Bacterial source tracking and survival of Escherichia coli

Date

2006-02-10T16:59:36Z

Authors

Meays, Cynthia L.

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Surface water is used for drinking by many people around the world. E. coli is the most frequently used bacterial indicator used for assessing water quality. The survival, sources, and concentrations of E. coli were examined through a series of experiments that investigated the survival of beef cattle E. coli on land and in water, and used bacterial source tracking (BST) to determine the sources of fecal contamination diurnally and annually in multiple watersheds in British Columbia. A fecal pat experiment was conducted to examine the survival of E. coli under 4 levels of solar exposure. E. coli survived longer with increasing shade. Age of fecal pats, as well as exposure to solar radiation negatively influenced the survival of E. coli. The survival of E. coli in stream water was examined in filtered and unfiltered stream water at 3 different temperatures (6, 20 and 26 ºC). There was no significant difference in the survival of E. coli in filtered versus non-filtered stream water. Lower water temperatures (6 ºC) increased the survival of E. coli. The addition of manure to the water substantially increased the nutrient concentrations and organics. BST is a rapidly growing area of research and technology development and many methods are being developed and tested. The choice of method used for BST depends on: question(s) to be answered, scale of identification needed, available expertise, cost of analysis, turnaround time, and access to facilities. The spatial, diurnal, and annual sources and concentrations of E. coli were investigated in several watersheds in British Columbia. Fecal coliforms and E. coli concentrations varied throughout the day, as well as by site, month and year. Ribotyping identified many different sources of E. coli within the watersheds. The majority of E. coli isolates classified were from wildlife sources in each watershed even though they had different land-use.

Description

Keywords

Water quality, E. coli, Bacterial source tracking, Ribotyping, Land use, Watershed management

Citation