K-theory correspondences and the Fourier-Mukai transform

Show simple item record

dc.contributor.author Hudson, Daniel
dc.date.accessioned 2019-05-02T23:47:14Z
dc.date.available 2019-05-02T23:47:14Z
dc.date.copyright 2019 en_US
dc.date.issued 2019-05-02
dc.identifier.uri http://hdl.handle.net/1828/10837
dc.description.abstract The goal of this thesis is to give an introduction to the geometric picture of bivariant K-theory developed by Emerson and Meyer building on the ideas Connes and Skandalis, and then to apply this machinery to give a geometric proof of a result of Emerson. We begin by giving an overview of topological K-theory, necessary for developing bivariant K-theory. Then we discuss Kasparov's analytic bivariant K-theory, and from there develop topological bivariant K-theory. In the final chapter we state and prove the result of Emerson. en_US
dc.language English eng
dc.language.iso en en_US
dc.rights Available to the World Wide Web en_US
dc.subject K-Theory en_US
dc.subject Algebraic Topology en_US
dc.subject KK-Theory en_US
dc.subject Operator Algebras en_US
dc.subject Non-Commutative Geometry en_US
dc.title K-theory correspondences and the Fourier-Mukai transform en_US
dc.type Thesis en_US
dc.contributor.supervisor Emerson, Heath
dc.contributor.supervisor Putnam, Ian F.
dc.degree.department Department of Mathematics and Statistics en_US
dc.degree.level Master of Science M.Sc. en_US
dc.description.scholarlevel Graduate en_US

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search UVicSpace


My Account