Design and synthesis of hemithioindigo lipids for photo-controlled membrane fusion

Date

2017-11-03

Authors

Montoya Pelaez, Pedro Jose

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The goal of this thesis was to design, synthesize and test a chemical switch for control of membrane fusion. Control of the shape of the molecules that comprise a membrane should induce a phase change in the membrane. According to current views of membrane fusion, the phase change should also facilitate formation of fusion intermediates hence should provoke membrane fusion. The design thus focused on synthetic lipid targets that have controllable shape changes. Specifically the incorporation of the hemithioindigo (HT) photochemical switch into the fatty acid chains of phospholipids was deemed a solution to the design problem. The synthesis of four phosphatidylcholine (PC) analogues bearing two hemithioindigo moieties was accomplished. The successful synthesis starts from bromophenols. The bromide is extended to a nitrile via the Heck reaction with acrylonitrile. The thiophenol is converted to a thioindoxyl which is coupled with an aromatic aldehyde to produce the HT core. “Solventless” hydrolysis of the nitrile produces a carboxylic acid that can be coupled to a phosphoglycerol to give the target lipids. The synthetic process is both efficient and modular. All new compounds were characterized by NMR, MS and elemental analysis. The photochemistry of various HT derivatives was studied to confirm the expected photoisomerization in both homogenous solutions and vesicle bilayers. Although the UV-Vis spectra become rather insensitive to the presence of different isomers, there is evidence to confirm the Z-E switching in a range of organic solvents and in vesicles. Apparent bleaching of the HT-Iipid may indicate a photochemical dimerization reaction although isomerization would also be consistent with the data. Fusion was explored by manufacturing PS vesicles with varying concentrations and isomers of HT-lipid, and was monitored with the Terbium/Dipicolinic acid aqueous contents mixing assay (Tb/DPA assay). The sensitivity of this assay was lower than originally expected due to inner filter effects resulting in self-quenching the complex luminescence. The available data suggest that the synthetic HT-lipids disturb the membrane structure. Spontaneous fusion, apposition without metal cations, and contents leakage are some of the observations of the complexity of this system. HT-lipids in one population of vesicles are able to interact with a second population of vesicles, presumeably via membrane mixing. These results confirm that shape is a key factor in the integrity of membranes, and that second generation HT-lipids have the potential to control membrane fusion.

Description

Keywords

Membrane fusion, Lipids

Citation