INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.
Characterization of the alpha-Mannosidase Gene Family
in Filamentous Fungi

by

Caleb Joshua Eades
B.Sc., University of British Columbia, 1994

A Dissertation Submitted in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in the Department of Biology

We accept this dissertation as conforming
to the required standard

Dr. W.E. Hintz, Supervisor (Department of Biology, University of Victoria)

Dr. B.F. Koop, Departmental Member (Department of Biology, University of Victoria)

Dr. N. Sherwood, Departmental Member (Department of Biology, University of Victoria)

Dr. C. Upton, Outside Member (Department of Biochemistry, University of Victoria)

Dr. C. Breuil, External Examiner (Department of Wood Science, University of B.C)

© Caleb Joshua Eades, 2001
University of Victoria

All rights reserved. This dissertation may not be reproduced in whole or in part, by
photocopying or other means, without the permission of the author
Supervisor: Dr. William E. Hintz

ABSTRACT

Protein N-glycosylation, which is ubiquitous in eukaryotes, is a complex pathway involving numerous gene families. Early stages of the glycosylation pathway show a high degree of conservation among eukaryotes, yet diversification of the number and size of gene families involved in the later stages of the pathway has led to the evolution of increasingly complex N-glycan structures and functions in various organisms. The overall purpose of this research project has been to characterize the diversity within the α-mannosidase gene family of filamentous fungi. The α-1,2-mannosidases are involved in mannose removal in the intermediate stages of the N-glycosylation pathways, and diversification of this gene family may have provided the first significant divergence in these pathways among major lineages.

Four novel α-mannosidases were identified and characterized from the filamentous fungus *Aspergillus nidulans*. These genes were designated Class II α-mannosidase, Class I α-1,2-mannosidase IA, Class I α-1,2-mannosidase IB and Class I α-1,2-mannosidase IC, based on their similarity to other Class I and Class II α-mannosidase sequences. The Class II α-mannosidase was highly similar to the rat ER/cytosolic and yeast vacuolar Class II α-mannosidases, and these three proteins formed a phylogenetically distinct subgroup, Class IIC. The Class I enzymes were highly related to each other, and to other fungal Class I α-1,2-mannosidases. Phylogenetic analysis indicates these genes duplicated and diverged subsequent to the divergence of fungi from insects and mammals. In addition to this research on *A. nidulans*, a single Class I α-1,2-mannosidase was identified and characterized from the Dutch Elm pathogen, *Ophiostoma novo-ulmi*, which was highly related to the *A. nidulans* Class I α-1,2-mannosidase IA and IC enzymes, and less so to the *A. nidulans* Class I α-1,2-mannosidase IB.

Analysis of the function and/or biochemical properties of these enzymes was examined using several methods. Disruption and overexpression of the *A. nidulans* Class IIC α-mannosidase did not have any noticeable effect on the growth or morphology of
the organism, indicating that this gene was not essential for growth. Biochemical
colorization of the A. nidulans Class I α-1,2-mannosidase IC was initiated by
recombinant secretion of the enzyme into culture media. Successful expression of the
enzyme showed that the α-1,2-mannosidase IC did not exert any cytotoxic effects when
overexpressed, suggesting that high levels of expression and purification should be
feasible. Finally, disruption of the Class I α-1,2-mannosidase from O. novo-ulmi slightly
altered the morphology of the organism, but was not lethal. The possible presence of
multiple Class I α-1,2-mannosidases in this organism could explain the non-lethality of
this mutation.

Elucidation of the N-glycosylation pathways of A. nidulans may be useful in host
strain improvement for heterologous protein expression systems. Modulation of the N-
glycosylation pathways to produce specific N-glycan structures would increase the utility
of the host for the production of human therapeutic glycoproteins which require these N-
glycans for efficacy. Additionally, investigation of the genetic components of the N-
glycosylation pathways of the Dutch Elm pathogen may provide global antifungal targets
with broad applicability in other fungi.

Examiners:

Dr. W.E. Hinz, Supervisor (Department of Biology, University of Victoria)

Dr. B.F. Koop, Departmental Member (Department of Biology, University of Victoria)

Dr. N. Sherwood, Departmental Member (Department of Biology, University of Victoria)

Dr. C. Upton, Outside Member (Department of Biochemistry, University of Victoria)

Dr. C. Breuil, External Examiner (Department of Wood Science, University of B.C)
Table of Contents

Abstract ... ii
Table of Contents iv
List of Tables ... vi
List of Figures ... vii
Acknowledgements ix

CHAPTER 1 - General Introduction (excerpted from Biotechnology and Bioprocess Engineering 5: 227-233, 2000) ... 1

CHAPTER 2 - Identification and analysis of a Class 2 α-mannosidase from Aspergillus nidulans (Glycobiology 8: 17-33, 1998)

2.1 Abstract ... 31
2.2 Introduction ... 32
2.3 Results ... 34
2.4 Discussion ... 55
2.5 Materials and Methods 59

CHAPTER 3 - Characterization of the Class I α-mannosidase gene family in the filamentous fungus Aspergillus nidulans (Gene 255:25-34, 2000)

3.1 Abstract ... 67
3.2 Introduction .. 68
3.3 Materials and Methods 70
CHAPTER 4 - Expression and Secretion of the Class I α-1,2-mannosidase IC from Aspergillus nidulans

4.1 Introduction ..90
4.2 Materials and Methods93
4.3 Results ..98
4.4 Discussion ..102

CHAPTER 5 - Cloning, Sequence Characterization, and Disruption of Class I α-1,2-mannosidase IA from Ophiostoma novo-ulmi

5.1 Introduction ..108
5.2 Materials and Methods114
5.3 Results ..122
5.4 Discussion ..132

CHAPTER 6 - General Discussion138

LITERATURE CITED ..151
List of Tables

TABLE I: Oligonucleotide primer sequences ... 35
List of Figures

FIGURE 1: Types of N-glycans produced in eukaryotes ...5

FIGURE 2: N-glycan biosynthetic pathway in the endoplasmic reticulum (ER) and Golgi apparatus ... 17

FIGURE 3: Full length sequence of the Aspergillus nidulans α-mannosidase............. 37

FIGURE 4: Sequence alignment of Aspergillus nidulans α-mannosidase, rat ER/cytosolic α-mannosidase, and yeast vacuolar α-mannosidase 42

FIGURE 5: Disruption/induced expression of the α-mannosidase gene 46

FIGURE 6: Confirmation of gene disruption ... 48

FIGURE 7: Expression of cytosolic α-mannosidase in Aspergillus nidulans 49

FIGURE 8: Matchbox sequence similarity matrix .. 52

FIGURE 9: Dendrogram prepared from multiple alignment of 18 α-mannosidase sequences ... 54

FIGURE 10: Kyte-Doolittle hydropathy plot of (A) A. nidulans α-mannosidase IA, (B) A. nidulans α-mannosidase IB and (C) A. nidulans α-mannosidase IC predicted amino acid sequences .. 81

FIGURE 11: Multiple sequence alignment of three α-1,2-mannosidase putative protein sequences from A. nidulans .. 82

FIGURE 12: Phylogram showing sequence relationships of Class I α-mannosidases .. 85

FIGURE 13: Expression vector for A. nidulans α-1,2-mannosidase IC 96

FIGURE 14: Secretion of A. nidulans α-1,2-mannosidase IC into culture media...... 101
FIGURE 15: Construction of *O. novo-ulmi* α-1,2-mannosidase disruption vector 120

FIGURE 16: Copy number of *O. novo-ulmi* Class I α-1,2-mannosidase 124

FIGURE 17: Kyte-Doolittle hydropathy plot of *O. novo-ulmi* predicted amino acid sequence ... 127

FIGURE 18: Diagnostic PCR screening of *O. novo-ulmi* disruption transformants .. 129

FIGURE 19: Phylogram showing sequence relationships of Class I α-mannosidases including *O. novo-ulmi* α-1,2-mannosidase 131

FIGURE 20: N-glycosylation synthesis pathway .. 142
Acknowledgements

I would like to thank various people in the Biology Department for their technical assistance and advice, which helped me achieve my research goals. In particular, I would like to thank Dr. Ben Koop and the students and staff in his lab for their assistance with automated DNA sequencing, multiple sequence alignments and generation of phylogenetic trees. I would also like to thank Graham Sinclair for his assistance in the protein expression work and for advice on various aspects of molecular biology, research and life in general. A very special thanks is owed to the Graduate Secretary Eleanore Floyd, who was always available to fix those seemingly unsolvable problems.

Thanks to various granting agencies which have made my research possible, especially to the Natural Sciences and Engineering Research Council (NSERC), and to the various funding sources made available through the Biology Department Scholarships and Fellowships program.

Thanks to my fellow lab colleagues, present and former, who have made the lab such a fun place to be, and a stimulating environment - particularly Brad Temple, Kirk Leifso, Mike Pinchback, Elisa Becker, Holly Williams and Paul de la Bastide. You have all provided a great deal of scientific inspiration and intellectual discussion with a healthy dose of practical jokes and general mischief to keep things from getting too serious. I have also greatly appreciated the support of my good friends Carolyn Bergstrom, Louise Hahn and David Western. You all mean a great deal to me.
It has been a tremendous pleasure working with Dr. William Hintz, my academic supervisor and mentor for the past 6 years. Will, you have been a great inspiration to me and it has been a joy learning from you how to be a good, inquisitive scientist. I have learned a great many things from you which I will carry with me during my career. You have been most generous in your support, both academic and financial. You have also been a good friend. Many thanks.

I would like to thank my mother Suzanne and my father John. You have always given me so much support and been so proud of my achievements. I am fortunate to have such caring parents. And to my older brother Luke, who has always had such interest in my academic and intellectual pursuits. I have always looked up to you. And Jessica, my younger sister, you are such a good person. I've drawn strength from my family and am glad to have such strong bonds with all of you.

Most of all, I would like to thank my partner Lori. Your support and love have made this all possible. We look out on the world together, shoulder to shoulder. I am yours, you are mine, we are what we are. Finally, to my children, Jamie and Ember - you bring joy to my life and are inspirations, both of you.
CHAPTER 1 – General Introduction

Protein glycosylation

Protein N-glycosylation is an important post-translational modification, in which oligosaccharides (glycans) are covalently linked to specific amino acids of proteins (Peberdy, 1994). N-glycosylation can have major effects on the structure and function of proteins, influencing stability, secretion, antigenicity, pharmacokinetics and biological activity (Goochee et al., 1991; Karlsson, 1991; Opdenakker et al., 1993). N-glycans also have significant roles in intracellular targeting, host-pathogen interactions, and other recognition events. Protein N-glycosylation involves a series of complex reactions resulting in an oligosaccharide attached to an asparagine (Asn) residue of the polypeptide. Two broad classes of N-glycans are found in mature glycoproteins - complex and high-mannose oligosaccharides. High-mannose N-glycans contain only mannose and N-acetylglucosamine, while complex N-glycans also contain galactose, sialic acid, and occasionally fucose (Knight, 1989), and contain the largest amount of structural variation (Kobata, 1992).

Diversity in glycosylation is found between species, within populations of the same species, among different cell types in an organism, and between different proteins within the same cell (Gagneux and Varki, 1999). The significance of this diversity is evident from
the conservation of numerous glycosidases and glycosyltransferases that are responsible for N-glycan synthesis in the endoplasmic reticulum (ER) and Golgi apparatus. This process is well characterized in mammals (reviewed in Kornfeld and Kornfeld, 1985) and yeast systems (reviewed in Herscovics, 1999), but remain poorly characterized in filamentous fungi. Research in filamentous fungi includes characterization of N-glycans produced by various fungal species (reviewed in Maras et al., 1999), and the characterization of several of the enzymes involved in the N-glycan biosynthesis pathway. Further characterization of the N-glycosylation pathway in filamentous fungi is required to elucidate the synthesis and processing of N-glycans in these organisms, and for comparison to other eukaryotic systems.

Evolution and function of protein glycosylation

The remarkable complexity and diversity of the glycosylation machinery suggests that its products, the protein linked oligosaccharides, perform an important biological role (Gagneux and Varki, 1999). The sequence conservation, spanning several kingdoms, of the numerous glycosidases and glycosyltransferases, and the deleterious consequences of genetic mutations in the genes that encode these enzymes also points to significant role for this pathway (Campbell et al., 1995; Chui et al., 1997; Gagneux and Varki, 1999; Kornfeld, 1998; Li et al., 1997). Numerous roles have been demonstrated for protein glycans, ranging from specific receptor mediated recognition type functions to more general physical and chemical roles (Drickamer and Taylor, 1998; Geisow, 1992; Lis and Sharon, 1993; Opdenakker et al., 1993; Paulson, 1989; Rademacher et al., 1988; Varki, 1993 and references therein). Analysis of the biosynthesis pathways for protein glycans,
and N-glycans in particular provides insight into the evolution of this pathway (Drickamer and Taylor, 1998; Gagneux and Varki, 1999).

Considering the large variety of sugar types (mannose, glucose, galactose, etc.), linkage types (α1-2, α1-3, β1-4, etc.), and branch lengths that are possible, the number of potential glycan structures is staggering. In nature, the types of glycans represent a much smaller subset of this number (Fukuda, 1994; Kobata, 1992; Lis and Sharon, 1993). The types of glycans found on a particular glycoprotein often vary from site to site, and can also vary at the same site on different protein molecules (Lis and Sharon, 1993; Rademacher et al., 1988). This 'microheterogeneity' of glycoproteins leads to the production of a number of different 'glycoforms' which may have different physical and biochemical properties, leading to functional diversity (Dwek, 1998; Lis and Sharon, 1993). The set of glycoforms may vary from cell type to cell type, and can also be affected by alteration of the environmental state of a given cell type (Andersen and Goochee, 1994; Liu, 1992). This variation is often attributed to differences in the cellular composition of glycosidase and glycosyltransferase enzymes which process and synthesize N-glycans in the ER and Golgi apparatus, differences that may be a result of genetic composition and/or expression levels of such enzymes (Cumming, 1991; Opdenakker et al., 1993; Paulson, 1989). This type of heterogeneity allows for specific modulation of the various properties of glycoproteins which are not template driven, and can thus be responsive to cellular environment.

Despite the 'microheterogeneity' found on most glycoproteins and the potential number of carbohydrate structures that are theoretically possible, N-glycans tend to show some regularity of structure, which likely reflects functional constraints upon the evolution
of the N-glycan biosynthetic pathway. In mammalian cells, the N-glycans consist of a series of linked sugars, which are classified as ‘core sugars’ and ‘terminal branches’ (Figure 1) (Drickamer and Taylor, 1998; Paulson, 1989). The core sugars establish the basic branching pattern and are generally the same for all N-glycans and are also well conserved between major evolutionary lineages. The terminal sugars vary between N-glycans on the same protein, on different proteins within the same cell, or on proteins from different cell types (Drickamer and Taylor, 1998; Lis and Sharon, 1993; Paulson, 1989; Rademacher et al., 1988). In general, more complex organisms such as mammals tend to add sugars such as galactose, GlcNAc, N-acetylgalactosamine (GalNAc), fucose and sialic acid, producing complex or hybrid type N-glycans (Figure 1). While these terminal additions can be found in large variety in complex organisms, simpler organisms contain less diverse terminal additions and produce mainly high mannose N-glycans, or modified versions thereof. Hemiascomycetous yeasts, for example, add large numbers of mannose residues (Herscovics and Orlean, 1993), whereas filamentous fungi add mainly mannose, but in some cases, galactose (Maras et al., 1999) or sialic acid (Alviano et al., 1999). The conservation of the core sugar structure among various lineages points to a more ancestral origin for these structures, while the increasing elaboration of the terminal branches over time reflects possible evolution and increased complexity of the N-glycan biosynthesis pathway (Drickamer and Taylor, 1998).

The N-glycan biosynthetic pathway involves three distinct stages in which can be seen evidence for the types of sugars (core vs. terminal) that are found on fully processed N-glycans. In the first stage, a large precursor oligosaccharide containing three glucose, nine mannose, and two N-acetylgalactosamine (GlcNAc) is built on a membrane bound
FIGURE 1: Types of N-glycan structures produced in eukaryotes. High mannose N-glycans contain only mannose in the terminal branches, whereas complex N-glycans have terminal branches containing N-acetylglucosamine, galactose and/or sialic acid. Hybrid N-glycans mannose share properties of high mannose and complex N-glycans.
carrier and transferred en bloc to nascent polypeptides. During the second stage, glucose and some of the mannose are removed. In the final stage, various sugar molecules can be sequentially added to produce a diversity of final products (Kornfeld and Kornfeld, 1985). The production of final products thus involves transfer of a precursor oligosaccharide, removal of sugar molecules to produce the 'core' oligosaccharide, after which terminal sugars are added to the core. This circuitous and somewhat contradictory route suggests that perhaps the initial two stages represent a primordial pathway which produces the ancestral 'core', and the terminal sugar addition in the last stage of the pathway evolved later (Drickamer and Taylor, 1998). It has been suggested that these two distinct phases of the glycosylation pathway may reflect differing and evolving roles of N-glycans. In simpler organisms, such as yeasts, the high-mannose N-glycans serve a primarily structural role in the cell wall, while in more complex organism, the role of N-glycans in much more diverse and may be fine tuned by addition of various terminal branches (Gagneux and Varki, 1999; Marth, 1994; Paulson, 1989).

N-glycan roles – Folding, secretion and protease protection

It has been proposed that the attachment of large hydrophilic glycans to polypeptides in eukaryotes could have imparted specific physical properties to proteins which were selectively favorable (Drickamer and Taylor, 1998). It is suggested that perhaps the single most general role of oligosaccharides is as an aid in folding of the nascent polypeptide chain and in stabilization of the mature glycoprotein (Lis and Sharon, 1993). Glycosylation occurs as the protein is being synthesized and folded into its final form. The addition of large sugar chains could significantly affect the folding pattern of
these glycoproteins. Studies which have utilized the glycosylation inhibitor tunicamycin, as well as site-directed mutagenesis studies involving the removal of N-glycan attachment sites, have shown that reduction or complete removal of N-glycans often results in significant effects on the secretion levels and folding of many glycoproteins (Caplan et al., 1991; Hickman and Kornfeld, 1978; Orlean, 1992; Parodi, 2000; Rasmussen, 1992; Riederer and Hinnen, 1991; Taylor and Wall, 1988). Deglycosylation increased the surface hydrophobicity of many of these proteins and caused them to assume more compact structures. As a result, many of these improperly glycosylated proteins aggregate in the ER and/or Golgi, while others are simply degraded. The effects of deglycosylation varies from protein to protein, and even from site to site within a protein. For example, selective removal of the N-glycan chains of human protein C revealed that the N-glycan found at Asn97 was the most important N-glycan for efficient secretion of this protein, whereas removal of other N-glycans from this protein had much less dramatic effects (Grinnell et al., 1991).

Protein folding in the ER is facilitated by a number of molecular chaperones, such as the classical chaperones BiP (immunoglobulin heavy chain binding protein)/glucose-regulated proteins (GRPs), the unconventional chaperones calnexin (CNX) and calreticulin (CRT), and proteins which facilitate disulfide bond formation (Parodi, 2000). The effects of protein N-glycans in folding are not limited to providing the large hydrophilic groups which help maintain the glycoproteins in solution and prevent aggregation and degradation, but also direct further recognition and processing events. As newly synthesized proteins enter the ER, they are N-glycosylated with a large oligosaccharide molecule containing 3 glucose, nine mannose, and two GlcNAc molecules. Glucosidases
sequentially remove the glucose molecules in the ER. After the removal of the first two glucose molecules, the glycoprotein is retained in the ER by the interaction of the monoglycosylated oligosaccharide with CNX and CRT. It is proposed that this retention increases the interaction time of the glycoproteins with BiP/GRP allowing correct folding of the protein (Hammond et al., 1994; Parodi, 2000). The CNX and CRT molecules themselves may also interact with the protein to specifically facilitate folding by specific molecular interactions. Glycoprotein-CNX/CRT interaction also decreases the folding rate and helps maintain the glycoproteins in solution for the prevention of protein aggregation, thus increasing the fidelity of the process (Hammond and Helenius, 1994; Parodi, 2000).

It has recently been proposed that protein N-glycans may actually be further involved in the transport of glycoproteins through the secretory apparatus, and in sorting of these glycoproteins to their ultimate cellular or extracellular destinations (reviewed in Hauri et al., 2000). In addition to the previously mentioned CNX and CRT lectins involved in protein folding in the ER, several other lectins have been found in the secretory pathway. In mammalian systems, ERGIC-53 is a mannose-specific lectin which is involved in protein transport from the ER to the ER-Golgi intermediate compartment (ERGIC). Once glycoproteins are properly folded and glucose is fully removed, they no longer bind CNX:CRT, but the exposed high mannose N-glycans would be recognized by ERGIC-53, which would move these protein on to the ERGIC. It was shown that trimming of N-glycans by α-1,2-mannosidase is not required for ERGIC-53 lectin association or dissociation (Appenzeller et al., 1999). Another mannose-specific lectin, VIP36, has also been found which is believed to be involved in sorting and transport of glycoproteins in the Golgi and possibly from the Golgi to the cell surface (Fiedler and
Simons, 1996). This lectin is specific for N-glycans containing as few as 5 mannose units (Hara-Kuge et al., 1999; Yamashita et al., 1999).

Certain proteins which are destined for intracellular locations also use N-glycan binding lectins for sorting. The best example of this is the mannose-6-phosphate receptors, which target proteins to the lysosome (Kornfeld, 1987). The mannose-6-phosphate receptor recognizes specific N-glycans containing six mannose groups and two terminal phosphate groups. Proteins containing these N-glycans are sequestered by the receptors and moved to the pre-lysosomal area. Upon dissociation from the receptor, the glycoproteins then move to the lysosome. In addition to cellular targeting, carbohydrates may function in targeting secreted proteins to specific areas of the organism, perhaps in conjunction with glycoprotein cell-surface receptor in the target cells (Paulson, 1989). This type of lectin-specific transport and sorting of glycoproteins in the secretory apparatus may explain why N-glycan processing first proceeds through a stage of sugar trimming reactions, prior to further elongation. These trimming reactions act as molecular signals for folding and transport, and it is only subsequent to this action that the N-glycans are free to be modified for other purposes. It should also be noted that many proteins appear to be able to fold and transport effectively in the absence of N-glycans. It is thus likely that this lectin-mediated folding and transport mechanism is glycoprotein specific (Hauri et al., 2000).

Other studies have more directly illustrated the effects of glycosylation on protein folding and structure. Imperiali and Rickert (1995) observed two glycoproteins that assume a more compact, folded conformation upon glycosylation. The technique employed in this study was temporally sensitive, allowing the observation of conformation
changes at time intervals relative to that of protein synthesis. Rudd et al. (1995) have also shown structural changes associated with glycosylation in ribonuclease, plasminogen, and tissue plasminogen factor. Among other things, glycosylation increased the global dynamic stability of the proteins. This study also showed that ribonuclease is protected from the proteolytic action of pronase, which likely is due to shielding by carbohydrate side chains causing hindrance of the pronase, disallowing it access to the protein itself.

Dwek (1995) showed that removal of two galactose residues from one N-glycan in the Fc region of the IgG molecule destabilizes the hinge conformation of the Fc region of the antibody. Such effects may be the result of hydrogen bond formation, or steric interactions of the oligosaccharides with the protein. The fact that glycosylation is a cotranslational event seems to indicate that such conformational effects must be exerted during the initial folding of the protein. Such studies demonstrate the significant specific and non-specific effects that N-glycans can exert on proteins during folding and secretion. The non-specific effects exerted by N-glycans are often due to the core sugar residues, and do not seem to depend on which particular sugars are attached.

N-glycan roles – Biological activity

Glycosylation can modulate the biological activity of proteins in many ways. Direct effects generally involve interaction of the oligosaccharide with the substrate molecule, by stabilizing the enzyme-substrate interaction, or by actually altering the enzyme activity. The glycans may also indirectly affect protein activity by altering such things as protein conformation, protein secretion, serum clearance, or protease susceptibility of the protein. Determining causality in this relationship can be very
difficult, especially as the complexity of such effects may cause conflicting results when comparing *in vitro* and *in vivo* studies.

There are few examples of oligosaccharides *directly* affecting the biological activity of a protein (ie. directly involved in the biological function of the protein). This may be due to the difficulty in pinpointing the exact source of such effects. Rudd *et al.* (1995) show that tissue plasminogen activator seems to be directly affected by variation in glycosylation. Occupancy of a particular N-glycan site at Asn-184 significantly decreases the activity of the protein towards its substrate, fibrin. It is suggested that this inhibition is due to decreased binding of the substrate. The authors also show that occupancy of other glycosylation sites in the protein can affect conformation of the protein, which may have effects on *in vivo* biological activity including serum clearance.

The roles of N-glycans for the *in vitro* and *in vivo* activities of erythropoietin have also been assessed (reviewed in Geisow, 1992). Studies have shown that glycosylation can affect the secretion, biological activity, and stabilization of the erythropoietin. Removal of the terminal sialic acids from the mature erythropoietin actually increased the *in vitro* activity of the protein, while removal of entire N-glycans resulted in significant reduction of *in vitro* activity (Dordal *et al.*, 1985; Takeuchi *et al.*, 1990) and had significant effects on secretion of the protein (Delorme *et al.*, 1992; Dube *et al.*, 1988). These *in vitro* studies do not accurately reflect the *in vivo* situation in which glycosylation is of paramount importance for stability and serum half-life of erythropoietin (Delorme *et al.*, 1992; Drickamer, 1991; Geisow, 1992; Takeuchi *et al.*, 1989). Although removal of sialic acid from these proteins can increase the *in vitro* activity, these asialo-glycoproteins are
removed from the bloodstream by a hepatic asialo-receptor, thus abolishing *in vivo* activity.

N-glycan roles - Receptor mediated recognition

Carbohydrate groups can also be involved in important biological recognition events. The high degree of structural diversity of these groups makes them ideal as specific recognition determinants in such events as intracellular protein-protein interactions, protein targeting, cell-cell interaction (i.e. neural adhesion, host-pathogen interaction, antigenicity determinants). These signals may be extremely important in development and differentiation of cells, and in the numerous cellular interactions that are essential for life in complex organisms.

The sugar chains of glycoproteins and glycolipids are a major feature of cell surfaces. Since carbohydrates are such efficient carriers of information, it seems logical that these groups would act as recognition determinants for the attachment of other cells, microorganisms, hormones, antibodies or lectins. This is indeed the case, and there are numerous documented examples supporting this hypothesis. The adhesion of bacterial organisms to cells via carbohydrate receptors has been known for years. Bacteria are able to recognize and bind to very specific cell types. For example, whereas *Escherichia coli* is a common cause of urinary tract infections, it is seldom found in the upper respiratory tract. Likewise, group A *Streptococci* are common in the upper respiratory tract, but are seldom found in the urinary tract. It has been found that alteration of the carbohydrate surface structure of cells will change their specificity for microbial adhesion. Changing the
terminal structures, and sometimes the internal structures of specific surface glycans of mucosal cells will prevent the adhesion by the fimbriae of *E. coli* (Sharon and Lis, 1993).

Surface carbohydrates play a similar role in viral infection, plant toxicity, and symbiosis (Varki, 1993). As such, researchers have focused upon these sugars as potential targets for prevention and treatment of certain diseases. For example, inhibitors of adhesion may be designed through competition for binding sites. Paulson (1989) described the design of an inhibitor of the influenza virus using the detailed information about the sialic acid receptor of the virus. It was postulated that injection of a free receptor analogue would tend to occupy the binding sites, and prevent the adhesion of the virus. Surface carbohydrates could also mask the binding sites involved in viral infection. Such a case is described (Varki, 1993), in which the addition of a single O-acetylester to the terminal sialic acid of the influenza receptor prevents the binding of the virus. This interplay between microbial recognition determinants and the masking of such determinants has many evolutionary implications.

The level of involvement of protein linked carbohydrates in molecular recognition events varies. For example, the carbohydrate may be involved directly in recognition of a glycoprotein (ie. a hormone), or a surface glycoprotein of another cell (ie. microbe, white blood cell). It is possible that the recognition events merely 'corrals' the protein or cell, with subsequent receptor activation occurring via protein interactions. Alternatively, it is possible that the glycan directly activates the receptor itself. In this case, the oligosaccharide is directly involved in recognition. Carbohydrate side chains may also be indirectly involved in receptor function, by modulating the targeting or activity of the receptor. In this case, the glycan does not participate directly in recognition, but may alter
the glycoprotein in such a way as to influence recognition events. Carbohydrates may also serve to couple receptor systems to effector systems, as in the case of the adenylate cyclase system (Lis and Sharon, 1993).

The diversity of N-glycan effects has important implications for the recombinant production of proteins (Archer and Peberdy, 1997; Cumming, 1991; Hintz et al., 1995; Jenkins et al., 1996; Liu, 1992; Parekh and Patel, 1992). Erythropoietin is a commercially produced recombinant protein which has tremendous pharmaceutical use, however, improper glycosylation of this protein can affect the efficacy of this drug (Cumming, 1991; Geisow, 1992; Lis and Sharon, 1993; Takeuchi et al., 1990). As such, it is important to understand the glycosylation pattern of this protein and choose an expression system accordingly. For instance, if this protein were to be heterologously produced in yeast, the high-mannose type N-glycans may cause improper folding, affect secretion, alter the binding specificity, cause degradation, or cause rapid clearance from the blood. This has necessitated the use of mammalian cell lines for the production of the recombinant protein, a much more expensive and labour intensive process. With a full understanding of the consequences of the glycosylation pattern, one may be able to specifically glycosylate the protein of choice in a much more efficient system. This could require host engineering to create 'tailored' N-glycans for specific applications.

Protein N-glycosylation is a multi-step pathway involving several gene families

Protein glycosylation is a post-translational modification of proteins which involves the attachment of sugar residues to newly synthesized polypeptides. Protein N-glycosylation occurs primarily in the ER and Golgi apparatus, and involves a series of
discrete catalytic steps. A diverse series of enzymes have evolved to carry out the complex steps of this pathway. It is becoming clear that for many of these catalytic steps, gene families have evolved to generate a number of similar genes to perform a diversity of specialized yet related functions, in effect fine-tuning the expressed products. Indeed, virtually every enzyme involved in the protein glycosylation pathway is a member of a multigene family. An extensive classification system has been developed to catalogue the related glycosidases and glycosyltransferases involved in carbohydrate processing (Henrissat, 1991; Henrissat and Bairoch, 1993, 1996; Henrissat and Romeu, 1995). It is necessary to understand the nature of the gene families that comprise the N-glycosylation pathway in order to begin to understand how to modify the pathway in such a way as to produce complex N-glycans. This requires the identification of the various enzymes involved in N-glycosylation, whether these enzymes are members of multigene families, and how the different members of the family may contribute to N-glycan processing. As a corollary this research can lead to an understanding of the evolutionary forces which have led to the formation of such families.

The N-glycosylation synthesis pathways have been fairly well characterized in mammalian systems (reviewed in Kornfeld and Kornfeld, 1985) and yeast expression systems (reviewed in Dean, 1999; Herscovics, 1999), but are not as well characterized in filamentous fungi. Protein N-glycosylation occurs when an oligosaccharide precursor \((\text{Glc}_3\text{Man}_9\text{GlcNAc}_2)\) is transferred to newly synthesized proteins in the endoplasmic reticulum (ER) and Golgi apparatus (Kornfeld and Kornfeld, 1985). As the glycoprotein moves through the ER and Golgi to its final destination within or outside the cell, the N-glycan is modified by a series of glycosidases and glycosyltransferases to produce a large
diversity of structures. The types of modifications and final glycan structures formed are quite different between more complex higher eukaryotes and simpler lower eukaryotes.

In all eukaryotes the initial stage of N-glycan processing is the removal of three glucose molecules from the Glc4Man9GlcNAc2 by α-glucosidase I (Figure 2). In higher eukaryotes, up to four mannose residues are then removed by Class I α-1,2-mannosidases to produce Man4GlcNAc2, which is the precursor for complex N-glycan formation. Complex N-glycans are formed in the Golgi by the addition of GlcNAc by N-acetylglucosaminyl transferase I (Gnt I), removal of two mannose residues by α-mannosidase II, followed by the addition of various sugars, such as galactose and sialic acid. In the lower eukaryote *Saccharomyces cerevisiae*, the removal of glucose is followed by the removal of one mannose residue to produce Man3GlcNAc2. Glycans with fewer than 8 mannose residues are not found in yeast. Mannosyltransferases then sequentially add a number of mannose residues to produce oligomannosidic N-glycans which typically contain core structures of up to 13 mannose but can also lead to the production of very large mannans containing up to 200 mannose residues (Dean, 1999; Herscovics, 1999; Herscovics and Orlean, 1993). This latter process is known as hyperglycosidic mannosylation.

The potential diversity of N-glycans and modification steps in filamentous fungi are less clear than those for yeast or mammalian systems. Filamentous fungi produce N-glycan structures which share properties of both yeast and mammalian systems. N-glycans containing as few as 5 mannose units (Man5GlcNAc2) have been found in filamentous fungi (Chiba et al., 1993; Maras et al., 1997b), suggesting processing of the Man9GlcNAc2 in a manner similar to higher eukaryotes. Some filamentous fungi, such as
FIGURE 2: N-glycan biosynthetic pathway in the endoplasmic reticulum (ER) and Golgi apparatus. N-glycan biosynthesis proceeds through an initial stage of sugar removal by glucosidase I and II, and by various α-mannosidases. Subsequent addition of terminal branches is achieved by organism specific mannosyl- and glycosyltransferases.
certain species within the genus *Aspergillus*, also produce hyperglycosidic oligomannans, similar to those found in yeast (Maras et al., 1999), however, this is not a common feature of filamentous fungi. The filamentous fungi thus appear to have an N-glycosylation system which is intermediate to yeast and mammalian systems. Like yeast systems, filamentous fungi only produce oligomannosidic N-glycans. Like mammalian systems, however, filamentous fungi produce N-glycans which can be fully trimmed by α-1,2-mannosidases to Man$_5$GlcNAc$_2$. This has important consequences for the remodelling of N-glycans in these expression systems, as the Man$_5$GlcNAc$_2$ serves as the substrate for all subsequent modifications leading to complex N-glycans in mammalian systems. An investigation of the α-mannosidase gene family is the first step in fully differentiating this pathway in filamentous fungi.

Evolution of gene families

The principles of gene evolution can be invoked to explain how the various gene families involved in protein glycosylation arose. Duplication of genes and even whole genomes can be responsible for the generation of multiple copies of genes having the same function and for the creation of novel proteins with diverse functions (Doolittle, 1995; Li, 1997; Ohno, 1970). Duplication events can involve anywhere from a few nucleotides to entire genomes. Equally important to the original duplication event is the maintenance and divergence of the duplicated DNA in the genome (Clark, 1994; Hughes, 1994; Ohta, 1989, 1990, 1994; Walsh, 1995).

Two genes that have descended from a common ancestral gene are known as ‘orthologous’ genes. Generally, orthologous genes follow from speciation events. Gene
duplication, however, will lead to multiple copies of the gene in a single species. Upon divergence, these duplicated genes are then called ‘paralagous’ genes (Li, 1997). These duplications have historically led to the evolution of large multigene families which are characteristic of eukaryotic genomes. The size and abundance of multigene families (and superfamilies) increase with the evolutionary complexity of organisms, thus their formation is an extremely important evolutionary process (Huynen and van Nimwegen, 1998).

Assuming that DNA duplications were selectively neutral, their invasion into a population would be influenced mainly by random genetic drift. If the duplication itself conferred some selective advantage to an organism (Clark, 1994), either through a direct advantage conferred by the duplicated gene product, or by the relaxation of selective constraints on the duplicated DNA, then duplications would have a greater probability of fixation. It has been hypothesized that duplications may confer a selective advantage since the duplicated locus would be more tolerant to deleterious mutations due the functional redundancy created by the extra gene copy (Clark, 1994; Hughes, 1994).

Large scale duplication events, such as whole or partial genome duplications can be as important for the expansion of gene families as single gene duplications. Most genes, especially in eukaryotic genomes, are involved in complex gene networks, such as regulatory networks and physiological pathways. Duplication events have the least disruptive effect on gene networks if they involve either a small number of genes in the network or all of the genes in the network (Wagner, 1994). Duplications involving ~40% of the genes in the network would be the most disruptive and likely would not be tolerated. Duplication of entire networks would occur with whole genome duplications,
or with chromosomal duplications involving tightly clustered gene networks.

Chromosomal duplications may arise from nondisjunction during meiosis, in which homologous chromosomes or sister chromatids fail to segregate, leading to aneuploidy and polysomy in the daughter cells. Whole genome duplications can arise by genome hybridization and polyploidy which may be followed by a period of chromosome loss (Li, 1997). Both of these scenarios could be tolerated by filamentous fungi and are likely factors in the evolution of gene families in these organisms.

The generation of duplicated gene networks may result in novel physiological or regulatory pathways, which may confer a selective advantage. It is hypothesized that *S. cerevisiae* may have utilized this process in the acquisition of anaerobic growth (Wolfe and Shields, 1997). Several large duplicated blocks with very similar gene arrangements have been found throughout the *S. cerevisiae* genome. It is thought that genome duplication occurred after the yeasts *Saccharomyces* and *Kluyveromyces* diverged and was followed by a period of degeneration, in which approximately 85% of the duplicated genes were lost and the remaining blocks were shuffled somewhat by reciprocal translocation events. Several pairs of duplicated genes are differentially regulated during aerobic and anaerobic growth, suggesting that genome duplication may have allowed *Saccharomyces* to adapt to anaerobic growth, a feature that is lacking in *Kluyveromyces*.

It is expected that the duplication of an entire genome would result in a large amount of redundant genetic material. In the absence of selection, genetic redundancies created by gene duplications are expected to be lost, either through acquisition of deleterious mutations leading to formation of pseudogenes, or through genetic divergence leading to genes with novel function. Such redundancies have been shown, however, to be
able to persist in populations for a long time (Hughes and Hughes, 1993). It is possible that genetic redundancies are maintained to increase the efficiency and fidelity of physiological pathways in the cell and to safeguard against any loss of information in such pathways (Tautz, 1992). This situation appears to have occurred in the N-glycan synthetic pathway. For example, many species carry multiple Class I α-mannosidase with overlapping functions in the N-glycan synthesis pathway (Moremen et al., 1994). Genetically redundant material produced by large scale duplications may thus be maintained in populations, increasing the fidelity and flow of information in the cell, and providing genetic material for the evolution of proteins with novel functions. The diversification of physiological and developmental pathways will be more likely to occur if all genes involved in the pathway are duplicated simultaneously (Nadeau and Sankoff, 1997). Localized tandem duplications, however, occur more frequently and are readily tolerated. In fungi, functional gene clustering is quite common, which illustrates the potential role of localized tandem duplications in gene family evolution (Keller and Hohn, 1997). Both mechanisms, whole genome and tandem duplications, appear to have had a role in the diversification of gene families of fungi.

The α-mannosidase gene family

Research on the gene families of the N-glycan processing pathway illustrates the similarities and differences of the glycosylation pathways in various lineages. The α-mannosidase gene family is a diverse group of genes conserved throughout eukaryotic evolutionary history. Members of this family have been found in mammals, insects, filamentous fungi and yeasts. Duplication events which led to the diversification of this
family from an ancestral gene appear to have occurred quite early in the eukaryotic evolutionary history. The α-mannosidases have a variety of cellular functions and localizations, and are involved in N-glycan processing in the endoplasmic reticulum and Golgi apparatus, as well as N-glycan degradation in the lysosome, vacuole, and cytoplasm (Daniel et al., 1994; Moremen et al., 1994). The α-mannosidases can be classified into two independently derived lineages, termed Class I and Class II (originally Class 1 and Class 2), based on protein sequence alignments as well as biochemical and physiological roles of the various gene products.

The Class I α-mannosidases are involved in the early stages of N-glycan processing in the ER and Golgi by catalyzing the removal of terminal α-1,2-linked mannose residues from N-glycan chains. This group of enzymes includes the ER Man_9-mannosidase, endomannosidase and Golgi mannosidase IA/IB. Several genetic pathways seem to exist for the removal of the α-1,2-linked mannose residues from N-glycans and there is significant genetic redundancy in this gene family (Daniel et al., 1994). In most cases, there appear to be multiple paralagous genes which have evolved somewhat specialized, yet overlapping functions in each species. The second group of α-mannosidases is more heterogeneous and contains the lysosomal mannosidases, the Golgi mannosidase II and a distantly related group of enzymes, including the rat ER/cytosolic mannosidase (Bischoff et al., 1990), yeast vacuolar mannosidase (Yoshihisa and Anraku, 1989).
Glycosylation in recombinant protein expression systems

Filamentous fungi, particularly those of the genera *Aspergillus* and *Trichoderma*, are widely used for the heterologous expression of proteins as they are capable of producing up to 20-30 grams of protein per litre of culture (Archer and Peberdy, 1997; Hintz *et al.*, 1995; Maras *et al.*, 1999; Punt *et al.*, 1994). Filamentous fungi produce abundant amounts of useful extracellular enzymes, such as (gluco)amylases, cellulases, pectinases, catalases, proteases, lipases, phophatases and glucose oxidase, and the production of these enzymes accounts for a significant portion of the multibillion dollar annual market for industrial enzymes (Archer and Peberdy, 1997). Although the homologous production of these enzymes is very high, such yields are rarely reached with the production of heterologous proteins (Archer *et al.*, 1994; Archer and Peberdy, 1997).

Several non-fungal proteins have been produced in filamentous fungi (Hemming, 1995), such as calf chymosin (Calmels *et al.*, 1991), human interferon and bacterial endoglucanase (Gwynne *et al.*, 1987). In addition, numerous fungal proteins have been heterologously expressed in other fungi. Generally, heterologous expression of fungal proteins is about 10-20% as efficient as homologous protein production, while heterologous expression of non-fungal proteins is much lower, often as low as 1% as efficient as homologous protein expression.

Several strategies have been employed to improve the yields of heterologous proteins, such as the use of strong promoter systems (Hintz *et al.*, 1995; Hintz and Lagosky, 1993), gene fusions to highly secreted proteins (Broekhuijsen *et al.*, 1993; Contreras *et al.*, 1991; Gouka *et al.*, 1997), and reduction of protease activity (Archer and Peberdy, 1997; van den Hombergh *et al.*, 1997 and references therein). For instance, Hintz
and Lagosky (1993) developed an expression system which utilized the inducible \textit{alcA} promoter which normally drives expression of the alcohol dehydrogenase I gene of the ethanol regulon. This promoter is subject to carbon catabolite repression by the CreA repressor, but under glucose depleted conditions, this promoter can be induced to high levels of expression. Pathway specific induction is under the control of the transcriptional activator AlcR. By integrating multiple copies of the \textit{alcR} gene into the \textit{Aspergillus nidulans} genome, this host strain was capable of higher transcription of \textit{alcA}-driven reporter genes. By providing limited amounts of glucose in the expression media, this promoter could be utilized for phased growth of the fungus - during the initial phase, the \textit{alcA} promoter is carbon catabolite repressed and in the later phase, after glucose depletion, the promoter is induced to high levels. This approach allows the initial accumulation of biomass prior to expression of the desired protein.

One drawback to this approach is that glucose depletion can also induce several scavenger pathways, such as the production of extracellular proteases (Dunn-Coleman \textit{et al.}, 1988; Hintz \textit{et al.}, 1995; Hintz and Lagosky, 1993). To avoid this problem, Hintz and Lagosky (1993) developed a glucose derepressed promoter by mutation of the CreA binding sites in the \textit{alcA} promoter. This modified promoter was used to express the human interleukin-6 (IL-6) protein which had been fused to the glucoamylase gene from \textit{A. nidulans}, separated by a KEX2-like cleavage site. The KEX2-like cleavage allowed endoproteolytic cleavage of the glucoamylase protein, causing release of intact IL-6 into the culture media. It is believed that sequences present in the glucoamylase protein may facilitate efficient passage through the secretory apparatus and may provide protease protection to the secreted product (MacKenzie \textit{et al.}, 1993). Utilizing this system,
expression of the human IL-6 was significantly increased, and the problem of co-expressed proteases was significantly reduced. This provides an excellent example of the types of approaches which can be utilized to increase the levels of heterologous protein production which will make filamentous fungi increasingly attractive as expression hosts.

An important consideration in the production of non-fungal enzymes is the fidelity of post-translational processing events, such as protein glycosylation (Archer and Peberdy, 1997; Hemming, 1995; Hintz et al., 1995). This is especially true for the production of recombinant human therapeutic products such as epidermal growth factor (EGF), interleukin-6 (IL-6) and corticosteroid binding globulin (CBG) (Gwynne and Devchand, 1992). The post-translational addition of aberrant N-glycans to such proteins can result in reduced activity and/or stability, increased serum clearance, and can sometimes result in an adverse immune response (Goochee et al., 1991; Jenkins et al., 1996; Varki, 1993). To utilize filamentous fungi for the production of such specialized glycoproteins, it is preferable to produce glycoproteins which carry carbohydrate structures as similar to the natural product as possible. Understanding this process may allow manipulation of the N-glycosylation pathway to produce glycoproteins with 'correct' N-glycan structures. To fully realize the potential of filamentous fungi as highly flexible expression hosts it is necessary to examine the genetic components of their protein N-glycosylation pathways.

Remodelling the N-glycan pathway

The recombinant expression of glycoproteins requires consideration of the glycosylation machinery of the system to be used (Archer and Peberdy, 1997; Jenkins et al., 1996; Meynial-Salles and Combes, 1996). The most widely used mammalian, insect,
yeast, and filamentous fungal expression systems all have significant drawbacks for the production of glycoproteins. Chinese Hamster Ovary (CHO) cell lines, for instance, produce complex N-glycans which lack terminal sialic acid residues which are necessary to prevent rapid serum clearance of these glycoproteins (Fussenegger et al., 1999). Recombinant expression of functional α-2,6-sialyltransferase in this cell line causes production of N-glycans containing the requisite terminal sialic acid residues (Grabenhorst et al., 1995). Despite this success in N-glycan engineering, the protein yields in CHO cell lines are significantly lower than other expression systems, hence it would be desirable to utilize an alternative expression system with high secretion capabilities. Insect cell lines, such as Sf9 cells are capable of much higher secretion levels, but N-glycan structures in these cells are generally not larger than Man$_3$GlcNAc$_2$ or GlcNAcMan$_3$GlcNAc$_2$, the precursors for complex N-glycans. Jarvis and Finn (1996) have attempted to engineer the glycosylation pathways of these cell lines to produce complex N-glycans by expression of subsequent glycosyltransferases in insect cells. Expression of the bovine β-1,4-galactosyltransferase into Sf9 cells resulted in the production of N-glycans with terminal galactose. These results demonstrate the feasibility of modifying the N-glycosylation pathways of particular expression systems to produce complex N-glycans which would allow the production of glycoproteins with specific N-glycan structures. Since yeasts and filamentous fungi are capable of very high secretion levels, it would be desirable to manipulate the pathways of these organisms for such a purpose.

The remodelling of the glycosylation pathway in yeasts is complicated by the fact that these organisms produce highly branched hypermannosylated structures that can contain up to 200 mannose residues (Herscovics, 1999; Herscovics and Orlean, 1993).
Yeasts also produce ‘core’ oligomannose N-glycans containing up to 13 mannose residues. In order to manipulate the pathway to produce complex N-glycans, it is necessary to remove the steps in the pathway which lead to hypermannosylation. Chiba et al. (1998) utilized mutant strains which were deficient in several of the glycosyltransferases necessary for the production of hypermannosylated N-glycans to bypass this problem. Processing reactions in the ER of yeasts, however, only reduce the Glc$_3$Man$_2$GlcNAc$_2$ precursor to Man$_3$GlcNAc$_2$. To produce complex N-glycans, it would be necessary to further trim this product to Man$_5$GlcNAc$_2$. Overexpression of the Aspergillus satoi α-1,2-mannosidase which contained an ER ‘HDEL’ retention signal was successful in producing Man$_5$GlcNAc$_2$ in these mutant yeast strains. In order to further process these N-glycans, the addition of several additional steps will be necessary (Roy et al., 2000).

Remodelling of the glycosylation pathway of filamentous fungi is being attempted in two fungal expression systems, *A. nidulans* and *Trichoderma reesei*. The production of complex type N-glycans relies upon the addition of GlcNAc to Man$_5$GlcNAc$_2$ by the enzyme Gnt I (Figure 2), the first committed step in the production of mammalian-type N-glycans. This enzyme is not found in filamentous fungi, hence Kalsner et al. (1995) inserted the mammalian Gnt I gene into the genome of *A. nidulans*. Expression of the Gnt I alone did not result in the production of N-glycans containing an additional GlcNAc (GlcNAcMan$_5$GlcNAc$_2$). This is likely because the substrate Man$_5$GlcNAc$_2$ was in limiting amounts. There may thus be a ‘bottleneck’ preventing the production of significant amounts of GlcNAcMan$_5$GlcNAc$_2$. Efficient removal of mannose in the ER and Golgi could provide the necessary precursors for the production of complex N-glycans. It is
expected that controlled overexpression of specific Class I α-mannosidases may clear the
'bottleneck' and permit production of complex N-glycans in *A. nidulans*.

Manipulation of the N-glycan processing pathway has progressed a little further in
T. reesei. Maras *et al.* (1997b) were able to convert oligomannose glycans from
cellobiohydrolase I (CBHI) to GlcNAcMan₅GlcNAc₂ by *in vitro* treatment with Gnt I.
Only a small proportion of the N-glycans were converted, however, due to the fact that
only a small fraction of the N-glycans provided a suitable substrate (Man₅GlcNAc₂) for
Gnt I. Pre-treatment of the purified CBHI with α-1,2-mannosidase significantly increased
the yield of complex N-glycans, illustrating the need for efficient production of suitable
substrate. Maras *et al.* (1999) also reported the *in vivo* conversion of oligomannose N-
glycans to complex N-glycans by heterologously expressed Gnt I, although the efficiency
of conversion was low. Again, the conversion process may have been blocked by a
'bottleneck' preventing production of significant amounts of substrate for Gnt I. These
strains may need to be further manipulated to clear this bottleneck, either by
overexpression of α-1,2-mannosidases to produce Man₅GlcNAc₂, or by elimination of
mannosyltransferase activity which may be converting Man₅GlcNAc₂ (or intermediates)
into glycans which are unsuitable for conversion to complex N-glycans. Characterization
of N-glycan processing gene families has other potential biotechnological uses. The
substrate specificity of the various glycosidases purified from filamentous fungi are
currently being used to sequence glycans and to aid in monosaccharide composition
determination. The identification of novel glycosidases with differing substrate specificities
will increase the number of tools available for this type of research.
Glycosylation and fungal pathogenicity

Protein glycosylation is known to be important in many aspects of fungal growth and/or pathogenicity. Many phytopathogenic fungi, for example, secrete cell wall degrading enzymes such as endopolygalacturonase and pectate lyase to aid in invasion of host plant tissues. Inhibition of N-glycosylation has been shown to reduce the secretion level and activity of these enzymes in certain fungal species (Dean and Anderson, 1991; Di Pietro and Roncero, 1996). Protein glycans are also directly involved in such pathogenic processes as host-tissue adhesion (Gow et al., 1999; Hollenstein et al., 1995; Masuoka and Hazen, 1997), formation of infection structures (Bircher and Hohl, 1997), and elicitation of host defenses (Basse and Boller, 1992; Basse et al., 1993; West, 1981). In addition, changes in the cell wall carbohydrate composition of certain pathogenic fungi, such as Sporothrix schenckii altered the virulence of these organisms, pointing to a direct role for these molecules in pathogenicity (Fernandes et al., 1999).

Recent studies of host-pathogen interactions have focused on the identification of individual pathogenicity determinants or specific elicitors of host defense responses. A criticism of these approaches is that they do not account for the complex nature of pathogenicity and often provide inconclusive results regarding the specific role of these factors. Protein glycosylation can simultaneously affect a large number of pathogenicity determinants and the general ability of a pathogen to invade host tissues. It is expected that sufficient differences exist in the glycosylation machinery of fungi, plants, and animals to provide ideal targets for the selective interruption of glycosylation in fungal pathogens. It is anticipated that the regulation of glycosylation will lower the ability of the fungus to invade the host and will provide a useful point of control. A significant portion of the
fungal cell wall consists of mannoproteins which are critical for the biology and pathogenicity of these organisms. Targeting the genes which are necessary for the production of these cell wall components may be an excellent approach for the development of antifungal drugs (Gow et al., 1999; Tanner et al., 1995). Such approaches will require characterization of the gene families which are involved in the glycosylation pathways of filamentous fungi.

Research objectives

The overall objective of this research project was to identify and characterize specific genetic components of the glycosylation machinery of filamentous fungi, with a focus on the α-mannosidase gene family. The cloning and characterization of this family was expected to provide insight into the evolution of the α-mannosidase gene family, especially in filamentous fungi, and to decipher the N-glycosylation synthesis pathway in filamentous fungi. Such information will enable the development of strategies for modifying the N-glycosylation machinery to produce specific N-glycan structures on recombinant proteins expressed in filamentous fungi. Characterization of the glycosylation machinery in filamentous fungi may also allow us to develop control strategies for fungal pathogens. The glycosylation pathways may provide an excellent global target for reducing the pathogenic fitness of these organisms.
CHAPTER 2 - Identification and analysis of a Class 2 α-mannosidase from

2.1 Abstract

A Class 2 α-mannosidase gene was cloned and sequenced from the filamentous fungus *Aspergillus nidulans*. A portion of the gene was amplified using degenerate oligonucleotide primers which were designed based on similarity between the *Saccharomyces cerevisiae* vacuolar and rat ER/cytosolic Class 2 protein sequences. The PCR amplification product was used to isolate the full length gene, and DNA sequencing revealed a 3383 bp coding region containing three introns. The predicted 1049 amino acid reading frame contained six potential N-glycosylation sites and encoded a protein of 118 kD. The protein sequence did not appear to encode a typical fungal signal sequence or membrane spanning domain. Although the cellular location of the *A. nidulans* mannosidase was not determined, experimental evidence suggested that it was located within a subcellular organelle. The Matchbox sequence similarity matrix indicated that the *A. nidulans* protein sequence was more highly similar to the rat ER/cytosolic (Rij=0.33) and *S. cerevisiae* vacuolar α-mannosidases (Rij=0.43) than the rat and yeast sequences were to each other (Rij=0.29). These three enzymes were found to be distantly related to other Class 2 sequences, and compose a third subgroup of Class 2 α-mannosidases, as shown by ClustalW sequence alignment.
2.2 Introduction

Glycosylation, the process by which oligosaccharides are covalently linked to specific amino acids of newly synthesized proteins, can have major effects on protein structure and function. These include effects on the stability, antigenicity, and biological activity of glycoproteins (Goochee et al., 1991; Opdenakker et al., 1993) thus protein glycosylation can be a very important factor in choosing an expression system for the production of recombinant proteins. Prokaryotic expression systems, such as Escherichia coli, produce high levels of recombinant proteins but entirely lack glycosylation and other post-translational machinery (Kalsner et al., 1995). Eukaryotic systems are preferred for recombinant protein production because they are capable of protein glycosylation and other post-translational modifications. Filamentous fungi of the genus Aspergillus are widely used for the expression of recombinant proteins and can produce as much as 20 grams recombinant protein per litre of culture (Hintz et al., 1995). To take full advantage of the Aspergillus expression system, it would be desirable to produce glycoproteins which contain carbohydrate structures as similar as possible to the natural product. This is especially important for the production of recombinant human products of therapeutic interest such as epidermal growth factor (EGF), interleukin-6 (IL-6) and corticosteroid binding globulin (CBG) (Gwynne and Devchand, 1992). To work towards this goal, it is necessary to characterize the glycosylation pathway of secreted proteins and to understand the regulation of this process in Aspergillus.

Asparagine-linked (N-linked) protein glycosylation in higher eukaryotes is an ordered process which occurs in several stages (see reviews in Elbein, 1988; Herscovics and Orlean, 1993; Kornfeld and Kornfeld, 1985; Moremen et al., 1994). Initially, an
oligosaccharide precursor consisting of three glucose, nine mannose and two N-acetylglucosamine molecules \((\text{Glc}_3\text{Man}_9\text{GlcNAc}_2)\) is co-translationally transferred to the newly synthesized polypeptide in the endoplasmic reticulum (ER). This precursor is then sequentially processed as the protein progresses through the ER and the Golgi apparatus. In the ER, \(\alpha\)-glucosidase I and II first remove the three glucose molecules. An ER-specific \(\text{Man}_9\alpha\)-1,2-mannosidase then removes a single mannose residue, producing \(\text{Man}_4\text{GlcNAc}_2\). In the ER and Golgi, \(\alpha\)-1,2-mannosidases remove a total of four mannose residues, yielding \(\text{Man}_3\text{GlcNAc}_2\) which is the precursor for complex, hybrid, and high-mannose N-glycans. Following the addition of a single GlcNAc to \(\text{Man}_3\text{GlcNAc}_2\) by GlcNAc transferase I (GnT I), mannosidase II removes two additional mannose groups, producing \(\text{GlcNAcMan}_3\text{GlcNAc}_2\). Various transferases, such as GnT II, fucosyl transferase, galactosyl transferase, and sialyl transferase assemble the oligosaccharide into its final structure. In higher eukaryotes a variety of different carbohydrate units can thus be attached to a common precursor to form an array of distinct N-glycans.

It is generally accepted that the glycosylation machinery of lower eukaryotes is somewhat simpler than higher eukaryotes. Similar to higher eukaryotes, the initial precursor is processed to the \(\text{Man}_4\text{GlcNAc}_2\) stage, however, in lower eukaryotes the \(\text{Man}_4\text{GlcNAc}_2\) can be further mannosylated to yield N-glycans containing many mannose residues. For certain secreted and cell wall proteins, up to 200 mannose units may be added post-translationally (Herscovics and Orlean, 1993). The precise role of the \(\alpha\)-mannosidases in this process remains unclear. The gene for the ER-specific \(\alpha\)-1,2-mannosidase which trims the \(\text{Man}_4\text{GlcNAc}_2\) molecule to the \(\text{Man}_4\)-oligosaccharide has been characterized for the yeast \textit{Saccharomyces cerevisiae} (Camirand \textit{et al.}, 1991). This
enzyme does not, however, appear absolutely necessary for further oligosaccharide
mannosylation, as the Man₉-oligosaccharide and the Man₆-oligosaccharide are equally
suitable substrates for the α-1,6-mannosyltransferase which initiates outer chain formation
(Romero and Herscovics, 1989). The α-1,2-mannosidase genes have also been cloned
from *Aspergillus satoi* and from *Penicillium citrinum* (two closely related fungal species)
(Inoue *et al.*, 1995; Yoshida and Ichishima, 1995). Mannosidases which further process
the Man₉GlcNAc₂ to smaller forms, such as Man₅GlcNAc₂, may also exist although none
have yet been found. A second α-mannosidase gene, located to the vacuole, has been
classified in *S. cerevisiae* (Yoshihisa and Anraku, 1989, 1990). We describe the
cloning and sequence characterization of a similar α-mannosidase from the filamentous
fungus *Aspergillus nidulans*.

2.3 Results

2.3.1 Isolation and sequence analysis of *Aspergillus* α-mannosidase

The *S. cerevisiae* vacuolar α-mannosidase sequence (Yoshihisa and Anraku, 1989)
aligned well with the rat ER/cytosolic α-mannosidase sequence (Bischoff *et al.*, 1990) but
not with other α-mannosidase sequences. Regions of shared homology were identified
from this alignment of protein sequences. Conserved regions of the amino acid sequences
having both a low degree of codon redundancy and a significant codon usage preference
for *A. nidulans* were used to design degenerate oligonucleotide primers for the
amplification of an α-mannosidase sequence from *A. nidulans* strain SM222 (Table I). A
codon usage table was compiled from an analysis of twenty highly expressed *Aspergillus*
genomes and the best candidate for each amino acid was selected for primer design.
<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5' => 3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>AspmanF</td>
<td>ggggttaagctactgctacatcgcacagctggctctggtcccttccnnnggac</td>
</tr>
<tr>
<td>AspmanR</td>
<td>ggggtttaatcgggaggagtaaggcacaagggtggtccgggagccagaa</td>
</tr>
<tr>
<td>I1F</td>
<td>atgggtggagacgttctccgacagact</td>
</tr>
<tr>
<td>I1R</td>
<td>atcccaagttgaatcagaagctgcgccgctctcctct</td>
</tr>
<tr>
<td>I2F</td>
<td>cccctgtgggtgactccattcagcc</td>
</tr>
<tr>
<td>I2R</td>
<td>gaaacaattcaactttgtctccggagg</td>
</tr>
<tr>
<td>I3F</td>
<td>gcttcgggagccagttcgcggtcgaatgg</td>
</tr>
<tr>
<td>I3R</td>
<td>gcgctttggagctccgaggagg</td>
</tr>
<tr>
<td>KOconf-F</td>
<td>gacgatcccaagatgacggtcgc</td>
</tr>
<tr>
<td>KOconf-R2</td>
<td>cgcccatcagctgccggtcacc</td>
</tr>
<tr>
<td>alcAprom-F</td>
<td>gataagccaaagatatccgggaaggcag</td>
</tr>
<tr>
<td>manR-conf</td>
<td>aacacttcaatcctatcacctcgc</td>
</tr>
<tr>
<td>M3SL-F</td>
<td>cgtaaagttgacctggctccgccgcggtttgggtgccggcccggtgggtgggtgccggg</td>
</tr>
<tr>
<td>M3SL-R</td>
<td>aagttggctggaggtctgctctgctgcattcgactgtgcgtttctg</td>
</tr>
</tbody>
</table>

TABLE I: Oligonucleotide primer sequences
Amplification of *A. nidulans* total genomic DNA with these primers yielded a 365 bp fragment. Sequencing of this fragment revealed a single open reading frame sharing significant homology with both the rat ER/cytosolic and *S. cerevisiae* vacuolar protein sequences, confirming that the PCR product represented a portion of the authentic *A. nidulans* α-mannosidase gene. The 365 bp PCR product was then used as a probe to screen an EMBL-3 library prepared with SM222 genomic DNA. A 9685 bp *BamHI* fragment was recovered containing the entire coding region of the *A. nidulans* α-mannosidase gene as well as several thousand base pairs of flanking DNA.

The DNA sequence of the *BamHI* fragment was determined and a coding region 3383 bp in length was tentatively identified (Figure 3). The proposed ATG start site was embedded in the sequence GCAACCATGG, which was similar to the optimal eukaryotic initiation codon (GCC{A/G}CCAUGG), and was similar to sequences found in other filamentous fungi (ANNATGC) (Gurr *et al.*, 1987). The DNA sequence was also determined for the 2892 bp region upstream of the putative ATG start site (Figure 3), and several motifs typical of fungal promoters were identified. The three translational reading frames of the *BamHI* fragment were compared to the rat and *S. cerevisiae* protein sequences and introns were initially identified by searching the primary sequence with 5' and 3' fungal intron consensus motifs (Gurr *et al.*, 1987). The intron search sequence included a 5' consensus donor site (GTNNR) and a lariat site (CTNA) positioned at least 8 bp upstream of the putative acceptor site (YAG). Three different introns were identified by the occurrence of these consensus motifs at sites where there was both a shift in the reading frame and extra residues in the expected coding region based upon the consensus sequence of the rat and yeast peptides. The positions of the introns were verified by
FIGURE 3: Full length sequence of Aspergillus nidulans α-mannosidase. The DNA sequence was determined for the 3383 bp α-mannosidase coding region as well as a 2892 bp region upstream of the putative ATG start site. Within the coding region, three introns were found with characteristic fungal consensus sequences (underlined). Six potential N-glycosylation sites were detected (dotted underline). Within the upstream region, numerous CT-rich regions characteristic of fungal promoters were identified (double underline). There was a putative TATA region (TAATATAT) located 256 bp upstream of the start site and a CAAT site was found 60 bp upstream of this putative TATA region. A typical transcription start site (CAACCAAQ) was identified 178 bp upstream of the coding region and a transcription terminator was found 11 bp downstream of the translation stop codon.
FIGURE 3 (cont.): Full length DNA sequence of Aspergillus nidulans α-mannosidase.
FIGURE 3 (cont.): Full-length DNA sequence of Aspergillus nidulans α-mannosidase.
FIGURE 3 (cont.): Full-length DNA sequence of *Aspergillus nidulans* α-mannosidase.
comparing the sizes of amplification products derived from reverse transcription (RT) PCR of *A. nidulans* mRNA and from genomic DNA using primer pairs designed to flank the putative intron sequences. RT-PCR amplification of the mRNA using the primer pair I1F/I1R (Table I) produced a fragment which was 103 bp shorter than amplification from genomic DNA. Sequencing of the RT-PCR fragment confirmed that the portion of the gene corresponding to the first intron (Intron I - 103 bp) had been spliced out of the final transcript. Similarly, amplification with primer pair I2F/I2R and primer pair I3F/I3R (Table I) confirmed the presence of a 52 bp intron (Intron II) beginning 758 bp downstream from the start site and a 47 bp intron (Intron III) located 2785 bp downstream from the start site. This ORF produces a 1049 amino acid protein with a calculated molecular weight of 118 kD. Six potential N-glycosylation sites (Asn-X-Ser/Thr, where X is any amino acid except proline) were identified. The putative protein sequence aligned well with the rat ER/cytosolic and *S. cerevisiae* vacuolar sequences (Figure 4).

The *Aspergillus* peptide sequence was then analyzed to find regions such as ER signal sequences and transmembrane domains, which are typical of sorting or targeting signals. A Kyte-Doolittle hydropathy plot did not suggest the presence of any significant transmembrane regions. A PSORT search (Nakei and Kanehisa, 1992), which predicts protein localization based on amino acid composition, suggested that the *A. nidulans* α-mannosidase did not have an N-terminal signal sequence or any regions which would be typical of a vacuolar or lysosomal targeting signal.
FIGURE 4: Sequence alignment of *Aspergillus nidulans* α-mannosidase, rat ER/cytosolic α-mannosidase, and yeast vacuolar α-mannosidase. Alignment was prepared using the ClustalW algorithm in the DNAStar sequence analysis package. Open circles represent amino acid identity between two of the three sequences, and closed circle represent perfect amino identity between all three sequences. The consensus sequence is derived from both of these sequence similarities. The sequence within brackets is the region which is conserved between all Class 2 α-mannosidases.
FIGURE 4 (cont): Sequence alignment of *Aspergillus nidulans* α-mannosidase, rat ER/cytosolic α-mannosidase, and yeast vacuolar α-mannosidase.
Figure 4 (cont.): Sequence alignment of *Aspergillus nidulans* α-mannosidase, rat ER/cytosolic α-mannosidase, and yeast vacuolar α-mannosidase.
2.3.2 Disruption of α-mannosidase in A. nidulans

To determine whether this α-mannosidase was essential to normal cellular function, we interrupted the coding sequence of the A. nidulans gene. A disruption cassette p8ΔKO (Figure 5a) containing stop codons in all three reading frames of the α-mannosidase gene was used to replace the endogenous copy of the gene. Homologous integration of the disruption cassette was confirmed by PCR amplification. The forward primer (KOconf-F) was specific for the α-mannosidase gene upstream of the recombination target while the reverse primer (KOconf-R2) was homologous to a unique region of the disruption cassette (Table I). This primer combination yielded a 1.15 Kb product for transformants that integrated the disruption cassette at the authentic α-mannosidase locus. This was confirmed by sequence analysis of the 1.15 Kb product. The PCR amplification product from the transformant AnKO-7 consisted of authentic α-mannosidase sequence immediately upstream of the disruption target as well as sequence derived from the disruption cassette including the stop codons and restriction sites unique to the disruption cassette. Integration of the stop codons was expected to result in the production of a truncated protein product consisting of the first 478 amino acids of the α-mannosidase protein having a calculated molecular mass of 58.6 kD.

As illustrated by the PCR analysis, the disruption cassette integrated at the authentic α-mannosidase locus, but the cassette could also integrate at several non-homologous sites which would not be detected by this method. To reduce potential phenotypic changes due to non-homologous integration events (ie. insertional mutagenesis), it was desirable to produce disruption transformants with a minimal number of non-homologous integrations. Transformants were examined by Southern analysis to
FIGURE 5: Disruption/induced expression of the α-mannosidase gene. The disruption cassette p8ΔKO (a) was introduced into wild type T580 and Aspergillus nidulans transformants were screened for homologous integration of the cassette by PCR using the diagnostic primers KOconf-F and KOconf-R2. The disruption cassette contained a unique BamHI restriction site which was used for diagnostic purposes, as well as stop codons in all three frames which caused disruption of the gene (boxed region). A fragment of the α-mannosidase gene (position + 424 to + 1507) was used for Southern hybridization to confirm proper integration of the cassette. The inducible expression cassette palcAman (b), was designed by direct fusion of the alcA promoter to the coding region of the α-mannosidase gene carried in the pUC19 vector. The plasmid was introduced into T580 to overexpress the α-mannosidase gene in Aspergillus nidulans. Integration of the plasmid into the genome was PCR screened using the forward primer alcAprom-F, specific for the alcA promoter, and manR-conf, specific for the α-mannosidase gene and overexpression was confirmed with mannosidase assays.
determine the number of copies of the cassette integrated at both the authentic and non-homologous sites. Homologous replacement of the authentic DNA with the disruption cassette was expected to result in the insertion of a novel \textit{BamHI} site at position +1575 of the coding region of the gene (Figure 5a). When the radio-labelled α-mannosidase DNA was hybridized to wild type (T580) and the disruptant (AnKO-7) genomic DNA cut with \textit{BamHI} and \textit{BgIII} (Figure 6), the control T580 DNA (Lane 1) showed a single 7.2 Kb fragment absent from An-K07 (Lane 2). Three additional fragments of 3.0 Kb, 5.9 Kb, and 10.0 Kb were evident in the digested DNA of the disruptant. The 3.0 Kb fragment resulted from the truncation of the 7.2 Kb \textit{BgIII/BamHI} fragment due to integration of the disruption cassette at the α-mannosidase gene, while the 5.9 Kb and 10.0 Kb fragments likely resulted from non-homologous integration events. Since other transformants demonstrated numerous non-homologous integrations (not shown), transformant AnKO-7 was chosen for further analysis.

To confirm that the gene disruption did indeed eliminate α-mannosidase activity, enzyme activities of the wild type (T580) and the disrupted strain (An-KO7) were assayed using p-nitrophenyl-α-D-mannopyranoside (PNP) as a substrate. Enzyme activity could not be detected when wild type protoplasts were osmotically lysed by the addition of water, but low levels of activity were found when protoplasts and all subcellular components were lysed by the further addition of 1% TritonX-100. Since the levels detected were still quite low, the cell lysates were concentrated on a 100 kD filter to improve assay resolution. The α-mannosidase activity of the wild type remained constant after 38 and 48 hours of growth (Figure 7). No α-mannosidase activity was detected at
FIGURE 6: Confirmation of gene disruption. Total genomic DNA was digested with \textit{BglII BamHI} and probed with position +424 to +1507 of the \(\alpha\)-mannosidase gene. The probe hybridized to a single 7.2 Kb fragment in the wild type (T580) (Lane 1) which was absent from the disruptant (AnKO-7) (Lane 2), indicating disruption of the \(\alpha\)-mannosidase locus.
α-Mannosidase Expression in Aspergillus nidulans

![Bar chart showing α-mannosidase activity](image)

FIGURE 7: Expression of cytosolic α-mannosidase in *Aspergillus nidulans*. Three strains of *A. nidulans*, wild type (T580), disruption (AnKO-7) and overexpression (pAM2) were grown in YFT inducible media and mycelium was harvested at 38 hours and 48 hours of growth. Mannosidase activity was assayed using the substrate p-nitrophenyl-α-D-mannopyranoside (PNP). Activity is expressed as units of enzyme activity (U) per 10⁶ protoplasts.
either time point in the disrupted strain AnKO-7. The disrupted strain did not show any alteration in growth or morphology, as compared to wild type.

2.3.3 Induced expression of α-mannosidase in A. nidulans

To mitigate against possible toxic effects due to increased expression of α-mannosidase in A. nidulans we used a phased expression system to overexpress the alcA-driven α-mannosidase protein. The α-mannosidase gene was fused to the inducible alcA promoter (Figure 5b) and this expression cassette was introduced into A. nidulans strain T580 by cotransformation with the selectable marker pFB94. The alcA system permitted the accumulation of biomass during the first 24-36 h of growth. Upon glucose depletion alcA-driven expression was induced and expression levels monitored. Putative transformants were screened for integration of the expression cassette using an alcA promoter-specific primer, alcAprom-F, in combination with an α-mannosidase-specific return primer, manR-conf (Table 1). These primers did not amplify from the endogenous α-mannosidase sequence and were diagnostic for the integration of the overexpression cassette. The induced expression transformant pAM2 was identified using this primer pair.

To verify induced expression of α-mannosidase, pAM2 was cultured in inducing media and assayed for α-mannosidase activity using the aryl substrate PNP. The transformant exhibited a twofold increase in activity after 38 hours of growth and a sixfold increase in activity after 48 hours, as compared to T580 (Figure 7). These transformants did not exhibit any toxic or deleterious effects, and did not show visible alterations in morphology or growth.
2.3.4 Sequence comparison with other α-mannosidases

The α-mannosidases have traditionally been divided into Class 1 and Class 2 sequences based on substrate specificity, inhibitor sensitivity, and sequence alignments (Daniel et al., 1994; Moremen et al., 1994). To classify the *A. nidulans* α-mannosidase, and to confirm previous classification schemes, a similarity matrix was generated for 18 complete α-mannosidase protein sequences, including the *A. nidulans* α-mannosidase, using the Matchbox alignment program (Figure 8). This program calculates the global similarity, using the BLOSUM62 scoring matrix (Henikoff and Henikoff, 1992), between each possible pair of sequences by comparing successive amino acid segments of length 9 from one sequence with all possible segments from the second sequence (Depiereux and Feytmans, 1992). The coefficient \(R_{ij} \), where \(0 \geq R_{ij} \geq 1 \) generated for each pair of sequences represents the proportion of segments of sequence \(i \) matching with at least one segment of sequence \(j \). This alignment method provides a more objective value for sequence similarity than other programs, since it does not depend on an alignment of all sequences to compute similarity values, but rather, scans each possible pair of sequences and computes similarity coefficients independent of other sequences used in the alignment. Several blocks of sequences exhibited high similarity to each other, but low similarity to the rest of the sequences in the matrix, as indicated by the boxed regions in Figure 8. The *A. nidulans* α-mannosidase, rat ER/cytosolic α-mannosidase and yeast vacuolar α-mannosidase were highly similar (Box 1), with \(R_{ij} \) values ranging from 0.29 to 0.43. The *A. nidulans* α-mannosidase showed higher similarity to the *S. cerevisiae* vacuolar α-mannosidase \((R_{ij} = 0.43) \) than to the rat ER/cytosolic α-mannosidase \((R_{ij} = 0.33) \). This program did not find a significant global similarity between these sequences and the rest of
FIGURE 8: Matchbox sequence similarity matrix. Coefficients of similarity (R_{ij}) of α-mannosidase protein sequences using Matchbox algorithm, where R_{ij} is the proportion of amino acid segments (length 9) of sequence i matching with at least one segment of sequence j. Boxed regions represent groups of sequences which show a relatively high degree of peptide sequence similarity to each other, but not to other sequences in the matrix. Box 2 and Box 3 also show some limited similarity (dotted lines), and are more similar to each other than they are to Box 1 or Box 4. Protein sequences are numbered as follows: 1) A. nidulans α-mannosidase; 2) rat ER/cytosolic α-mannosidase (Bischoff et al., 1990); 3) S. cerevisiae vacuolar α-mannosidase (Yoshihisa and Anraku, 1989); 4) Dictyostelium discoideum lysosomal α-mannosidase (Schatzle et al., 1992); 5) human lysosomal α-mannosidase (Nebes and Schmidt, 1994); 6) mouse lysosomal α-mannosidase (Merkle and Moreman, 1993); 7) Drosophila melanogaster Golgi mannosidase II (Foster et al., 1995); 8) human Golgi mannosidase II (Misago et al., 1995); 9) mouse Golgi mannosidase II (Moreman and Robbins 1991); 10) mouse golgi mannosidase IA (Lal et al., 1994); 11) rabbit liver mannosidase I (Lal et al., 1994); 12) human Manα₂-mannosidase (Bause et al., 1993); 13) mouse Golgi mannosidase IB (Herscovics et al., 1994); 14) D. melanogaster mannosidase I (Kerscher et al. 1995); 15) S. cerevisiae Manα₂-mannosidase (Camirand et al., 1991); 16) P. citrinum mannosidase I (Yoshida and Ichishima, 1995); 17) A. satoi mannosidase I (Inoue et al., 1995); 18) Caenhaboridilus elegans mannosidase I (Wilson et al., 1994).
the sequences in the matrix ($R_{ij} < 0.05$). Box 2 and Box 3, containing the lysosomal α-mannosidases and mannosidase II sequences, respectively, also exhibited high internal similarity, with R_{ij} values between 0.33 and 0.89. These two groups of sequences, however, also showed some moderate similarity to each other, as indicated by dotted lines in Figure 8 (R_{ij} values between 0.11 and 0.16). The sequences in Box 2 and 3 showed very low similarity with the other sequences in the matrix (Box 1 and 4), with R_{ij} values not greater than 0.05. The sequences in Box 1, 2 and 3 are all Class 2 α-mannosidases, as defined by Moremen et al. (1994). Box 4 consisted of all of the Class 1 α-mannosidases, and showed high internal similarity, while exhibiting a very low similarity to any of the Class 2 α-mannosidases. Certain pairs of Class 1 sequences showed extremely high similarity (ie. mouse and human kidney α-mannosidase I: $R_{ij} = 0.93$), whereas others showed more limited similarity ($P. citrinum$ and $C. elegans$: $R_{ij} = 0.12$), but this could be correlated to species divergence. When sequences in Box 4 were compared to other sequences in the matrix, the R_{ij} was consistently less than 0.03.

To further resolve these sequence relationships, we compiled a dendrogram using the ClustalW algorithm (Thompson et al., 1994). Figure 9 shows the most parsimonious tree generated by the multiple alignment of all 18 α-mannosidase sequences. The Class 1 and Class 2 sequences were found to be unrelated and were represented by two separate trees. Similar to the Matchbox program, the lysosomal and mannosidase II sequences were found to be related, but tended to fall into separate subgroups (Class 2A and Class 2B). In contrast to the Matchbox program, however, the $A. nidulans$, rat ER/cytosolic, and yeast vacuolar α-mannosidases were found to be distantly related to the rest of the Class 2 sequences, and formed a distinct subgroup (Class 2C).
Class 1

- Mouse Golgi mannosidase IA
- Rabbit liver mannosidase IA
- Human liver Man$_9$-mannosidase
- Mouse Golgi mannosidase IB
- Drosophila melanogaster mannosidase I
- Caenorhabditis elegans mannosidase I
- Saccharomyces cerevisiae Man$_9$-mannosidase
- Aspergillus satoi mannosidase I
- Penicillium citrinum mannosidase I

Class 2

- Human lysosomal mannosidase
- Mouse lysosomal mannosidase
 - Dictyostelium discoideum lysosomal mannosidase
- Mouse Golgi mannosidase II
- Human Golgi mannosidase II
 - Drosophila melanogaster mannosidase II
- Aspergillus nidulans cytosolic mannosidase
- Saccharomyces cerevisiae vacuolar mannosidase
- Rat ER/cytosolic mannosidase

FIGURE 9: Dendrogram prepared from multiple sequence alignment of 18 α-mannosidase sequences. Alignments were performed using the DNASTar sequence analysis program which utilizes the ClustalW alignment algorithm. Two separate groups of sequences are shown representing groups of sequences which show significant homology. All 18 sequences were used in the initial alignment to define the two groups. Each of the two groups of sequences were then aligned to derive the sequence relationships within the groups. Class 2 sequences were further characterized by aligning the homologous clusters, and subdivided into three subgroups (2A, 2B, and 2C).
Since the Matchbox program did not find global similarity between the Class 2C and the Class 2A/2B sequences, yet the ClustalW dendrogram indicated that these sequences were distantly related, we further investigated this particular relationship between the Class 2 sequences. The Multiple Alignment Program (MAP) (Huang, 1994), which is more useful for identifying localized regions of similarity, revealed a single amino acid block which was similar between all Class 2 sequences. This block was found between amino acids 283 and 411 in the *A. nidulans* α-mannosidase (shown in Figure 4). This conserved 128 amino acid block confirmed that the Class 2C sequences were indeed related to the rest of the Class 2 sequences.

2.4 Discussion

The α-mannosidases play a key role in protein glycosylation, both in the modification of N-glycan chains prior to further elongation, and in the catabolism of oligosaccharides (Moremen *et al.*, 1994). Whereas mammalian glycoproteins generally contain complex type N-glycans, which may be necessary for the correct function of the glycoprotein, recombinant production of these same glycoproteins in lower eukaryotic expression systems leads to the addition of oligomannosidic N-glycans (Kalsner *et al.*, 1995). This can be a disadvantage of using fungal expression systems for the production of mammalian glycoproteins. We are currently characterizing the glycosylation pathways in the filamentous fungus *Aspergillus nidulans* so that we may better utilize this organism as an expression host. Our initial focus is on the role of the α-mannosidases in N-glycan processing.
Classification schemes have previously placed the α-mannosidases into two major
groups, Class 1 and Class 2, based on biochemical properties, substrate specificity,
inhibitor profiles, and sequence alignments (Daniel et al., 1994; Moremen et al., 1994).
The *A. nidulans* α-mannosidase gene was expected to be a Class 2 α-mannosidase, as it
was initially amplified based on similarity between the rat ER/cytosolic and *S. cerevisiae*
vacuolar Class 2 α-mannosidases. To confirm this assignment, we performed a pairwise
comparison of the *A. nidulans* α-mannosidase protein sequence to the complete protein
sequences of 17 Class 1 and Class 2 α-mannosidases using the Matchbox algorithm
(Depiereux and Feytmans, 1992). An advantage of this algorithm is that, unlike many
sequence alignment programs, it does not rely on a user defined gap penalty. Sequence
similarity was computed independent of the multiple sequence alignment thus producing
the same result for any pair of sequences independent of the number of sequences included
in the analysis. We found that the Class 1 sequences, while being highly similar to each
other, were not related to the Class 2 α-mannosidases. The lysosomal α-mannosidases and
mannosidase II sequences were found to be similar to each other, and tended to form two
separate subgroups of higher similarity. Interestingly, the rat ER/cytosolic, *S. cerevisiae,*
and *A. nidulans* α-mannosidases, while highly similar to each other, were not found to be
globally similar to any of the other sequences. This analysis, while providing excellent
overall sequence similarity coefficients, was not designed to locate localized regions of
similarity, which may have been present in more distantly related sequences.

To identify localized regions of similarity, we utilized two alignment programs,
ClustalW (Thompson et al., 1994) and the Multiple Alignment Program (MAP) (Huang,
1994). Both of these programs detected small, yet significant regions of similarity between
all of the Class 2 sequences, supporting previous alignment based studies which suggested that these enzymes were all related (Daniel et al., 1994; Moremen et al., 1994). More recently, Henrissat and Bairoch (1993, 1996) also found that the Class 2 enzymes tended to belong to a single group of glycosylhydrolases (#38), whereas the Class 1 α-mannosidases belonged to a separate group (#47). The authors identified a protein domain which was common to all the Class 2 enzymes and likely represented a common catalytic domain. Our analysis, which included the A. nidulans α-mannosidase, emphasized the three subgroups of Class 2 α-mannosidases (2A, 2B, and 2C) which exhibited distinct sequence and biochemical properties. A dendrogram, compiled using the ClustalW alignment, showed that the Class 2C sequences were quite distantly related to the rest of the Class 2 α-mannosidases (Figure 9). Many conserved regions existed within the Class 2C enzymes (Figure 4) which were not found in the Class 2A or 2B enzymes. While the Matchbox algorithm was useful for objectively identifying overall sequence similarities and for defining the various groups of enzymes, more refined sequence alignment programs were required to detect the similarities between the more distantly related groups.

Although the Class 2C α-mannosidases showed a high degree of sequence similarity, the cellular locations and functions of the enzymes were variable. Although we were unable to conclusively determine the cellular location of the A. nidulans α-mannosidase, the protein was likely located in a subcellular organelle, since lysis of the cell and all subcellular components with TritonX-100 was necessary to release enzyme activity. The A. nidulans protein lacked a typical signal sequence or major transmembrane domain raising questions as to its method of localization. The rat and S. cerevisiae genes also did not contain typical signal sequences (Bischoff et al., 1990; Yoshihisa and Anraku,
1990), though the *S. cerevisiae* protein was transported independently of the standard ER/Golgi sorting mechanism. As was reported for the *S. cerevisiae* vacuolar α-mannosidase (Yoshihisa and Anraku, 1989, 1990), the *A. nidulans* α-mannosidase was not essential for normal cellular function, as disruption of the gene did not have any visible effect on growth or morphology. The functions of the *S. cerevisiae* and *A. nidulans* α-mannosidases, however, were not determined. The rat ER/cytosolic enzyme, to which the *A. nidulans* gene showed a high degree of sequence similarity, is involved in oligosaccharide catabolism in both the ER and cytosol (Bischoff *et al.*, 1990; Grard *et al.*, 1996; Haeuw *et al.*, 1991; Moore and Spiro, 1994; Tulsiani and Touster, 1987), and it is possible that the *A. nidulans* α-mannosidase plays a similar role. In order to more fully understand the role of the *A. nidulans* α-mannosidase in protein glycosylation, more detailed analysis of the N-glycans produced by these transformants is required.

It is possible that there are yet other Class 2 α-mannosidases in *A. nidulans*. Since lower eukaryotes do not produce complex N-glycans, and mannosidase II is only necessary for complex N-glycan synthesis, it seems likely that this enzyme would not be found in *A. nidulans*. Since lysosomal α-mannosidase activity is necessary for oligosaccharide catabolism in higher eukaryotes, it would be reasonable to expect to find a similar activity in *A. nidulans*. The substrate p-nitrophenyl-α-D-mannopyranoside (PNP) has been used to assay Class 2 α-mannosidase activity. Surprisingly, when the *A. nidulans* Class 2C α-mannosidase was disrupted the PNP assay activity was reduced to zero. Based on examples of molecular sizes known for mannosidases in other species, the concentrated lysate was expected to also contain a lysosomal α-mannosidase (MW=115-121 kD). It is
possible that the activity of the lysosomal α-mannosidase was below the detection levels of our particular assay, but, alternatively, it is possible that $A.\ nidulans$ contained a single Class 2 α-mannosidase. We are currently attempting to isolate a lysosomal α-mannosidase from $A.\ nidulans$ by designing degenerate PCR primers from the known lysosomal α-mannosidase gene sequences.

Protein glycosylation is an important post-translational modification which can affect numerous properties of the protein and may be very important when using heterologous expression systems for the recombinant expression of proteins. Although the glycosylation pathways of higher eukaryotes are well characterized, other systems remain relatively undefined. We have cloned a Class 2 α-mannosidase from $A.\ nidulans$ which appears to be involved in N-glycan catabolism. Induced expression of α-mannosidase resulted in the accumulation of two- to six-fold higher levels of the enzyme which did not affect the growth rate or morphology of the fungus, hence this system can provide a recombinant source of the $A.\ nidulans$ α-mannosidase for purification. Biochemical characterization and cellular localization of this enzyme in Aspergillus will be necessary to determine its exact role in protein glycosylation. We are attempting to identify other genes in the glycosylation pathway in this organism, particularly α-mannosidases and mannosyltransferases, to further characterize these pathways in lower eukaryotes.

2.5 Materials and Methods

2.5.1 Strains, Media and Growth Conditions: The full length α-mannosidase gene was isolated from Aspergillus nidulans sporecolor mutant SM222. The $A.\ nidulans$ expression host T580, a derivative of strain FGSC4 (Fungal Genetics Stock Center) is a uridine
auxotroph (ura) which was used for expression studies. Cultures were grown in CYM liquid media (10 g glucose; 2 g bactopeptone; 1.5 g casamino acids; 1 g yeast extract; 10 ml 100X salt solution; 1 ml 1000X trace elements; 10 ml 100X vitamin solution; and 10 ml 100X adenine solution, per litre). Stock solutions (100X salt, 100X vitamin, 1000X trace elements, 100X adenine) were described in Kalsner et al. (1995). Non-transformed T580 strains were supplemented with 10 mM uridine. Protoplasts which integrated the pyrG selectable marker (pFB94) were selected for uridine prototrophy on minimal media (1 g fructose; 12 g threonine; 10 ml 100X salt solution; 1 ml 1000X trace elements; and 0.6 g NaNO₃, per litre) supplemented with 0.6 M sucrose as an osmoticum. Selected transformants for overexpression of the mannosidase were grown in liquid yeast-fructose-threonine (YFT) (5 g yeast extract; 2 g fructose; 12 g threonine; 10 ml 100X salt solution; 1 ml 1000X trace elements; and 0.6 g NaNO₃, per litre). Strains were maintained on CYM agar, and spore suspensions were obtained by washing cultured CYM agar plates with 8 ml 0.001% Tween 80. Mycelium for DNA isolations was obtained by inoculating 500 ml liquid CYM with 10⁸ spores, and incubating 24 hours at 30°C with constant agitation (200 rpm). Expression cultures were grown by inoculating 50 ml liquid YFT media with 10⁸ spores, and incubating at 30°C with constant agitation (200 rpm) for the duration of growth.

2.5.2 Oligonucleotide Primer Design: The forward primer (Table I) was designed by reverse translation of the protein sequence CHIDTAWLWPFXET, which was perfectly conserved between the rat and yeast sequences except at position X. The primer was made fully redundant at the three positions corresponding to amino acid position X. This
forward primer contained a short 5' tail with an embedded HindIII site preceding the coding sequence to enable directional cloning of the PCR product. The return primer was the complement of the reverse translation of the amino acid sequence FWLPDTFGYSS, which was perfectly conserved between the rat and yeast sequence except for the last serine (Figure 4). This primer was also tailed at the 5' end with a short sequence containing an embedded EcoR1 site to facilitate the cloning.

2.5.3 DNA Isolation and PCR Amplification of α-Mannosidase: Total genomic DNA was extracted from finely ground freeze-dried mycelium. Approximately 400 mg of mycelium was vortexed with 2.5 ml of 50 mM EDTA; 0.2% SDS, centrifuged for 10 minutes and then 85 µl of 3M KOAc; 5M acetic acid added to the supernatant. Following a 20 minute incubation on ice, the suspension was recentrifuged and DNA was isopropanol precipitated from the supernatant. After resuspension in 100 µl TE (10 mM Tris pH 7.5; 1 mM EDTA), the DNA was extracted once with phenol, twice with chloroform/isoamyl alcohol (24:1) and ethanol precipitated. Each PCR reaction consisted of 10 - 100 ng of genomic DNA, 50 pmol of each primer, 10 mM Tris-HCl (pH 8.3), 1.5 mM MgCl2, 50 mM KCl, 0.01% gelatin, 0.1% Triton X-100, 200 µM each of dATP, dCTP, dTTP, and dGTP and 2 units Taq DNA polymerase (Perkin-Elmer) in a final volume of 100µl. Amplification was performed in two stages using a RoboCycler (Stratagene) thermal cycler. Five cycles at a lower stringency (94°C for 60 seconds, 55°C for 120 seconds, 72°C for 180 seconds) were followed by 25 cycles at higher stringency (94°C for 60 seconds, 60°C for 120 seconds, 72°C for 180 seconds). The PCR product from the tailed amplification of the A. nidulans (SM222) nuclear DNA was directionally cloned (EcoR1 /
HindIII) into pTZ18R prior to sequencing. The derived amino acid sequences of all three reading frames of the PCR-amplified DNA were compared to published \(\alpha \)-mannosidase protein sequences to confirm that the PCR fragment represented a portion of the authentic \(\alpha \)-mannosidase gene.

2.5.4 Library construction and screening: The \(\alpha \)-mannosidase-specific PCR fragment was digoxigenin-labelled (DIG) by reduction of the dTTP concentration to 190 \(\mu \)M and the inclusion of 10 \(\mu \)M DIG-11-dUTP (Boehringer Mannheim) in a second PCR reaction using the cloned DNA as a target. The DIG-labelled DNA probe was used to identify the full length \(\alpha \)-mannosidase gene by Southern hybridization. A partial library of \emph{A. nidulans} (SM 222) sequences was constructed by digesting genomic DNA with \emph{BamHI} and ligating the resulting fragments into the similarly digested lambda DNA vector EMBL-3. Concatamers of the ligated DNA were packaged using the Gigapack II (Stratagene) \textit{in vitro} packaging system. Approximately \(10^5 \) recombinant lambda plaques were immobilised on nylon membranes (Genescreen Plus, Dupont) and hybridised with the DIG-labelled PCR fragment. A single strongly hybridising lambda clone was subcloned into the \emph{BamHI} site of pTZ18R (\(\alpha \)-mann18) in preparation for sequencing.

2.5.5 Sequence Analysis: The DNA sequence was determined by the dideoxynucleotide method using the T7 sequencing kit (Pharmacia). Various restriction fragments of \(\alpha \)-mann18 were subcloned and individually sequenced using M13 universal primers. Overlapping regions were sequenced with synthetic specific primers and in all cases, both DNA strands were sequenced. Generunner sequence analysis software (Hastings Software Inc., Hastings-on-Hudson, NY) was used to identify open reading frames, generate
alignments and deduce polypeptides from the primary DNA sequence. FASTA searches of the GenPept and SwissProt databases (Genbank, Los Alamos) were made using the deduced polypeptides. The PSORT (Nakei and Kanehisa, 1992) program was used for prediction of protein localization sites in the deduced polypeptide. DNAStar sequence analysis software (DNAStar, Madison, WI) was used to compute amino acid similarities and to generate putative phylogenetic relationships. Intron positions were confirmed by reverse transcription (RT)-PCR of α-mannosidase cDNA. Total RNA was isolated from A. nidulans mycelium using a single-step guanidine isothiocyanate extraction (TRizol reagent, Life Technologies). The RNA was treated with DNAase, extracted twice with chloroform containing 4% isoamyl alcohol, ethanol precipitated and reverse-transcribed to cDNA using oligo dT primers (Stratascript RT-PCR kit, Stratagene). This cDNA was subsequently amplified using primer pairs which flanked the putative splice sites and compared to fragments obtained by amplifying genomic DNA with the same primer pairs. Sequencing of the cDNA fragments was used to confirm the exact location and size of the predicted introns.

2.5.6 Construction of Disruption Cassettes: The disruption cassette p8ΔKO (Figure 5a) was derived from a 2.2 Kb EcoRI-Sal I α-mannosidase fragment. This 2.2 Kb fragment was modified by the addition of diagnostic restriction enzyme sites, as well as stop codons (TGA) in each of the three reading frames. Unique sites were added by tailed PCR amplification. The 5' overhang of the forward primer M3SL-F (Table I) encoded unique BstEII, BamHI, and Ascl restriction sites, and the three stop codons, while the remainder of the primer encoded authentic sequence which primed immediately downstream of an authentic BstEII site. The reverse primer M3SL-R contained an embedded Sal I restriction
site, and annealed just upstream of the authentic Sal I restriction site. The 1.1 Kb PCR
reaction product was used to directly replace the 1.1 Kb BstEII-Sal I fragment of p8SR,
using the BstEII and Sal I sites for directional ligation of the fragment into similarly
digested p8SR vector. Restriction analysis of the plasmid and sequencing of the inserted
DNA region confirmed that the restriction sites and stop codons were intact.

2.5.7 Construction and induction of inducible expression cassette: The inducible
expression cassette (palcAman) was created by direct fusion of the full length α-
mannosidase coding region with the inducible alcA promoter (Figure 5b) via NcoI
insertion of the α-mannosidase gene into the expression cassette. Sequence analysis
verified proper fusion of the promoter and coding region for expression of the gene. The
alcA promoter is subject to carbon catabolite repression and transcription initiation is
enhanced via the transcriptional activator AlcR in the presence of ethanol. In the presence
of glucose, transcription from alcA-driven genes was repressed by interaction of the
negative regulatory protein CreA with the alcA promoter (Hintz and Lagosky, 1993). The
alcA-driven genes were regulated by controlling glucose levels during fermentation.
Transformants were grown first in the presence of 1% glucose to repress the alcA
promoter and prevent any possible toxic effects which may have arisen from
overexpression of the gene. Selected transformants which had integrated the inducible
expression cassette were then grown in glucose limiting conditions in the presence of an
inducer, allowing for overexpression of the cytosolic α-mannosidase.

2.5.8 Protoplasting and Transformation: Protoplasts were prepared according to the
method of Fincham (1989), using Sigma Lysing Enzyme for cell wall digestion.

Protoplasts of strain T580 (ura−) were cotransformed with 1 μg of the selectable marker
pFB94, which converts transformed cells to uridine prototrophy, and with 1 μg of the disruption or overexpression (p8ΔKO or palcAman). Transformants were initially screened for integration of pFB94 by selection on minimal media and were then assayed for cotransformation by PCR analysis. Genomic DNA of putative transformants was prepared by the method of Cenis (1992), and screened using primer pairs diagnostic for the non-selectable cotransforming plasmids. Gene disruption was confirmed by Southern hybridization (Genescreen, Dupont).

2.5.9 Mannosidase Assays: Mycelium was grown in liquid YFT cultures, harvested on Miracloth (CalBiochem) by suction filtration, and washed once with maleate buffer (0.4 M MgCl₂, 0.05 M maleate, pH 5.8). Cell walls were digested with 10 mg/ml Novozyme 234 (Interspex) in maleate buffer with constant shaking (200 rpm) at 30°C. Protoplasts were purified by pre-screening through a 100 μm mesh followed by centrifuging at 3000 RPM for 15 min at 4°C, washed twice with 10 ml ice cold STC (1.2 M sorbitol, 100 mM Tris-HCl pH7.4, 10mM CaCl₂), pelleted, and resuspended into a final volume of 1 ml STC. The protoplasts were lysed on ice by the addition of an equal volume of 10 mM Tris, pH 7.6; 1% TritonX-100 and the protoplast debris was pelleted by centrifugation (3000 RPM, 4°C). The supernatant proteins were size selected with an Amicon stirred ultrafiltration cell Model 8050, fitted with a 100 kD membrane. Samples of proteins >100 kD were concentrated to a final volume of 1.5 ml in 0.01 M sodium acetate pH 4.5. Mannosidase activity was quantified as described by Matta and Bahl (1972). Equal volumes of concentrate and 5 mM PNP (p-nitrophenyl-α-D-mannopyranoside) in 0.01 M sodium acetate, pH 4.0 were incubated at 37°C for 60 minutes. The reaction was terminated with
1ml of 0.2 M sodium carbonate, pH 11.8 and the absorbance of the yellow chromogen measured at 420 nm. One unit of enzyme activity (U) was defined as that which releases 1 μmol of p-nitrophenol per hour.

2.5.10 Sequence alignments: Matchbox sequence alignments were performed with 17 α-mannosidase sequences obtained from the GenBank database. Sequence similarities were identified using the web based Matchbox program (http://dot.imgen.bcm.tmc.edu:9331/multi-align/multi-align.html), utilizing the BLOSUM62 similarity matrix, and default parameters. Sequence alignments using the ClustalW algorithm were performed with DNASTar sequence analysis software (DNASTar, Madison, WI), utilizing the PAM250 similarity matrix and default alignment parameters. This program was used to generate the most parsimonious phylogenetic tree for the sequences. The Multiple Alignment Program (MAP), used to find localized regions of similarity, using the web based server (http://dot.imgen.bcm.tmc.edu:9331/multi-align/multi-align.html) with default parameters and the BLOSUM62 similarity matrix.
CHAPTER 3 - Characterization of Class I α-1,2-mannosidase gene family in

3.1 Abstract

We describe the cloning and sequence characterization of three Class I α-1,2-mannosidase genes from the filamentous fungus *Aspergillus nidulans*. We used degenerate PCR primers to amplify a portion of the α-1,2-mannosidase IA gene and used the PCR fragment to isolate the 2495 nt genomic gene plus several hundred bases of flanking region. Putative introns were confirmed by RT-PCR. Coding regions of the genomic sequence were used to identify two additional members of the gene family by BLAST search of the *A. nidulans* EST sequencing database. Specific PCR primers were designed to amplify portions of these genes which were used to isolate the genomic sequences. The 1619 nt coding region of the α-1,2-mannosidase IB gene and the 1759 nt coding region of the α-1,2-mannosidase IC gene, plus flanking regions, were fully sequenced. All three genes appeared to encode type-II transmembrane proteins which are typical of Class I α-1,2-mannosidases. The deduced protein sequences were aligned with 11 published Class I α-1,2-mannosidases to determine sequence relationships. All three genes exhibited high similarity to other fungal α-1,2-mannosidases. The α-1,2-mannosidase IB exhibited very high similarity to the *Aspergillus satoi* and *Penicillium citrinum* α-1,2-mannosidases and likely represents an orthologue of these genes. Phylogenetic analysis suggests that the three *A. nidulans* Class I α-1,2-mannosidases arose from duplication events which
occurred after the divergence of fungi from animals and insects. This is the first report of the existence of multiple Class I mannosidases in a single fungal species.

3.2 Introduction

The filamentous fungus *Aspergillus nidulans* is often utilized as an expression host for the secretion of heterologous proteins. Many of these proteins contain complex N-glycans in their natural state. The N-linked protein glycosylation pathways have been fairly well characterized in mammalian systems (reviewed in Kornfeld and Kornfeld, 1985) and yeast expression systems, such as *Saccharomyces cerevisiae* (reviewed in Dean, 1999; Herscovics, 1999), but remain relatively poorly characterized in filamentous fungi. Since filamentous fungal expression systems are used to express a variety of genes from other organisms, it would be advantageous to regulate the type of N-glycans produced on heterologously expressed proteins in order to produce proteins containing N-glycans which are similar to the natural product (Hintz et al., 1995; Kalsner et al., 1995).

In all these expression systems, protein N-glycosylation involves the transfer of an oligosaccharide precursor (Glc$_3$Man$_9$GlcNAc$_2$) to newly synthesized polypeptides. In the endoplasmic reticulum (ER) and Golgi, α-glucosidases and α-mannosidase(s) modify the precursor into several intermediate forms. In higher eukaryotes (ie. mammals), α-1,2-mannosidases remove a total of four mannose residues, yielding Man$_5$GlcNAc$_2$ which is the precursor for complex, hybrid, and high-mannose N-glycans. In the yeast *S. cerevisiae*, however, an ER-specific Man$_9$-α-1,2-mannosidase removes only a single mannose residue, producing Man$_4$GlcNAc$_2$ (Herscovics, 1999). Filamentous fungi produce N-glycan structures containing 5 mannose units (Man$_5$GlcNAc$_2$), suggesting further processing of
the Man₉GlcNAc₂ precursor (Chiba et al., 1993; Maras et al., 1997a). The mechanisms of synthesis of high mannose N-glycans in filamentous fungi seem to differ from yeast, and may be more similar to processes in higher eukaryotes.

The first committed step in the conversion of high mannose N-glycans to complex N-glycans is the transfer of GlcNAc to the Man₉GlcNAc₂ by GlcNAc transferase I (GnT-I). This enzyme generally requires Man₉GlcNAc₂ as a substrate. Fungi produce a variety of N-glycans from Man₉GlcNAc₂ to Man₉GlcNAc₂ (and variations thereupon), many of which are not suitable substrates for GlcNAc transferase I (Archer and Peberdy, 1997). Maras et al. (1997b) showed that in vitro removal of mannose with Class I α-mannosidase from N-glycans significantly improved the incorporation of GlcNAc into the N-glycans. Our early research has therefore focused on the initial processing of N-glycans by α-mannosidases in filamentous fungi. Manipulation of this region of the pathway may allow the development of a system for the in vivo expression of heterologous proteins containing complex N-glycans.

The α-mannosidases have been previously classified into two independently derived groups, Class I and Class II, based on biochemical properties, substrate specificity, inhibitor profiles, and sequence alignments (Daniel et al., 1994; Eades et al., 1998; Moremen et al., 1994). The first group contains the α-1,2-mannosidases which are found in the ER and Golgi, including the ER Man₉-mannosidase, endomannosidase and Golgi mannosidase Iα/IB. The second group of α-mannosidases is more heterogeneous and contains the lysosomal mannosidases, the Golgi mannosidase II and a distantly related group of enzymes, including the rat ER/cytosolic mannosidase (Bischoff et al., 1990),
yeast vacuolar mannosidase (Yoshihisa and Anraku, 1989), and the *A. nidulans* Class II mannosidase (Eades *et al.*, 1998).

Several α-mannosidases have already been characterized in filamentous fungi. The genes encoding Class I α-mannosidases have been isolated from *Aspergillus satoi* (Inoue *et al.*, 1995) and *Penicillium citrinum* (Yoshida and Ichishima, 1995) and a Class II α-mannosidase has been cloned from *A. nidulans* (Eades *et al.*, 1998). An ER resident α-mannosidase has been identified and cloned in *S. cerevisiae* (Camirand *et al.*, 1991) which removes a single mannose unit from the Man₉GlcNAc₂ oligosaccharide in the ER. Here we report the identification and sequence analysis of three novel Class I α-mannosidases from *A. nidulans*. Phylogenetic analyses of the deduced protein sequences suggest a recent duplication and divergence of these mannosidases.

3.3 Materials and Methods

3.3.1 Strains, Media and Growth Conditions: *Aspergillus nidulans* sporecolor mutant

SM222 was grown in CYM liquid media, described by Eades *et al.* (1998). Strains were maintained on CYM agar, and spore suspensions were obtained by washing cultured CYM agar plates with 8 ml 0.001% Tween 80. Mycelium for protoplasting and DNA isolations was obtained by inoculating 500 ml liquid CYM with 10⁸ spores, and incubating 24 hours at 30°C with constant agitation (200 rpm).

3.3.2 Degenerate Oligonucleotide Primer Design:

The forward primer was designed by reverse translation of the protein sequence GGLGESFYEY, and the reverse primer from the complement of the reverse translation of the sequence FXLAETLKYLY. These protein sequences were conserved between the α-1,2-mannosidase protein sequences of *S.*
cerevisiae (Camirand et al., 1991), mouse IA (Lal et al., 1994), human IA (Bause et al., 1993), and rabbit liver (Lal et al., 1994). A codon usage table compiled for *A. nidulans* was used to aid in nucleotide selection at degenerate sites.

3.3.3 DNA Isolation and PCR amplification: Total genomic DNA was extracted from finely ground freeze-dried mycelium of *A. nidulans* strain SM222 using the method described by Eades et al. (1998). Each PCR reaction consisted of 10 - 100 ng of genomic DNA, 50 pmol of each primer, 10 mM Tris-HCl (pH 8.3), 1.5 mM MgCl₂, 50 mM KCl, 0.01% gelatin, 0.1% Triton X-100, 200 μM each of dATP, dCTP, dTTP, and dGTP and 2 units Taq DNA polymerase (Perkin-Elmer) in a final volume of 100μl. Amplification was performed in two stages using a Perkin-Elmer thermal cycler. Five cycles at a lower stringency (56°C) were followed by 30 cycles at higher stringency (63°C). The PCR products were eluted from 1% low-melting point agarose, cloned into T-Vector (Promega) using the T-Vector cloning system and sequenced with Universal Forward and M13 Reverse primers.

3.3.4 Library Construction and Screening: The cloned PCR products were used as a template to produce a radiolabelled PCR probe for library screening. The PCR reactions were performed as previously described, except that only 100 μM dCTP was used and 0.825 μM α-³²P-dCTP (5 μCi) was added to the reactions. The radiolabelled PCR products were purified with the Wizard PCR Prep Kit (Promega) and scintillation counted to assess radioactivity. A genomic library of *A. nidulans* (SM222) sequences was constructed by partially digesting genomic DNA with *Mbo*I and ligating the resulting fragments into lambda DNA vector EMBL-3 digested with *Bam*HI. Concatamers of the ligated DNA were packaged using the Gigapack II (Stratagene) *in vitro* packaging system.
Approximately 10^3 recombinant lambda plaques were immobilised on nylon membranes (Genescreen Plus, Dupont) and hybridized with the radiolabelled PCR probes. Single hybridizing clones were selected and rescreened. Lambda DNA was isolated with the Wizard Lambda DNA Extraction Kit (Promega), digested with restriction enzymes and subcloned into pUC18 cloning vector.

3.3.5 DNA Preparation and Sequencing of A. nidulans α-1,2-mannosidase genes:

Restriction fragments of the α-1,2-mannosidase IA containing the full length gene were cloned into pUC18 cloning vector. Initial manual sequencing of subclones was performed using the dideoxynucleotide method using a T7 sequencing kit (Pharmacia). Initial sequence data was obtained with the universal priming sites, and with specific sequence primers (primer walking). Final sequence data was provided by subcloning the fragments using various restriction enzymes and sequencing with an ABI373 automated fluorescent sequencer (Applied Biosystems, Foster City, CA). The α-1,2-mannosidase IB gene and the α-1,2-mannosidase IC were sequenced by cloning restriction fragments of the positive lambda subclones into BlueScript II cloning vector (Stratagene, La Jolla CA) and sequencing on an ABI373 sequencer, using the universal priming sites of the vector.

3.3.6 Identification of Introns: Total RNA was extracted from fresh mycelium grown in 150 ml liquid media (~ 1 gram) using the guanidine isothiocyanate method (TRIzol, GibcoBRL). The RNA pellet was resuspended in 30 μl H$_2$O/DEPC and 5 μl was used for cDNA preparation and PCR amplification. Reverse transcriptase PCR was performed using the SuperscriptII reverse transcriptase kit (GibcoBRL) for first strand cDNA synthesis (oligo-dT primer), followed by PCR amplification of the cDNA. The cDNA was used to amplify regions containing putative introns for comparison with genomic DNA.
amplification. RT-PCR products were eluted from agarose gels and cloned into T-Vector (Promega) and sequenced using universal primers.

3.3.8 Phylogenetic Analyses Multiple alignments were converted into PAUP format and phylogenetic trees were generated on PAUP 4.0b* computer software (Swofford, 1998). After initial execution of the alignment file, trees were generated using maximum parsimony with a full heuristic search (100 replicates of random stepwise branch addition). The most parsimonious tree was rooted using the *A. nidulans* Class II C α-mannosidase protein sequence as an outgroup. Confidence values for the tree branches were determined using the bootstrap option (100 bootstrap replicates using a full heuristic search).

3.3.9 Mannosidase Assays: Crude protein extracts were obtained from protoplasts and from culture filtrates. Secreted proteins were precipitated from 1.5 ml of culture filtrate by saturation with ammonium sulfate. After centrifugation, the protein extract was resuspended in 500 ml 0.01 M phosphate buffer (pH 6.0) and precipitated again using
ammonium sulfate (to ensure removal of sugar residues which would interfere with mannosidase assays). Proteins were resuspended in 100 µl 0.01 M phosphate buffer (pH6.0) and 27 µl of the extract was used in the mannosidase assay. Intracellular proteins were extracted from protoplasts, which were prepared as in Eades et al. (1998). Protoplasts were centrifuged and resuspended in 200 µl 0.01 M phosphate buffer (pH6.0)/1% octylthioglucoside, and resuspensions were vortexed vigorously to ensure complete protoplast lysis. Cellular debris was removed by centrifugation, and 27 µl of the lysate was used in mannosidase assays.

Mannosidase assays were performed using the disaccharide Man-α-1,2-Man-α-OCH₃ as a substrate in a coupled enzyme assay as described earlier (Scaman et al., 1996), with some modifications. Digestion of the substrate was performed in a 30 µl final volume containing 27 µl of crude extract in 0.01M phosphate buffer (pH6.0) and 3 µl 100 mM disaccharide Man-α-1,2-Man-α-OCH₃ incubated at 37°C for 3 hours. Detection of released mannose was achieved by addition of 30 µl Tris-HCl (pH7.6) and 240 µl of developing solution, containing glucose oxidase (55 U/ml), horseradish peroxidase (1 U/ml) and o-dianisidine dihydrochloride (70 µg/ml), incubated at 37°C for 3 hours. Absorbance measurements at 450 nm determined final color change. Standard blanks included all components of the colorimetric reaction, plus the substrate. As a control, enzyme extracts which were not used in the mannosidase digestion were subjected to the colorimetric reaction, to determine the absorbance which is due to the extract itself, and not due to mannose release. These values were subtracted from the absorbance values of the assays. Free mannose was used as a standard. All assays were performed in triplicate.
and the mean and standard deviation was calculated for each sample. Mannosidase activity was standardized by comparison with total protein in the crude enzyme extracts, and was defined as the amount of mannose released from substrate per μg of total protein per hour. Protein concentrations were determined by the Bradford method (Bradford, 1976) using BSA as a standard.

3.4 Results

3.4.1 Identification of three Class I α-1,2-mannosidases from Aspergillus nidulans

To identify Class I α-1,2-mannosidase genes in *A. nidulans*, degenerate PCR primers were designed from conserved blocks found in multiply aligned Class I α-mannosidase genes. Amplification of *A. nidulans* genomic DNA with degenerate oligonucleotide primers yielded a number of products, which were ligated into cloning vector and sequenced. The sequence of a 900 bp clone was used to search the GenBank database for sequence homology (BLAST search). High scoring matches were found with other Class I α-1,2-mannosidases, confirming that a portion of the Class I α-1,2-mannosidase had been amplified from *A. nidulans*. An α-1,2-mannosidase specific radiolabelled probe derived from this 900 bp clone was used to screen an EMBL-3 library of genomic sequences, and a single lambda clone was recovered which contained the entire α-1,2-mannosidase gene. Two non-overlapping BamHI subclones were sequenced by manual and automated sequencing, resulting in 2- to 5-fold redundancy sequencing of the full length gene (α-1,2-mannosidase IA) and several thousand bp of flanking sequence (GenBank Accession # AF129497). The possibility of missing sequence at the junction of
the non-overlapping *BamH1* subclones was eliminated by completely sequencing the original 900 bp PCR fragment, which spanned the *BamH1* junction.

The deduced coding region of the *A. nidulans* α-1,2-mannosidase IA gene was used to search the *A. nidulans* EST Sequencing Project Database using the BLAST algorithm to determine if there were multiple α-1,2-mannosidase genes expressed in this organism. Two different short cDNA fragments were identified which showed significant similarity, but not 100% identity, to the α-1,2-mannosidase IA gene, and thus represented separate genes. A second set of PCR primers specific for the novel genes were designed according to the cDNA fragments. The amplification products from these primers (~200 bp) were radiolabelled and used to probe the *A. nidulans* genomic library to select the full length genes. A clone containing the full length α-1,2-mannosidase IB gene was recovered as a single 5.6 kb *BamHI* clone. The gene and several hundred bp of flanking sequence were sequenced with 2- to 4-fold redundancy at each base position (GenBank Accession #: AF129496). A second lambda clone containing the full length α-1,2-mannosidase IC gene was recovered and two non-overlapping *BamHI* subclones (4 kb and 6 kb) were isolated, which together contained the gene and flanking regions. Again, the sequence across the *BamHI* subcloning junction was verified to eliminate the possibility of missing sequence. The gene and several hundred bp of flanking region were fully sequenced (Accession #: AF233287).

3.4.2 Sequence characterization of the α-1,2-mannosidase IA, IB, and IC genes

The DNA sequences of the three Class I α-1,2-mannosidases were analyzed to determine the amino acid coding sequence, including determination of the correct reading
frame, identification of potential intron sequences, and identification of the correct translational start codon for each gene. A BLAST search of the α-1,2-mannosidase IA gene revealed two open reading frames (ORFs) separated by a region of DNA containing several stop codons which could indicate the presence of an intron sequence. To verify the presence of an intron at this site, PCR products spanning the putative intron were amplified from reverse-transcribed RNA (RT-PCR), cloned into vector and sequenced. Comparison of the α-mannosidase IA sequence with RT-PCR sequence verified the presence of a 50 bp intron at the expected splice junction. The intron contained a 5’-splice site (5’-GTAAGT-3’), which matched the consensus sequence for filamentous fungi (5’-GTANGT-3’), and a 3’-splice site (5’-TAG-3’) which matched the consensus 5’-YAG-3’ (Ballance, 1986, 1991; Gurr et al., 1987). The intron also contained an internal lariat sequence (5’-GCTGAC-3’), located 15 bp upstream of the 3’-splice site, consistent with the consensus 5’-(G/A)CT(G/A)AC-3’ for fungal introns.

The deduced amino acid sequence of the *A. nidulans* α-1,2-mannosidase IA gene was aligned with other published α-mannosidases to determine whether there might have been other introns which did not shift the reading frame and did not contain stop codons but did increase the size of the putative gene product. Two additional regions of the first ORF did not align with other published sequences and appeared as large ‘gaps’ in the multiple sequence alignment for all of the other α-1,2-mannosidase genes used in the alignment. To determine whether these sequences represented introns or encoded polypeptide sequence novel to the *A. nidulans* α-mannosidase, RT-PCR products were compared to genomic PCR products. The PCR amplification products derived from both RNA and genomic DNA, using primer pairs which flanked these regions, were the same
size, indicating that there were no introns present in these regions. Although introns can sometimes be present with less conserved splice sequences (Gurr et al., 1987), these regions did not contain consensus splice motifs.

The α-1,2-mannosidase IB gene contained three open reading frames separated by two regions which contained several stop codons and caused a shift in the reading frame. These regions were searched for consensus intron splice sites. Both of the putative introns contained consensus 5' and 3' splice sites and a consensus internal lariat sequence. The two putative introns were verified by RT-PCR. In both cases, the RNA-derived amplification product was smaller than the DNA-derived amplification product, and the size difference corresponded to the predicted size of each intron. Sequencing of the RT-PCR products verified the presence of a 51 bp and 53 bp intron at the respective splice sites. While the position of each intron in the coding region correlated directly to two of the introns found in the *P. citrinum* α-1,2-mannosidase gene, the intron sequences themselves were not conserved. The α-1,2-mannosidase IC gene contained a single contiguous open reading frame and did not contain any consensus intron sequences. This gene did not appear to contain any intron sequences.

The authentic start codon (ATG) of the α-1,2-mannosidase IA gene was inferred by sequence context of the putative start codons, combined with protein sequence alignments with known α-mannosidase proteins. A potential start codon (ATG) occurred in frame 42 bp after the stop codon which defined the 5' end of the first ORF, while the next in frame ATG codon was 423 bp downstream. This first codon was thus a better candidate for the translational start codon. Translation originating at this start codon would produce a protein product with an N-terminus which was larger than other fungal
α-mannosidases, but similar in size to the N-termini of mammalian and insect Class I α-mannosidases. Although there is not a strong consensus sequence surrounding the translational start codon in filamentous fungi (Ballance, 1986), there is a preference for a purine at position -3 (97%). The putative start codon for this gene had a G at position -3, and thus conforms to this rule. Placement of the translational start codon can also be inferred from sequence context with respect to promoter elements and the transcription start site. There was a TATA-like element at position -47 of the putative start site and several pyrimidine rich blocks within 100 bp upstream of the proposed start codon. These pyrimidine rich regions are often found in fungal promoters and may influence the level of transcription (Ballance, 1986). The 5' non-translated region did not contain a CAAT-box upstream of the TATA-like element, but this is not unusual for fungal promoters.

The first potential translational start codon in the α-1,2-mannosidase IB gene occurred 42 bp into the first ORF. Comparison of the coding region of this ORF with the A. satoi and P. citrinum α-1,2-mannosidase genes showed that the position of the putative translational start site correlated with the start sites of these genes. This start codon also contained a purine at the -3 position, a TATA-like element at position -76, and several CT-rich blocks in the sense strand. The first potential translational start codon of the α-mannosidase IC gene occurred 38 bp into the ORF. The start site also contains a purine at position -3 and CCAAT motif at -221, but did not contain a clearly definable TATA box.

The putative coding region of the α-1,2-mannosidase IA gene encodes a 816 amino acid protein with a predicted molecular weight (MW) of 91 kD. This is somewhat larger than other Class I α-mannosidases, which range in size from 53 kD for the P. citrinum α-mannosidase I (Yoshida and Ichishima, 1995) to 73 kD for the H. sapiens α-
mannosidase IB (Bause et al., 1993), *M. musculus* α-mannosidase IA (Lal et al., 1994) and α-mannosidase IB (Herscovics et al., 1994), and *S. scrofa* α-mannosidase I (Bieberich et al., 1997). The coding region of the α-1,2-mannosidase IB gene encodes a 505 aa protein with a predicted MW of 56 kD, while the α-1,2-mannosidase IC gene encodes a 586 aa protein with a predicted MW of 65 kD. Both of these predicted sizes are within the range of currently identified Class I α-mannosidases.

The putative α-1,2-mannosidase IA, IB, and IC proteins contained several charged N-terminal amino acids representative of a typical signal sequence motif downstream of the putative start site. Kyte-Doolittle hydropathy plots showed that the signal sequences were followed by highly hydrophobic regions approximately 15-16 amino acids in length, while the remainder of the C-termini were relatively hydrophilic (Figure 10). These proteins likely form type II transmembrane proteins, which is a characteristic of other Class I α-1,2-mannosidases.

3.4.3 Multiple Sequence Alignment

The derived *A. nidulans* α-1,2-mannosidase amino acid sequences were compared with each other and with α-1,2-mannosidase protein sequences from other species to assess the relationship of these genes. Figure 11 shows the multiple sequence alignment of the three α-1,2-mannosidase protein sequences from *A. nidulans*. The N-termini are not well conserved, which is not unexpected, since the N-termini of Class I α-mannosidases encode the transmembrane domain and the stem region of the protein, neither of which contain catalytic activity. Several well conserved regions were found further downstream.
FIGURE 10: Kyte-Doolittle hydropathy plot of (A) \textit{A. nidulans} \(\alpha\)-mannosidase IA, (B) \textit{A. nidulans} \(\alpha\)-mannosidase IB and (C) \textit{A. nidulans} \(\alpha\)-1,2-mannosidase IC predicted amino acids sequences. Vertical axis shows the hydrophobicity of a given region of the protein (Kyte and Doolittle, 1982) with positive values representing hydrophobic regions of the protein, and negative values representing hydrophilic regions of the protein.
FIGURE II: Multiple Sequence Alignment of three α-1,2-mannosidase putative protein sequences from *A. nidulans*. Amino acids which are identical between the three sequences are in bold. Degenerate primer sites used in the first PCR amplification are shown with horizontal arrows. Vertical arrow shows the amino acid believed to be involved in dMM recognition, while asterisks show cysteine residues, conserved in all Class I α-mannosidases, which are likely necessary for enzyme activity.
of the non-conserved N-termini. The α-1,2-mannosidase IA protein contains several large unique spans which are not found in the α-1,2-mannosidase IB and α-1,2-mannosidase IC genes. The function and evolutionary significance of these ‘extra’ sequences is at present unknown.

A total of 14 Class I α-1,2-mannosidase protein sequences were compiled and a multiple alignment was performed. Again, the N-termini of these proteins were not well conserved in length or sequence composition, except that all encoded a type II transmembrane region of the protein. Several well conserved blocks were found throughout the remaining C-terminal region of the proteins. Several amino acids had been previously identified which were particularly important for the catalytic activity of the α-1,2-mannosidases. The disulfide bond formed between Cys^{340} and Cys^{385} of the S. cerevisiae was necessary for enzyme activity (Herscovics, 1999; Lipari and Herscovics, 1996). These two cysteine residues were conserved in all of the α-1,2-mannosidases including the three A. nidulans α-1,2-mannosidases (Figure 11). The amino acid which interacts with the inhibitor deoxymannojirimycin (dMM) has been identified as glutamine (Glu) in all species except P. citrinum, which has aspartate (Asp) at this position (Yoshida and Ichishima, 1995). A Glu residue was found at this position in the three A. nidulans α-1,2-mannosidases and there was further sequence conservation surrounding this residue, indicating that all three of these enzymes would likely be inhibited by dMM (Figure 11).

3.4.4 Phylogenetic Analysis

A phylogenetic analysis was performed from the multiple sequence alignment to characterize the relationships of the various genes in this gene family. Trees were
generated using maximum parsimony analysis tool in the PAUP software package and the
most parsimonious tree was selected for further analysis (Figure 12). The sequences in the
phylogram appeared as three major groups: mammalian, insect, and fungal. The exception
to this was the *S. cerevisiae* α-1,2-mannosidase which showed low overall similarity to
any of the other α-1,2-mannosidases. Members within these groups were highly related,
and shared low, yet still significant, similarity to members of other groups. The mouse and
human species each contained two α-1,2-mannosidase genes. These genes were highly
related and likely resulted from a recent duplication event which occurred after the
mammalian lineage diverged from insects and from lower eukaryotes. The *A. nidulans*
genes also appear to have resulted from recent duplication events which occurred after the
divergence of the various lineages, since these genes were more related to each other than
to mannosidases in the other lineages. Bootstrap analysis was performed to assess the
confidence values for each node of the tree (Figure 12). All branches of the tree are
supported with high confidence, with bootstrap values ranging from 70–100 (of 100)
replications.

3.4.5 Determination of α-1,2-mannosidase activity in *A. nidulans*

In order to verify that α-1,2-mannosidases are actively expressed intracellularly,
assays were performed to determine the secreted and/or intracellular α-1,2-mannosidase
activity levels. To determine secreted α-1,2-mannosidase activity, crude protein extracts
were obtained from liquid culture filtrates. Intracellular proteins were extracted from
fungal protoplasts using a detergent buffer. Significant α-1,2-mannosidase activity was
found in the intracellular protein extract (28.16 nmol mannose released from substrate/μg
FIGURE 12: Phylogram showing sequence relationships of Class I \(\alpha \)-mannosidases. Phylogram was generated from the multiple sequence alignment using PAUP 4.0b* analysis program. Numbers above the branches of the tree represent bootstrap confidence values, out of 100 bootstrap replications. Branch lengths represent the number of amino acid substitutions.
total protein/h; SD = 4.45), whereas very little activity was found in the extracellular extracts (0.77 nmol/μg/h ; SD = 0.74). This is consistent with the hypothesis that the Class I α-1,2-mannosidase genes from *A. nidulans* encode type-II transmembrane proteins which are expressed intracellularly.

3.5 Discussion

Protein N-glycosylation is an ordered process which occurs in all eukaryotic species. The early steps of this process, which include the transfer of the oligosaccharide to the nascent polypeptide and the removal of glucose residues, are almost identical in all eukaryotes (Kornfeld and Kornfeld, 1985). At this point, the pathways in various organismal lineages can become quite divergent resulting quite different N-glycans as the end products of the pathway (Herscovics, 1999). It appears that multiple α-mannosidases are involved in N-glycan processing in mammals and insects while a single α-mannosidase is found in the yeast *S. cerevisiae*. During the early stages of N-glycan processing, mannose removal in filamentous fungi appears to be more similar to higher eukaryotes such as mammals and insects than to yeast (Maras *et al.*, 1997a). Filamentous fungi, like higher eukaryotes, may utilize multiple α-mannosidases with defined specificities for this purpose.

We have identified three Class I α-1,2-mannosidase genes in a single fungal species, *Aspergillus nidulans*. All of these genes encoded gene products with similarity to other Class I genes, but were significantly different from each other. The α-mannosidase IB gene was highly similar at the protein level to the orthologous genes of *A. satoi* and *P. citrinum* genes and had two of three introns in identical positions as the *P. citrinum* gene.
The *A. satoi* gene sequence was derived from cDNA, thus the intron positions for this gene were not known (Inoue *et al.*, 1995). The protein products from these genes presumably share similarity in structure and substrate specificity. The α-mannosidase IA gene exhibited lower overall similarity to these three genes, which is indicative of a more distant relationship. The *A. nidulans* α-mannosidase IA gene is therefore considered to be a paralogue of the α-mannosidase IB gene. The *S. cerevisiae* Class I α-mannosidase was no more similar to the fungal mannosidase than it was to the insect or mammalian α-mannosidases, and it is difficult to draw any conclusions about its evolutionary derivation.

To date, only a single member of this gene family has been found in other fungal species, including the yeast *S. cerevisiae* (Camirand *et al.*, 1991), and the filamentous fungi *P. citrinum* (Yoshida and Ichishima, 1995) and *A. satoi* (Inoue *et al.*, 1995). This could be due to a lack of a concerted effort to search for these genes in other species. Only one Class I α-1,2-mannosidase gene has been sequenced in yeast which removes only a single mannose residue during N-glycan processing. This appears to be the only functional Class I α-mannosidase in yeast (reviewed in Herscovics, 1999). On the other hand, filamentous fungi remove several mannose residues during N-glycan processing (Maras *et al.*, 1997a), so it might be expected that multiple enzymes would exist to achieve this. This is the first definitive proof that this is indeed the case. It is unclear why multiple enzymes would exist to remove mannose residues from the N-glycan precursor. In mammalian systems, two Class I α-1,2-mannosidases cleave four mannose residues from Man₉GlcNAc₂, and several different isomeric intermediates are formed in this process. The murine α-mannosidase IA and IB, for instance, have different but overlapping specificity for the various intermediates which are formed during mannose
removal, and together are very efficient at fully removing the mannose residues to produce the \(\text{Man}_2\text{GlcNAc}_2 \) precursor for complex N-glycan formation (Lai et al., 1998). Analysis of \(D. \ melanogaster \ mas-1 \) mutants has also revealed a partially redundant N-glycan processing pathway which is likely due to the action of multiple \(\alpha \)-mannosidases with overlapping specificities. Roberts et al. (1998) analyzed the N-glycans produced in \(\text{mas-1} \) mutants and found that while these mutants are able to synthesize the full range of N-glycans (\(\text{Man}_9-\text{Man}_{15} \)), the ratio of the various N-glycans was quite different. In the \(\text{mas-1} \) mutants, there was an accumulation of intermediates such as \(\text{Man}_8 \) and \(\text{Man}_7 \), while much less \(\text{Man}_6 \) and \(\text{Man}_5 \) were produced. It is conceivable that the three Class I \(\alpha-1,2 \)-mannosidases in \(A. \ nidulans \) also perform a similar complementary role in N-glycan processing. Purification of the \(A. \ nidulans \) \(\alpha-1,2 \)-mannosidases and determination of their substrate specificity will clarify their role in N-glycan processing.

The engineering of \textit{in vivo} processing of N-glycans from lower eukaryotes to the complex N-glycans of higher eukaryotes requires two initial conditions: 1) GnT-I activity and 2) a suitable substrate (ie. \(\text{Man}_2\text{GlcNAc}_2 \)) upon which GnT-I can act. The first step has already been achieved in \(A. \ nidulans \) by insertion and expression of the GnT-I gene (Kalsner et al., 1995). The production of a suitable substrate for GnT-I activity may be more problematic, as there may be a ‘bottleneck’ preventing the production of significant amounts of \(\text{Man}_2\text{GlcNAc}_2 \). Efficient removal of mannose in the ER and Golgi would provide the necessary precursors for the production of complex N-glycans. The identification of three Class I \(\alpha \)-mannosidase genes in \(A. \ nidulans \) is the first step in clarifying the process of mannose removal during N-glycan processing in filamentous fungi. Manipulation of this region of the pathway by controlled overexpression of the
three Class I α-mannosidases may clear the 'bottleneck' and allow production of complex N-glycans.
CHAPTER 4 - Expression and Secretion of the Class I α-1,2-mannosidase IC from *Aspergillus nidulans*

4.1 Introduction

The role of the Class I α-1,2-mannosidases in the post-translational processing of glycoproteins is well characterized in higher eukaryotes (Daniel et al., 1994; Kornfeld and Kornfeld, 1985; Moremen et al., 1994) and yeasts (Herscovics, 1999), but less is known about these enzymes in filamentous fungi. Single members of this gene family have been identified and characterized in several filamentous fungal species, including *Penicillium citrinum*, *Trichoderma reseei*, and *Aspergillus satoi* (Inoue et al., 1995; Maras et al., 2000; Yoshida and Ichishima, 1995). The recent sequence characterization of three Class I α-1,2-mannosidases (mnsIA, mnsIB, and mnsIC) genes in the filamentous fungus *Aspergillus nidulans* was the first report of multiple mannosidases in a single filamentous fungal species (Eades and Hintz, 2000b) and suggested the possibility of functional redundancy in the protein N-glycosylation pathway of filamentous fungi (reviewed in Eades and Hintz, 2000a) in a manner similar to that found in human, mouse, and *D. melanogaster* pathways (Lal et al., 1998; Roberts et al., 1998; Tremblay and Herscovics, 2000). These organisms also appear to contain multiple Class I α-1,2-mannosidases with overlapping specificities and somewhat different tissue expression patterns.

The biochemical characterization of fungal Class I α-1,2-mannosidases has helped to elucidate the role of these genes in protein N-glycosylation. Recombinant expression and purification of the *A. satoi* Class I α-1,2-mannosidase allowed refined assessment of the specific biological activity of this protein (Ichishima et al., 1999). The enzyme was
directed to the extracellular media by replacement of the N-terminal region of the protein with the aspergillopepsin I secretion signal, a method which allowed for efficient secretion and purification in high yields. Substrate specificity analysis confirmed that the enzyme cleaved mannose-\(\alpha\)-1,2-mannose bonds, but did not cleave mannose-\(\alpha\)-1,3-mannose, or mannose-\(\alpha\)-1,6-mannose. The *A. satoi* \(\alpha\)-1,2-mannosidase was also able to digest the oligosaccharide Man\(_9\)GlcNAc\(_2\), which was cleaved primarily to Man\(_8\)GlcNAc\(_2\). It was anticipated that the primary substrate would be Man\(_9\)GlcNAc\(_2\), but the enzyme had a higher preference for Man\(_8\)GlcNAc\(_2\) as a primary substrate than Man\(_9\)GlcNAc\(_2\). The digestion of these substrates produced several intermediate structures, primarily different isomers of Man\(_7\)GlcNAc\(_2\), suggesting that the enzyme had a lower activity on Man\(_7\)GlcNAc\(_2\). This points to a possible role for other \(\alpha\)-1,2-mannosidase genes which may have differing substrate specificities, increasing the efficiency of the pathway and preventing the accumulation of intermediates in the processing of N-glycans from Man\(_9\)GlcNAc\(_2\) to Man\(_7\)GlcNAc\(_2\). This can be verified by identification of each of the Class I \(\alpha\)-1,2-mannosidase genes and determination of the substrate specificities of the enzymes produced by these genes. The cloning of all three members of the Class I \(\alpha\)-1,2-mannosidase gene family from *A. nidulans* was recently completed (Eades and Hintz, 2000b). Due to their high amino acid similarity, the *A. nidulans* \(\alpha\)-1,2-mannosidase IB gene is presumed to have similar biochemical properties as the *A. satoi* \(\alpha\)-1,2-mannosidase. We have thus chosen to examine the \(\alpha\)-1,2-mannosidase IC from *A. nidulans* as it could have a distinct cellular function and/or substrate specificity.

Several properties of *A. nidulans* make it an attractive host for the overexpression of the \(\alpha\)-1,2-mannosidase IC protein. An inducible promoter system exists with which it is
possible to selectively express proteins to mitigate against possible toxic effects of protein overexpression (Davies, 1991). As well, numerous selectable marker systems are available, and techniques for the introduction and integration of DNA are well established.

Filamentous fungi are able to secrete very high levels of protein, especially endogenous proteins (Archer et al., 1994; Archer and Peberdy, 1997). Proteins expressed in their natural host are much less susceptible to degradation by proteases, and are more efficiently secreted. This will allow production of large quantities of the *A. nidulans* α-1,2-mannosidase IC by expression in *A. nidulans* which will be useful for *in vitro* studies. In addition, the effects of overexpression can be examined in an endogenous system, which may have bearing on the remodelling of N-glycan pathways in recombinant host expression systems.

The efficient expression of the *Aspergillus nidulans* Class I α-1,2-mannosidase IC protein in *A. nidulans* cells is described here. Expression is driven by an inducible promoter, and secretion into the extracellular media is facilitated by the replacement of the N-terminal transmembrane region with a secretion signal. This will permit easy purification of a recombinant form of the enzyme for further protein activity studies which will allow further understanding of the role of this enzyme in N-glycan processing. It will also be possible to determine potential cytotoxic effects of α-1,2-mannosidase overexpression. It is our goal to utilize these enzymes for the selective modification of N-glycans *in vivo*. Such work may require overexpression of these enzymes in the secretory pathway of the ER and/or Golgi apparatus. Identification of possible cytotoxic effects of α-1,2-mannosidase overexpression will help determine the feasibility of such work.
4.2 Materials and Methods

4.2.1 Strains and Media: The *A. nidulans* expression host T580 (ura'), a derivative of strain FGSC4 (Fungal Genetics Stock Center) was used for expression studies. Cultures were grown in CYM liquid media described in Kalsner *et al.* (1995) supplemented with 10 mM uridine. Protoplasts which integrated the *pyrG* selectable marker (pFB94) were selected for uridine prototrophy on minimal media (Kalsner *et al.*, 1995) supplemented with 0.6 M sucrose as an osmoticum. Selected transformants for overexpression of the mannosidase were grown in liquid yeast-fructose-threonine (YFT) (5 g yeast extract; 2 g fructose; 12 g threonine; 10 ml 100X salt solution; 1 ml 1000X trace elements; and 0.6 g NaNO₃, per litre). Strains were maintained on CYM agar, and spore suspensions were obtained by washing cultured CYM agar plates with 8 ml 0.001% Tween 80. Mycelium for DNA isolations was obtained by inoculating 500 ml liquid CYM with 10⁸ spores, and incubating 24 hours at 30°C with constant agitation (200 rpm). Expression cultures were grown by inoculating 50 ml liquid YFT media with 10⁸ spores, and incubating at 30°C with constant agitation (200 rpm) for up to 72h.

4.2.2 Construction of Expression Vector: The expression vector was created by replacing the N-terminal type-II transmembrane region of the *A. nidulans* α-1,2-mannosidase IC (mnsIC) gene (AF233287) with the synthetic signal sequence, MDRFLGRHLGLLRHCLRQ by tailed PCR amplification and fusion to the inducible *alcA* promoter. The forward primer 5'-

```
GGGAAACCAGACCTAGCCGTTCCTCGGCCTCTCTCCTCTCGCCACTGCC
```

TTCGCCCAAGACACCACGCCGCGCCGCCAATAGC-3' contained an *NcoI* restriction
enzyme site (italics) to facilitate fusion with the *alcA* promoter. The 5'-overhanging tail is underlined, and the region annealing to the DNA template is marked in bold. The forward primer was designed to anneal at position +91 of the coding region of the *mnslC* gene, immediately downstream of the transmembrane domain of the original protein. The reverse primer 5'-GGAGGATGGGGACGAGTGCGG-3' was designed to anneal to the reverse complement of the *mnslC* coding region, from position +567 to +547, immediately downstream of an *EcoRI* restriction enzyme site that was used for cloning. The secretion signal replacement fragment was produced by PCR amplification using high fidelity *PfuTurbo* (Stratagene, La Jolla CA) polymerase. The proofreading capability of the *PfuTurbo* polymerase reduced the incidence of base mis-incorporation, however the enzyme also had a tendency to cleave the overhanging regions of the tailed PCR primers. To prevent tail cleavage and provide an extended substrate for subsequent amplification reactions, 5 amplification cycles were initially performed using *Taq* polymerase (Pharmacia) with the following reaction conditions. Each reaction contained 10-100 ng of genomic DNA, 50 pmol of each primer, 2 μl 10X *Taq* Buffer (provided), 200 μM each of dATP, dCTP, dTTP, and dGTP and 2 units *Taq* DNA polymerase in a final volume of 20 μl. Preamplification with *Taq* polymerase resulted in the creation of sufficient ‘tailed’ template, such that the subsequent amplification using *PfuTurbo* would not result in tail cleavage. For the second stage of the amplification with *PfuTurbo*, 1 μl of the *Taq* PCR reactions as a template for the new reactions. Each reaction consisted of 1 μl template DNA, 2 μl 10 *PfuTurbo* reaction buffer (provided), 50 pmol of each primer, 200 μM each of dATP, dCTP, dTTP, and dGTP, and 2 units of *PfuTurbo* polymers. Amplification products were separated by gel electrophoresis on 1.5% agarose gels, and the 500 bp
fragment was eluted from the gel into 20 µl dH₂O using the Qiagen Gel Extraction Kit. To facilitate cloning into T-Vector (Promega), single A overhangs were added to the eluted DNA by combining 0.5 units Taq polymerase, 50 µM dATP, and 1 µl Taq buffer with the eluted DNA and heating to 72°C for 10 minutes. The tailed products were ligated into T-Vector using the Promega T-Vector Ligation Kit, and ligations were electorporated into E. coli DH10B (Stratagene, La Jolla, CA). Positive clones identified by digestion with Ncol and EcoRI were sequenced with an ABI373 automated fluorescent sequencer (Applied Biosystems, Foster City, CA). The Ncol/EcoRI fragment from a clone containing the correct DNA sequence was inserted into the similarly digested pGUET vector. This vector contains the alcA promoter in the cloning vector pTZ19R, with an Ncol site at the 3' end of the promoter. This resulted in the direct fusion of the alcA promoter to the secretion signal linker of the mnsIC gene. The alcA-secretion linker was then moved to BlueScriptII (Stratagene) cloning vector using the flanking HindIII and EcoRI sites. The remainder of the mnsIC gene was then added to the alcA-secretion linker by first inserting the EcoRI/BamHI fragment (the 5' end of the gene) of the mnsIC coding region from the vector AN1C-B4-1. Finally, the remainder of the mnsIC gene and 3'-flanking region was added by inserting the BamHI/SacII fragment from the vector AN1C-B6-12 (the 3' end of the gene) to create the final vector, ANICSEC-2 (Figure 13).

4.2.3 Protoplasting and Transformation: Protoplasts were prepared according to the method of Fincham (1989), using Sigma Lysing Enzyme for cell wall digestion.

Protoplasts of strain T580 (ura⁻) were cotransformed with 1 µg of the selectable marker pFB94, which converts transformed cells to uridine prototrophy, and with 1 µg of ANICSEC2. Transformants were initially screened for integration of pFB94 by selection
FIGURE 13: Expression vector for *A. nidulans* α-1,2-mannosidase IC. The coding region of the *A. nidulans* α-1,2-mannosidase IC from position +91 to +1758 was fused to a synthetic signal sequence (SS) and this fusion was directly linked to the *alcA* promoter. Transcription termination was via the endogenous α-1,2-mannosidase IC transcription terminator.
on minimal media, and positive transformants were then transferred to individual complete media plates. Conidia were collected using 8 ml 0.01% Tween-80, and conidia were used for subsequent inoculations. Tranformants were screened for incorporation and expression of the ANICSEC-2 vector by assaying extracellular media for α-1,2-mannosidase activity.

4.2.4 Protein Expression: Fresh liquid cultures were prepared for protein expression by inoculation of 50 ml YFT media with 200 µl of conidial suspensions. These cultures were grown on a rotary shaker (200 rpm) at 30°C for 24-72 hours. The YFT media contains limited amounts of glucose which represses the inducible alcA promoter. After 24-36 hours, the glucose is depleted and the cultures shift to fructose as a carbon source. This releases the glucose repression of the alcA promoter and allows expression of alcA-driven genes. One ml aliquots of media were removed from the cultures at various time intervals up to 72 hours, and centrifuged at high speed to remove the mycelium. To determine if transformant cultures were secreting high levels of protein, 80 µl of the cleared aliquots was combined with 20 µl 5X SDS-PAGE loading buffer, containing 0.0625 M Tris-HCl pH 6.8, 10% glycerol, 2% SDS, 0.72M β-mercaptoethanol and 0.025% bromophenol blue. Samples were boiled for 5 minutes and 35 µl was loaded onto 4-20% Tris-HCl SDS-PAGE Mini-Protean II Ready Gels (BioRad). Gels were run for 1 hour at 100V, stained with 0.1% Coomassie Blue G-250; 40% methanol; 10% acetic acid for 30 minutes and destained in 40% methanol / 10% acetic acid for 2-4 hours.

4.2.5 Mannosidase Assays: Cleared aliquots of culture media were concentrated on NanoSep 30 kD microfilters (Pall Corporation). Protein samples were concentrated ten-fold by centrifugation of 1 ml of culture filtrate and resuspension in 100 µl 0.01M phosphate buffer pH 6.0. Mannosidase assays were performed using the disaccharide
Man-α-1,2-Man-OCH₃ as a substrate in a coupled enzyme assay as described earlier (Seaman et al., 1996), with some modifications. Digestion of the substrate was performed in a 30 μl final volume containing 27 μl of crude extract in 0.01M phosphate buffer (pH6.0) and 3 μl 100 mM disaccharide Man-α-1,2-Man-OCH₃ incubated at 37°C for 3 hours. Released mannose was detected by addition of 30 μl Tris-HCl (pH7.6) and 240 μl of developing solution, containing glucose oxidase (55 U/ml), horseradish peroxidase (1 U/ml) and o-dianisidine dihydrochloride (70 μg/ml) followed by incubation at 37°C for 3 hours. Absorbance measurements at 450 nm were used to determine final color change. Standard blanks included all components of the colorimetric reaction, plus the substrate and 27 μl of concentrated protein samples. A standard curve of free mannose concentrations was determined for comparison. Specific α-mannosidase activity was standardized by comparison with total protein in the crude enzyme extracts, and was defined as the amount of mannose released from substrate per μg of total protein per hour. Protein concentrations were determined by the Bradford method (Bradford, 1976) and comparison to a bovine serum albumin (BSA) standard curve.

4.3 Results

4.3.1 Secretion Vector Design

In order to analyze the activity and specificity of the α-1,2-mannosidase IC, it is necessary to purify significant amounts of the protein. This enzyme is typically a type-II membrane protein residing in the ER (Moremen et al., 1994), although a secretable form of α-1,2-mannosidase was purified from P. citrinum (Yoshida et al., 1993). In either case,
the natural production level of this enzyme by fungi is very low (Yoshida et al., 1998) and purification is difficult. Recombinant expression of the α-1,2-mannosidase IC driven by a strong inducible promoter would drastically increase the level of production of this enzyme and make purification easier. To avoid the difficulty of purifying an intracellular enzyme, secretion of the enzyme to the extracellular media was also required. To do this, we replaced the N-terminal transmembrane domain of the protein with synthetic secretion signal, MDRFLGRHLGLLRHCLRQ and fused this recombinant protein in frame to the inducible alcA promoter (Figure 13). The coding region of the expression vector was followed by the endogenous transcription terminator. The secretion signal was created by tailed PCR, in which the tail of the PCR primer contained the secretion signal, as well as the necessary restriction enzyme sites for direct replacement of the transmembrane domain with the secretion signal. These restriction enzyme sites also facilitated the fusion of the coding region with the alcA promoter. The alcA promoter system is an inducible promoter which can be manipulated by changing growth media conditions. This system allows us to mitigate against possible toxic effects of the recombinant protein expression, by allowing the accumulation of fungal biomass under repressed conditions, followed by protein expression under inducing conditions.

4.3.2 Secretion of α-1,2-mannosidase IC in A. nidulans

The α-1,2-mannosidase IC expression vector was introduced into the genome of A. nidulans strain T580 by cotransformation with pFB94 vector, which contains the selectable ura marker. It has been shown that when two plasmids are used simultaneously in the transformation of fungal protoplasts (cotransformation), as many as 60% of
transformed protoplasts will integrate both of the plasmids into the genome (Wernars et al., 1987). Transformants were selected for prototrophy on uridine deficient minimal media and transferred to complete media plates. Transformants were then grown in liquid YFT inducing media in shaking culture flasks. To determine whether any transformants were secreting high levels of α-1,2-mannosidase into the culture media, aliquots of culture media were run on SDS-PAGE gels to visualize secreted protein activity. Figure 14 shows that after 42 hours of growth there is very little secreted protein visible in the wild type T580, or the transformants #6-8. After 48 hours, the amount of secreted protein in transformant #7 increased significantly, with major protein bands appearing at ~90 kD and ~60-65 kD. The expected size of the α-1,2-mannosidase IC enzyme is ~65 kD, and thus this second protein band may be secreted recombinant α-1,2-mannosidase IC. The detection level of the Coomassie Blue staining procedure requires secretion levels of >20 mg specific protein / L of culture, and thus may not be sensitive enough to effectively identify secreted protein.

4.3.3. Mannosidase Activity in Culture Media

To confirm secretion of active recombinant α-1,2-mannosidase IC into the culture media of putative transformants, specific activity assays were performed. After 48 hours, aliquots of culture media were assayed for α-1,2-mannosidase activity to screen for expression of the secretion vector. In order to remove traces of culture media which would affect the activity assay, and to concentrate the enzyme, aliquots of culture media were washed with assay buffer and concentrated to 20% original volume using
FIGURE 14: Secretion of A. nidulans \(\alpha \)-1,2-mannosidase IC into culture media. Samples of cleared culture media from wild type T580 (T) and transformants 6, 7, and 8 were taken at 42 hours (A) and 48 hours (B). Protein standard (PS) sizes are shown in kilodaltons (kD). The black arrow indicates the \(~65\) kD protein which is likely secreted \(\alpha \)-1,2-mannosidase IC.
microcentrifuge concentrators containing 30 kD membranes. Crude assays revealed several transformants with secreted \(\alpha-1,2 \)-mannosidase activity higher than wild type. Of these, transformant #7 showed the highest specific activity compared to wild type T580 strains. The specific activity of the culture media of transformant #7 was 50.0 Units (nmol mannose released/h/\(\mu \)g total protein) whereas the specific activity in the culture media of wild type T580 was 0.4 Units (nmol mannose released/h/\(\mu \)g protein). This assay confirms that transformant #7 secreted high levels of active recombinant \(\alpha-1,2 \)-mannosidase IC into the culture media.

4.4 Discussion

In order to begin to understand how various N-glycan structures are formed in filamentous fungi, attempts are being made to purify and characterize the various genes which have been identified in the N-glycosylation pathway of these organisms. Class I \(\alpha-1,2 \)-mannosidases have been purified and characterized in several filamentous fungi including *A. satoi* (Ichishima et al., 1981; Yamashita et al., 1980) and *P. citrinum* (Yoshida et al., 1993). More recently, several recombinant \(\alpha-1,2 \)-mannosidases have been expressed and characterized in *A. satoi* (Ichishima et al., 1999), *P. citrinum* (Yoshida et al., 1998) and *T. reesei* (Maras et al., 2000). These proteins share relatively high similarity at the amino acid level - the *T. reesei* \(\alpha-1,2 \)-mannosidase is 51.6% and 51.0% similar to the *A. satoi* and *P. citrinum* proteins, whereas the *A. satoi* and *P. citrinum* \(\alpha-1,2 \)-mannosidases are 70% similar. All of these recombinant \(\alpha-1,2 \)-mannosidases cleaved mannose-\(\alpha-1,2 \)-mannose linkages, but not mannose-\(\alpha-1,3 \)-mannose, or mannose-\(\alpha-1,6 \)-
mannose linkages, and shared similarity in pH optimum, temperature optimum, reaction kinetics and sensitivity to the inhibitor deoxymannojirimycin (dMM). All of these recombinant enzymes were able to degrade high mannose substrates such as Man\textsubscript{9}GlcNAc\textsubscript{2} to Man\textsubscript{5}GlcNAc\textsubscript{2}, but did not produce any structures smaller than Man\textsubscript{5}GlcNAc\textsubscript{2}, even under exhaustive conditions. When the substrate specificity of the *P. citrimim* and *A. satoi* recombinant enzymes was further analyzed, it was noted that there was an accumulation of glycan intermediates during the digestion of Man\textsubscript{9}GlcNAc\textsubscript{2} to Man\textsubscript{5}GlcNAc\textsubscript{2}, particularly when the enzyme:substrate ratios were reduced to more biologically significant levels (Ichishima *et al.*, 1999; Yoshida *et al.*, 1998). These enzymes readily digested Man\textsubscript{9}GlcNAc\textsubscript{2} to Man\textsubscript{7}GlcNAc\textsubscript{2}, which was then reduced to Man\textsubscript{5}GlcNAc\textsubscript{2} at a much slower rate, resulting in the accumulation of Man\textsubscript{7}GlcNAc\textsubscript{2}. This reduced efficiency suggests a possible role for another Class I \(\alpha\)-1,2-mannosidase in the N-glycan processing pathway.

Three different Class I \(\alpha\)-1,2-mannosidase genes were recently identified and cloned from *A. nidulans* (Eades and Hintz, 2000b). One of these genes (*mnsIB*) encodes a putative protein product that bears high similarity to the *A. satoi* and *P. citrimim* Class I \(\alpha\)-1,2-mannosidases and is likely the homologue of the genes encoding these proteins. To characterize this gene family and further understand the process of N-glycan trimming in filamentous fungi, we characterized the \(\alpha\)-1,2-mannosidase IC from *A. nidulans* with the purpose of determining whether this enzyme exhibited significant similarities or differences with other recombinant \(\alpha\)-1,2-mannosidases from filamentous fungi. An expression system was designed which allowed the protein to be secreted into the extracellular media from the organism from which the gene was cloned, *A. nidulans*. This is more advantageous
than heterologous expression of the protein in other organisms, such as yeasts. Yeast expression systems can often hypermannosylate proteins, which may alter their folding patterns and biochemical properties (Buckholz and Gleeson, 1991; Gellissen et al., 1992), although this does not appear to be as significant a problem in some systems, such as *Pichia pastoris* (Cereghino and Cregg, 2000). Homologous protein expression is often much more efficient than heterologous protein expression, a phenomenon which may be due in part to the sequestration and degradation of heterologous proteins prior to secretion into the extracellular media (Archer and Peberdy, 1997; Gellissen et al., 1992; van den Hombergh et al., 1997).

In order to efficiently express a protein, it is often necessary to utilize a highly active promoter (Davies, 1991; Gwynne et al., 1987). We utilized the *alcA* promoter of *A. nidulans* for the expression of the α-1,2-mannosidase IC from *A. nidulans*. The *alcA* promoter is a strong inducible promoter involved in the ethanol regulon in *A. nidulans*, which can be induced to very high levels of transcription (Davies, 1991; Hintz and Lagosky, 1993). This promoter, which normally drives the expression of the alcohol dehydrogenase I gene, is subject strong carbon catabolite repression in the presence of glucose by the *creA* negative control element. Under glucose depleted conditions, *alcA* is induced by ethanol utilizing the transcriptional activator *alcR*. It is thus possible to utilize a dual phase approach in which biomass is allowed to accumulate in the presence of glucose, followed by induction of the *alcA* promoter under glucose depleted allowing expression of the gene of interest. Using this system, we were able to mitigate against possible toxic effects resulting from the expression of the α-1,2-mannosidase IC protein.
A second consideration in the expression of the α-1,2-mannosidase IC protein was that this enzyme is hypothesized to be a type-II membrane bound protein localized to the ER/Golgi (Eades and Hintz, 2000b). It would be desirable to secrete this protein to the extracellular media in order to easily purify and characterize the protein. Thus, the N-terminal transmembrane region of the protein was replaced with a synthetic secretion signal. This secretion signal was 18 amino acids in length, and would presumably be cleaved prior to secretion of the promoter. Since the N-terminal regions of the Class I α-1,2-mannosidases are not necessary for the catalytic activity of these proteins (Moremen et al., 1994), removal of this region will not affect the biochemical properties of the secreted protein.

The recombinant α-1,2-mannosidase IC protein was thus secreted in large quantities into the extracellular media of A. nidulans. The activity of this enzyme was verified by mannosidase assays. It will now be possible to easily purify this enzyme for further biochemical characterization. With the enzyme purified, it will be possible to determine the substrate specificities, inhibitor profiles, and kinetics of this enzyme and compare it to the Class I α-1,2-mannosidases from other fungal species. Since this protein has relatively low similarity to the A. satoi, P. citrinum and T. reesei proteins, it will be possible to determine whether the multiple Class I α-1,2-mannosidases which exist in filamentous fungi have similar, or distinctly different functions.

The N-glycosylation pathway of filamentous fungi appear to be similar to the mammalian N-glycan pathways. Both systems contain multiple Class I α-1,2-mannosidases (Eades and Hintz, 2000b; Herscovics et al., 1994; Lal et al., 1998; Lal et al., 1994; Tremblay et al., 1998; Tremblay and Herscovics, 2000) which specifically remove α-1,2-
mannose units from $\text{Man}_9\text{GlcNAc}_2$ during N-glycan processing. The types of N-glycan structures produced by these systems also bear similarity in that processing of the $\text{Man}_9\text{GlcNAc}_2$ precursor results in the removal of up to 4 mannose units to produce structures as small as $\text{Man}_5\text{GlcNAc}_2$ (Chiba et al., 1993; Kornfeld and Kornfeld, 1985; Maras et al., 1997a; Maras et al., 1999). Subsequent processing in the mammalian glycosylation pathway further modifies the N-glycans to produce a variety of complex structures containing galactose, GlcNAc, and sialic acid. Filamentous fungi, however, do not produce complex N-glycans, but rather, produce a variety of mannosylated N-glycans which range from small structures (ie. $\text{Man}_5\text{GlcNAc}_2$) to higher mannose containing structures (Maras et al., 1999).

The ability of purified α-1,2-mannosidases from filamentous fungi to digest $\text{Man}_9\text{GlcNAc}_2$ to $\text{Man}_5\text{GlcNAc}_2$ (Ichishima et al., 1999; Yoshida et al., 1998) suggested that these enzymes could be involved in N-glycan trimming reactions in the ER and Golgi. However, the non-recombinant α-1,2-mannosidases from $A.\ satoi$ and $P.\ citrinum$ were purified from the culture media, indicating that these enzymes were secreted from the cell. In addition, Maras et al. (2000) predicted from the amino acid sequence that the $T.\ reesei$ α-1,2-mannosidase contained a cleavable signal sequence that could also produce a secreted protein product, although no detectable α-1,2-mannosidase activity was found in the culture media of this organism. However, the presence in filamentous fungi of N-glycans as small as $\text{Man}_5\text{GlcNAc}_2$ suggests that Class I α-1,2-mannosidases are actively trimming N-glycans intracellularly in the secretory pathway. Several possibilities exist to explain the trimming of N-glycans in filamentous fungi. It is possible that the enzymatic activity found in the extracellular media of certain filamentous fungi results from
proteolytic cleavage of some membrane bound Class I α-1,2-mannosidase, resulting in the secretion of some α-1,2-mannosidase activity. The non-cleaved membrane bound α-1,2-mannosidase could remain in the secretory pathway in the ER and Golgi for the post-translational trimming of oligosaccharides in the N-glycan pathway. Alternatively, it is possible that the α-1,2-mannosidases from filamentous fungi are secreted proteins, and that mannose trimming occurs in the lumen of the ER and Golgi by non-membrane bound α-1,2-mannosidases. This trimming could also occur at the cell surface, a process that has already been suggested in mammalian cells (Porwoll et al., 1998). However, this does not explain the fact that α-1,2-mannosidase activity is not found in the culture media of T. reesei, although mannose trimming is evident in this species. A third, and more likely possibility, is that multiple Class I α-1,2-mannosidases are found in any given fungal species, and that these different enzymes have differing substrate specificities and/or subcellular localizations to perform different or overlapping tasks. The duplication and refinement of α-1,2-mannosidase substrate specificity could allow diversification of the N-glycan pathway in these organisms for different functions. Localization of these enzymes in the secretory pathway would help elucidate such diversification.

We have been characterizing the genetic components of the N-glycosylation pathways in filamentous fungi. By manipulation of specific regions of the pathway, it may be possible to modulate the types of N-glycans which are produced by these organisms, which may make them more suitable for the heterologous expression of certain types of proteins, especially human therapeutic proteins. In order to produce proteins containing complex N-glycans, it is first necessary for the oligosaccharide precursor Man9GlcNAc2 to be completely trimmed to Man6GlcNAc2. This provides the substrate for subsequent
reactions leading to the production of complex N-glycans. Before we can begin adding the genetic components of the glycosylation pathway which will allow production of complex N-glycans in these organisms, we need to ensure that there are no ‘bottlenecks’ in the pathway preventing the full trimming of the Man$_9$GlcNAc$_2$ precursor molecule. It is hoped that overexpression of Class I α-1,2-mannosidases will effectively remove such ‘bottlenecks’ and drive the production of sufficient levels of substrate for subsequent reactions. We have determined that overexpression of the α-1,2-mannosidase IC gene is not likely to present any detrimental toxicity effects should we decide to overexpress the protein intracellularly. The overexpression of the α-1,2-mannosidase IC protein is the first step in the characterization of this protein, and the utilization of this protein for the in vivo and/or in vitro modification of N-glycan structures in filamentous fungi.
CHAPTER 5 - Cloning, Sequence Characterization, and Disruption of Class I

α-1,2-mannosidase IA from *Ophiostoma novo-ulmi*

5.1 Introduction

Recent studies on host-pathogen interactions have focussed on the identification of individual pathogenicity determinants, such as pathogenicity related (PR) genes, degradative enzymes, or elicitors of host defense responses. Such approaches generally do not account for the extremely complex and multivariate nature of pathogenicity. Successful invasion of a host by a particular pathogen requires that the pathogen recognize the host tissue and establish a nutritional relationship with the host (de Wit *et al.*, 1994). This requires recognition of the host, adhesion of the pathogen to the host tissue, activation of pathogen related genes in the pathogenic fungus (PR genes), and invasion of the host tissue, often via secreted degradative enzymes. The pathogen must also be able to avoid or suppress the host defense response. Most of these early molecular events involve interactions between the cell wall/plasma membrane and secreted glycoproteins. There is growing evidence that the carbohydrate moieties of these glycoproteins play an important role in the host-pathogen interaction.

Numerous examples exist which illustrate the role of N-glycosylation in fungal pathogen systems. For example, treatment of the phytopathogen *Phytophthora* with tunicamycin, a potent inhibitor of protein glycosylation, strongly reduced the adherence of the fungus to host surfaces and inhibited the formation of infection structures required for host invasion (Bircher and Hohl, 1997; Hollenstein *et al.*, 1995). Several studies have shown the importance of N-glycans in protein secretion (reviewed in Fiedler and Simons,
1995). Di Pietro and Roncero (1996) demonstrated that the secretion of endopolygalacturonase (endoPG) and pectate lyase was completely inhibited in *Fusarium oxysporum* by treatment with tunicamycin. Dean and Anderson (1991) conducted a similar study with a xylanase from *Trichoderma viride*. Additionally, West (1981) provided evidence that the carbohydrate moieties of endoPG may also be necessary for enzyme activity. It can thus be seen that manipulation of N-glycan formation can simultaneously affect a number of processes which are important for the effectiveness of many fungal pathogens.

The carbohydrate structures of mannoproteins are also very important for the physical and chemical properties of the fungal cell wall. The fungal cell wall consists of mostly glucan, mannoproteins, and chitin (Brul *et al*., 1997; Ruiz-Herrera, 1992). The mannoproteins form a fibrillar layer within the cell wall, and are found in highest concentrations near the outer cell wall layer (Gow *et al*., 1999; Klis *et al*., 1997). In addition to the specific roles that the cell wall glycoproteins may play in the host-pathogen interactions, these glycoproteins are also necessary for the maintenance of the cell wall and growth by hyphal elongation. Several studies have shown that disruption of genes involved in the N-glycosylation pathway have significant effects on the properties of the cell wall (Dean, 1995; Gow *et al*., 1999; Tanner *et al*., 1995). Many of these glycosylation mutants showed severe morphological defects and also showed increased sensitivity to certain antibiotics, likely a result of increased permeability of the cell wall.

Cell surface carbohydrates have been directly implicated in the virulence of the opportunistic pathogen *C. albicans*, a yeast that causes candidiasis in humans. Masuoka and Hazen (1997) showed that the degree of cell wall protein mannosylation affected the
cell surface hydrophobicity (CSH) of *C. albicans*. CSH influences several important processes affecting disease development and virulence, including cell adhesion, morphogenesis and resistance to phagocytosis (Hazen, 1989). More recently, Masuoka and Hazen (1999) showed that the degree of cell wall mannosylation was determined primarily by the outer chain of cell wall protein N-glycans. Thus, manipulation of such outer chain structures could have a significant affect on the virulence of such organisms.

The role of cell surface carbohydrates has also been implicated in the pathogenicity of *S. schenckii*. This filamentous fungus is the etiological agent of sporotrichosis which causes chronic cutaneous infections in humans and animals (Crout *et al.*, 1977). The pulmonary form of sporotrichosis is particularly prevalent in immunocompromised patients. Recently, a direct correlation was observed between the cell wall carbohydrate composition, particularly rhamnose and mannose, and the virulence of the strains tested (Fernandes *et al.*, 1999). The rhamnose and mannose levels in the cell wall were observed to vary over culture time, and these differences were correlated to the ability of the fungus to cause disease symptoms in mice. This correlation led to the suggestion that the cell wall composition may influence the virulence of *S. schenckii*.

Sialic acid residues, which may be important for defense against host immune responses and for cell adhesion, have been found in *S. schenckii*, as well as in the pathogens, *Cryptococcus neoformans*, *Fonsecaea pedrosoi*, *Paracoccidioides brasiliensis*, and *C. albicans* (Alviano *et al.*, 1999; Rodrigues *et al.*, 1997; Soares *et al.*, 1993; Soares *et al.*, 1998; Soares *et al.*, 2000; Souza *et al.*, 1986). These anionic terminal sugars, typical of higher eukaryotic N-glycans, are not widely reported in fungi, thus it is interesting that these structures are found in these fungal pathogens. The sialic acids found
in these fungi have been shown to be important for the adhesion of these organisms to host tissues, and have also been implicated in avoidance of host immune clearance receptors (Alviano et al., 1999). The manipulation of glycan structures may inhibit the ability of these organisms to properly add sialic acid, thus reducing their virulence.

The filamentous fungus *O. novo-ulmi* is the causal agent of Dutch Elm Disease (DED), which has decimated elm populations in most of eastern North America (Brasier, 1991; Hintz, 1999). The DED fungus is mainly vectored by the European elm bark beetle *Scolytus multistriatus* and the native elm bark beetle *Hylurgopinus rufipes* (Bowden et al., 1994). Berbee and Taylor (1992a) have suggested a close relationship of *Sporothrix* and *Ophiostoma* based on 18S rRNA sequence divergence. The close relationship of *S. schenckii* and *O. novo-ulmi* was recently confirmed by comparison of chitin synthase I genes from these and other fungal species (Hintz, 1999). The close relationship of these organisms suggests that cell wall and secreted glycoproteins may be important in the virulence of *O. novo-ulmi*, and that studies in this plant pathogen may also have applicability in the more dangerous human pathogen. *O. novo-ulmi* offers many advantages as an experimental organism and a model for host-pathogen interactions. An efficient transformation system has been developed, allowing for ease of genetic manipulation (Royer et al., 1991). Similar to *S. schenckii* this fungus is dimorphic and depends on both the budding yeast and filamentous hyphal phases for pathogenicity. The investigation of pathogenic determinants in this organism, and the development of molecular tools specific for the organism will allow the development of an important model system for studying host-pathogen interactions.
Protein N-glycosylation is an ordered process which occurs in all eukaryotic species. The early steps of this process, which include the transfer of the oligosaccharide precursor $\text{Glc}_3\text{Man}_9\text{GlcNAc}_2$ to the nascent polypeptide and the removal of the three glucose residues, are almost identical in all eukaryotes (Kornfeld and Kornfeld, 1985). At this point, the pathways in various organismal lineages can become quite divergent resulting in quite different N-glycans structures as the end point in the pathway (Herscovics, 1999). In higher eukaryotes (ie. mammals), α-1,2-mannosidases remove a total of four mannose residues, yielding $\text{Man}_7\text{GlcNAc}_2$ which is the precursor for complex N-glycans. Filamentous fungi and yeasts, on the other hand, do not produce complex N-glycans, but produce high mannose N-glycans through a series of steps involving mannose removal by α-mannosidases followed by the addition of numerous mannose residues by mannosyltransferases to form the ‘outer chain’.

The α-mannosidases have been previously classified into two independently derived groups, Class I and Class II, based on biochemical properties, substrate specificity, inhibitor profiles, and sequence alignments (Daniel et al., 1994; Eades et al., 1998; Moremen et al., 1994). The Class II α-mannosidases are a heterogeneous group of enzymes that includes the lysosomal mannosidases, the Golgi mannosidase II and a distantly related group of enzymes, including the rat ER/cytosolic mannosidase (Bischoff et al., 1990), yeast vacuolar mannosidase (Yoshihisa and Anraku, 1989), and the $A.\text{nidulans}$ Class II mannosidase (Eades et al., 1998). Some of these enzymes are involved in oligosaccharide catabolism in the cytosol and vacuole. The Golgi mannosidase II is involved the production of complex N-glycans. Thus, these enzymes seem to be restricted to higher eukaryotes.
The Class I α-1,2-mannosidases are involved in the initial trimming of mannose sugars early in the N-glycan processing pathway and are thus ubiquitous in eukaryotes.

Several Class I α-mannosidases have already been characterized in filamentous fungi. Single members of the Class I α-mannosidase genes have been identified in *A. satoi* (Inoue *et al.*, 1995), *P. citrinum* (Yoshida and Ichishima, 1995), and *Trichoderma reesei* (Maras *et al.*, 2000). More recently, three different Class I α-mannosidase genes were identified in *A. nidulans* (Eades and Hintz, 2000b). Here we describe the identification, sequencing and analysis of a α-1,2-mannosidase from *O. novo-ulmi*.

5.2 Materials and Methods

5.2.1 Strains, Media and Growth Conditions: *O. ulmi* strain MH75 and *O. novo-ulmi* strain VA30 and were maintained on OCM agar plates and mycelium for DNA isolation was grown in liquid OCM (Royer *et al.*, 1991) at room temperature.

5.2.2 Oligonucleotide Primer Design: Degenerate oligonucleotide priming sites were selected by aligning four published α-1,2-mannosidase sequences – human (Bause *et al.*, 1993), rabbit (Lal *et al.*, 1994), yeast (Camirand *et al.*, 1991) and mouse (Lal *et al.*, 1994). Highly conserved blocks which showed low codon redundancy were chosen to design the PCR primers. The forward primer MANFOR was designed by reverse translation of the protein sequence GGLGESFYEY, and the return primer MANREV was designed from the complement of the reverse translation of the sequence FXLAETLKYLY. A codon usage table compiled for *A. nidulans* was used to aid in nucleotide selection at degenerate sites.
5.2.3 DNA Isolation and PCR amplification: Total genomic DNA was extracted from finely ground freeze-dried mycelium of *O. novo-ulmi* strain MH75. Approximately 400 mg of mycelium was vortexed with 2.5 ml of 50 mM EDTA; 0.2% SDS, centrifuged for 10 minutes and then 85 µl of 3M KOAc; 5M acetic acid added to the supernatant. Following a 20 minute incubation on ice, the suspension was recentrifuged and DNA was isopropanol precipitated from the supernatant. After resuspension in 100 µl TE (10 mM Tris pH 7.5; 1 mM EDTA), the DNA was extracted once with phenol, twice with chloroform/isoamyl alcohol (24:1) and ethanol precipitated. Each PCR reaction consisted of 10 - 100 ng of genomic DNA, 50 pmol of each primer, 10 mM Tris-HCl (pH 8.3), 1.5 mM MgCl₂, 50 mM KCl, 0.01% gelatin, 0.1% Triton X-100, 200 µM each of dATP, dCTP, dTTP, and dGTP and 0.2 units Taq DNA polymerase (Perkin-Elmer) in a final volume of 100µl. Amplification was performed in two stages using Perkin-Elmer thermal cycler. Five cycles at a lower stringency annealing temperature (56°C) were followed by 30 cycles at higher stringency (63°C). The PCR products were eluted from 1% low-melting point agarose, cloned into T-Vector (Promega) using the T-Vector cloning system and sequenced with Universal Forward and M13 Reverse primers.

5.2.4 Library Construction and Screening: The *O. novo-ulmi* α-mannosidase gene fragment was used as a template for a second round of PCR with the incorporation of radionucleotides to produce a probe for library screening. The PCR reactions were performed as previously described, except that the concentration of “cold” dCTP was reduced by 50% and 0.825 µM α-³²P-dCTP (5 µCi) was added to the reactions. The radiolabelled PCR products were purified with the Wizard PCR Prep Kit (Promega) and label incorporation assessed by scintillation counting.
A library of *O. novo-ulmi* (MH75) genomic sequences were constructed by digesting genomic DNA with *MboI* and ligating the resulting fragments on to *BamHI* pre-digested arms of lambda DNA vector EMBL-3. Concatamers of the ligated DNA were packaged using the Gigapack II (Stratagene) *in vitro* packaging system. Approximately 10^5 recombinant lambda plaques were immobilised on nylon membranes (Genescreen Plus, Dupont) and hybridized with the radiolabelled α-1,2-mannosidase specific probe DNA. Single hybridizing clones were selected and rescreened. Lambda DNA was isolated with the Wizard Lambda DNA Extraction Kit (Promega), digested with restriction enzymes and a 3.6 Kb EcoRI fragment containing the full length α-1,2-mannosidase gene was identified by Southern blot (Southern, 1975) and subcloned into pUC18.

5.2.5 DNA preparation and sequencing: Sequencing of the 3.6 Kb insert was accomplished using the "shotgun" sequencing method. Approximately 50 μg of the EcoRI insert was purified from a 1.5% low melting temperature agarose gel (Wizard Preps, Promega), randomly sheared and the resultant fragments were ligating into the M13mp19 vector. Shearing was accomplished by fragmentation of the DNA in a medical nebulizer at 30 bps for 2 minutes followed by digestion with 50U Mung Bean nuclease to remove internal single strand gaps. The DNA was repaired by the addition of 40U T4 DNA Polymerase and 25U Klenow fragment. The DNA was then electrophoresed on a 2% NuSieve agarose gel, and fragments ranging from 0.7-1.0 Kb were excised, purified and blunt-end ligated into M13mp19. Ligated DNA was transformed by electroporation into *E. coli*.

Recombinant plaques were selected on agar plates supplemented with X-Gal and IPTG grown overnight at 37°C. The DNA templates were purified using the Qiagen Kit.
(Qiagen) and diluted to 100 ng/µl. The automated fluorescence sequencing was
performed on a ABI 373A automated sequencer (Applied Biosystems, Foster CA).
Sequence data was generated for approximately 100 plaques, and the sequences were
aligned and compiled using Seqman in the DNASTar program (DNASTar, Madison, WI),
resulting in 7-fold redundancy at each base position.

5.2.6 Identification of Introns: Putative introns were located by examination of the DNA
sequences for intron consensus sequences in combination with reading frame shifts.
Putative introns were verified by comparison of genomic DNA sequence of the α-1,2-
mannosidase gene to reverse transcribed mRNA. Total RNA was extracted from
mycelium grown in 150 ml liquid media using the guanidine isothiocyanate method
(TRIzol, GibcoBRL). Approximately 1 gram of fresh mycelium was harvested by suction
filtration was homogenized with 6 ml of TRIzol reagent, and incubated at 30°C for 10
minutes. The homogenate was extracted with 1.2 ml chloroform, and the mixture was
shaken vigorously for 15 seconds, incubated at 30°C for 2 minutes and subjected to
centrifugation at 3000 rpm for 15 minutes. The upper aqueous phase was removed and 3
ml isopropanol was added to precipitate the RNA. After incubation at 30°C for 10
minutes, the RNA was pelleted by centrifugation and washed with 70% ethanol/diethyl
pyrocarbamate (DEPC). The RNA pellet was resuspended in 30 µl H2O/DEPC and 5 µl
was used for cDNA preparation and PCR amplification.

Reverse transcriptase PCR was performed using Superscript II reverse
transcriptase (GibcoBRL) for first strand cDNA synthesis using an oligo-dT primer
followed by PCR amplification of the cDNA using α-1,2-mannosidase specific primers.
The oligo-dT primer was annealed to the RNA by adding 500 ng oligo-dT to
approximately 1-3 μg RNA in a final volume of 10 μl H₂O/DEPC. The mixture was heated to 70°C for 10 minutes and then quickly chilled on ice. Reverse transcription was then started by addition of 4 μl First Strand Buffer (250 mM Tris-Cl pH8.3; 375 mM KCl; 15 mM MgCl₂), 2 μl 0.1 M dTT, 1 μl 10 mM dNTPs, and 1 μl (200U) Superscript II reverse transcriptase followed by incubation at 42°C for 50 minutes. After first strand cDNA synthesis, the RNA was digested by the addition of 1 μl (2U) RNase H and incubation at 37°C for 20 minutes.

The cDNA was used to amplify regions containing putative introns for comparison with genomic DNA amplification. Primers were designed from genomic sequences flanking the putative intron (OU-IF1 and OU-IR1). PCR amplification of the cDNA was performed in Perkin-Elmer thermal cycler for 30 cycles (94°C, 1.5 min.; 57°C, 1.5 min., 72°C, 2.5 min.) and each reaction contained: 2 μl first strand reaction, 50 pmol of each primer, 10 μl 10X Taq Buffer, 200 μM each of dATP, dCTP, dTTP, and dGTP and 0.2 units Taq DNA polymerase (Perkin-Elmer) in a final volume of 100μl.

5.2.7 Design of Disruption Cassette: The disruption cassette OUI A-Dis was constructed by flanking a selectable marker gene with DNA fragments derived from the α-1,2-mannosidase. The hygromycin phosphotransferase (HPH) gene encoding hygromycin resistance under control of the *Aspergillus nidulans gpdA* promoter was contained on the pAN7-1 vector (Punt *et al.*, 1987) and was used as a selectable marker. The marker was flanked 5’ and 3’ with 1 Kb of PCR amplified α-1,2-mannosidase sequence. The PCR primers used in the amplification reaction were ‘tailed’ with 5’ overhanging regions containing appropriate restriction sites for directional cloning into the disruption vector. The primer pair OUDIS1-F and OUDIS1-R were tailed with the restriction sites *BgIII* and
BstEII, respectively and were used to amplify the region -695 to +366 of the \(\alpha-1,2 \)-mannosidase gene using standard PCR amplification conditions (Sec. 5.2.3). This amplification product was digested with \(BglII \) and \(BstEII \), gel purified and ligated with an equivalent amount of similarly digested pAN7-1 vector. The original restriction sites in the pAN7-1 were at position +138 (\(BglII \)) and +396 (\(BstEII \)). The stage 1 construct which contained the 1100 bp mannosidase fragment upstream of the \(gpdA-HPH \) marker was digested with \(BamHI \) and \(HindIII \) to facilitate the insertion of a second flanking region downstream of the marker. This second region, corresponding to positions +1401 to +2109 of the \(\alpha-1,2 \)-mannosidase gene was also produced by ‘tailed’ PCR. The ‘tailed’ primers OUDIS2-F and OUDIS2-R, containing the restriction site \(HindIII \) and \(BamHI \), generated a 708 bp PCR product. The amplification product was digested with \(HindIII \) and \(BamHI \) and ligated with similarly digested OUDIS1 vector. The gene disruption construct (OUIA-Dis) contained both the 1100 bp and the 708 bp mannosidase regions flanking the \(gpdA \)-driven \(HPH \) gene and was used for disruption experiments (Figure 15).

5.2.8 Disruption of the \(O. \) novo-ulmi \(\alpha-1,2 \)-mannosidase gene

Protoplasts of \(O. \) novo-ulmi strain MH75 were prepared by the method of Fincham (1989) using Sigma Lysing Enzyme and were transformed with 1 \(\mu g \) of the gene disruption construct OUIA-Dis (non-linearized) and plated on OCM containing 0.6M sucrose as an osmoticum and 200 \(\mu g/ml \) hygromycin B (Sigma Chemicals). Transformed colonies were selected and and re-plated on two successive rounds of hygromycin selection media to ensure transformant stability and purity. DNA for PCR verification of gene disruption was prepared according to Cenis (1992).
FIGURE 15: Construction of *O. novo-ulmi* α-1,2-mannosidase disruption vector. The tailed PCR primer pairs OUDIS-1F/1R and OUDIS2F/2R were used to amplify regions of the α-1,2-mannosidase gene. Tailed amplification products were directionally cloned into the vector pAN7-1, which contained the hygromycin phosphotransferase (HPH) gene driven by the glyceraldehyde-3-phosphate dehydrogenase (*gpdA*) promoter. Integration of the disruption vector was screened using the diagnostic primers OUDIAG-F, which is upstream of the integration site and is not found in the disruption vector, and GPD-R, which is found in the *gpdA* promoter and not the α-1,2-mannosidase gene.
Gene disruptions were verified using diagnostic PCR primers. The forward diagnostic primer, OUDIAG-F was specific for sequence upstream of the α-1,2-mannosidase gene and not contained in the disruption construct and the return diagnostic primer was specific for the gpdA promoter which would only be found in the disruption construct, but not the wild-type genome. Amplification would only be expected if these two primers were in proximity due to integration of the disruption construct at the α-1,2-mannosidase locus. PCR amplification with the diagnostic primers OUDIAG-F and GPD-R was performed in a Perkin-Elmer thermal cycler for 30 cycles using standard conditions.

5.2.9 Sequence Alignments and Comparison: Protein sequences for Class 1 α-mannosidases were obtained from the GenBank database (National Center for Biotechnology Information – NCBI). Sequences used included S. cerevisiae (Camirand et al., 1991 - Accession M63598), A. nidulans IA, IB, IC (Eades and Hintz, 2000b – AF129497, AF129496, AF233287) A. satoi (Inoue et al., 1995 - D49827), P. citrinum (Yoshida and Ichishima, 1995 - D45839), T. reesei (Maras et al., 2000 – AF212153) D. melanogaster (Kerscher et al., 1995 - X82640), S. frugiperda (Kawar et al., 1997 - AF005035), H. sapiens IA (Bause et al., 1993 - X74837), H. sapiens IB (Tremblay et al., 1998 - AF027156), M. musculus IA (Lai et al., 1994 - U04299), H. sapiens IC (Tremblay and Herscovics, 2000 – AF261655), H. sapiens ER-Man9 (Tremblay and Herscovics, 1999 - AF148509) M. musculus IB (Herscovics et al., 1994 - U03457), and S. scrofa (Bieberich et al., 1997 - Y12503). The outgroup was A. nidulans Class IIC α-mannosidase (Eades et al., 1998 - AF016850). Multiple alignments of the full length sequences were performed using the MAP alignment program (Huang, 1994) at the Baylor College of Medicine web site (BCM Search Launcher) with default parameters.
Phylogenetic relationships were determined using the more conserved C-terminal portion of each gene. Phylogenetic trees were generated using PAUP 4.0b* computer software (Swofford, 1998). After initial execution of the alignment file, trees were generated using maximum parsimony with a full heuristic search (100 replicates of random stepwise branch addition). The most parsimonious tree was rooted using the A. nidulans Class IIC α-mannosidase protein sequence as an outgroup. Confidence values for the tree branches were determined using the bootstrap option (100 bootstrap replicates using a full heuristic search).

5.3 Results

5.3.1 Identification of O. novo-ulmi Class I α-1,2-mannosidase

The O. novo ulmi Class I α-1,2-mannosidase was identified by utilization of degenerate PCR primers designed from conserved regions of the protein sequences from available Class I α-1,2-mannosidases. Conserved regions were identified by multiple sequence alignment of S. cerevisiae (Camirand et al., 1991), mouse IA (Lai et al., 1994), human IA (Bause et al., 1993), and rabbit liver (Lai et al., 1994). Selection of conserved sequences for primer design relied on high sequence identity between the four proteins in combination with a low codon redundancy. A codon preference table for the fungus A. nidulans was used to predict the codon redundancy in the primer. Both A. nidulans and O. novo-ulmi are Ascomycetous fungi and likely have a similar codon preference. Two primers, ManFor and ManRev, were designed which contained the least codon redundancy, and the highest annealing temperature using the computer program OLIGO. Assuming at least three base mismatches, a target annealing temperature in the range of
62-64°C was used. Amplification of *O. novo-ulmi* total genomic DNA with these two primers yielded a 750 bp product, which was close to the expected size, since the primer positions corresponded to a span of approximately 250 amino acids in the four homologous sequences. Upon sequence determination of this PCR product and searching the GenBank database for sequence homology (BLAST search), several high scoring matches were found with other Class 1 α-1,2-mannosidases, confirming that we had amplified a portion of the Class 1 α-1,2-mannosidase from *O. novo-ulmi*.

A genomic library of *O. novo-ulmi* sequences was screened and a 3.6 Kb *EcoRI* fragment containing the full length gene was subcloned and the entire sequence determined by the “shotgun sequencing” method. Copy number was determined by Southern analysis. Wild-type DNA was digested with one of several restriction enzymes (*EcoRI, Sall* and *SacII*) and probed with the 750 bp radiolabelled PCR fragment. The PCR fragment did not contain any internal *EcoRI, Sall* or *SacII* restriction sites. The probe hybridized to a single restriction fragment in each of the digests (Figure 16), indicating that this gene is found in single copy in the haploid *O. novo-ulmi* genome.

5.3.2 Sequence analysis

The α-1,2-mannosidase gene sequence *O. novo-ulmi* was analyzed to identify the translational start codon and open reading frame (ORF), including any introns, and to identify consensus sequences in the flanking regions of the genes. Reading frames were initially identified by sequence homology with published α-1,2-mannosidase sequences. The entire 3.6 Kb nucleotide sequence was compared to sequences in the GenBank database by BLASTX search, which compared the translated amino acid sequences of all
FIGURE 16: Copy number of *O. novo-ulmi* Class I α-1,2-mannosidase. Southern blots of genomic DNA was hybridized with the radiolabelled 750 bp amplification product of the PCR primer pair ManFor and ManRev. Genomic DNA was digested with either *Eco*RI (lane 1), *SalI* (lane 2) or *SacII* (lane 3). DNA ladders were used to determine sizes of the hybridizing factors (Kb).
three reading frames to protein sequences contained in the database. A single reading frame was found encoding a 625 amino acid polypeptide which contained a high degree of similarity with several α-1,2-mannosidase protein sequences in the database.

Alignment of the *O. novo-ulmi* α-1,2-mannosidase sequence with published sequences allowed detection of potential introns in the coding sequence. The full length *O. novo-ulmi* gene aligned very well with the mannosidase sequences from other filamentous fungi (*A. satoi, P. citrinum, T. reesei*), however, the *O. novo-ulmi* sequence did contain an apparent insertion of 37 amino acids in length, indicating the possibility of an intron at this location. This region did not contain any typical intron splice sequences and no shifts in the translational reading frame were noted. Reverse transcription PCR amplification of *O. novo-ulmi* cDNA followed by sequence analysis confirmed that there was no intron at this location in the *O. novo-ulmi* α-1,2-mannosidase gene and that this region does indeed represent a DNA insertion into the coding region of the gene.

The N-termini of Class 1 α-1,2-mannosidases are not very well conserved in length or composition. The location of the N-terminus of the *O. novo-ulmi* gene product was predicted based on sequence alignments, and the presence of an AUG start codon in the region corresponding to the expected length of the primary reading frame. The DNA sequence environment of the AUG start codon was compared to eukaryotic (especially fungal) consensus sequences to predict the correct start codon. The identified translation start site was embedded in the sequence CGTCATGGC. This sequence bears some similarity to other start sites in filamentous fungi, although there does not appear to be a strong consensus in these organisms (Ballance, 1986). The G at +4 and C at +5 are strongly conserved in other filamentous fungi, as is the C at -1 and the C at -4. The G at
-3 is inconsistent, since most eukaryotes (including filamentous fungi) usually have an A at this position, however, this site is not conserved in the *S. cerevisiae* α-1,2-mannosidase (Camirand *et al.*, 1991). Other supporting data for this ATG encoding the translation start site included the presence of a potential TATA-box found 129 bp upstream of this start site (TATAAA). No obvious CAAT motif was found in the vicinity of the start site, although this is not unusual. Fungal promoters also tend to contain numerous CT-rich regions (MacKenzie *et al.*, 1993), and several of these motifs were found upstream of the putative start site. The coding region of the presumptive gene was 1875 bp in length and encoded a peptide of 625 amino acids with an estimated molecular weight of 70 kD. The 3' downstream sequence did not contain a typical consensus transcription termination signal (AAUAAA), though the sequence was extremely AT-rich, which is characteristic of the downstream untranslated region of many fungal transcripts (Gurr *et al.*, 1987).

The N-terminus of the protein sequence was characteristic of a eukaryotic signal sequence and type II transmembrane domain. The first ten amino acids (*n*-region) were highly charged (net charge +4) and were followed by a large hydrophobic domain (*h*-region) of 14 amino acids as identified by Kyte-Doolittle hydropathy plot (Figure 17). The hydrophobic domain was immediately followed by 5 polar residues (*c*-region). This is consistent with other Class 1 α-1,2-mannosidases which all contain a signal sequence and a type II transmembrane region, though the length and composition of these motifs are not well conserved.
FIGURE 17: Kyte-Doolittle hydropathy plot of *O. novo-ulmi* predicted amino acid sequence. Vertical axis shows the hydrophobicity of a given region of the protein (Kyte and Doolittle, 1982) with positive values representing hydrophobic regions of the protein, and negative values representing hydrophilic regions of the protein.
5.3.3 Gene Disruption

A common method of inferring gene function \textit{in vivo} is to disrupt the gene function by interruption of the translational reading frame of the gene. Disruption of the \textit{O. novo-ulmi} \(\alpha\)-1,2-mannosidase gene was accomplished by replacement of an internal region of the gene with the hygromycin phosphotransferase (\textit{HPH}) gene. A disruption vector (OU1A-DIS) was designed which contained a \textit{gpdA}-driven \textit{HPH} gene flanked on the 5' and 3' ends by 700-1000 bp of \(\alpha\)-1,2-mannosidase sequence. Wild type \textit{O. novo-ulmi} was transformed with the disruption vector and initial screening on hygromycin selected for those protoplasts which had incorporated the \textit{HPH} marker. To identify transformants in which homologous integration of the disruption vector resulted in replacement of the \(\alpha\)-1,2-mannosidase gene, DNA was isolated from putative transformants and used as a template in a diagnostic PCR amplification.

The forward diagnostic PCR primer was designed to hybridize upstream of the targeted integration site in the genome, while the reverse PCR primer was designed to hybridize to the \textit{gpdA} promoter of the disruption vector (Figure 15). This diagnostic PCR would produce a 1.3 kilobase amplification product only if homologous integration and gene replacement had occurred at the \(\alpha\)-1,2-mannosidase gene locus. Using this method, one of fourteen of the putative transformants yielded the 1.3 kb amplification product indicating homologous integration of the disruption cassette (Figure 18). The amplified DNA was sequenced to verify that this PCR product was indeed derived from this integration event. The amplified DNA fragment contained \(\alpha\)-1,2-mannosidase sequence located upstream of the integration site, immediately followed by \(\alpha\)-1,2-mannosidase sequence included in the disruption cassette followed by the \textit{gpdA} promoter sequence.
FIGURE 18: Diagnostic PCR screening of *O. novo-ulmi* disruption transformants. Gel electrophoresis of amplification products using the diagnostic PCR primers OUDIAG-F and GPD-R. The arrow indicates a PCR fragment at the expected size of 1.3 kb. DNA standards (St.) for size comparisons are shown in kilobases (kb).
from the pAN7-1 plasmid. Disruption of the Class I α-1,2-mannosidase in *O. novo-ulmi* was not lethal to the organism, although it did slightly alter the phenotype. The mutant strain exhibited a 'fluffy' morphology, containing more aerial hyphae than the wild-type strain. The mutant also exhibited a reduced radial growth rate compared to the wild-type.

5.3.4 Sequence comparison

The full length *O. novo-ulmi* α-1,2-mannosidase protein sequence was compared to other published α-1,2-mannosidase sequences obtained from the GenBank database, including homologous genes from mammals (human, mouse, pig), insect (*D. melanogaster, S. frugiperda*), yeast (*S. cerevisiae*), and filamentous fungi (*A. nidulans, A. satoi, P. citrinum, T. reesei*). The mannosidase protein sequences were relatively well conserved with respect to overall gene length, with some variability in the N-terminal regions. The yeast and fungal protein sequences were slightly smaller in length (511 to 549 aa) than the rest of the mannosidase sequences (641 to 670 aa). The *O. novo-ulmi* sequence was 625 aa in length, more similar in length to the mammalian and insect sequences than to the other fungal sequences. Multiple sequence alignments revealed that the C-terminal regions of the proteins were very well conserved, whereas the N-termini, particularly the first 50-100 amino acids were not well conserved between the various protein sequences.

A phylogenetic tree was generated from the multiple sequence alignment which provided an accurate measure of the relatedness of these gene sequences (Figure 19). Alignments were performed using the C-terminal portion of the genes containing highly conserved regions. As expected all of the fungal gene sequences, excluding yeast, grouped
FIGURE 19: Phylogram showing sequence relationships of Class I α-mannosidases, including $O.\ novo-ulmi$ α-1,2-mannosidase. Phylogram was generated from the multiple sequence alignment using PAUP 4.0b* analysis program. Numbers above the branches of the tree represent bootstrap confidence values, out of 100 bootstrap replications. Branch lengths represent the number of amino acid substitutions.
closely together, with the *O. novo-ulmi* sequence being closely grouped with the *A. nidulans* α-1,2-mannosidase IA and IC enzymes. The *A. nidulans* α-1,2-mannosidase IB, *A. satoi*, *P. citrinum*, and *T. reesei* α-1,2-mannosidases were monophyletic. The insect sequences also grouped together, as did the majority of the mammalian sequences. The human ER Man9-mannosidase and the yeast ER Man9-mannosidase also grouped together, although these enzymes appeared to be distantly related to the remainder of the Class I α-1,2-mannosidases. Bootstrap analysis was performed to assess the confidence values at each node in the tree. This analysis shows that the relationship of the *O. novo-ulmi* α-1,2-mannosidase, and the *A. nidulans* α-1,2-mannosidase IA and IC has low certainty, although the *A. nidulans* IB, *A. satoi*, *P. citrinum*, and *T. reesei* monophylogeny is supported with high confidence.

5.4 Discussion

Investigation of the genetic components of the glycosylation pathway in *O. novo-ulmi* may provide ideal targets for antifungal drug development. It would be ideal to identify genetic targets early in the fungal glycosylation pathways, such that inhibition or disruption of these genes may cause maximal effect. However, the viability of such targets is offset by the fact that the early stages of the glycosylation pathways are well conserved amongst eukaryotes (Buurman *et al.*, 1998; Gow *et al.*, 1999). Major divergences in the pathway between evolutionary lineages seems to begin with the removal of mannose molecules by Class I α-1,2-mannosidases in the ER and Golgi. This region of the fungal glycosylation pathway may thus provide an ideal antifungal target. The diversity of the Class I α-1,2-mannosidase gene family in filamentous fungi is being mapped with the
sequence analysis of several novel genes from different species, including: *A. satoi* (Inoue *et al.*, 1995), *P. citrinum* (Yoshida and Ichishima, 1995), *T. reesei* (Maras *et al.*, 2000), and *A. nidulans* (Eades and Hintz, 2000b). It is expected that the diversity found in a particular species should be reflected with similar diversity in related species. Here, we have cloned the Class I α-1,2-mannosidase gene from *O. novo-ulmi*.

The *O. novo-ulmi* α-1,2-mannosidase gene encoded a 625 polypeptide which did not contain any introns in the reading frame of the gene. This was supported by the fact that the only possible insertion which could represent an intron, as determined by multiple sequence alignment, was also found in the mRNA and thus was not an intron sequence. Though the majority of genes in higher eukaryotes contain introns, only about two-thirds of genes sequenced in filamentous fungi contain introns, and even these tend to be quite short and sparse (Ballance, 1986). Indeed, of the small number of genes which have been sequenced in *O. novo-ulmi*, at least two do not contain any introns [coll (*Pereira et al.*, 2000), GenBank Accession #U35661); polygacturonase (GenBank Accession #AF052061)]. The fact that the *O. novo-ulmi* α-1,2-mannosidase gene does not contain any introns thus does not seem unusual. The *O. novo-ulmi* Class I α-1,2-mannosidase protein sequence contains a typical type-II transmembrane domain and, similar to other Class I α-1,2-mannosidases, is likely found in the ER and Golgi.

Sequence characterization of the Class I α-1,2-mannosidase isolated from *O. novo-ulmi* indicated that this gene showed relatively low overall similarity to the mammalian and insect Class I α-1,2-mannosidases, and much higher similarity to other fungal sequences. The dissimilarity of the fungal Class I α-1,2-mannosidases to other major lineages increases the potential of this region as a point of control. Obviously, any
drugs that could be developed as inhibitors of this region of the pathway need to be specific for the pathogen, without affecting the host pathway. By utilizing high-throughput screening of small molecule libraries, it may be possible to identify compounds which interact specifically with fungal Class I α-1,2-mannosidases which do not affect these enzymes in the host, allowing the development of antifungal drugs.

Assessment of possible functions of the Class I α-1,2-mannosidases were investigated by gene disruption. Loss of function of this gene product through gene disruption reduced the radial growth rate of the fungus and altered its morphology, although these effects were mild. Disruption mutants were fluffy with more aerial hyphae than wild type strains. This is in contrast with the result of mns1 disruption in S. cerevisiae, which had no effect on the yeast growth or morphology (Camirand et al., 1991). The distinct differences between the glycosylation pathways of S. cerevisiae and filamentous fungi may explain these contradictory results. The mns1 gene removes a single mannose residue from Man9GlcNAC2 to produce Man6GlcNAC2, however, this step does not appear to be necessary for further elongation of the precursor to produce high mannose and hypermannosylated structures (Puccia et al., 1993; Romero and Herscovics, 1989). This step of the yeast pathway appears to be involved in quality control to ensure proper protein folding in the ER, a function which cannot necessarily be attributed to the O. novo-ulmi Class I α-1,2-mannosidase. Synthesis of high mannose N-glycan structures in S. cerevisiae does not seem to rely on mannose removal, since the mannosyltransferase enzymes which add mannose to the N-glycan core can act equally on Man6GlcNAC2 or Man9GlcNAC2.
Similarity of the *O. novo-ulmi* α-1,2-mannosidase to the *A. satoi* and *P. citrinum* Class I α-1,2-mannosidases suggests that, similar to the *A. satoi* and *P. citrinum* enzymes, this enzyme is likely involved in removal of up to four mannose residues, which is also similar to the process found in higher eukaryotes. The presence in filamentous fungi of N-glycan structures which appear to have been modified by removal of mannose prior to outer chain elongation (Maras et al., 1999) suggests that these enzymes are more crucial for production of N-glycan structures than in *S. cerevisiae*. Unlike *S. cerevisiae*, certain filamentous fungi contain multiple Class I α-1,2-mannosidases (Eades and Hintz, 2000b), suggesting diversification of this pathway in filamentous fungi. This increased diversification may be reflected in a diversification of function which illustrates the increased importance of the pathway in filamentous fungi for N-glycan function, which in turn increases the viability of this pathway as an antifungal target. Due to the relatedness and common ancestry of filamentous fungi, it is expected that the diversity of the Class I α-1,2-mannosidase gene family in *A. nidulans* would also be found in other filamentous fungi. That these genes have not yet been identified may be more a result of insufficient searching, rather than an absence.

That the disruption of the *O. novo-ulmi* Class I α-1,2-mannosidase gene did not radically impact the growth or morphology of the organism suggested that this may not present an optimal target for the development of antifungals. It must be considered, however, that slight alterations in plate morphology may actually be significant with respect to pathogenicity. Further analysis would be required to assess the effect of gene disruption on the structures of N-glycans produced. Also, the alteration of the morphology to a ‘fluffy’ phenotype may be a result of altered cell surface hydrophobicity, which may
affect the ability of the fungus to adhere. Such phenotypes have been associated with the ability of the fungus to form aerial hyphae, a trait which is highly dependent on cell surface hydrophobicity (Temple and Horgen, 2000; Temple et al., 1997). The ultimate effects that altered N-glycan structures may have on the aforementioned pathogenicity factors which may be dependent on appropriate N-glycosylation would require pathogenicity trials on host elms.

A second consideration when considering the effects of disruption of the Class I α-1,2-mannosidase from *O. novo-ulmi* is the possibility of the existence of multiple genes with overlapping functions. Three such genes were found in *A. nidulans* (Eades and Hintz, 2000b), and multiple genes have been found in humans and mice (Bause et al., 1993; Lal et al., 1998; Tremblay et al., 1998; Tremblay and Herscovics, 2000). Roberts et al. (1998) also found evidence for functional redundancy after disruption of the Class I α-1,2-mannosidase gene in *D. melanogaster*. It thus appears that multiple genes may be involved in mannose removal in filamentous fungi, with the effect of increasing the efficiency and fidelity of this pathway. This would explain the mild effects of disruption of this gene in *O. novo-ulmi*, and would suggest that multiple gene disruptions of all Class I α-1,2-mannosidases found in this organism may produce more significant effects. It will be necessary to fully characterize this gene family in *O. novo-ulmi*, possibly utilizing the information provided by the similar study in *A. nidulans* (Eades and Hintz, 2000b), in order to fully assess this region as a potential antifungal target.

We are undertaking a novel approach by investigating the general process of protein glycosylation, which can simultaneously affect a large number of pathogenicity determinants and thus the general ability of a pathogen to invade a host tissue (parasitic
fitness). Investigation of the glycosylation machinery in such host-pathogen systems will allow for a greater understanding of host-pathogen interactions and may provide targets for interrupting the flow of signals between the organisms, thus providing a method for control of fungal infectious diseases. Further characterization of the glycosylation machinery in the filamentous fungi may provide a better understanding of the molecular basis of the host-pathogen interaction and may illustrate key differences between the host and pathogen which may be exploited for control purposes.
CHAPTER 6 - General Discussion

The general objective of this research project was to characterize the \(\alpha \)-mannosidase gene family in filamentous fungi. The \(\alpha \)-mannosidase gene family is involved in the processing of N-glycans as they pass through the ER and Golgi by removal of mannose residues prior to further modification to produce mature N-glycan structures. Members of this gene family also play a role in the catabolism and recycling of oligosaccharides in the cytosol and lysosome. Although a great deal is known about these processes in mammals (Kornfeld and Kornfeld, 1985; Moremen et al., 1994) and yeast (Herscovics, 1999), much less is known in filamentous fungi. This research was initiated in the filamentous fungus \textit{A. nidulans} which is a useful host for the expression of heterologous proteins. To utilize this host for the production of human therapeutic proteins which require specific N-glycan structures for their efficacy, it would be necessary to manipulate the N-glycan processing pathways to produce the N-glycans found on the native proteins. Such manipulations require elucidation and modulation of the N-glycosylation machinery in filamentous fungi.

In order to recreate the human N-glycan processing pathways in fungi, it will be necessary to fully elucidate the similarities and differences between the pathways in these organisms. Although initial stages of the N-glycan pathways are very similar amongst all eukaryotes, the intermediate stages of N-glycan processing involving mannose removal appear to vary amongst major lineages. This divergence between major lineages is reflected in the types of N-glycans produced in different organisms, which can be quite different. Mannose removal in mammalian systems involves several \(\alpha \)-mannosidases in the ER and Golgi apparatus. Although there is evidence that mannose removal in filamentous
fungi resembles that found in mammals (Maras et al., 1999), the enzyme or enzymes involved in this process were not known. Characterization of the α-mannosidases in *A. nidulans* is a significant step in resolving this process in filamentous fungi.

When this project was initiated, little was known about the phylogenetic structure of this gene family. A reverse genetics approach was utilized to identify and fully sequence a novel α-mannosidase in *A. nidulans*, using the limited data available from published α-mannosidase sequences. As additional α-mannosidases were subsequently characterized in other organisms, it became clear that this gene family contained two major classes (Class I and Class II), which were evolutionarily distinct (Daniel et al., 1994; Moremen et al., 1994), and our own phylogenetic analysis of published α-mannosidase sequences verified this distinction (Figure 9; Chapter 2; Eades and Hintz, 1998). It was unclear at the time whether the somewhat anomalous rat ER/cytosolic α-mannosidase (Bischoff et al., 1990) and yeast vacuolar α-mannosidase (Yoshihisa and Anraku, 1989) should be included in the Class II group, or should form a third distinct group. Phylogenetic analysis of the *A. nidulans* α-mannosidase revealed that it was a Class II α-mannosidase which was highly similar to the rat ER/cytosolic and yeast vacuolar α-mannosidases (Figure 9; Chapter 2; Eades and Hintz, 1998), thus solidifying the inclusion of these α-mannosidases as Class II enzymes. Our analysis further revealed that the Class II α-mannosidase genes could actually be classified as three distinct subgroups, Class IIA, IIB, and IIC, the latter containing the rat ER/cytosolic, yeast vacuolar and *A. nidulans* α-mannosidases.

The Class IIC α-mannosidases are an anomalous group of enzymes with diverse functions and cellular locations. The rat Class IIC α-mannosidase appears to be found in
both the ER and the cytosol and is likely involved in N-glycan catabolism (Bischoff et al., 1990; Grard et al., 1996; Haeuw et al., 1991; Moore and Spiro, 1994; Tulsiani and Touster, 1987). The yeast Class IIC α-mannosidase, however, is localized to the vacuole (Yoshihisa and Anraku, 1989, 1990). The cellular localization of the *A. nidulans* Class IIC α-mannosidase was not conclusively identified, although it may be localized to a subcellular compartment. What is clear is that this enzyme, similar to the yeast Class IIC α-mannosidase lacks a typical signal sequence, indicating that if the enzyme is indeed localized to a subcellular compartment, it is not reaching its destination via normal secretion signal routing mechanisms. This has also been suggested for the targeting of the yeast Class IIC α-mannosidase vacuole.

Although it became apparent that the Class II α-mannosidase likely was not involved in N-glycan production, we were interested to determine the necessity of this gene for cellular function. Disruption of the gene did not appear to have any significant effects on the growth or morphology of *A. nidulans*, implying that this gene is not essential. Overexpression of the gene also did not have any significant cytotoxic effects. Thus, it will be possible to express this gene intracellularly or extracellularly for future work without harm to the organism.

Phylogenetic analysis of the α-mannosidase gene family (Eades et al., 1998), combined with emerging research in the field led to the subsequent investigation of the Class I, rather than the Class II, α-mannosidases in *A. nidulans*. It became apparent that these genes were directly involved in the processing of N-glycans during their synthesis and would provide excellent candidates for the manipulation of this pathway for the production of specific N-glycan structures. A single Class I α-1,2-mannosidase, *mnsIA*,

was identified using degenerate PCR primers designed from multiple sequence alignments of newly available published Class 1 α-1,2-mannosidase amino acid sequences. Two additional Class 1 α-1,2-mannosidases,

\textit{mnslB} and \textit{mnslC}, were subsequently identified in utilizing the \textit{A. nidulans} Expressed Sequence Tag (EST) database and these three α-1,2-mannosidase genes were cloned and fully sequence characterized (Eades and Hintz, 2000b; Chapter 3).

Single members of the Class I α-mannosidase genes were found in \textit{A. satoi} (Inoue \textit{et al.}, 1995), \textit{P. citrinum} (Yoshida and Ichishima, 1995), and \textit{T. reesei} (Maras \textit{et al.}, 2000). Purification and biochemical characterization of the \textit{A. satoi} and \textit{P. citrinum} α-1,2-mannosidase showed that these enzymes were able to catalyze the stepwise removal of mannose from \textit{Man}_9\textit{GlcNAc}_2, indicative of their putative role in N-glycan processing. This is consistent with the fact that filamentous fungi produce N-glycans as small as \textit{Man}_3\textit{GlcNAc}_2, indicating that four mannose are removed from N-glycans during processing in these organisms. The process of mannose removal in the N-glycan pathways of filamentous fungi thus appears to be more similar to mammalian systems than to yeast systems (Figure 20). Filamentous fungi produce mainly oligomannosidic N-glycans, likely due to the action of specific mannosyltransferase enzymes. The removal of mannose by α-1,2-mannosidases prior to the addition of mannose by mannosyltransferases could be explain by the necessity for \textit{Man}_3\textit{GlcNAc}_2 intermediates for the proper folding, targeting and secretion of glycoproteins in fungi. The similarity of the mannose removal process in filamentous fungi and mammals indicates that the associated processes of glycoprotein folding, targeting and secretion may also be similar in these organisms.
FIGURE 20: N-glycosylation synthesis pathway. The initial stages of the pathway are common to all systems [A]. Modification of \(\text{Man}_n \text{GlcNAc}_2 \) produces different final N-glycan structures in yeast [B], filamentous fungi [C], and mammalian systems [D]. The final structures shown represent the most common structures found in these species. Variations on these structures are found in some species.
The identification of three Class I α-1,2-mannosidases in *A. nidulans* was the first report of multiple Class I α-1,2-mannosidases in a single fungal species. This reveals further similarity to mammalian N-glycan processing pathways, which utilize multiple Class I α-1,2-mannosidases to process Man₉GlcNAc₂ to Man₅GlcNAc₂. The human IA, IB, and IC α-1,2-mannosidases are all capable of reducing Man₉GlcNAc₂ to Man₅GlcNAc₂, however, each has slightly differing specificities (Tremblay *et al.*, 1998; Tremblay and Herscovics, 2000). Human α-1,2-mannosidase IC, for instance, rapidly converts Man₉GlcNAc₂ to Man₅GlcNAc₂, but slowly converts that structure into Man₅GlcNAc₂. This contrasts with human α-1,2-mannosidase IB which rapidly converts Man₉GlcNAc₂ to Man₅GlcNAc₂. The diversification of the substrate specificities of these enzymes, and the products produced has also diversified the N-glycan processing pathway in mammals. This diversification may merely increase the efficiency and fidelity of the pathway, or alternatively, these intermediate structures might be utilized as lectin binding molecules for glycoprotein targeting or modified to produce novel N-glycan structures.

To determine the exact role of multiple Class I α-1,2-mannosidases in filamentous fungi requires purification and biochemical characterization of these enzymes. Multiple sequence alignments and phylogenetic analysis revealed that α-1,2-mannosidase IB amino acid sequence was highly related to the Class I α-1,2-mannosidases from *A. satoi* and *P. citrinum*, thus the *mnsIB* gene is likely an orthologue of the Class I α-1,2-mannosidase genes identified in these organisms (Eades and Hintz, 2000b). The *A. satoi* and *P. citrinum* Class I α-1,2-mannosidases have been previously characterized (Ichishima *et al.*, 1999; Yoshida *et al.*, 1998), and it is believed that the biochemical properties of the α-1,2-
mannosidase IB would be relatively similar. The α-1,2-mannosidase IA and α-1,2-mannosidase IC amino acid sequences were more distantly related. Biochemical characterization of the Class I α-1,2-mannosidases from *A. nidulans* was thus initiated with the α-1,2-mannosidase IC (Chapter 4). This member of the gene family was chosen since it is less similar to the *A. satoi* and *P. citrinum* Class I α-1,2-mannosidases which have been previously purified and characterized.

Characterization of the properties of the α-1,2-mannosidase IC was a natural first step into elucidation of the roles of these enzymes in N-glycan processing. The N-terminal domain of the α-1,2-mannosidase IC gene was replaced with a synthetic signal sequence and expressed in the extracellular media by an inducible promoter. Assays confirmed the presence of high levels of α-1,2-mannosidase activity which was absent from wild-type cells. Once this α-1,2-mannosidase is purified, it will be a relatively simple matter to characterize the substrate specificity, reaction optima, and kinetic parameters of this enzyme. The *A. satoi* and *P. citrinum* Class I α-1,2-mannosidases are both able to reduce the oligosaccharide precursor $\text{Man}_9\text{GlcNAc}_2$ to $\text{Man}_5\text{GlcNAc}_2$, but have reduced activity on certain intermediate structures, leading to the accumulation of these structures in the reaction (Ichishima *et al.*, 1999; Yoshida *et al.*, 1998). This suggests a possible role for another Class I α-1,2-mannosidase, such as the α-1,2-mannosidase IC, with higher specificity for these intermediate structures.

Although the primary objective of this research project was the characterization of the α-mannosidase gene family in *A. nidulans* for the purposes of N-glycan remodification, several avenues were explored for the utilization of this information for
studying the pathogenesis of the Dutch Elm Disease pathogen *O. novo-ulmi*. Impaired glycosylation may affect numerous processes which are necessary for growth and virulence of this organism, hence inhibition of the pathway would be detrimental to the ‘pathogenic fitness’ of the organism, thus the glycosylation machinery of this organism might provide an ideal antifungal target. We initiated this project with the identification of a Class I α-1,2-mannosidase gene from *O. novo-ulmi* (Chapter 5). This gene was identified utilizing the same degenerate PCR primers used for the identification of the *mnsIA* gene from *A. nidulans*, and was cloned and fully sequenced. The gene was subsequently disrupted to determine its potential as an antifungal target. Disruption of this gene reduced the radial growth rate and changed the morphology of the organism. The ‘fluffy’ phenotype of the mutant strains may reflect a change in the cell surface hydrophobicity due to alterations in N-glycan structures exhibited on the cell surface. The role of N-glycans in determining cell surface hydrophobicity has been well established in *C. albicans* (Hazen and Glee, 1994; Masuoka and Hazen, 1997, 1999). It has also been observed that changes in cell surface hydrophobicity due to alterations in the production of the hydrophobin cerato-ulmin (Temple and Horgen, 2000; Temple *et al.*, 1997) can change the fluffiness of the organism in a similar manner to the observed phenotype of the α-1,2-mannosidase disruption mutants (*unpublished results*). The disruption of the *O. novo-ulmi* α-1,2-mannosidase gene, although non-lethal, may have potential as a target for the inhibition of fungal pathogenesis. Alterations in the cell-surface and secreted N-glycans may exert numerous effects on fungal pathogens, reducing their ‘pathogenic fitness’.

Three Class I α-1,2-mannosidase genes were thus identified in the filamentous fungus *A. nidulans* (Eades and Hintz, 2000b; Chapter 3), and one Class I α-mannosidase
has so far been identified in another filamentous fungus, *O. novo-ulmi* (Chapter 5). These two fungal species are phylogenetically divergent within the Ascomycetes - *A. nidulans* belongs to the class Plectomycetes, while *O. novo-ulmi* belongs to the other major class within the Ascomycetes, Pyrenomycetes (Berbee and Taylor, 1992a, 1992b, 1993). It is thus likely that other filamentous fungi also contain multiple members of this gene family and that this is the rule rather than the exception (Eades and Hintz, 2000a). The presence of multiple Class I α-mannosidases in filamentous fungi is a reflection of the similarities which exist between the glycosylation pathways of these organisms with the pathways of higher eukaryotes (Figure 20). Mannose processing during N-glycan processing in filamentous fungi is achieved by multiple Class I α-mannosidases which may have partially overlapping or redundant functions, and disruption of specific members may have little physiological effect. Such redundancies are found in other lineages, as well. Roberts *et al.* (1998) analyzed N-glycans produced by mas-1 null mutants of *Drosophila melanogaster* and found that the N-glycans structures were not significantly changed, but that the production of these N-glycans was not as efficient as in the wild-type. A reduction in efficiency of protein glycosylation may reduce the overall fitness of the organism and may favor the maintenance of redundancy in this pathway.

Phylogenetic analyses of the Class I α-mannosidases have produced rather complicated results (Eades *et al.*, 1998; Eades and Hintz, 2000a, 2000b; Moremen *et al.*, 1994; Roberts *et al.*, 1998), but a pattern is beginning to emerge to explain the molecular evolution of this gene family (Figure 19). The mouse and human species each contain two Class I α-mannosidases, which are highly related and arose from a recent duplication event. This duplication occurred after the divergence of this lineage from insect and fungal
lineages. A third highly related Class I α-mannosidase is also found in humans, although the mouse orthologue has not been reported. The multiple Class I α-mannosidases found in *A. nidulans* and *O. novo-ulmi* also appear to have arisen from recent duplication events, in that these proteins are more similar to each other than to either of the mammalian Class I α-mannosidases. This is significant, because it suggests that the Class I α-mannosidase gene families in both lineages have independently undergone expansion and evolution through gene duplication and divergence. Characterization of the biochemical properties of the various α-mannosidases in *A. nidulans* and *O. novo-ulmi* will provide further insight into the purpose of such duplication and divergence.

The second family of mannosidases, the Class II α-mannosidases are more diverse in their biochemical properties and physiological functions (Daniel *et al.*, 1994). This group of enzymes consists of three subfamilies of genes (Classes IIA, IIB and IIC) with distinct cellular functions. The Class IIA subfamily is involved in N-glycan synthesis in the Golgi, while the other Class IIB and Class IIC are involved in N-glycan breakdown, removal and recycling in the cytoplasm, lysosome and vacuole. The first subfamily of Class II genes (Class IIA) are responsible for removal of α-1,3- and α-1,6-linked mannose residues from N-glycans during their synthesis, a process which occurs in the higher eukaryotes, but does not occur in lower eukaryotes, such as fungi. The second subfamily (Class IIB) are also found only in higher eukaryotes. These enzymes are involved in N-glycan degradation in the lysosome. The third subfamily (Class IIC) contains a more heterogeneous set of enzymes, with a diversity of functions and cellular localizations. Members of this family are found in higher and lower eukaryotes and are likely involved in many aspects of N-glycan degradation and recycling. Sequence analysis clearly resolves
the various inter-relationships of these proteins (Eades et al., 1998; Chapter 2). The Class IIC subfamily has very low sequence similarity to the other two subfamilies. Phylogenetic analysis of the sequences shows that the Class IIA and Class IIB subfamilies have diverged more recently than the Class IIC subfamily (Figure 9). A likely scenario is that a single common ancestor was duplicated after the divergence of lower eukaryotes, such as fungi, from the higher eukaryotes. Thus, the lower eukaryotes only contain the orthologue of the common ancestor. Subsequent duplication in the higher eukaryotes led to the formation of the three subfamilies of Class II genes found in higher eukaryotes. These gene sequences diverged and evolved more specialized functions, such as the more complex N-glycan pathways (Class IIA), and more efficient degradation pathways (Class IIB).

It is intriguing that the two classes of α-mannosidases have such similar and overlapping functions. The Class I genes and the Class IIA genes have complementary functions in the N-glycan synthesis pathway of higher eukaryotes. The other Class II genes have broad substrate specificities and are able to cleave α-1,2 (as well as α-1,3, and α-1,6) mannose linkages, a property it shares with the Class I genes. The Class I and Class II genes show no sequence similarity and appear to have originated independently and represent a classic case of convergent evolution.

The present research represents a significant step in the characterization of the α-mannosidase gene family in filamentous fungi. The glycosylation pathways of these organisms appear to resemble mammalian systems, in which several mannose residues are removed from the Man₃GlcNAc₂ precursor molecule prior to further modification (Kornfeld and Kornfeld, 1985), rather than yeast, in which only a single mannose residue
is removed prior to modification (Herscovics, 1999). This suggests that the yeast glycosylation pathway serves a more primary function in the production of cell wall mannoproteins, and is indicative of a more ancestral state of this pathway. Filamentous fungi, through duplication and divergence of the α-mannosidase gene family, have a more complex pathway which may be utilized for more diverse functions. The presence of terminal sugar residues such as galactose and sialic acid in some filamentous fungi (Alviano et al., 1999; Maras et al., 1999) is also indicative of the evolution of this pathway towards more complex function. It is believed that the diversification of the terminal branches of N-glycans throughout evolution, by the addition of novel glycosyltransferase enzymes to the pathway, was a major driving force in the evolution of novel functions for the N-glycans (Drickamer and Taylor, 1998; Gagneux and Varki, 1999).

The eventual goal of this research is the development of expression systems in filamentous fungi that produce glycoproteins, containing native N-glycan structures, for human therapeutic use. The production of complex type N-glycans requires the complete removal of α-1,2-mannose from Man₉GlcNAc₂ to produce Man₅GlcNAc₂, the substrate for the addition of GlcNAc by Gnt I, the first committed step in the production of complex N-glycans (Hintz et al., 1995; Kalsner et al., 1995). The identification of three Class I α-1,2-mannosidases in A. nidulans represents a significant step towards this goal. Controlled overexpression of these genes in Gnt I expressing strains should produce a steady supply of Man₅GlcNAc₂ on which Gnt I can act. A second goal of this research is the development of novel antifungal targets with which to control fungal pathogens. The Class I α-1,2-mannosidases may provide such a target. It will be necessary to identify all the
genes in this family from *O. novo-ulmi* to determine if disruption of this region of the pathway will have significant detrimental effects on the growth or pathogenicity of the organism.
7. LITERATURE CITED

and IB and comparison with endoplasmic reticulum and Golgi processing alpha 1,2-mannosidases. *Glycobiology* 8: 981-95.

