
5]
o - sageswift
L
© - swift
-0.05 -
-0.10 -
| | | | | | | | | '
100 200 300 400 500 600 700 800 900 1000

Number of Existing Files

Figure A.34: Min Create times for scalability tests without the sagerandom test

110

Min File Remove Times

0.0

-0.1-

test
© mongo
 sagemongo
- sageswift

Remove Time

< swift

-0.2-

-0.3-

i i)) i i i i i]
100 200 300 400 500 600 700 800 900 1000
Number of Existing Files

Figure A.35: Min Remove times for scalability tests without the sagerandom test

open("/tmp/bench/local /7", O_RDWR|O_CREAT|O_TRUNC, 0666) = 4

fstat (4, {st_mode=S_IFREG|0664, st_size=0, ...}) =0

fstat (4, {st_mode=S_IFREG|0664, st_size=0, ...}) =0

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS,
-1, 0) = 0x7ffb1d684000

write(4, ")>\25 T\3758\271\211\366\203P\206D

\3019\3040\373\23\331\32\235\364F\267\22m\vf\321\256"..., 8192) =
8192

write(4, "\24azZ\265\3\35\201BG\2540\245\20S\316\230\212(\270t\7\351V
\375\267 JI\30\215\355\275\4" ..., 2048) = 2048

close (4)

Figure A.36: Ptrace of a Python process performing a 10k write.

111

Bibliography

1]

Amazon Simple Storage Service. http://aws.amazon.com/documentation/
s3/.

Fabric. http://wuw.fabfile.org/.
MongoDB. http://docs.mongodb.org/manual/.
OpenStack Swift. http://docs.openstack.org/developer/swift/.

Thomas E Anderson, Michael D Dahlin, Jeanna M Neefe, David A Patterson,
Drew S Roselli, and Randolph Y Wang. Serverless Network File Systems. ACM
Transactions on Computer Systems, 14(1):41-79, 1996.

Andy Bavier, Jim Chen, Joe Mambretti, Rick McGeer, Sean McGeer, Jude Nel-
son, Patrick O’Connell, Glenn Ricart, Stephen Tredger, and Yvonne Coady. The

geni experiment engine. In Teletraffic Congress (ITC), 2014 26th International,
pages 1-6. IEEE, 2014.

Mark Berman, Jeffrey S Chase, Lawrence Landweber, Akihiro Nakao, Max Ott,
Dipankar Raychaudhuri, Robert Ricci, and Ivan Seskar. Geni: a federated

testbed for innovative network experiments. Computer Networks, 61:5-23, 2014.

J Bian and R Seker. Jigdfs: A secure distributed file system. 2009 IEEE Sym-
posium on Computational Intelligence in Cyber Security (2009), pages 76-82,
2009.

Matt Blaze and Rafael Alonso. Toward Massive Distributed File Systems. In
Workstation Operating Systems, 1992. Proceedings., Third Workshop on., pages
48-51. IEEE, 1992.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[18]

112

Peter J Braam, Michael Callahan, and Phil Schwan. The InterMezzo File Sys-
tem. In Proceedings of the 3rd of the Perl Conference, OReilly Open Source
Convention, 1999.

Mike Burrows. The Chubby lock service for loosely-coupled distributed systems.
In Proceedings of the 7th symposium on Operating systems design and implemen-
tation, pages 335 — 350, 2006.

David Cameron, James Casey, and Leanne Guy. Replica management in the
european datagrid project. Journal of Grid ..., (2004):341-351, 2004.

K Mani Chandy, Jayadev Misra, and Laura M Haas. Distributed deadlock de-
tection. ACM Transactions on Computer Systems (TOCS), 1(2):144-156, 1983.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber.
Bigtable : A Distributed Storage System for Structured Data. ACM Transac-
tions on Computer Systems (TOCS), 26(2), 2008.

Core Technology Development and Support Team. MooseFS 2.0 Users Man-
ual. http://moosefs.com/Content/Downloads/moosefs-users-manual.pdf,
2014.

Patrick Donnelly and Douglas Thain. Fine-Grained Access Control in the Chirp
Distributed File System. In 2012 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (ccgrid 2012), pages 33-40. leee, May 2012.

Nan Dun, Kenjiro Taura, and Akinori Yonezawa. GMount: an ad hoc and
locality-aware distributed file system by using SSH and FUSE. In Proceedings of
the 2009 9th IEEE/ACM International Symposium on Cluster Computing and
the Grid, pages 188-195. ITeee, 2009.

Dennis Fetterly, Michael Isard, Maya Haridasan, and Swaminathan Sundarara-
man. TidyFS : A Simple and Small Distributed File System. In Proceedings of
the 2011 USENIX conference on USENIX annual technical conference, 2011.

Kevin Fu, Frans M. Kaashoek, and David Mazieres. Fast and secure distributed
read-only file system. In OSDI’00 Proceedings of the 4th conference on Sympo-

stum on Operating System Design € Implementation, volume 4, 2000.

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

[28]

[29]

113

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file sys-
tem. ACM SIGOPS Operating Systems Review, 37(5):29, 2003.

Gluster. Cloud Storage for the Modern Data Center. http://moo.nac.uci.edu/
~hjm/fs/An_Introduction_To_Gluster_ArchitectureV7_110708.pdf.

Andy Hisgen, Andrew Birrell, Timothy Mann, Michael Schroeder, and Gar-
ret Swart. Availability and Consistency Tradeoffs in the Echo Distributed File

System. In Workstation Operating Systems, 1989., Proceedings of the Second
Workshop on. IEEFE, pages 49-54, 1989.

John H Howard. An overview of the Andrew File System. Carnegie Mellon
University, Information Technology Center, 1988.

John H Howard, Michael L. Kazar, Sherri G Menees, Mahadev Nichols, David
A Satyanarayanan, Robert N Sidebotham, and Michael J West. Scale and per-

formance in a distributed file system. ACM Transactions on Computer Systems
(TOCS), 6(1):51-81, 1988.

John H Howard, David A Nichols, Robert N Sidebotham, Alfred Z Spector, and
Michael J West. The ITC Distributed File System: 7 Principles and Design.
ACM, 1985.

Yu Hua, Yifeng Zhu, Hong Jiang, Dan Feng, and Lei Tian. Scalable and Adap-
tive Metadata Management in Ultra Large-scale File Systems. In Distributed
Computing Systems, 2008. ICDCS’08. The 28th International Conference on.,
pages 403-410, 2007.

Felix Hupfeld, Toni Cortes, Erich Focht, Matthias Hess, Jesus Malo, Jonathan
Marti, and Eugenio Cesario. The XtreemFS architecture a case for object-based
file. Concurrency Computat.: Pract. Ezper., (March):2049-2060, 2008.

Joon-Myung Kang, Hadi Bannazadeh, Hesam Rahimi, Thomas Lin, Mohammad
Faraji, and Alberto Leon-Garcia. Software-defined infrastructure and the future
central office. In Communications Workshops (ICC), 2013 IEEE International
Conference on, pages 225-229. IEEE, 2013.

Peter Kunszt, Erwin Laure, Heinz Stockinger, and Kurt Stockinger. Advanced
Replica Management with Reptor. Parallel Processing and Applied Mathematics,
pages 848-855, 2004.

[30]

[31]

[32]

[33]

[35]

[37]

[39]

114

Peter Kunszt, Erwin Laure, Heinz Stockinger, and Kurt Stockinger. File-based
replica management. Future Generation Computer Systems, 21(1):115-123, Jan-
uary 2005.

L Lamport. The Weak Byzantine Generals Problem. Journal of the ACM,
30(3):668-676, 1983.

Leslie Lamport, Marshall Pease, and Robert Shostak. Reaching Agreement in
the Presence of Faults. Journal of the ACM, 27(2):228-234, 1980.

Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with bowtie
2. Nature methods, 9(4):357-359, 2012.

Jianwei Liao and Yutaka Ishikawa. Partial Replication of Metadata to Achieve
High Metadata Availability in Parallel File Systems. In 2012 41st International
Conference on Parallel Processing, pages 168-177. leee, September 2012.

Sun Microsystems. Lustre File System: High-Performance Storage Architec-
ture and Scalable Cluster File System. http://wiki.lustre.org/index.php/
Lustre_Publications, 2007.

David Nagle, Denis Serenyi, and Abbie Matthews. The Panasas ActiveScale
Storage Cluster Delivering Scalable High Bandwidth Storage. In Proceedings of
the 2004 ACM/IEEE conference on Supercomputing, volume 00, page 53, 2004.

Bogdan Nicolae, Gabriel Antoniu, Luc Bougé, Diana Moise, and Alexandra
Carpen-Amarie. BlobSeer: Next-generation data management for large scale
infrastructures. Journal of Parallel and Distributed Computing, 71(2):169-184,
February 2011.

Brian Pawlowski, Chet Juszczak, Peter Staubach, Carl Smith, Diane Lebel, and
David Hitz. NFS Version 3: Design and Implementation. In USENIX Summer,
pages 137-152, 1994.

O Rodeh and A Teperman. zFS - a scalable distributed file system using object
disks. In Mass Storage Systems and Technologies 2003 MSST 2003 Proceedings
20th IEEE11th NASA Goddard Conference on, volume onpp, pages 207-218.
IEEE Comput. Soc, 2003.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

115

Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon.
Design and Implementation of the Sun Network Filesystem. In Proceedings of
the Summer USENIX conference, pages 119 — 130, 1985.

Mahadev Satyanarayanan, James J Kistler, Puneet Kumar, Maria E Okasaki,
Ellen H Siegel, and David C Steere. Coda: A highly available file system
for a distributed workstation environment. Computers, IEEE Transactions on,
39(4):447-459, 1990.

FB Schmuck and RL Haskin. GPFS: A Shared-Disk File System for Large Com-
puting Clusters. FAST, 2(January):231-244, 2002.

Philip Schwan. Lustre: Building a File System for 1,000-node Clusters. Proceed-
ings of the Linux Symposium, pages 401-409, 2003.

Weisong Shi, Sharun Santhosh, and Hanping Lufei. Cegor : An Adaptive Dis-
tributed File System for Heterogeneous Network Environments. In Proceedings
of the Tenth International Conference on Parallel and Distributed Systems (1C-
PADS04), 2004.

K Shvachko, Hairong Kuang Hairong Kuang, S Radia, and R Chansler. The
Hadoop Distributed File System. In Mass Storage Systems and Technologies
MSST 2010 IEEE 26th Symposium on, number 5, pages 1-10. Yahoo!, Sunnyvale,
CA, USA, Teee, 2010.

Alex Siegel, Kenneth Birman, and Keith Marzullo. Deceit: A flexible distributed
file system. Management of Replicated Data, 1990. Proceedings., Workshop on
the, pages 15-17, 1990.

P Triantafillou and C Neilson. Achieving strong consistency in a distributed file
system. IEEE Transactions on Software Engineering, 23(1):35-55, 1997.

I Voras and M Zagar. Network distributed file system in user space. Information
Technology Interfaces, 2006., pages 669-674, 2006.

Lei Wang and Chen Yang. TLDFS: A Distributed File System based on the
Layered Structure. In Network and Parallel Computing Workshops, ..., pages
727-732. leee, September 2007.

[50]

[51]

[52]

[54]

116

Liu Wei, Ou Xinming, Wu Min, Zheng Weimin, and Shen Meiming. A distributed
naming mechanism in scalable cluster file system. In Proceedings Fourth Interna-
tional Conference Exhibition on High Performance Computing in the AsiaPacific

Region, volume 1, pages 37-41. Ieee, 2000.

Sage A Weil, Scott A Brandt, and Ethan L. Miller. CRUSH : Controlled , Scal-
able , Decentralized Placement of Replicated Data. In Proceedings of the 2006
ACM/IEEE conference on Supercomputing, number November, page 122, 2006.

Sage A. Weil, Scott A. Brandt, Ethan L. Miller, and Darrell D. E. Long. Ceph:
A scalable, high-performance distributed file system. In OSDI 06: 7th USENIX
Symposium on Operating Systems Design and Implementation, pages 307-320,
2006.

David L. Wheeler, Tanya Barrett, Dennis A Benson, Stephen H Bryant, Kathi
Canese, Vyacheslav Chetvernin, Deanna M Church, Michael DiCuccio, Ron
Edgar, Scott Federhen, et al. Database resources of the national center for

biotechnology information. Nucleic acids research, 35(suppl 1):D5-D12, 2007.

Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac
Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An integrated exper-
imental environment for distributed systems and networks. In Proc. of the Fifth
Symposium on Operating Systems Design and Implementation, pages 255-270,
Boston, MA, December 2002. USENIX Association.

Zooko Wilcox-O’Hearn and Brian Warner. Tahoe The Least-Authority Filesys-
tem. In Proceedings of the 4th ACM international workshop on Storage security
and survivability, pages 21-26, 2008.

Jiongyu Yu, Weigang Wu, and Huaguan Li. DMooseF'S: Design and imple-
mentation of distributed files system with distributed metadata server. In Cloud
Computing Congress (APCloudCC), 2012 IEEE Asia Pacific, pages 42-47, 2012.

Ming Zhao and Renato J Figueiredo. A User-level Secure Grid File System. In
Supercomputing, 2007. SC’07. Proceedings of the 2007 ACM/IEEE Conference
on, number c, pages 1-11, 2007.

Yi Zhao, Rongfeng Tang, Jin Xiong, and Jie Ma. IncFS : An Integrated High-
Performance Distributed File System Based on NFS. In Networking, Architec-

117

ture, and Storages, 2006. IWNAS’06. International Workshop on Networking
Architecture and Storages, 2006.

