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We investigate some applications of the differential subordination and the differential superordination of certain admissible classes
of multivalent functions in the open unit disk U. Several differential sandwich-type results are also obtained.

1. Introduction

Let H(U) be the class of functions analytic in the open unit
disk

U = {𝑧 : 𝑧 ∈ C, |𝑧| < 1} . (1)

Denote by H[𝑎, 𝑛] the subclass of H(U) consisting of
functions of the form

𝑓 (𝑧) = 𝑎 + 𝑎
𝑛
𝑧
𝑛

+ 𝑎
𝑛+1

𝑧
𝑛+1

+ ⋅ ⋅ ⋅ (2)

with

H = H [1, 1] . (3)

Also let A(𝑝) be the class of all analytic and 𝑝-valent
functions of the form

𝑓 (𝑧) = 𝑧
𝑝

+

∞

∑
𝑛=𝑝+1

𝑎
𝑛
𝑧
𝑛

(𝑝 ∈ N = {1, 2, 3, . . .} ; 𝑧 ∈ U) .

(4)

Let 𝑓 and 𝐹 be members of the function class H(U). The
function𝑓(𝑧) is said to be subordinate to𝐹(𝑧), or the function
𝐹(𝑧) is said to be superordinate to 𝑓(𝑧), if there exists a
function 𝜔(𝑧), analytic in U with

𝜔 (0) = 0, |𝜔 (𝑧)| < 1 (𝑧 ∈ U) , (5)

such that

𝑓 (𝑧) = 𝐹 (𝜔 (𝑧)) . (6)

In such a case we write 𝑓(𝑧) ≺ 𝐹(𝑧). If 𝐹 is univalent in U,
then 𝑓(𝑧) ≺ 𝐹(𝑧) if and only if 𝑓(0) = 𝐹(0) and 𝑓(U) ⊂

𝐹(U) (see [1–3]; see also several recent works [4–8] dealing
with various properties and applications of the principle of
differential subordination and the principle of differential
superordination).

We denote byF the set of all functions 𝑞 that are analytic
and injective on U \ 𝐸(𝑞), where

𝐸 (𝑞) = {𝜁 ∈ 𝜕U : lim
𝑧→𝜁

𝑞 (𝑧) = ∞} , (7)

and are such that

𝑞


(𝜁) ̸= 0 (𝜁 ∈ 𝜕U \ 𝐸 (𝑞)) . (8)

We further let the subclass of F for which 𝑞(0) = 𝑎 be
denoted byF(𝑎) and write

F (1) ≡ F
1
. (9)

In order to prove our results, we will make use of the
following classes of admissible functions.

Definition 1 (see [2, p. 27, Definition 2.3a]). Let Ω be a set
in C, 𝑞 ∈ F, and 𝑛 ∈ N. The class Ψ

𝑛
[Ω, 𝑞] of admissible
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functions consists of those functions 𝜓 : C3 × U → C that
satisfy the following admissibility condition:

𝜓 (𝑟, 𝑠, 𝑡; 𝑧) ∉ Ω (10)

whenever
𝑟 = 𝑞 (𝜁) , 𝑠 = 𝑘𝜁𝑞



(𝜁) ,

R(
𝑡

𝑠
+ 1) ≧ 𝑘R(1 +

𝜁𝑞 (𝜁)

𝑞 (𝜁)
) ,

(11)

where 𝑧 ∈ U, 𝜁 ∈ 𝜕U \ 𝐸(𝑞), and 𝑘 ≧ 𝑛. We write Ψ
1
[Ω, 𝑞]

simply as Ψ[Ω, 𝑞].
In particular, if

𝑞 (𝑧) = (
𝑀𝑧 + 𝑎

𝑀 + 𝑎𝑧
)𝑀 (𝑀 > 0; |𝑎| < 𝑀) , (12)

then

𝑞 (U) = U
𝑀
= {𝑤 : |𝑤| < 𝑀} , (13)

𝑞(0) = 𝑎, 𝐸(𝑞) = 0, and 𝑞 ∈ F(𝑎). In this case, we set
Ψ
𝑛
[Ω,𝑀, 𝑎] = Ψ

𝑛
[Ω, 𝑞]. Moreover, in the special case, when

we set Ω = U
𝑀
, the class is simply denoted by Ψ

𝑛
[𝑀, 𝑎].

Definition 2 (see [3, p. 817, Definition 3]). Let Ω be a set
in C, 𝑞 ∈ H[𝑎, 𝑛] with 𝑞(𝑧) ̸= 0. The class Ψ

𝑛
[Ω, 𝑞] of

admissible functions consists of those functions𝜓 : C3×U →

C that satisfy the following admissibility condition:

𝜓 (𝑟, 𝑠, 𝑡; 𝜁) ∈ Ω (14)

whenever

𝑟 = 𝑞 (𝑧) , 𝑠 =
𝑧𝑞 (𝑧)

𝑚
,

R(
𝑡

𝑠
+ 1) ≦

1

𝑚
R(1 +

𝑧𝑞 (𝑧)

𝑞 (𝑧)
) ,

(15)

where 𝑧 ∈ U, 𝜁 ∈ 𝜕U, and 𝑚 ≧ 𝑛 ≧ 1. In particular, we write
Ψ
1
[Ω, 𝑞] simply as Ψ[Ω, 𝑞].
In our investigation we need the following lemmas which

are proved by Miller and Mocanu (see [2] and [3]).

Lemma 3 (see [2, p. 28, Theorem 2.3b]). Let 𝜓 ∈ Ψ
𝑛
[Ω, 𝑞]

with 𝑞(0) = 𝑎. If the analytic function 𝑔(𝑧) given by

𝑔 (𝑧) = 𝑎 + 𝑎
𝑛
𝑧
𝑛

+ 𝑎
𝑛+1

𝑧
𝑛+1

+ ⋅ ⋅ ⋅ (16)

satisfies the inclusion relationship

𝜓 (𝑔 (𝑧) , 𝑧𝑔


(𝑧) , 𝑧
2

𝑔


(𝑧) ; 𝑧) ∈ Ω, (17)

then 𝑔 ≺ 𝑞.

Lemma 4 (see [3, p. 818, Theorem 1]). Let 𝜓 ∈ Ψ
𝑛
[Ω, 𝑞] with

𝑞(0) = 𝑎. If 𝑔 ∈ F(𝑎) and the function

𝜓 (𝑔 (𝑧) , 𝑧𝑔


(𝑧) , 𝑧
2

𝑔


(𝑧) ; 𝑧) (18)

is univalent in U, then

Ω ⊂ {𝜓 (𝑔 (𝑧) , 𝑧𝑔


(𝑧) , 𝑧
2

𝑔


(𝑧) ; 𝑧) : 𝑧 ∈ U} (19)

implies that 𝑞 ≺ 𝑔.

In this paper, we determine the sufficient conditions for
certain admissible classes of multivalent functions so that

𝑞
1
(𝑧) ≺ (

𝑓 (𝑧)

𝑧𝑝
)

𝜇

≺ 𝑞
2
(𝑧) , (20)

where 𝜇 > 0 and 𝑞
1
and 𝑞
2
are given univalent functions in U

with

𝑞
1
(0) = 𝑞

2
(0) = 1. (21)

In addition, we derive several differential sandwich-type
results. A similar problem for analytic functions involving
certain operators was studied by Aghalary et al. [9], Ali
et al. [10], Aouf et al. [11], Kim and Srivastava [12], and
other authors (see [13–15]). In particular, unlike the earlier
investigation by Aouf and Seoudy [16], we have not used
any operators in our present investigation. Nevertheless, for
the benefit of the targeted readers of our paper, in addition
to oft-cited paper [11], we have included several further
citations of recent works (see, e.g., [17–21]) in which various
families of linear operators were applied in conjunction with
the principle of differential subordination and the principle
of differential superordination for the study of analytic or
meromorphic multivalent functions.

2. A Set of Subordination Results

Unless otherwise mentioned, we assume throughout this
paper that 𝑝 ∈ N, 𝜇 > 0, 𝑧 ∈ U, and all power functions
are tacitly assumed to denote their principal values.

Definition 5. Let Ω be a set in C and 𝑞 ∈ F
1
∩ H. The

class Φ[Ω, 𝑞, 𝑝, 𝜇] of admissible functions consists of those
functions 𝜙 : C3 × U → C that satisfy the following
admissibility condition:

𝜙 (𝑢, V, 𝑤; 𝑧) ∉ Ω (22)

whenever

𝑢 = 𝑞 (𝜁) , V =
𝑘𝜁𝑞 (𝜁) + 𝜇𝑝𝑞 (𝜁)

𝜇𝑝
,

R(
𝑤 − (2𝜇𝑝 − 1) V + 𝜇𝑝𝑢

V − 𝑢
) ≧ 𝑘R(1 +

𝜁𝑞 (𝜁)

𝑞 (𝜁)
) ,

(23)

where 𝑧 ∈ U, 𝜁 ∈ 𝜕U \ 𝐸(𝑞), and 𝑘 ≧ 1. For simplicity, we
write

Φ[Ω, 𝑞, 𝑝, 1] = Φ [Ω, 𝑞, 𝑝] . (24)

Theorem 6. Let 𝜙 ∈ Φ[Ω, 𝑞, 𝑝, 𝜇]. If 𝑓 ∈ A(𝑝) satisfies the
condition

{𝜙((
𝑓(𝑧)

𝑧𝑝
)

𝜇

, (
𝑓(𝑧)

𝑧𝑝
)

𝜇

𝑧𝑓 (𝑧)

𝑝𝑓 (𝑧)
, (

𝑓(𝑧)

𝑧𝑝
)

𝜇

𝑧2𝑓 (𝑧)

𝑝𝑓 (𝑧)

+ (𝜇 − 1) 𝑝(
𝑓(𝑧)

𝑧𝑝
)

𝜇

(
𝑧𝑓(𝑧)

𝑝𝑓(𝑧)
)

2

; 𝑧) : 𝑧 ∈ U} ⊂ Ω,

(25)
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then

(
𝑓 (𝑧)

𝑧𝑝
)

𝜇

≺ 𝑞 (𝑧) . (26)

Proof. We begin by defining the analytic function 𝑔 in U by

𝑔 (𝑧) = (
𝑓(𝑧)

𝑧𝑝
)

𝜇

(𝑧 ∈ U) . (27)

Then, in view of (27), we get

(
𝑓(𝑧)

𝑧𝑝
)

𝜇

𝑧𝑓 (𝑧)

𝑝𝑓 (𝑧)
=
𝑧𝑔 (𝑧) + 𝜇𝑝𝑔 (𝑧)

𝜇𝑝
. (28)

Further computations show that

(
𝑓(𝑧)

𝑧𝑝
)

𝜇

𝑧2𝑓 (𝑧)

𝑝𝑓 (𝑧)
+ (𝜇 − 1) 𝑝(

𝑓(𝑧)

𝑧𝑝
)

𝜇

(
𝑧𝑓(𝑧)

𝑝𝑓(𝑧)
)

2

=
𝑧2𝑔 (𝑧) + 2𝜇𝑝 𝑧𝑔 (𝑧) + 𝜇𝑝 (𝜇𝑝 − 1) 𝑔 (𝑧)

𝜇𝑝
.

(29)

We now define the transformations from C3 to C by

𝑢 = 𝑟, V =
𝑠 + 𝜇𝑝𝑟

𝜇𝑝
,

𝑤 =
𝑡 + 2𝜇𝑝𝑠 + 𝜇𝑝 (𝜇𝑝 − 1) 𝑟

𝜇𝑝

(30)

and suppose that

𝜓 (𝑟, 𝑠, 𝑡; 𝑧) = 𝜙 (𝑢, V, 𝑤; 𝑧)

= 𝜙(𝑟,
𝑠 + 𝜇𝑝𝑟

𝜇𝑝
,
𝑡 + 2𝜇𝑝𝑠 + 𝜇𝑝 (𝜇𝑝 − 1) 𝑟

𝜇𝑝
; 𝑧) .

(31)

The proof will make use of Lemma 3. Indeed, by using (27) to
(31), we obtain

𝜓 (𝑔 (𝑧) , 𝑧𝑔


(𝑧) , 𝑧
2

𝑔


(𝑧) ; 𝑧)

= 𝜙((
𝑓(𝑧)

𝑧𝑝
)

𝜇

, (
𝑓(𝑧)

𝑧𝑝
)

𝜇

𝑧𝑓 (𝑧)

𝑝𝑓 (𝑧)
,

(
𝑓 (𝑧)

𝑧𝑝
)

𝜇

𝑧2𝑓 (𝑧)

𝑝𝑓 (𝑧)

+ (𝜇 − 1) 𝑝(
𝑓 (𝑧)

𝑧𝑝
)

𝜇

(
𝑧𝑓 (𝑧)

𝑝𝑓 (𝑧)
)

2

; 𝑧) .

(32)

Hence (25) becomes

𝜓 (𝑔 (𝑧) , 𝑧𝑔


(𝑧) , 𝑧
2

𝑔


(𝑧) ; 𝑧) ∈ Ω. (33)

The proof is completed if it can be shown that the admis-
sibility condition for 𝜙 ∈ Φ[Ω, 𝑞, 𝑝, 𝜇] is equivalent to the

admissibility condition for𝜓 as given inDefinition 1.We note
that

𝑡

𝑠
+ 1 =

𝑤 − (2𝜇𝑝 − 1) V + 𝜇𝑝𝑢

V − 𝑢
, (34)

and hence 𝜓 ∈ Ψ
1
[Ω, 𝑞]. By Lemma 3, we thus obtain

𝑔 (𝑧) ≺ 𝑞 (𝑧) or (
𝑓(𝑧)

𝑧𝑝
)

𝜇

≺ 𝑞 (𝑧) . (35)

which evidently proves Theorem 6.

If Ω ̸= C is a simply connected domain, then Ω =

ℎ(U) for some conformal mapping ℎ of U onto Ω. In this
case, the class Φ[ℎ(U), 𝑞, 𝑝, 𝜇] is written, for convenience,
as Φ[ℎ, 𝑞, 𝑝, 𝜇]. The following result is an immediate conse-
quence of Theorem 6.

Theorem 7. Let 𝜙 ∈ Φ[ℎ, 𝑞, 𝑝, 𝜇]. If 𝑓 ∈ A(𝑝) satisfies the
condition,

𝜙((
𝑓(𝑧)

𝑧𝑝
)

𝜇

, (
𝑓(𝑧)

𝑧𝑝
)

𝜇

𝑧𝑓 (𝑧)

𝑝𝑓 (𝑧)
, (

𝑓(𝑧)

𝑧𝑝
)

𝜇

𝑧2𝑓 (𝑧)

𝑝𝑓 (𝑧)

+ (𝜇 − 1) 𝑝(
𝑓(𝑧)

𝑧𝑝
)

𝜇

(
𝑧𝑓(𝑧)

𝑝𝑓(𝑧)
)

2

; 𝑧) ≺ ℎ (𝑧) ,

(36)

then

(
𝑓(𝑧)

𝑧𝑝
)

𝜇

≺ 𝑞 (𝑧) . (37)

Putting 𝜇 = 1 in Theorem 7, we obtain the following
corollary.

Corollary 8. Let 𝜙 ∈ Φ[ℎ, 𝑞, 𝑝]. If 𝑓 ∈ A(𝑝) satisfies the
condition

𝜙(
𝑓 (𝑧)

𝑧𝑝
,
𝑓 (𝑧)

𝑝𝑧𝑝−1
,
𝑓 (𝑧)

𝑝𝑧𝑝−2
) ≺ ℎ (𝑧) , (38)

then
𝑓 (𝑧)

𝑧𝑝
≺ 𝑞 (𝑧) . (39)

Our next result is an extension of Theorem 6 to the case
where the behavior of 𝑞 on 𝜕U is not known.

Corollary 9. Let Ω ⊂ C and suppose that the function 𝑞 is
univalent in U with 𝑞(0) = 1. Also let 𝜙 ∈ Φ[Ω, 𝑞

𝜌
, 𝑝, 𝜇] for

some 𝜌 ∈ (0, 1), where 𝑞
𝜌
(𝑧) = 𝑞(𝜌𝑧). If 𝑓 ∈ A(𝑝) and

𝜙((
𝑓(𝑧)

𝑧𝑝
)

𝜇

, (
𝑓(𝑧)

𝑧𝑝
)

𝜇

𝑧𝑓 (𝑧)

𝑝𝑓 (𝑧)
, (

𝑓(𝑧)

𝑧𝑝
)

𝜇

𝑧2𝑓 (𝑧)

𝑝𝑓 (𝑧)

+ (𝜇 − 1) 𝑝(
𝑓(𝑧)

𝑧𝑝
)

𝜇

(
𝑧𝑓(𝑧)

𝑝𝑓(𝑧)
)

2

; 𝑧) ∈ Ω,

(40)

then

(
𝑓(𝑧)

𝑧𝑝
)

𝜇

≺ 𝑞 (𝑧) . (41)
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Proof. Theorem 6 readily yields

(
𝑓(𝑧)

𝑧𝑝
)

𝜇

≺ 𝑞
𝜌
(𝑧) . (42)

The asserted result is now deduced from the fact that 𝑞
𝜌
(𝑧) ≺

𝑞(𝑧).

Theorem 10. Let the functions ℎ and 𝑞 be univalent inU, with
𝑞(0) = 1, and set

𝑞
𝜌
(𝑧) = 𝑞 (𝜌𝑧) , ℎ

𝜌
(𝑧) = ℎ (𝜌𝑧) . (43)

Also let 𝜙 : C3 × U → C satisfy one of the following
conditions:

(1) 𝜙 ∈ Φ[ℎ, 𝑞
𝜌
, 𝑝, 𝜇] for some 𝜌 ∈ (0, 1) or

(2) there exists 𝜌
0
∈ (0, 1) such that 𝜙 ∈ Φ[ℎ

𝜌
, 𝑞
𝜌
, 𝑝, 𝜇] for

all 𝜌 ∈ (𝜌
0
, 1).

If 𝑓 ∈ A(𝑝) satisfies condition (36), then

(
𝑓(𝑧)

𝑧𝑝
)

𝜇

≺ 𝑞 (𝑧) . (44)

Proof. The proof of Theorem 10 is similar to the proof of
a known result [2, p. 30, Theorem 2.3d] and is, therefore,
omitted.

The next theorem yields the best dominant of differential
subordination (36).

Theorem 11. Let the function ℎ be univalent in U. Also let 𝜙 :

C3 × U → C. Suppose that the differential equation

𝜙 (𝑞 (𝑧) , 𝑧𝑞


(𝑧) , 𝑧
2

𝑞


(𝑧) ; 𝑧) = ℎ (𝑧) (45)

has a solution 𝑞 with 𝑞(0) = 1 and satisfies one of the following
conditions:

(1) 𝑞 ∈ F
1
and 𝜙 ∈ Φ[ℎ, 𝑞, 𝑝, 𝜇];

(2) the function 𝑞 is univalent in U and 𝜙 ∈ Φ[ℎ, 𝑞
𝜌
, 𝑝, 𝜇]

for some 𝜌 ∈ (0, 1); or
(3) the function 𝑞 is univalent in U and there exists 𝜌

0
∈

(0, 1) such that 𝜙 ∈ Φ[ℎ
𝜌
, 𝑞
𝜌
, 𝑝, 𝜇] for all 𝜌 ∈ (𝜌

0
, 1). If

𝑓 ∈ A(𝑝) satisfies (36), then

(
𝑓(𝑧)

𝑧𝑝
)

𝜇

≺ 𝑞 (𝑧) (46)

and 𝑞 is the best dominant.

Proof. Following the same arguments in [2, p. 31, Theorem
2.3e], we deduce that 𝑞 is a dominant fromTheorems 7 and 10.
Since 𝑞 satisfies (45), it is also a solution of (36) and, therefore,
𝑞 will be dominated by all dominants. Hence 𝑞 is the best
dominant.

In the particular case when 𝑞(𝑧) = 1 + 𝑀𝑧 (𝑀 > 0),
in view of Definition 5, the class Φ[Ω, 𝑞, 𝑝, 𝜇] of admissible
functions, denoted by Φ[Ω,𝑀, 𝑝, 𝜇], is described below.

Definition 12. Let Ω be a set in C and 𝑀 > 0. The
class Φ[Ω,𝑀, 𝑝, 𝜇] of admissible functions consists of those
functions 𝜙 : C3 × U → C such that

𝜙(1 +𝑀𝑒
𝑖𝜃

, 1 +
𝑘 + 𝜇𝑝

𝜇𝑝
𝑀𝑒
𝑖𝜃

,

𝐿 + 𝜇𝑝 [(2𝑘 + 𝜇𝑝 − 1)𝑀𝑒𝑖𝜃 + 𝜇𝑝 − 1]

𝜇𝑝
; 𝑧) ∉ Ω

(47)

whenever 𝑧 ∈ U, 𝜃 ∈ R, and

R (𝐿𝑒
−𝑖𝜃

) ≧ (𝑘 − 1) 𝑘𝑀 (48)

for all real 𝜃 and 𝑘 ≧ 𝜇𝑝.

Corollary 13. Let 𝜙 ∈ Φ[Ω,𝑀, 𝑝, 𝜇]. If 𝑓 ∈ A(𝑝) satisfies the
condition

𝜙((
𝑓(𝑧)

𝑧𝑝
)

𝜇

, (
𝑓 (𝑧)

𝑧𝑝
)

𝜇

𝑧𝑓 (𝑧)

𝑝𝑓 (𝑧)
, (

𝑓 (𝑧)

𝑧𝑝
)

𝜇

𝑧2𝑓 (𝑧)

𝑝𝑓 (𝑧)

+ (𝜇 − 1) 𝑝(
𝑓(𝑧)

𝑧𝑝
)

𝜇

(
𝑧𝑓 (𝑧)

𝑝𝑓(𝑧)
)

2

; 𝑧) ∈ Ω,

(49)

then

(
𝑓(𝑧)

𝑧𝑝
)

𝜇

− 1

< 𝑀 (𝑧 ∈ U) . (50)

In the special case when

Ω = 𝑞 (U) = {𝜔 : |𝜔 − 1| < 𝑀} , (51)

the class Φ[Ω,𝑀, 𝑝, 𝜇] is simply denoted byΦ[𝑀, 𝑝, 𝜇].

Corollary 14. Let 𝜙 ∈ Φ[𝑀]. If 𝑓 ∈ A(𝑝) satisfies the
condition

𝜙 ((

𝑓(𝑧)

𝑧𝑝
)

𝜇

, (
𝑓(𝑧)

𝑧𝑝
)

𝜇

𝑧𝑓 (𝑧)

𝑝𝑓 (𝑧)
, (

𝑓(𝑧)

𝑧𝑝
)

𝜇

𝑧2𝑓 (𝑧)

𝑝𝑓 (𝑧)

+ (𝜇 − 1) 𝑝(
𝑓(𝑧)

𝑧𝑝
)

𝜇

(
𝑧𝑓(𝑧)

𝑝𝑓(𝑧)
)

2

; 𝑧) − 1



< 𝑀,

(52)

then

(
𝑓 (𝑧)

𝑧𝑝
)

𝜇

− 1

< 𝑀. (53)

Corollary 15. If 𝑘 ≧ 1 and 𝑓 ∈ A(𝑝) satisfies the condition

(
𝑓 (𝑧)

𝑧𝑝
)

𝜇

𝑧𝑓 (𝑧)

𝑝𝑓 (𝑧)
− 1


< 𝑀, (54)

then

(
𝑓 (𝑧)

𝑧𝑝
)

𝜇

− 1

< 𝑀. (55)

Proof. Corollary 15 follows from Corollary 14 upon setting

𝜙 (𝑢, V, 𝑤; 𝑧) = V = 1 + (
𝑘 + 𝜇𝑝

𝜇𝑝
)𝑀𝑒
𝑖𝜃

. (56)
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3. Superordination and Sandwich-Type Results

In this section we investigate the dual problem of differential
subordination, that is, differential superordination of mul-
tivalent functions. For this purpose, the class of admissible
functions is given in the following definition.

Definition 16. Let Ω be a set in C and 𝑞 ∈ H with 𝑧𝑞
(𝑧) ̸=

0. The class Φ[Ω, 𝑞, 𝑝, 𝜇] of admissible functions consists of
those functions 𝜙 : C3 × U → C that satisfy the following
admissibility condition:

𝜙 (𝑢, V, 𝑤; 𝜁) ∈ Ω (57)

whenever

𝑢 = 𝑞 (𝑧) , V =
𝑧𝑞 (𝑧) + 𝑚𝜇𝑝𝑞 (𝑧)

𝑚𝜇𝑝
,

R(
𝑤 − (2𝜇𝑝 − 1) V + 𝜇𝑝𝑢

V − 𝑢
) ≧

1

𝑚
R(1 +

𝜁𝑞 (𝜁)

𝑞 (𝜁)
) ,

(58)

where 𝑧 ∈ U, 𝜁 ∈ 𝜕U, and𝑚 ≧ 1. For convenience, we write

Φ


[Ω, 𝑞, 𝑝, 1] = Φ


[Ω, 𝑞, 𝑝] . (59)

Theorem 17. Let 𝜙 ∈ Φ[Ω, 𝑞, 𝑝, 𝜇]. If 𝑓 ∈ A(𝑝),

(
𝑓(𝑧)

𝑧𝑝
)

𝜇

∈ F
1

𝜙((
𝑓(𝑧)

𝑧𝑝
)

𝜇

, (
𝑓(𝑧)

𝑧𝑝
)

𝜇

𝑧𝑓 (𝑧)

𝑝𝑓 (𝑧)
, (

𝑓(𝑧)

𝑧𝑝
)

𝜇

𝑧2𝑓 (𝑧)

𝑝𝑓 (𝑧)

+ (𝜇 − 1) 𝑝(
𝑓(𝑧)

𝑧𝑝
)

𝜇

(
𝑧𝑓(𝑧)

𝑝𝑓(𝑧)
)

2

; 𝑧)

(60)

is univalent in U, then

Ω ⊂ {𝜙((
𝑓(𝑧)

𝑧𝑝
)

𝜇

, (
𝑓(𝑧)

𝑧𝑝
)

𝜇

𝑧𝑓 (𝑧)

𝑝𝑓 (𝑧)
, (

𝑓(𝑧)

𝑧𝑝
)

𝜇

𝑧2𝑓 (𝑧)

𝑝𝑓 (𝑧)

+ (𝜇 − 1) 𝑝(
𝑓(𝑧)

𝑧𝑝
)

𝜇

(
𝑧𝑓(𝑧)

𝑝𝑓(𝑧)
)

2

; 𝑧) : 𝑧 ∈ U}

(61)

implies that

𝑞 (𝑧) ≺ (
𝑓(𝑧)

𝑧𝑝
)

𝜇

. (62)

Proof. From (32) and (61), we find that

Ω ⊂ {𝜓 (𝑔 (𝑧) , 𝑧𝑔


(𝑧) , 𝑧
2

𝑔


(𝑧) ; 𝑧) : 𝑧 ∈ U} . (63)

We also see from (30) that the admissibility condition for
the function class 𝜙 ∈ Φ[Ω, 𝑞, 𝑝, 𝜇] is equivalent to the

admissibility condition for 𝜓 as given in Definition 2. Hence
𝜓 ∈ Ψ



1
[Ω, 𝑞]. Thus, by Lemma 4, we have

𝑞 (𝑧) ≺ 𝑔 (𝑧) or 𝑞 (𝑧) ≺ (
𝑓(𝑧)

𝑧𝑝
)

𝜇

, (64)

which evidently completes the proof of Theorem 17.

If Ω ̸= C is a simply connected domain, then Ω = ℎ(U)

for some conformal mapping ℎ of U onto Ω. In this case, the
class Φ[ℎ(U), 𝑞, 𝑝, 𝜇] is written simply asΦ[ℎ, 𝑞, 𝑝, 𝜇].

Proceeding similarly as in Section 2, the following result
can be derived as an immediate consequence of Theorem 17.

Theorem 18. Let the function ℎ be analytic in U and 𝜙 ∈

Φ
[ℎ, 𝑞, 𝑝, 𝜇]. If 𝑓 ∈ A(𝑝),

(
𝑓(𝑧)

𝑧𝑝
)

𝜇

∈ F
1
,

𝜙 ((
𝑓(𝑧)

𝑧𝑝
)

𝜇

, (
𝑓(𝑧)

𝑧𝑝
)

𝜇

𝑧𝑓 (𝑧)

𝑝𝑓 (𝑧)
, (

𝑓(𝑧)

𝑧𝑝
)

𝜇

𝑧2𝑓 (𝑧)

𝑝𝑓 (𝑧)

+ (𝜇 − 1) 𝑝(
𝑓(𝑧)

𝑧𝑝
)

𝜇

(
𝑧𝑓(𝑧)

𝑝𝑓(𝑧)
)

2

; 𝑧)

(65)

is univalent in U, then

ℎ (𝑧) ≺ 𝜙((
𝑓(𝑧)

𝑧𝑝
)

𝜇

, (
𝑓(𝑧)

𝑧𝑝
)

𝜇

𝑧𝑓 (𝑧)

𝑝𝑓 (𝑧)
, (

𝑓(𝑧)

𝑧𝑝
)

𝜇

𝑧2𝑓 (𝑧)

𝑝𝑓 (𝑧)

+ (𝜇 − 1) 𝑝(
𝑓(𝑧)

𝑧𝑝
)

𝜇

(
𝑧𝑓(𝑧)

𝑝𝑓(𝑧)
)

2

; 𝑧)

(66)

implies that

𝑞 (𝑧) ≺ (
𝑓(𝑧)

𝑧𝑝
)

𝜇

. (67)

Putting 𝜇 = 1 in Theorem 18, we obtain the following
corollary.

Corollary 19. Let the function ℎ be analytic in U and 𝜙 ∈

Φ
[ℎ, 𝑞, 𝑝]. If 𝑓 ∈ A(𝑝),

𝑓 (𝑧)

𝑧𝑝
∈ F
1
,

𝜙 (
𝑓 (𝑧)

𝑧𝑝
,
𝑓 (𝑧)

𝑝𝑧𝑝−1
,
𝑓 (𝑧)

𝑝𝑧𝑝−2
; 𝑧)

(68)

is univalent in U, then

ℎ (𝑧) ≺ 𝜙(
𝑓 (𝑧)

𝑧𝑝
,
𝑓 (𝑧)

𝑝𝑧𝑝−1
,
𝑓 (𝑧)

𝑝𝑧𝑝−2
; 𝑧) (69)

implies that

𝑞 (𝑧) ≺
𝑓 (𝑧)

𝑧𝑝
. (70)
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Theorems 17 and 18 can only be used to obtain subordi-
nants of the differential superordination of the form (61) or
(66). The following theorem proves the existence of the best
subordinant of (66) for a specified 𝜙.

Theorem 20. Let the function ℎ be analytic in U and 𝜙 : C3 ×

U → C. Suppose that the differential equation

𝜙 (𝑞 (𝑧) , 𝑧𝑞


(𝑧) , 𝑧
2

𝑞


(𝑧) ; 𝑧) = ℎ (𝑧) (71)

has a solution 𝑞 ∈ F
1
. If 𝜙 ∈ Φ[ℎ, 𝑞, 𝑝, 𝜇],𝑓 ∈ A(𝑝),

(
𝑓(𝑧)

𝑧𝑝
)

𝜇

∈ F
1

𝜙((
𝑓(𝑧)

𝑧𝑝
)

𝜇

, (
𝑓(𝑧)

𝑧𝑝
)

𝜇

𝑧𝑓 (𝑧)

𝑝𝑓 (𝑧)
, (

𝑓(𝑧)

𝑧𝑝
)

𝜇

𝑧2𝑓 (𝑧)

𝑝𝑓 (𝑧)

+ (𝜇 − 1) 𝑝(
𝑓(𝑧)

𝑧𝑝
)

𝜇

(
𝑧𝑓(𝑧)

𝑝𝑓(𝑧)
)

2

; 𝑧)

(72)

is univalent in U, then

ℎ (𝑧) ≺ 𝜙((
𝑓(𝑧)

𝑧𝑝
)

𝜇

, (
𝑓(𝑧)

𝑧𝑝
)

𝜇

𝑧𝑓 (𝑧)

𝑝𝑓 (𝑧)
, (

𝑓(𝑧)

𝑧𝑝
)

𝜇

𝑧2𝑓 (𝑧)

𝑝𝑓 (𝑧)

+ (𝜇 − 1) 𝑝(
𝑓(𝑧)

𝑧𝑝
)

𝜇

(
𝑧𝑓(𝑧)

𝑝𝑓(𝑧)
)

2

; 𝑧)

(73)

implies that

𝑞 (𝑧) ≺ (
𝑓(𝑧)

𝑧𝑝
)

𝜇

(74)

and 𝑞 is the best subordinant.

Proof. The proof is similar to the proof of Theorem 11. We,
therefore, omit the details involved.

Combining Theorems 7 and 18, we obtain the following
sandwich-type theorem.

Theorem 21. Let the functions ℎ
1
and 𝑞
1
be analytic in U, the

function ℎ
2
univalent in U, 𝑞

2
∈ F
1
with

𝑞
1
(0) = 𝑞

2
(0) = 1,

𝜙 ∈ Φ [ℎ
2
, 𝑞
2
, 𝑝, 𝜇] ∩ Φ



[ℎ
1
, 𝑞
1
, 𝑝, 𝜇] .

(75)

If 𝑓 ∈ A(𝑝),

(
𝑓(𝑧)

𝑧𝑝
)

𝜇

∈ H ∩F
1
,

𝜙 ((
𝑓(𝑧)

𝑧𝑝
)

𝜇

, (
𝑓(𝑧)

𝑧𝑝
)

𝜇

𝑧𝑓 (𝑧)

𝑝𝑓 (𝑧)
, (

𝑓(𝑧)

𝑧𝑝
)

𝜇

𝑧2𝑓 (𝑧)

𝑝𝑓 (𝑧)

+ (𝜇 − 1) 𝑝(
𝑓(𝑧)

𝑧𝑝
)

𝜇

(
𝑧𝑓(𝑧)

𝑝𝑓(𝑧)
)

2

; 𝑧)

(76)

is univalent in U, then

ℎ
1
(𝑧) ≺ 𝜙((

𝑓(𝑧)

𝑧𝑝
)

𝜇

, (
𝑓(𝑧)

𝑧𝑝
)

𝜇

𝑧𝑓


(𝑧)

𝑝𝑓 (𝑧)
, (

𝑓(𝑧)

𝑧𝑝
)

𝜇

𝑧
2

𝑓


(𝑧)

𝑝𝑓 (𝑧)

+ (𝜇 − 1) 𝑝(
𝑓 (𝑧)

𝑧𝑝
)

𝜇

(
𝑧𝑓 (𝑧)

𝑝𝑓 (𝑧)
)

2

; 𝑧) ≺ ℎ
2
(𝑧)

(77)

implies that

𝑞
1
(𝑧) ≺ (

𝑓 (𝑧)

𝑧𝑝
)

𝜇

≺ 𝑞
2
(𝑧) . (78)

Upon setting 𝜇 = 1 in Theorem 21, we get the following
result.

Corollary 22. Let the functions ℎ
1
and 𝑞
1
be analytic inU, the

function ℎ
2
univalent in U, 𝑞

2
∈ F
1
with

𝑞
1
(0) = 𝑞

2
(0) = 1, (79)

and 𝜙 ∈ Φ[ℎ
2
, 𝑞
2
, 𝑝] ∩ Φ[ℎ

1
, 𝑞
1
, 𝑝]. If 𝑓 ∈ A(𝑝),

𝑓 (𝑧)

𝑧𝑝
∈ H ∩F

1
,

𝜙 (
𝑓 (𝑧)

𝑧𝑝
,
𝑓 (𝑧)

𝑝𝑧𝑝−1
,
𝑓 (𝑧)

𝑝𝑧𝑝−2
)

(80)

is univalent in U, then

ℎ
1
(𝑧) ≺ 𝜙(

𝑓 (𝑧)

𝑧𝑝
,
𝑓 (𝑧)

𝑝𝑧𝑝−1
,
𝑓 (𝑧)

𝑝𝑧𝑝−2
) ≺ ℎ

2
(𝑧) (81)

implies that

𝑞
1
(𝑧) ≺

𝑓 (𝑧)

𝑧𝑝
≺ 𝑞
2
(𝑧) . (82)
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