Properties of minimal dominating functions of graphs

Show simple item record

dc.contributor.author Cockayne, E.J.
dc.contributor.author Fricke, G.
dc.contributor.author Hedetniemi, S.T.
dc.contributor.author Mynhardt, C.M.
dc.date.accessioned 2010-03-04T22:56:14Z
dc.date.available 2010-03-04T22:56:14Z
dc.date.copyright 1990 en
dc.date.issued 2010-03-04T22:56:14Z
dc.identifier.uri http://hdl.handle.net/1828/2320
dc.description.abstract A dominating function for a graph is a function from its vertex set into the unit interval so that the sum of function values taken over the closed neighbourhood of each vertex is at least one. We prove that any graph has a positive minimal dominating function and begin an investigation of the question: When are convex combinations of minimal dominating functions themselves minimal dominating? en
dc.description.sponsorship NSERC en
dc.language.iso en en
dc.relation.ispartofseries DMS-547-IR en
dc.title Properties of minimal dominating functions of graphs en
dc.type Technical Report en

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search UVicSpace


My Account