UVicSpace

Technology mapping and optimization for reversible and quantum circuits

Show simple item record

dc.contributor.author Sasanian, Zahra
dc.date.accessioned 2012-11-29T21:18:28Z
dc.date.available 2012-11-29T21:18:28Z
dc.date.copyright 2012 en_US
dc.date.issued 2012-11-29
dc.identifier.uri http://hdl.handle.net/1828/4324
dc.description.abstract Quantum information processing is of interest as it offers the potential for a new generation of very powerful computers supporting novel computational paradigms. Over the last couple of decades, different aspects of quantum computers ranging from quantum algorithms to quantum physical design have received growing attention. One of the most important research areas is the synthesis and post-synthesis optimization of reversible and quantum circuits. Many synthesis and optimization approaches can be found in the literature, yet, due to the complexity of the problem, finding approaches leading to optimal, or near optimal, results is still an open problem. The synthesized circuits are usually evaluated based on quantum cost models. Therefore, they are often technology mapped to circuits of more primitive gates. To this end, various technology mapping approaches have also been proposed in the past few years. Related work shows an existing gap in optimized technology mapping for reversible and quantum circuits. In this dissertation, an optimized technology mapping design flow is introduced for mapping reversible circuits to quantum circuits. The contributions of this dissertation are classified as follows: - New reversible circuit optimization methods. - Optimized reversible to quantum mapping approaches. - New quantum gate libraries and new cost models for reversible gates based on the new libraries. - Quantum circuit optimization approaches. The steps above, form an optimized flow for mapping reversible circuits to quantum circuits. At each step of the design flow optimized and consistent approaches are suggested with the goal of reducing the quantum cost of the synthesized reversible circuits. The evaluations show that the proposed mapping methodology leads to significant improvement in the quantum cost of the existing benchmark circuits. en_US
dc.language English eng
dc.language.iso en en_US
dc.subject Reversible Circuits en_US
dc.subject Quantum Circuits en_US
dc.subject Reversible Logic en_US
dc.subject Optimization en_US
dc.subject Technology Mapping en_US
dc.title Technology mapping and optimization for reversible and quantum circuits en_US
dc.type Thesis en_US
dc.contributor.supervisor Miller, D. Michael
dc.degree.department Dept. of Computer Science en_US
dc.degree.level Doctor of Philosophy Ph.D. en_US
dc.rights.temp Available to the World Wide Web en_US
dc.identifier.bibliographicCitation D. M. Miller and Z. Sasanian. Lowering the quantum gate cost of reversible circuits. In Proc. Midwest Symp. on Circuits and Systems, pages 260-263, 2010. en_US
dc.identifier.bibliographicCitation Z. Sasanian and D. M. Miller. Mapping a multiple-control To ffoli gate cascade to an elementary quantum gate circuit. In Proc. Workshop on Reversible Computation, pages 83-90, 2010. en_US
dc.identifier.bibliographicCitation Z. Sasanian and D. M. Miller. Mapping a multiple-control Toffoli gate cascade to an elementary quantum gate circuit. J. of Multiple-valued Logic and Soft Computing, 18(1):83-98, 2012. en_US
dc.identifier.bibliographicCitation M. Soeken, Z. Sasanian, R. Wille, D. M. Miller, and R. Drechsler. Optimizing the mapping of reversible circuits to four-valued quantum gate circuits. In Proc. Int'l Symp. on Multiple-valued Logic, pages 173-178, 2012. en_US
dc.identifier.bibliographicCitation Z. Sasanian and D. M. Miller. Reversible and quantum circuit optimization: A functional approach. In Proc. Workshop on Reversible Computation, pages 111-122, 2012. en_US
dc.identifier.bibliographicCitation Z. Sasanian and D. M. Miller. NCV realization of MCT gates with mixed controls. In Proc. Paci c Rim Conf. on Communications, Computers and Signal Processing, pages 567-571, 2011. en_US
dc.identifier.bibliographicCitation D. M. Miller and Z. Sasanian. Improving the NCV realization of multiple-control Toffoli gates. In Workshop on Boolean Problems, pages 37-44, 2010. en_US
dc.identifier.bibliographicCitation D. M. Miller, R. Wille, and Z. Sasanian. Elementary quantum gate realizations for multiple-control To ffoli gates. In Proc. Int'l Symp. on Multiple-valued Logic, pages 217-222, 2011. en_US
dc.identifier.bibliographicCitation Z. Sasanian and D. M. Miller. Transforming MCT circuits to NCVW circuits. In Proc. Workshop on Reversible Computation, pages 163-174, 2011. en_US
dc.identifier.bibliographicCitation Z. Sasanian and D. M. Miller. Transforming MCT Circuits to NCVW Circuits, volume 7165 of Springer's Lecture Notes in Computer Science. Springer Verlag, pages 77-88, 2011. en_US
dc.identifier.bibliographicCitation Z. Sasanian, R. Wille, and D. M. Miller. Realizing reversible circuits using a new class of quantum gates. In Proc. Design Automation Conf., pages 36-41, 2012. en_US
dc.description.scholarlevel Graduate en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search UVicSpace


Browse

My Account

Statistics

Help