This is a post-review version of the following article:

Electron ionization mass spectrometric analysis of air- and moisture-sensitive organometallic compounds

Johanne Penafiel, Amelia Hesketh, Ori Granot and J. Scott McIndoe

September 2016

The final publication is available in Dalton Transactions via:

https://doi.org/10.1039/c6dt03020c

Citation for this paper:

Electron ionization mass spectrometric analysis of air- and moisture-sensitive organometallic compounds

Johanne Penafiel, Amelia Hesketh, Ori Granot* and J. Scott McIndoe*

Department of Chemistry, University of Victoria, P.O. Box 3065 Victoria, BC V8W3V6, Canada.
Fax: +1 (250) 721-7147; Tel: +1 (250) 721-7181; E-mail: orig@uvic.ca, mcindoe@uvic.ca

Abstract

Electron ionization (EI) is a reliable mass spectrometric method for the analysis of the vast majority of thermally stable and volatile compounds. In direct EI-MS, the sample is placed into the probe and introduced to the source. For air- and moisture-sensitive organometallic complexes, the sample introduction step is critical. A small quantity must be briefly exposed to the atmosphere, during which time decomposition can occur. Here we present a simple tool that allows convenient analysis of air- and moisture-sensitive organometallic species by direct probe methods: a small purge-able glove chamber affixed to the front end of the mass spectrometer. Using the upgraded mass spectrometer, we successfully characterized a series of air- and moisture-sensitive organometallic complexes, ranging from mildly to very air-sensitive.

Keywords
mass spectrometry, electron ionization, reactive compounds, anaerobic conditions
Introduction

Electron ionization is a long-standing, reliable method for the analysis of volatile, non-polar compounds, including organometallics. Samples are typically introduced either as effluent from a GC column, or for compounds that are insufficiently volatile or too reactive to survive passage through the column, placed on a sample holder or transferred directly into the source. For reactive organometallics, the sample introduction step is deeply problematic: a small quantity must be briefly exposed to the atmosphere, during which time (sometimes catastrophic) decomposition can occur.

Solutions to this problem include simply performing the necessary actions at speed, thus limiting exposure, performing the transfer under an open flow of inert gas, or attaching a flexible glovebag to the front end of the instrument. For analysis by liquid secondary ion (LSIMS), organic solvents have been used as matrices under a low-temperature stream of nitrogen gas. Similar approaches have been taken for MALDI analysis. Integrating a fully-functional glovebox with the mass spectrometer has proved a successful approach for both MALDI and ESI mass spectrometry (ESI-MS has the methodological advantage that samples can be introduced in solution anaerobically via gas-tight syringe or pressurized sample introduction from a reaction flask). We report here a simple, reliable design that is more permanent than a glovebag but requires much less investment than a full glovebox - a small purge-able glove chamber affixed to the front end of the mass spectrometer that allows convenient analysis of reactive organometallic species by direct probe methods. A 3D model and a photograph of the experimental setup appear in Figure 1.

![Figure 1](image_url).

Figure 1. Left: schematic of the mini-glovebox. Right: glovebox in place on direct probe EI-MS.
Results and discussion

Instrumental setup
The glovebox was fabricated out of plexiglass, assembled with M2 SS Hex screws and sealed without adhesive or sealant. The dimensions of the chamber are 6.5" x 6.5" x 6" and the glove ports have a diameter of 3.5". The gloves are disposable, flock lined, 8 mm (0.008") thick nitrile (Dura Flock, Microflex Corporation NV). They are attached to the glove ports with electrical tape. Previous the analysis, the chamber is flushed with a supply of dry nitrogen for 10 to 15 minutes with a constant flow of 20 L.min⁻¹. The gas flow is reduced to half its value for the sample introduction and severely lowered after insertion of the probe into the mass spectrometer.

Mass spectrometric study
A variety of organometallic compounds were investigated using this modified instrument, ranging from relatively robust, briefly air-stable compounds such as cobalt carbonyl and zirconocene dichloride, to more sensitive compounds such as reduced titanocene dichloride (used as an indicator for O₂ in the atmosphere of gloveboxes)⁹ and pyrophoric compounds such as triisobutylaluminum.

Figure 2 shows the mass spectrum of Co₂(CO)₈, a metal carbonyl complex representative of this class of compound: it is relatively robust and volatile. It provides high quality EI mass spectra¹⁰ involving fragments that arise from CO loss and/or metal-metal bond cleavage; this behavior is typical of metal carbonyl clusters in general.¹¹
Figure 2. EI-MS of $\text{Co}_2(\text{CO})_8$. Cobalt is monoisotopic so the mass spectra are comparatively simple. All ions can be assigned as $[\text{Co}_x(\text{CO})_y]^+$ ($x = 1$ or 2, $y = 0$-8).

Metalloocene complexes are also often volatile and thermally stable. Ferrocene derivatives in particular provide excellent EI mass spectra with strong molecular ions, because loss of a single electron to form ferrocenium ions results in a complex that overall is still strongly bound.\(^\text{12}\) Ferrocene is not air- or moisture-sensitive so we tried instead ZrCp_2Cl_2, ZrCp_2Me_2, TiCp_2Cl_2, and TiCp_2Cl. ZrCp_2X_2 ($\text{X} = \text{Cl, Me}$) both provided spectra with molecular ions and fragments consistent with the known structures (Figure 3).\(^\text{13}\) Me^- was lost from $[\text{Cp}_2\text{ZrMe}_2]^+$ than Cl^- was lost from $[\text{Cp}_2\text{ZrCl}_2]^+$, and the dimethyl compound also readily eliminated ethane whereas Cl_2 loss was entirely absent from the spectrum of Cp_2ZrCl_2. Dimethyl compounds are of course much more prone to reductive elimination than dichloro compounds, so this observation is consistent with known chemistry.\(^\text{13}\) For ZrCp_2Me_2 the base peak in the spectrum was $[\text{Cp}_2\text{Zr}]^+$ whereas for ZrCp_2Cl_2, it was $[\text{CpZrCl}]^+$.
Figure 3. Mass spectra of Cp₂ZrCl₂ (top) and Cp₂ZrMe₂ (bottom) obtained using the glovebox attachment.

However, in crystalline form neither of these complexes are exceptionally air- and moisture-sensitive and decent spectra were obtained even after direct exposure to the atmosphere (though considerable amounts of dimeric oxidized products were also observed, see supporting information). As such, we turned to TiCp₂Cl₂, itself not especially air-sensitive (similar to Cp₂ZrCl₂) but it may be reduced using zinc to a Ti(III) compound that *is* air-sensitive enough to be used as an indicator of the presence of trace levels of oxygen in gloveboxes. It changes colour from blue to yellow through green in the presence of O₂, so it also offered a visual clue to the degree
to which the mini-glovebox was excluding air. Spectra of Cp₂TiCl₂ and of its reduced form are shown in Figure 4.

Figure 4. Top: EI mass spectrum of Cp₂TiCl₂ obtained using the glovebox attachment. Bottom: EI mass spectrum of zinc-reduced Cp₂TiCl₂. Note the greatly increased abundance of [Cp₂TiCl]⁺ and the near-disappearance of [Cp₂TiCl₂]⁺ (a fragment of Cp₂TiCl₂).

Another class of organometallic compounds that are unusually air- and moisture-sensitive, and therefore challenging to analyze by MS, are the trialkyl aluminums. The Al-R bond is highly susceptible to hydrolysis to form Al-OH and R-H, and the more volatile alkyl aluminums are pyrophoric as a result. The charged products of hydrolysis (aluminoxanes) can be characterized...
by ESI-MS16 using an instrument with an attached full-size glovebox,6a but neutral species are not detectable by ESI-MS. Electron ionization analysis of trialkylaluminum compounds is straightforward with the miniature glovebox: a toluene solution of Al\textsubscript{3}Bu\textsubscript{3} was exposed in the box and the toluene allowed to evaporate from a drop placed on the probe. The resulting analysis showed a mixture of toluene (with its characteristic intense peak at [M-1]+ corresponding to the tropylium ion, [C\textsubscript{7}H\textsubscript{7}]+ at m/z 91) and ions attributable to Al\textsubscript{3}Bu\textsubscript{3}. The molecular ion at m/z 198 was barely observable, and ready loss of butyl radical to generate [AlBu\textsubscript{2}]+ at m/z 141 and further loss of butene to generate [AlBuH]+ (the base peak) at m/z 85 occurred (Figure 5).

![Figure 5. Triisobutylaluminium in toluene. Low levels of molecular ion are observed at m/z 198. Prominent ions due to toluene are observed at m/z 92 and 91 (m/z 91 being the characteristically stable C\textsubscript{7}H\textsubscript{7}+ tropylium ion). Peaks marked * are unassigned decomposition products.](image-url)

The products of decomposition of Al\textsubscript{3}Bu\textsubscript{3} through hydrolysis will mostly be less volatile than Al\textsubscript{3}Bu\textsubscript{3} itself (with the exception of isobutane, which will likely be lost even before transfer to vacuum). On the other hand, the EI-MS analysis of certain organometallic complexes can yield to lower molecular weight species, which by virtue of their greater volatility, end up dominating the mass spectrum. As such, analysis of lanthanide complexes Ln[N(SiMe\textsubscript{3})\textsubscript{2}]\textsubscript{n} (Ln = Dy, Sm, Nd; n = 2, 3) show small amounts of high molecular weight ions, and the most abundant fragments are those due to HN(SiMe\textsubscript{3})\textsubscript{2}. This lower molecular weight species, with a boiling point of just 126 °C, is easily driven into the gas phase, ionized and becomes the most prominent species. For example,
Sm[N(SiMe₃)₂]₂ provides mass spectra with low portions of the highest molecular weight ion and subsequent numerous fragments corresponding to the cleavage of methyl radicals from the trimethylsilylamido groups (Figure 6) (See supporting information for Ln = Dy, Nd). The specific fragmentation pattern of silane derivatives has already been studied and in the case of the bis(trimethylsilyl)amido ligand, it gives rise to the formation of HN(SiMe₃)₂, which overlaps with the hydrolysis product.¹⁷ Such behaviour is known and has previously been observed for bis(trimethylsilyl)amido alkaline earth metal complexes.¹⁸

![Figure 6. Positive ion EI-MS spectrum of Sm[N(SiMe₃)₂]₂. Inset: actual spectrum (black) and predicted isotope pattern (green bars).](image)

It is sometimes the case that apparent decomposition is not due to exposure to oxygen or moisture but instead due to the lability of the compound under study and the inherent difficulty of transferring an involatile sample to the gas phase. For example, Rh(PPh₃)₃Cl (Wilkinson’s catalyst)¹⁹ is not particularly air-sensitive in the crystalline form but analysis by anaerobic EI-MS resulted in a spectrum that matched exactly that of PPh₃ (see supporting information). Essentially, it is easier to dissociate and evaporate the ligand than it is to drive the intact complex from the surface.
Conclusions

Electron ionization mass spectrometry requires transfer of a (usually) solid sample to the mass spectrometer, and without suitable precautions, the small amounts of sample involved can easily decompose by oxidation or hydrolysis. An inexpensive glovebox enclosure attached to a commercial instrument enables routine characterization of highly reactive organometallic compounds safely and effectively.

Experimental

General procedure

Co$_2$(CO)$_8$, ZrCp$_2$Cl$_2$, ZrCp$_2$Me$_2$, TiCp$_2$Cl$_2$, Rh(PPh$_3$)$_3$Cl and AliBu$_3$ were purchased from Sigma-Aldrich and used as received. TiCp$_2$Cl was prepared according to literature procedure. TiCp$_2$Cl was prepared according to literature procedure. Dy[N(SiMe$_3$)$_2$)$_3$, Nd[N(SiMe$_3$)$_2$)$_3$ and Sm[N(SiMe$_3$)$_2$)$_2$ were provided by Professor David Berg’s research group at the University of Victoria. All sample preparations of air- and moisture-sensitive compounds were carried out in a glovebox. A few tens to hundreds micrograms of each compound were introduced into a direct insertion probe (DIP) sample cup. The sample cups were brought under inert atmosphere into the glovebox affixed to mass spectrometer and directly deposited onto the probe tip with programmed heating. The spectra were obtained on a Thermo Scientific Finnigan TRACE DSQ mass spectrometer. The positive ion EI/MS analyses were performed at 70 eV with a source temperature of 200 °C. The background pressure in the mass spectrometer was below 10$^{-5}$ Torr.

Details on the EI-MS measurements

For Co$_2$(CO)$_8$, ZrCp$_2$Cl$_2$, ZrCp$_2$Me$_2$, TiCp$_2$Cl$_2$, and TiCp$_2$Cl, the DIP was temperature-programmed from 30 (for 0.5 min) to 350°C (for 1 min) at a rate of 50 °C/min and with a scan range of 50 to 650 amu at a rate of 1.2 scan/s. For AliBu$_3$, the DIP was temperature-programmed from 30 (for 1.5 min) to 350°C (for 0.5 min) at a rate of 10 °C/min and with a scan range of 50 to 650 amu at a rate of 1.2 scan/s. For the lanthanides complexes, the DIP was temperature-programmed from 30 (for 2 min) to 400°C (for 0.5 min) at a rate of 10 °C/min and with a scan range of 50 to 700 amu at a rate of 1.3 scan/s. For Rh(PPh$_3$)$_3$Cl, the DIP was temperature-programmed from 30 (for 0.5 min) to 400°C (for 1 min) at a rate of 50 °C/min and with a scan range of 50 to 1000 amu at a rate of 1.9 scan/s.
Acknowledgements

JSM thanks NSERC (Discovery and Discovery Accelerator Supplements) for operational funding and CFI, BCKDF and the University of Victoria for infrastructural support. Professor David Berg is thanked for the lanthanide samples and Jeff Trafton for his contribution in the elaboration of the glovebox.

References

2 A. Bjarnason, Organometallics, 1990, 9, 657-661.

20 Contact information: djberg@uvic.ca