Functional π-conjugated nanomaterials via living crystallization-driven self-assembly

Date

2021-04-29

Authors

Shaikh, Huda

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Nature makes use of the bottom-up synthetic technique termed self-assembly to fabricate a vast array of complex materials that are integral to life. The self-assembly of block copolymers (BCPs) has been shown to be a versatile method for the preparation of a diverse range of nano- and micro-sized micelle morphologies. It has been demonstrated that crystallization of the micelle core-forming block of the BCP enables access to one-dimensional (1D) or two-dimensional (2D) micelle morphologies that are difficult to obtain exclusively via other synthetic strategies. Living crystallization-driven self-assembly (CDSA) presents a facile route towards preparing nanostructures with precisely controlled dimensions. This field of research is rapidly growing with the desire to use these intricate nanostructures for real-world applications. The work contained in this thesis focusses on the solution self-assembly of π-conjugated-based homopolymers and BCPs, with the broad aim of preparing functional nanostructures with controlled dimensions and desirable structural, optical and electronic properties.

Description

Keywords

Nanomaterials, Supramolecular Chemistry, Polymers, Micelles, Self-assembly

Citation