Modeling and Analysis of Quantum Cryptographic Protocols

by

Christopher J Ware
B.Sc. University of Victoria 2005

A Thesis Submitted in Partial Fullfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

in the Department of Computer Science

© Christopher J Ware, 2008
University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author.
Modeling and Analysis of Quantum Cryptographic Protocols

by

Christopher J Ware
B.Sc. University of Victoria 2005

Supervisory Committee

Dr. Bruce Kapron (Department of Computer Science)
Supervisor

Dr. Venkatesh Srinivasan (Department of Computer Science)
Departmental Member

Dr. Michael Miller (Department of Computer Science)
Departmental Member

Dr. Aaron Gulliver (Department of Electrical & Computer Engineering)
Outside Member
Abstract

In this thesis we develop a methodology for the modeling and analysis of quantum security protocols, and apply it to a cheat sensitive quantum bit commitment protocol. Our method consists of a formalization of the protocol in the process algebra CQP, a conversion to the PRISM modeling language, verification of security properties, and the quantitative analysis of optimal cheat strategies for a dishonest party. We also define additional syntax and operational semantics for CQP to add decision making capability.

For a two party protocol involving A committing a bit to B, we show that the protocol favors a dishonest A over a dishonest B. When only one party is dishonest, and uses an optimal cheat strategy, we also show that the probability of cheat detection is bounded at 0.037 for B and 0.076 for A. In addition, a dishonest A is able to reveal an arbitrary commit bit with probability 1 while a dishonest B is only able to extract the correct bit before it is revealed with probability 0.854. This bias is interesting as it gives us insight into how the overall protocol functions and where its weaknesses are. By identifying these weaknesses we provide a foundation for future improvements to the protocol to reduce cheating bias or increase cheat detection.
Finally, our methodology reveals the weakness of PRISM in modeling quantum variables to their full power and as a result we propose the development of a new modeling tool for quantum protocols.
Table of Contents

Supervisory Committee ... ii
Abstract ... iii
Table of Contents .. v
List of Figures .. vii
List of Tables ... viii
Dedication ... ix
1. Introduction .. 1
 1.1 Quantum Computing and Quantum Information 2
 1.1.1 Qubits and Quantum States 3
 1.1.2 Operations and Quantum Computation 5
 1.1.3 Measurement .. 7
 1.1.4 Composite Systems and Entanglement 8
 1.2 Protocols .. 11
 1.2.1 Protocol Analysis .. 12
 1.3 Process Algebras & Model Checking 13
 1.3.1 Communicating Quantum Processes 14
 1.3.2 PRISM ... 17
 1.3.3 Probabilistic Model ... 17
 1.3.4 Property Specification 18
 1.3.5 Simulation .. 19
 1.3.5.1 Matlab Quantum Circuit Simulator 20
 1.4 Outline .. 20
2. Quantum Cryptography ... 21
 2.1 Cryptographic Protocols .. 22
 2.1.1 Bit Commitment .. 22
List of Figures

1.1 Syntax of CQP ... 15
1.2 Syntax of PCTL .. 19
2.1 The BB84 Quantum Bit Commitment Protocol 23
2.2 The BCJL93 Quantum Bit Commitment Protocol 27
2.3 Cheat Sensitive Quantum Bit Commitment Protocol 28
3.1 CSQBC Flowchart ... 34
3.2 measurement results for $|b\rangle$ 49
3.3 CSQBC Dishonest Bob Execution Tree 51
3.4 measurement results for $|\alpha\rangle_A$ 54
3.5 CSQBC Dishonest Alice Execution Tree 58
4.1 PRISM: Cheat Bias vs Cheat Detection 61
4.2 Matlab: Cheat Bias vs Cheat Detection 61
4.3 CSQBC Dishonest Bob: Challenge vs Cheat Detection 64
List of Tables

3.1 Property Verification: Honest Case .. 42
3.2 Property Verification: Dishonest Case 43
4.1 Stochastic Results for Dishonest B 63
4.2 Robust Results for Dishonest B .. 63
4.3 Quantitative Results for Dishonest A 65
4.4 Dishonest A vs dishonest B ... 65
Dedication

To my parents, for their continued support and encouragement
Chapter 1

Introduction

Cryptography is the art and science of secure communications, whether it be keeping information secret from an adversary or the problem of communicating between two or more mistrustful parties. While cryptography dates back to the Babylonians and has had historic military use, from the Caesar cypher used by Julius Caesar to communicate with his generals to the Enigma machine famously cracked by Alan Turing during World War II, it is now used in a broad range of commercial and public applications from talking on cell phones to online shopping. Research and development in cryptography has never been more important than in this age of communications and information management.

A significant advance in the cryptographic field has been the introduction of Quantum Computing, the study of computation that can be performed using quantum mechanical systems, as opposed to the classical computing of our modern digital computers that can be described with classical physics (mechanics, electromagnetism etc.). While quantum mechanics was proposed and developed throughout the early and middle 1900’s, it was only applied to large scale quantum systems (those containing an enormous number of individual quantum systems) such as in the study of superconductivity. It was not until the later half of the century that there was interest in the more difficult problem of obtaining complete control over a single quantum system. In 1982 two foundations were laid; first Benioff showed that quantum systems could efficiently simulate classical computation [3], and second, Feynman showed the converse is not true and that the number of variables required to describe a quantum system grow exponentially with its size and can not be efficiently simulated with a
classical computer [17]. The proposed solution to this was the quantum computer, or the universal quantum simulator.

The idea of quantum computing lends itself to cryptography in two ways: first the laws of quantum mechanics ensure a certain level of protection from quantum information being intercepted, and second the potential increase in computational ability threatens some aspects of current cryptography that rely on hard mathematical problems. As such, the development of quantum computing directly affects the field of cryptography as advances in research push new ideas for processes and protocols to improve communications and information security.

The rest of this chapter will introduce quantum computing and protocol analysis in relation to the design and implementation of a quantum cryptographic primitive we review in Chapter 2.

In the following two chapters we will take a closer look at quantum computing and how it is related to the design and implementation of some cryptographic primitives.

1.1 Quantum Computing and Quantum Information

The field of quantum computing mixes the fundamentals of computer science with the laws of quantum mechanics. As a classical computer must be able to compute and communicate classical data, a quantum computer must be able to do likewise, that is manipulate and communicate quantum information. Analogous to classical computing, quantum computers have similar building blocks: quantum bits to store information and quantum gates to manipulate information. In addition, quantum computers have additional capabilities inherited from quantum mechanics. These include superposition, the ability of a quantum bit to not just be 0 or 1, but some combination of these values, and entanglement, the correlation quantum bits can have with each other even at a distance.
Following is a brief introduction to Quantum Computing and Quantum Information, focused around four fundamental postulates of quantum mechanics \cite{22}\cite{32}.

1.1.1 Qubits and Quantum States

The quantum bit (or qubit) is the basic building block of the quantum computer, analogous to the bit in classical computing. Like the classical bit, the qubit can have a state, $|0\rangle$ or $|1\rangle$, but unlike the classical bit, the qubit can also be in a linear combination of states:

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle \quad (1.1)$$

where $\alpha, \beta \in \mathbb{C}$, and $|\alpha|^2 + |\beta|^2 = 1$.

The state $|\psi\rangle$ is in a combination of states $|0\rangle$ and $|1\rangle$, but will collapse to just one of these, upon observation or measurement, with some probability based on the amplitudes α and β (see section 1.1.3). This combination of states, or superposition, is key to realizing the power of quantum computation.

Definition 1.1.1. An inner product is a function which takes two vectors as input and produces a complex number as output.

$$\langle (\nu_1, \ldots, \nu_n), (\omega_1, \ldots, \omega_n) \rangle = \sum_i \nu_i^* \omega_i$$

where ν^* is the complex conjugate of ν.

Definition 1.1.2. A finite dimensional Hilbert space is an inner product space, that is a vector space where all vector pairs have an inner product.

Postulate 1: Associated to any isolated physical system is a complex vector space with inner product (that is, a Hilbert space) known as the state space of the system. The system’s state is completely described by its state vector, which is a unit vector in the system’s state space.
Mathematically a qubit is a unit vector in a two dimensional complex vector space. We represent this vector using Dirac’s braket notation [16]

Definition 1.1.3. Braket notation. Also known as Dirac notation, is a convenient way of expressing vectors in quantum mechanics. The notation is composed of two components, the “bra” $\langle \omega |$ and the “ket” $| \upsilon \rangle$. The more common component is the ket, which is a vector, written as a column vector:

$$| \upsilon \rangle = \begin{pmatrix} \upsilon_1 \\ \upsilon_2 \\ \vdots \\ \upsilon_n \end{pmatrix}$$

The bra component is the vector dual, $\langle \upsilon | = (| \upsilon \rangle)^\dagger$, where \dagger denotes the adjoint of the vector, taken by first transposing and then taking the complex conjugate:

$$\langle \upsilon | = (\upsilon_1^* \upsilon_2^* \ldots \upsilon_n^*)$$

The full braket notation $\langle \omega | \upsilon \rangle$ is the scalar product, or inner product, of the two vectors. While the reverse notation $\rangle \omega | \upsilon \langle$ is the outer product of the vectors.

With braket notation defined we can add vector representation to Equation 1.1

$$| \psi \rangle = \alpha |0\rangle + \beta |1\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$ (1.2)

which, when either α or β are 0, leads us to the states

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \text{ and } |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$ (1.3)
which are known as the standard, or \textit{computational basis states}, and form an orthonormal basis for this vector space. Two more important states

$$\left| + \right> = \frac{1}{\sqrt{2}} \left| 0 \right> + \frac{1}{\sqrt{2}} \left| 1 \right> = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$ \hspace{1cm} (1.4)$$

and

$$\left| - \right> = \frac{1}{\sqrt{2}} \left| 0 \right> - \frac{1}{\sqrt{2}} \left| 1 \right> = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$$ \hspace{1cm} (1.5)$$

are known as the dual, or \textit{diagonal basis states}, which when measured with respect to the computational basis, yields result \(\left| 0 \right>\) with probability \(\left| \frac{1}{\sqrt{2}} \right|^2 = \frac{1}{2}\) and result \(\left| 1 \right>\) with probability \(\left| \frac{1}{\sqrt{2}} \right|^2 = \frac{1}{2}\).

In fact a set of basis states can be defined as any set of vectors that form an orthonormal basis for a vector space.

\section*{1.1.2 Operations and Quantum Computation}

Quantum computation is the change of a quantum state by applying a quantum operation.

\textbf{Definition 1.1.4.} A \textbf{unitary matrix} is a complex matrix \(U\) that satisfies the condition \(U^\dagger U = I\), where \(U^\dagger\) is the adjoint of \(U\), obtained by transposing \(U\) and then taking its complex conjugate.

Similar to classical computation, operations are enacted by gates, and a \textit{quantum gate} is transformation, represented by a unitary matrix \(U\), applied to a state space \(\left| \psi \right>\). The unitary property preserves the basic qubit conditions found in Equation 1.1.

\textbf{Postulate 2:} The evolution of a \textit{closed} quantum system is described by a \textit{unitary transformation}. That is, the state \(\left| \psi \right>\) of the system at time \(t_1\)
is related to the state $|\psi'\rangle$ of the system at time t_2 by a unitary matrix U which depends only on the times t_1 and t_2

$$|\psi'\rangle = U|\psi\rangle.$$ (1.6)

Let us look at the quantum NOT gate, which, similar to the classical NOT operation, will change the pure state $|0\rangle$ to $|1\rangle$ and vice versa.

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$ (1.7)

In fact, the quantum NOT operation works on any qubit state and effectively switches the amplitudes, such that $\alpha|0\rangle + \beta|1\rangle$ becomes $\alpha|1\rangle + \beta|0\rangle$ as shown here

$$X|\psi\rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \beta \\ \alpha \end{pmatrix}$$ (1.8)

A quantum gate without a classical counterpart is the Hadamard, or H gate. One of the most useful single qubit operations, the H gate, defined as

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$ (1.9)

maps $|0\rangle \leftrightarrow |+\rangle$ and $|1\rangle \leftrightarrow |-\rangle$, changing pure basis states to diagonal basis states and vice-versa.

$$H|0\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = |+\rangle$$ (1.10)

and

$$H|1\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} = |-\rangle$$ (1.11)

Quantum gates can operate on more than one qubit as well. For example a Controlled-U operation is a two qubit operation with a control bit and a target bit.
If the control bit is 1 then the operation U is applied to the target bit, otherwise the target bit is left alone. The most common controlled operation is the Controlled-NOT (CNOT) operation, defined as

$$CNOT = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

(1.12)

1.1.3 Measurement

We have seen how a qubit can be in a potentially infinite number of superpositions of states, however superpositions cannot be discretely measured. When a quantum system is measured, or observed, it collapses to a pure basis state with some probability. Given a single qubit system $\alpha|0\rangle + \beta|1\rangle$, measurement on the standard basis ($|0\rangle$, $|1\rangle$) will yield result $|0\rangle$ with probability $|\alpha|^2$ and $|1\rangle$ with probability $|\beta|^2$, and leave the system in the value of its result.

Postulate 3: Quantum measurements are described by a collection M_m of measurement operators. These are operators acting on the state space of the system being measured. The index m refers to the measurement outcomes that may occur in the experiment. If the state of the quantum system is $|\psi\rangle$ immediately before the measurement then the probability that result m occurs is given by

$$p(m) = \langle \psi | M_m^\dagger M_m | \psi \rangle,$$

(1.13)

and the state of the system after the measurement is

$$\frac{M_m|\psi\rangle}{\sqrt{\langle \psi | M_m^\dagger M_m | \psi \rangle}}$$

(1.14)
The measurement operators must satisfy the completeness equation

\[\sum_m M_m^\dagger M_m = I \]

which ensures that the sum of the probabilities \(p(m) \) is equal to 1. Note that all basis states satisfy the completeness equation and therefore make valid measurement operators.

Example 1.1.5. Measure state \(|+\rangle\) in the computational basis. From the computational basis we get measurement operators \(\{M_0, M_1\} \) where \(M_{i=0,1} = \langle i|i \rangle \). Then from Equation 1.13 we have

\[
p(1) = \left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \right) \cdot \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \cdot \left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \right) = \frac{1}{2}
\]

and

\[
p(0) = \left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \right) \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \right) = \frac{1}{2}
\]

Therefore the probabilities of getting result 0 or 1 are both \(\frac{1}{2} \).

1.1.4 Composite Systems and Entanglement

Multiple qubit state vectors can be combined together to create a state space which describes a quantum system. The size of the state space grows with the size of the cartesian product of its state vectors, therefore, a quantum system of \(n \) qubits is a unit vector in a \(2^n \) dimensional complex vector space.

Definition 1.1.6. The tensor product is a way of combining vector spaces to form a larger vector space. For our purposes we will only consider vectors and matrices of finite dimension, and so the definition of a tensor product simplifies to the outer product (for vectors), and the kronecker product (for matrices).
Postulate 4: The state space of a composite physical system is the tensor product of the state spaces of the component physical systems. Moreover, if we have systems numbered 1 through \(n\), and system number \(i\) is prepared in the state \(|\psi_i\rangle\), then the joint state of the total system is

\[|\psi_1\rangle \otimes |\psi_2\rangle \otimes \cdots \otimes |\psi_n\rangle.\]

This gives us the tensor product as a tool to combine quantum state spaces together into a single system.

Definition 1.1.7. We use the terms \(A\) and \(B\) to represent the different parties during two party communications.

Example 1.1.8. Let \(A\) and \(B\) each have a pure quantum state, \(|0\rangle\) and \(|1\rangle\) respectively. Then we could describe the total system of \(A\) and \(B\) together as

\[|0\rangle \otimes |1\rangle = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |01\rangle.\]

A general case two qubit system similar to the general single qubit system in Equation 1.1 is

\[|\psi\rangle = \alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle = \begin{pmatrix} \alpha_{00} \\ \alpha_{01} \\ \alpha_{10} \\ \alpha_{11} \end{pmatrix} \quad (1.16)\]

where \(\alpha_{00}, \alpha_{01}, \alpha_{10}, \alpha_{11} \in \mathbb{C}\), and \(\alpha_{00}^2 + \alpha_{01}^2 + \alpha_{10}^2 + \alpha_{11}^2 = 1\).
We see in Equation 1.16 that if we set any of \(\alpha_{00}, \alpha_{01}, \alpha_{10}, \alpha_{11} = 1\) we get one of the four possible pure states, or basis states. Alternatively, by measuring the system on the computational basis we will also end up with a pure state \(|00\rangle, |01\rangle, |10\rangle, \) or \(|11\rangle\) with probabilities \(|\alpha_{00}|^2, |\alpha_{01}|^2, |\alpha_{10}|^2, \) and \(|\alpha_{11}|^2\) respectively.

Similarly some states can be decomposed into separable state vectors. Take the final state in Example 1.1.8, \(|01\rangle\), which can be separated into the states \(|0\rangle\) and \(|1\rangle\).

Now consider the two qubit state \(|\psi\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}\). We can show that \(|\psi\rangle\) cannot be expressed in terms of composite states as there are no single qubit states \(|a\rangle\) and \(|b\rangle\) such that \(|a\rangle \otimes |b\rangle = |\psi\rangle\).

Proof Sketch. Assume \(|\psi\rangle\) can be expressed as a product of two composite states. Then

\[
|\psi\rangle = |a\rangle \otimes |b\rangle
\]

\[
= \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \otimes \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}
\]

\[
= \begin{pmatrix} a_1 b_1 \\ a_1 b_2 \\ a_2 b_1 \\ a_2 b_2 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{2} \\ 0 \\ 0 \\ 1/\sqrt{2} \end{pmatrix}
\]

which upon inspection has no solution.

Definition 1.1.9. When a system cannot be written as a product state of its component systems, it is said to be in an entangled state.

The most common entangled states are the four Bell states (also referred to as EPR states or EPR pairs), named after some of the people who first pointed out their properties: Bell, Einstein, Podolsky, and Rosen. The Bell states are created
from the four computational basis states and applying first a Hadamard gate then a Controlled Not gate, giving us:

\[|\beta_{00}\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}} \]
\[|\beta_{01}\rangle = \frac{|01\rangle + |10\rangle}{\sqrt{2}} \]
\[|\beta_{10}\rangle = \frac{|00\rangle - |11\rangle}{\sqrt{2}} \]
\[|\beta_{11}\rangle = \frac{|01\rangle - |10\rangle}{\sqrt{2}} \]

Entangled states have the interesting property that by observing any qubit in the state, there is an immediate effect of determining the value of the other qubits. This is true no matter how far apart they are and if the qubits are physically separated; we call this the non-local effect[2].

Example 1.1.10 (EPR Paradox). Consider the 2 qubit Bell state \(|\beta_{01}\rangle \) (Equation 1.18). Then let \(A \) and \(B \) each take half of the state (a single qubit) and separate them by some distance. WLOG let \(B \) measure his half of the state giving him result \(|0\rangle \), he then immediately knows that \(A \)'s half of the state is \(|1\rangle \), regardless of whether \(A \) has measured her half yet or not.

1.2 Protocols

We define a protocol as a series of steps with associated rules and actions that govern the communications between two or more parties working to achieve an explicit goal. The protocol’s steps must have a sequence; that is, there must be an initial and a final step and each step must complete before the next step is executed. Each step, rule, and action must be: firstly, well defined, so that they are unambiguous and there is no chance of misunderstanding; and secondly, known and agreed, in advance, to all
parties involved in the protocol. An example protocol is a Coin Flipping game, which involves two parties where one party will flip a coin, and depending on the results there is an agreed upon winner.

A cryptographic protocol is a protocol that includes steps to secure the communications between the parties. Typically this will address security concerns such as: the involved parties trust each other and require that the protocol is secure from a third party eavesdropper, or the parties do not trust each other and require that the protocol is secure against one of them acting dishonestly. We use the term secure in the probabilistic sense, that is, it addresses these concerns within some arbitrarily small probability of error. Furthermore, we can say a cryptographic protocol is unconditionally secure if it is secure against an adversary with unlimited computing power, and computationally secure if it is secure against an adversary with currently available (modern day) computing power.

For the two party protocols discussed in this thesis we will use the conventional naming practice, Alice and Bob (represented by A and B respectively), for the involved parties; where A will typically initiate the protocol and B will respond.

While a great deal of research goes into developing new protocols, it is equally if not more important to conduct analysis on existing protocols, either to prove a protocol is secure, improve the bound of error on its security, or prove a protocol insecure therefore leading to potential improvements.

1.2.1 Protocol Analysis

The formal analysis of cryptographic protocols has been driven from the desire of researchers to prove protocols secure.

There are four basic approaches to the analysis of cryptographic protocols [30][34]:

1. Model and verify the protocol using specification languages and verification tools not specifically designed for the analysis of cryptographic protocols.
2. Develop expert systems that a protocol designer can use to develop and investigate different scenarios.

3. Model the requirements of a protocol family using logic for the analysis of knowledge and belief.

4. Develop a formal method based on the algebraic term-rewriting properties of cryptographic systems.

The first two approaches are useful for proving specific properties of a protocol or determining if the protocol contains a given flaw, but they are not guaranteed to identify all flaws and do not prove security of a protocol. The third approach gained wide popularity with the introduction of Burrows-Abadi-Needham logic [10], or BAN logic, and while it has a simple intuitive set of rules making it easy to use, it has demonstrated serious flaws in protocols. The fourth approach models a cryptographic protocol as an algebraic system and analyzes the attainability of certain states to show that a protocol meets its requirements.

State exploration tools are generally stronger than belief logics as they have a lower level of abstraction, and in our case they are better able to model the probabilistic nature of quantum computing. Therefore it is this fourth approach that we will be applying in the modeling and analysis of our quantum cryptographic protocols.

The following sections briefly describe the tools we use for this approach in Chapter 3.

1.3 Process Algebras & Model Checking

We define a process algebra as the use of algebraic laws or axioms to study the behavior of concurrent systems. It is a tool that allows us to specify these systems as a number of interacting processes and reason about them using algebraic equations,
typically for the purpose of analysis or verification.

While there are a number of process algebras in use with varying sets of rules and purposes, there are a few features that are common to them all. First is process interaction, where communications between processes happens through channels rather than shared variables. Secondly, processes are described from a small set of primitive operators defined by the operational semantics of the process algebra. And finally, a defined set of algebraic laws that use the set of operators to build and manipulate expressions.

Model Checking is a method of automatic analysis of these systems used to find subtle errors or design flaws in the system specification. A model checker usually takes two inputs, a description of the system to be modeled and a set of properties that should hold for the system. Process algebras give us a formalized mathematical framework in which to describe the system of a protocol in a language that can be used as input to a model checker. The properties expected to hold for a protocol are most naturally formulated as temporal logic statements.

1.3.1 Communicating Quantum Processes

Communicating Quantum Processes (CQP) is a process algebra that combines the communication primitives of pi-calculus [31] with quantum primitives for the transformation and measurement of quantum states. It was created by Simon Gay and Rajagopal Nagarajan [18] to model systems that have both quantum and classical communications or computation, such as cryptographic protocols. Initially intended to model and verify an end-to-end implementation of the BB84 protocol, we will use the language to formalize the description of a quantum cryptographic primitive in Chapter 3.

We define the syntax of CQP by the grammar in Figure 1.1, and will describe each component: types, values, expressions and processes in more detail in the rest of this
Figure 1.1: Syntax of CQP

Types
Types T indicate the kind of data or structure that expressions and values may contain, as well as the allowable operations or actions. At the basic level we have data types which consist of primitive types such as Int and Unit (others can be defined), as well as more complex data types like Qbit for qubits. More advanced types consist of channel types $\hat{[T]}$ where each message in the channel is an n-tuple (written as \hat{T}) with component types T_1, \ldots, T_n, and unitary operator types $\text{Op}(n)$ that apply some unitary operation Op on n qubits.

Definition 1.3.1. The primitive data type Unit has only one value, the constant unit, used as a filler for uninteresting arguments and results (similar to Void or Null in some languages). There are no operations on Unit, but there are rules that state Unit is a legal type and unit is a legal value of Unit. [11]

Values
Values v are a specific piece of data or meaning classified by some data type. Values can be literal values of data types such as 0, 1, . . . for Int, unit for Unit, and $|0\rangle, |+\rangle$ for Qbit, as well as composite values of unitary operator types such as H (Hadamard
operator) and X (Not operator).

Expressions

Expressions e consist of values, variables (x,y,z etc.) and operations that can be evaluated according to the rules defined by the operational semantics. Operations consist of measurements $\text{measure } e_1, \ldots, e_n$, applications of unitary operators $e_1, \ldots, e_n* = e$, and expressions involving data operators such as $e + e'$.

Processes

Processes P are the highest level descriptor of a system; they define behavior and interaction of a system’s component parts. Processes end and branch with the null (terminated) process 0, and the parallel composition $P|Q$ of processes respectively. Interaction between processes consists of inputs $e?[\tilde{x} : T].P$, where input-bound variable x of type T is received on e, and outputs $e!\tilde{e_o}.P$, where output expression e_o is sent on e. For both inputs and outputs the expression e is constrained by the type system to refer to a channel. Process actions $\{e\}.P$ define the inclusion of expressions into our system. A typical action is the application of a unitary operator, for example the application of a Hadamard operator to a qubit variable $\{x* = H\}$. Finally, processes can create new variables of any valid type, such as channel declarations $(\text{new } x : T)P$ and qubit declarations $(\text{qbit } x)P$.

Example 1.3.2. Consider a simple transmit process where A sends a single qubit to B, modeled as follows in CQP.

- $\text{Transmit} = (\text{new } s : \tilde{[\text{Qbit}]}) (\text{Alice}(s) \mid \text{Bob}(s))$
- $\text{Alice}(s : \tilde{[\text{Qbit}]}) = (\text{Qbit } x)(s![x].0)$
- $\text{Bob}(s : \tilde{[\text{Qbit}]}) = s?[y : \text{Qbit}].0$
At the top level the **Transmit** process creates a new qubit channel s, then starts processes A and B in parallel, both with parameter s. The process A creates a new qubit x, sends x out on channel s, then terminates, while process Bob waits for an incoming qubit, which he refers to as y, and once it is received he terminates.

1.3.2 PRISM

PRISM is a probabilistic model checker used to model and analyze systems with probabilistic behavior. As the result of a qubit measurement is a probabilistic distribution of the amplitudes of the measurement basis, PRISM is able to model this behavior as part of an overall quantum system.

There are two stages to the PRISM approach. First is to model the system in the PRISM language such that all states and transitions of the system are represented. The second is to formally express properties of the system with a temporal logic to be analyzed against the PRISM model. By running the temporal logic statements against the PRISM model we can verify whether or not they hold and with what probability they hold for the system.

Full descriptions and instructions for both stages can be found in the PRISM Users’ Guide [33]; however, we will briefly summarize the main components of both the modeling language, and the temporal logic used to specify the model’s properties.

1.3.3 Probabilistic Model

The type of model we will use in PRISM is the *discrete-time Markov chain* (DTMC). The DTMC consists of a finite set of states S, a set of initial states $\overline{S} \subseteq S$, and a transition probability matrix $P : S \times S \rightarrow [0, 1]$. For each pair of states s, s' we give the probability of making the transition from s to s' as $P(s, s')$, and require that $\sum_{s' \in S} P(s, s') = 1$ for all states $s \in S$. Terminating states can be modeled by adding a self-loop, that is setting $P(s, s) = 1$.
A PRISM model consists of a number of modules, which are processes that can interact with each other. A module contains local variables, which at any given time constitute the state of the module, and a set of commands, which describe the behavior of the module. Commands take the form:

\[
\lnot g \rightarrow \lambda_1 : \mu_1 + \ldots + \lambda_n : \mu_n; \quad (1.21)
\]

where the guard \(g \) is a predicate over all variables in the model, update \(\mu_i \) is a transition the module can make if the guard is true, and expressions \(\lambda_i \) assign probabilistic distributions to the transitions. Transitions are specified by assigning new values to one or more variables, thus changing the state of the module.

1.3.4 Property Specification

Properties in PRISM are specified using a language based on the temporal logic PCTL [5][23], a probabilistic extension to the classic temporal logic CTL. The basic syntax of the language used to express the properties we need is defined in Figure 1.2, where:

- \(\langle \text{expr} \rangle \) is a PRISM language expression which evaluates to a Boolean,
- \(\langle \text{op} \rangle \) is a relational operator (one of \(<\), \(\leq\), \(\geq\), or \(>\)),
- \(\langle \text{p} \rangle \) is a PRISM language expression evaluating to a double (real number) in the range \([0,1]\),
- \(\langle \text{prop1} \rangle \text{ U } \langle \text{prop2} \rangle \) is the “Until” path property which is true if \(\langle \text{prop1} \rangle \) is true until \(\langle \text{prop2} \rangle \) is true.

There are two types of properties used in our model. The first is an assertion where the outcome is true or false and will look like

\[
P \geq 1 \ [\text{true U cheat_detected}]
\]
\[
\langle \text{prop} \rangle ::= \text{true} \mid \text{false} \mid \langle \text{expr} \rangle \mid \\
\neg \langle \text{prop} \rangle \mid \\
\langle \text{prop} \rangle \& \langle \text{prop} \rangle \mid \\
\langle \text{prop} \rangle =\!> \langle \text{prop} \rangle \mid \\
P\langle \text{op}\rangle\langle p\rangle \mid [\langle \text{pathprop} \rangle]
\]

\[
\langle \text{pathprop} \rangle ::= \langle \text{prop} \rangle \text{U} \langle \text{prop} \rangle
\]

Figure 1.2: Syntax of PCTL

Which will return true if, with probability 1, the expression \textit{cheat.detected} eventually resolves to true. The other type of property we define is one that evaluates to some numeric value that corresponds to the probability of that property holding. For example

\[P =? [\text{reveal.stage} \& \text{commit.bit} = 1]\]

returns the probability \(P\) that the model will enter a state such that the expression \textit{reveal.stage} resolves to true and variable \textit{commit.bit} has the value 1.

1.3.5 \textbf{Simulation}

Quantum systems can also be analyzed through simulation. This is done by developing the corresponding circuit as a series of quantum gates, then for some input or initial state, the circuit can be run and a corresponding output or final state is given. For a finite set of inputs a circuit simulator can give us the outputs to check against the expected results of a protocol. While a model checker is used to analyze states within a protocol, the circuit simulator is used to analyze values of qubits within these states.
1.3.5.1 Matlab Quantum Circuit Simulator

The quantum circuit simulator used in this thesis was developed, by the author, in Matlab as a tool to help check quantum states and transitions [39]. The simulator takes an input vector that represents the input state, applies a transformation matrix which is the product of all operations (or gates) in the circuit, and outputs a vector which represents the final state. An n-bit quantum state can be represented by a $2^n \times 2^n$ matrix, however as this requires memory exponential to the size of the number of qubits, we can only simulate small quantum systems.

1.4 Outline

In Chapter 2 we will introduce quantum cryptography and review related research that has been completed to date on both quantum cryptographic primitives and the tools used in their analysis. Chapter 3 will propose our formal approach to the modeling and analysis of quantum cryptographic primitives as well as detail the tools and methods we have developed. Chapter 4 will follow the application of our formal approach to a selected protocol and detail the results. Finally Chapter 5 will conclude our research and propose future work.
Chapter 2
Quantum Cryptography

Quantum Cryptography is the implementation of secure communications and cryptographic protocols based on the laws of quantum mechanics. Initially introduced by Stephen Wiesner with his multiplexing primitive [40](a quantum implementation of oblivious transfer), the concept was greatly expanded by Bennett and Brassard with the BB84 quantum key distribution and quantum coin flipping protocols [4]. BB84 effectively allowed an unconditionally secure (by the laws of quantum mechanics) method for the distribution of a random bit string over a quantum channel. Over the next decade a number of algorithms and protocols were developed and enhanced, most notably of which was Shor’s algorithm, which could efficiently factor prime numbers and find discrete logs [35]. This had huge implications, as the assumed hardness of factoring prime numbers and finding discrete logs is what the security of current Public Key Cryptography (eg RSA) is based on. If quantum computing could break classical cryptography, could we then provide a new quantum cryptographic approach that was secure against an adversary with a quantum computer? Shor’s discovery propelled quantum cryptography into a rapidly developing field and opened it to a much larger audience. Shortly after this period IBM built and tested the first quantum computer [38]. A five qubit machine that was able to demonstrate an order-finding algorithm with the same structure as Shor’s algorithm.

Today quantum cryptography has a large and vibrant research community working on a broad range of topics from theoretical protocols to physical experiments on qubits. Due to the success of the BB84 protocol, a major area of current research is in quantum communications and in increasing both the distance possible and the
reliability of qubit states.

2.1 Cryptographic Protocols

We define a cryptographic protocol as a method for two parties, A and B, to perform computations involving data that they want to keep secret from each other. We define cryptographic primitives as building blocks to constructing cryptographic protocols [13].

The primitives that we will look at are: Bit Commitment and Oblivious Transfer.

2.1.1 Bit Commitment

Bit Commitment is a cryptographic primitive involving two mistrustful parties, A and B, where A seeks to commit to a bit such that B is unable to learn the bit before it is revealed (sealing property) and A is unable to change the bit once it has been committed (binding property).

An example protocol would be A writes the bit down on a piece of paper and locks it in a lockbox. She then passes that lockbox to B while retaining the key. This process is binding as A cannot change her bit without getting into the safe (which is in B’s ownership) and is sealing as B cannot get into the safe without A’s key.

Bit commitment is a fundamental primitive that has been a useful tool in the implementation of numerous cryptographic protocols, most notably coin tossing [6] and zero-knowledge proofs [20][21].

2.1.2 Oblivious Transfer

Oblivious Transfer is a cryptographic primitive where A sends a bit to B in such a way that B receives the bit with 50% probability. B knows whether he received the bit, while A obtains no information on whether the transfer was successful.
An important application of oblivious transfer is in building secure multiparty computation [12][14][19][25][42].

2.2 Quantum Bit Commitment

<table>
<thead>
<tr>
<th>Quantum Bit Commitment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assume that A wishes to commit a bit b to B. Let s be a security parameter.</td>
</tr>
</tbody>
</table>

commit stage

1. A chooses a vector of s random bits B. Each bit is then encoded in the standard or diagonal basis, standard if $b = 0$ and diagonal if $b = 1$. Finally, A sends the resulting sequence of s encoded bits to B.

2. B chooses a random basis (standard or diagonal) to measure each incoming bit, and records the result into two tables — one for the standard basis and one for the diagonal.

unveil stage

1. A reveals to B the committed bit b and the unencoded sequence of bits B.

2. B verifies A’s claim by comparing his records in the table for the basis corresponding to b — standard if $b = 0$ and diagonal if $b = 1$. There should be perfect agreement with entries in that table and no correlation with the other table.

![Figure 2.1: The BB84 Quantum Bit Commitment Protocol.](image)

The first published quantum bit commitment protocol (QBC) is from Bennett and Brassard’s BB84 paper [4]; while the paper itself contained a Quantum Key
Distribution and Quantum Coin Flipping protocol, the latter is easily modified to QBC (see Figure 2.1). The protocol, however, is susceptible to entanglement based cheating by A. Let A prepare s pairs of entangled bits in the state $\frac{1}{\sqrt{2}}([01] + [10])$, then for each state send one half to B and store the other half. When A is ready to unveil, she measures her bits in the standard basis to commit to $b = 0$ and the diagonal basis to commit to $b = 1$.

The next major development in quantum bit commitment was the BCJL93 [8] protocol (see Figure 2.2), an improvement on a previous protocol BC91 [7]. Initially believed to be unconditionally secure, this protocol was later shown to be susceptible to the same type of entanglement attack as BB84 [28][26]. In fact, during this time it was put forward that unconditionally secure QBC may not exist.

2.2.1 The No-Go Theorem

The impossibility of unconditionally secure quantum bit commitment, sometimes referred to as the no-go theorem, was put forward independently by Lo and Chau [26][27] and Mayers [28][29], and later summarized by Brassard, Crepeau, Mayers, and Salvail [9]. Initially these were attacks on the BCJL93 protocol showing that it, and all proposed QBC protocols at the time, were in fact susceptible to the same EPR attack as BB84. However both claims were later generalized to include all QBC protocols.

The general idea behind the no-go theorem is that any sealing QBC is necessarily non-binding. The proof sketches as follows [15]. At the end of the commitment phase, B will hold one of two quantum states ρ_k for A’s commitment to $k \in 0, 1$. A holds the purification for this state ψ_k which she will pass to B during the unveil phase. For the protocol to be sealing, the two states ρ_k need to be indistinguishable, then from Uhlmann’s theorem [32][37], there exists a unitary transformation U that rotates the purification of ρ_0 to ρ_1. Since U is localized to the purification systems only, which
are under \mathcal{A}’s control, then \mathcal{A} is able to switch ϱ_k back and forth between ϱ_0 and ϱ_1 at will, and is therefore not bound to her commitment.

Bounds to the no-go theorem were provided by Spekkens and Rudolph [36] who looked at degrees of concealment and bindingness that can be achieved simultaneously in a QBC.

With the advent of the No-Go theorem it is generally accepted that unconditionally secure quantum bit commitment, and therefore perfectly fair quantum coin flipping, is impossible. As such, a number of research avenues have opened up in developing protocols that rely on restrictions to memory, or measurements, or relativistic location. Another research focus is on the tradeoffs of bindingness and concealment and bounding the bias of a cheating adversary.

2.2.2 Cheat Sensitive Quantum Bit Commitment

We define a class of cryptographic protocols as cheat sensitive if they guarantee that if one party cheats, the other will detect the cheating with some probability strictly greater than zero.

Cheat sensitive quantum bit commitment was introduced simultaneously and independently by Hardy and Kent [24] and Aharonov et al. [1]. The main idea is to encode the BC in non-orthogonal states such that if either side tries to extract information, they disturb the state and therefore risk detection. Hardy and Kent propose a protocol where both sides are simultaneously at risk of cheat detection by adding an entangled singlet state that effectively randomizes which side ends up with the encoded commit bit, and is therefore able to check for cheating. Figure 2.3 outlines the protocol and we follow up with a more detailed description in the next chapter.

Hardy and Kent’s protocol is interesting in that it can simultaneously detect cheating by either party; however the authors only prove that the probability of detection is nonzero. In the next chapter we will use this protocol as an example of
our modeling and analysis methodology, verify the nonzero probability of detection property, and put quantitative bounds on the cheat detection for both a dishonest A and a dishonest B.
Quantum Bit Commitment Revisited

commit stage

1. B chooses a Boolean matrix G as the generating matrix of a binary linear (n, k, d)-code C such that the ratio $d/n > 10\varepsilon$ and the ratio $k/n = 0.52$ and announces it to A.

2. A chooses a random binary vector r of length n and announces it to B.

3. A chooses a random k-bit vector s, such that $r \cdot c = x$, where $c = sG$.

4. A chooses a random sequence b of length n of the polarizations, B or D, and sends to B a sequence of n photons with the polarization of the ith photon $P_{b_i}(c_i)$, where $P_0(0) = 0^\circ$, $P_0(1) = 90^\circ$ and $P_1(0) = 45^\circ$, $P_1(1) = 135^\circ$.

5. B chooses a random string b' of n bits and measures the ith photon according to the basis $M(b'_i)$, where $M(0) = B$ and $M(1) = D$. Let c' be the n-bit vector where c'_i is the result of the measurement of the ith photon.

unveil stage

1. A sends c, b and x to B.

2. B verifies that c is a codeword of C and computes $B = \sum_{i \mid b'_i = b_i} \frac{c_i \oplus c'_i}{n/2}$, in order to verify that the error rate is under the limit of those pairs of outgoing and measured bits that were polarized/measured by the same basis.

3. if $B < 1.3\varepsilon$ and $x = r \cdot c$, then B accepts, otherwise B rejects.

Figure 2.2: The BCJL93 Quantum Bit Commitment Protocol.
Cheat Sensitive Quantum Bit Commitment

1. Stage 0: the prelude. \(B \) prepares a singlet state, \(|\Psi^\rightarrow_{AB}\rangle = \frac{1}{\sqrt{2}}(|0\rangle_A|1\rangle_B - |1\rangle_A|0\rangle_B) \), and sends qubit \(A \) to \(A \).

2. Stage 1: the commitment. The protocol allows a simple commitment procedure which \(A \) may use if she wishes to commit to a definite classical bit: to commit to 0, she prepares a qubit \(C \) chosen randomly to be either \(|0\rangle \) or \(|\rightarrow\rangle \), each with probability 1/2; to commit to 1, she similarly prepares either \(|1\rangle \) or \(|+\rangle \). Then she sends the \(C \) qubit to \(B \).

3. Stage 2: the unveiling. \(A \) is first given the option of challenging the singlet. If she does and it fails the test, she has detected cheating. Next, whether or not she made a challenge, she must reveal the value of the committed classical bit. \(B \) then has the option of challenging the singlet, if \(A \) did not. If he does and the singlet fails the test, he has detected cheating.

4. Stage 3: the game. If either party earlier challenged the singlet, they automatically lose the game. If neither challenged the singlet, they now each measure their singlet qubit in the \(|0\rangle, |1\rangle \) basis. \(B \) sends his results to \(A \). If hers is not opposite, she has detected cheating.

If \(B \) reports the result 1 then \(A \) loses the game; if 0 then \(B \) loses. If \(A \) loses then she reveals the encoding state for \(C \), and if \(B \) loses he returns \(C \) to \(A \). This allows the winning party to examine \(C \) for signs of cheating.

Figure 2.3: Cheat Sensitive Quantum Bit Commitment Protocol.
Chapter 3
Modeling and Analysis

Given a quantum cryptographic protocol our goal is to verify its correctness in the presence of cheating, and to quantify the bounds of a dishonest party member’s ability to cheat the protocol, along with the bounds of such cheating being detected. By identifying a maximum cheat strategy we have identified key steps within the protocol that may be able to be strengthened.

We will define a formal approach to this task as follows:

1. **Formalize** the protocol’s description in the process algebra CQP.
2. **Model** the formalized protocol in the probabilistic model checker PRISM.
3. **Verify** the protocol model in PRISM with the temporal logic PCTL.
4. **Analyze** quantum cheat strategies to find optimal values to add to our PRISM model in the case of a dishonest party.

3.1 The Protocol

The protocol we will consider is a Cheat Sensitive Quantum Bit Commitment [24]. Here \mathcal{A} will commit a bit to \mathcal{B}; at the completion of the protocol if either party attempted to cheat the *binding* or *sealing* property then there is some positive probability that the other party will detect such cheat attempt. We will summarize the protocol as follows:

Stage 0: the prelude. \mathcal{B} prepares a singlet state

$$|\Psi^−\rangle_{AB} = \frac{1}{\sqrt{2}}(|0\rangle_A|1\rangle_B - |1\rangle_A|0\rangle_B)$$ (3.1)
and sends qubit \(A \) to \(\mathcal{A} \). At various points in the protocol the singlet state may be \textit{challenged}, where the challenger receives the other party’s half of the state and measures them to confirm values of 01 or 10. Any variation from these values implies that the singlet state has been modified and therefore cheating has been detected. If neither party challenges, the singlet is used to provide a random winner, who receives the final qubit states and is able to check them for any signs of cheating.

\textbf{Stage 1: the commitment.} \(\mathcal{A} \) commits to a definite classical bit \(c \in \{0,1\} \): to commit to 0 \(\mathcal{A} \) randomly prepares qubit \(C \) as either \(|0\rangle \) or \(|-\rangle \) with equal probability. Similarly to commit to 1 she prepares \(C \) as either \(|1\rangle \) or \(|+\rangle \). Qubit \(C \) is then sent to \(\mathcal{B} \).

\textbf{Stage 2: the unveiling.} \(\mathcal{A} \) has the option of challenging the singlet. If the challenge fails then cheating is detected, otherwise no cheating is detected yet. Next \(\mathcal{A} \) must reveal her committed classical bit \(c \). If \(\mathcal{A} \) did not challenge the singlet then \(\mathcal{B} \) now has the option to do so, with a fail implying that cheating has been detected.

\textbf{Stage 3: the game.} If either party challenged the singlet then the other party wins the game, otherwise \(\mathcal{A} \) and \(\mathcal{B} \) both measure their half of the singlet on the standard basis and \(\mathcal{B} \) sends his result to \(\mathcal{A} \). If \(A_{\text{measured}} = B_{\text{measured}} \) then cheating is detected, otherwise if \(\mathcal{B} \) reports 1 then \(\mathcal{B} \) wins and if he reports 0 then \(\mathcal{A} \) wins.

If \(\mathcal{A} \) loses then she must reveal the encoding state for \(C \), \(\mathcal{B} \) then measures \(C \) and if \(C_{\text{measured}} \neq c \), cheating is detected.

If \(\mathcal{B} \) loses then he must return qubit \(C \), \(\mathcal{A} \) then measures \(C \) and if \(C_{\text{measured}} \neq c \), cheating is detected.

\section*{3.2 Formalize}

The first step is to formalize the protocol in the language CQP so that we have a consistent and correct model to work with. A formal description of the protocol
allows us to apply a set approach to the modeling and analysis, as well as lay the
framework for automated verification.

The conversion to CQP is a step by step approach of following each stage of the
protocol, identifying communicating channels (both inbound and outbound) and the
logical structure of the decisions made during the protocol. We create additional
classical bits and communication channels to manage party choice, for example to
communicate a binary decision or to terminate the process.

A protocol in CQP consists of a sequence of CQP processes as defined by the
syntax in section 1.3.1. We will review the key components of a CQP process here,
but first let us define the following variables: \(x \) as a data type, \(s \) as a channel type
with component type \(x \), \(e \) as an operation expression, and \(b \) as a boolean expression.
Then the protocol can be defined as an overall process \(P \) that can be recursively
separated its component processes \(P_{1,n} \) as \(P = P_i, i = 1 \ldots n \), where \(P_i \) is one of the
following process events:

1. \(\{ e \}.P_{i+1} \) – Process action: evaluate operation \(e \) then continue with process \(P_{i+1} \).

2. \(s! [x].P_{i+1} \) – Process output: send data \(x \) along channel \(s \) then continue with
 process \(P_{i+1} \).

3. \(s? [x].P_{i+1} \) – Process input: wait to receive data \(x \) from channel \(s \) then continue
 with process \(P_{i+1} \).

4. \(P_{i+1}|P_{i+k} \) – Process branch: continue with both processes \(P_{i+1} \) and \(P_{i+k} \), \(1 < k \leq n - i \), concurrently.

5. \(\text{if } b \text{ then } P_{i+1} \text{ else } P_{i+k} \) – Process decision: if expression \(b \) evaluates to true then
 continue with process \(P_{i+1} \), otherwise continue with process \(P_{i+k} \), \(1 < k \leq n - i \).

6. \(0 \) – Process end: terminate the current process.
All of the above process events are defined in section 1.3.1 except the process decision, which we will define here.

For the operational semantics in our definitions we use the notation \(\boxplus, p_i \bullet t_i = p_1 \bullet t_1 \boxplus \ldots \boxplus p_n \bullet t_n \) to denote a probability distribution \(\sum_i p_i = 1 \) over configurations \(t_i \). Where a configuration \(t = (\sigma; \phi; e|P) \) consists of an expression or process and its state information \(\sigma \) and \(\phi \) (qubits and channels respectively)

Definition 3.2.1. A **process decision** is a process that, given a boolean expression \(b \) and processes \(P \) and \(Q \), will evaluate \(b = 1 \) and if the evaluation is true will continue with process \(P \) otherwise it continues with process \(Q \). We define the syntax for a process decision as

\[
P ::= \text{if } b \text{ then } P \text{ else } Q
\]

with operational semantics defined by the reduction rule

\[
(\sigma; \phi; \text{if } b \text{ then } P \text{ else } Q) \rightarrow_e b \bullet (\sigma; \phi; P) \boxplus (1 - b) \bullet (\sigma; \phi; Q) \quad \text{(R-Dec)}
\]

and the typing rule defined as

\[
\frac{\Gamma \vdash b : \text{Bool} \quad \Gamma \vdash P \quad \Gamma \vdash Q}{\Gamma \vdash \text{if } b \text{ then } P \text{ else } Q} \quad \text{(T-Dec)}
\]

Similar to the process decision, we will also define a new operation expression called the **binary decision operation** to give us decision making capability within an operational expression \(e \) in a process action.

Definition 3.2.2. A **binary decision (if-then-else) operation** is an expression that, given a boolean expression \(b \) and expressions \(e_1 \) and \(e_0 \), evaluates \(b = 1 \) and if the evaluation is true it reduces to expression \(e_1 \) otherwise it reduces to expression \(e_0 \). The syntax for the operation is defined as

\[
e ::= \text{if } b \text{ then } e_1 \text{ else } e_0
\]
with operational semantics defined by the reduction rule

\[(\sigma; \phi; \text{if } b \text{ then } e_1 \text{ else } e_0) \rightarrow \sigma b \bullet (\sigma; \phi; e_1) \par (1 - b) \bullet (\sigma; \phi; e_0) \quad (\text{R-If})\]

and the typing rule defined as

\[
\Gamma \vdash b : \text{Bool} \quad \Gamma \vdash e_1 : T \quad \Gamma \vdash e_0 : T \\
\Gamma \vdash \text{if } b \text{ then } e_1 \text{ else } e_0 \quad (\text{T-If})
\]

3.2.1 Conversion to CQP

We will now detail the protocol conversion to CQP by looking at each stage of the protocol, breaking it into communication steps between \(A\) and \(B\), each containing a sequence of CQP processes, and follow it with a brief description of the actions taken. The flowchart in Figure 3.1 gives a high level view of which protocol stages are followed depending on whether there are challenges.

The complete results of the formalization of the protocol into CQP, which we detail in the following steps, can be found in Appendix A.

Stage 0

\(B:\{a^* = H\}.\{a, b^* = \text{CNot}\}.s!a\)

\(B\) creates an entangled pair by applying a Hadamard operation \(H\) to the first qubit \(a\), a Control Not operation \(\text{CNot}\) on both qubits \(a, b\), then sends half of the entangled pair \(a\) to \(A\) on channel \(s\).

\(A:\ s?[a : \text{Qbit}]\)

\(A\) receives her singlet (half of the entangled pair) qubit \(a\) from \(B\).

Stage 1

\(A:\ r?[d : \text{Bit}].r?[e : \text{Bit}].\text{encode}(d, e, c).s!c\)
Figure 3.1: CSQBC Flowchart
\(\mathcal{A} \) obtains two bits from the random bit generator channel \(r \), the first is her commit bit \(d \) and the second is her encoding basis \(e \). She then encodes her commit bit with the random basis and sends the resulting qubit \(c \) to \(\mathcal{B} \).

\(\mathcal{B} \): \(s?[c : \text{Qbit}] \)

\(\mathcal{B} \) receives \(\mathcal{A} \)'s commit qubit \(c \).

Stage 2 - Alice Challenges

\(\mathcal{A} \): \(t![x] \)

\(\mathcal{A} \) sends her challenge bit \(x \) to \(\mathcal{B} \).

\(\mathcal{B} \): \(t?[x : \text{Bit}], s![b] \)

\(\mathcal{B} \) receives \(\mathcal{A} \)'s challenge bit \(x \) then sends his half of the singlet state \(b \) to \(\mathcal{A} \).

\(\mathcal{A} \): \(s?[b : \text{Qbit}], \text{if (measure } a \neq \text{ measure } b) \text{ then } \{w = 1\} . t![w], t![d] \)

\(\mathcal{A} \) receives \(\mathcal{B} \)'s half of the singlet state \(b \) and measures it along with her half of the singlet state \(a \). If the measured singlet states are not equal (no cheating detected) then \(\mathcal{A} \) sets the winner bit \(w \) to \(\mathcal{B} \) (since \(\mathcal{A} \) challenged) and sends it to him along with her commit bit \(d \).

\(\mathcal{A} \): \(\text{else } \{w = 0\} . t![w], \text{cheatdetected} \)

If the measured singlet states are equal (cheating detected) then \(\mathcal{A} \) sets the winner bit \(w \) to herself, sends the bit to \(\mathcal{B} \) then terminates the process with \text{cheatdetected}.
Stage 2 - Bob Challenges

\(A\): \(t![x], t![d] \)

\(A\) sends her no-challenge bit \(x\) and commit bit \(d\) to \(B\).

\(B\): \(t?[x : \text{Bit}].t?[d : \text{Bit}].t![y] \)

\(B\) receives \(A\)'s no-challenge bit \(x\) and commit bit \(d\), then sends his challenge bit \(y\) to \(A\).

\(A\): \(t?[y].s![a] \)

\(A\) receives \(B\)'s challenge bit \(y\) and replies with her half of the singlet state \(a\).

\(B\): \(s?[a].\text{if (measure } a \neq \text{ measure } b \text{) then } \{ w = 0 \}.t![w] \)

\(B\) receives \(A\)'s half of the singlet state \(a\) and measures it along with his singlet state \(b\). If the measured singlet states are not equal (no cheating detected) then \(B\) sets the winner bit \(w\) to \(A\) (since \(B\) challenged) and sends it to her.

\(B\): \(\text{else } \{ w = 1 \}.t![w].\text{cheatdetected} \)

If the measured singlet states are equal (cheating detected) then \(B\) sets the winner bit \(w\) to himself, sends the bit to \(A\) then terminates the process with \text{cheatdetected}.

Stage 2 - No Challenges

\(A\): \(t![x], t![d] \)

\(A\) sends her no-challenge bit \(x\) and commit bit \(d\) to \(B\).
B: $t?[_x : \text{Bit},t?[_d : \text{Bit},t![_y$]

B receives A's no-challenge bit x and commit bit d, then sends his no-challenge bit y to A.

A: $t?[_y$

A receives B's no-challenge bit y.

Stage 3 - Alice Challenges

B wins the game since A challenged the singlet state.

Stage 3 - Bob Challenges

A wins the game since B challenged the singlet state.

Stage 3 - No Challenges

Since neither party challenged the singlet state, a game is played to produce a random winner w, where $w = 0 \Rightarrow A$ wins, and $w = 1 \Rightarrow B$ wins.

B: $\{w = \text{measure } b\}.t![_w$

B measures his half of the singlet b and sends the result w to A.

A: $t?[_w$.if $(\text{measure } a \neq w)$ then $t![_1$ else $t![_0].\text{cheatdetected}]

A receives B's measured half singlet w and compares it to her own half singlet a. If they are not equal then A sends acceptance to B, otherwise she sends reject to B and terminates the process with cheatdetected.

Alice Wins

B: $s![_c].\text{done}$
B returns commit qubit c to A.

\(A: s?[c] \cdot \{\text{if } e \text{ then } c^* = H \text{ else unit}\}.\{\text{if } (d = \text{measure } c) \text{ then done else cheatdetected}\}

A receives her commit qubit c back from B, decodes it with encode bit e, measures it and compares it to her original commit bit d. If they match then she terminates the protocol successfully with done, and if they do not match then modifications have been detected and she terminates the protocol with cheatdetected.

Bob Wins

\(A: t![e].\text{done}\)

A reveals the encoding state e for her commit bit.

\(B: t?[e : \text{Bit}] \cdot \{\text{if } e \text{ then } c^* = H \text{ else unit}\}.\{\text{if } (d = \text{measure } c) \text{ then done else cheatdetected}\}

B receives encoding state e and uses it to decode A’s commit qubit c, then measures c and compares it to A’s commit bit d. If they match then he terminates the protocol successfully with done, otherwise modifications have been detected and he terminates the protocol with cheatdetected.

3.3 Modeling

Once our protocol has been formalized in CQP, we want to model it in PRISM so that we can run verification experiments on specific properties. The conversion from CQP to PRISM here has been done for a subset of CQP by following an algorithm where every CQP process step gets one or more PRISM commands. We define a set of conversion rules in such a way that they could be used to automate the interpretation from the formal CQP description to the PRISM model.

To build the model we do the following:
1. Create one PRISM module per CQP system (protocol party).

2. Create a PRISM module for qubit operation and measurements, with association operation/result global variables.

3. Create one global variable per CQP channel.

4. For each module, create a local variable for stepping and one for each variable passed to or created by the system.

5. Create a synchronization label for each channel in/out pair.

6. Use the conversion rules below to convert each CQP process step into its equivalent PRISM commands.

Our PRISM model will consist of 3 modules, one for each party A and B and one to manage qubits. Variables in our PRISM model consist of every variable in the CQP description as well as a stepping variable for both A and B.

Given a local stepping variable step and a current step counter n, we can define the conversion rules as a set of PRISM commands for each CQP process step. A selection of these process steps are as follows:

Process action (measure): \(\{\text{measure}a\}\) or \(\{a* = U\}\)

\[
\begin{align*}
\[\] & \text{step}=n \rightarrow \text{step}'=n+1 & \text{operation}_\text{in}'=a; \\
[\text{measure}] & \text{step}=n+1 \rightarrow \text{step}'=n+2; \\
\[\] & \text{step}=n+2 \rightarrow \text{step}'=n+3 & a'=\text{bit}_\text{result};
\end{align*}
\]

To measure a qubit first set the global variable \(\text{operation}_\text{in}\) to the local qubit variable \(a\), synchronize with the measure operation in the qubit module, then update \(a\) with the global variable \(\text{bit}_\text{result}\). Unitary operations are similarly implemented by changing the synch label from measure
to the operation required (eg: Hadamard), and the global result variable from bit_result to qbit_result.

Process output: s![x]

\[
\begin{align*}
\text{[]} & \quad \text{step}=n \rightarrow \text{step'}=n+1 \land s'=x; \\
\text{[s_i]} & \quad \text{step}=n+1 \rightarrow \text{step'}=n+2;
\end{align*}
\]

To send data \(x \) along channel \(s \), first set the global channel variable \(s \) to local data variable \(x \), then set a synchronization step to \(s.i \) where \(i \) is the iteration of current use of channel \(s \).

Process input: s?[x]

\[
\begin{align*}
\text{[s_i]} & \quad \text{step}=n \rightarrow \text{step'}=n+1 \land x'=s;
\end{align*}
\]

To receive a piece of data \(x \) along channel \(s \), first synchronize the step to the corresponding \(s![x] \) (send) statement, then set the local data variable \(x \) to the global channel variable \(s \)

Process decision: if \(b \) then \(P_{n+1} \) else \(P_{n+k} \)

\[
\begin{align*}
\text{[]} & \quad \text{step}=n \land b \rightarrow \text{step'}=n+1; \\
\text{[]} & \quad \text{step}=n \land \neg b \rightarrow \text{step'}=n+k;
\end{align*}
\]

To execute a binary decision \(b \in \{0, 1\} \) create a command for both \(b \) and \(\bar{b} \) where \(b \) goes to step \(n + 1 \) and \(\bar{b} \) goes to step \(n + k \)

Process end: 0

\[
\begin{align*}
\text{[done]} & \quad \text{step}=n \rightarrow \text{step'}=n;
\end{align*}
\]

To end the process we simply create a self-loop.

By applying the above rules to each CQP process step in Appendix A, we create a complete PRISM model of the protocol, found in Appendix B.
3.4 Verification

Now that we have a complete and modeled protocol, we can define properties to be verified for correctness. First we identify step values within the model that correspond to the situations of interest and add them to our model as constants:

1. terminates: The protocol terminates successfully.

2. cheat_detected: The protocol terminates with cheating detected.

3. alice_reveals_c: Revealing stage for A, where she reveals her commit bit.

4. bob_learns_c: Revealing stage for B, where he learns A's commit bit.

This allows for more intuitive property definitions.

We will start with a control case of running the protocol where both parties are honest. Let x and y be challenge bits for A and B respectively, d be the commit bit, e be the encode bit, c be the encoded commit bit, w be a win bit (for the game), and allow each variable to have an alice or bob prefix to denote who has ownership of the variable. For any combination of commit, encode, and challenge bits, the following properties should hold:

1. **Termination Property:** The protocol terminates successfully for both parties with probability 1.

 \cdot $P=? [\text{true U (alice_step=terminates & bob_step=terminates) }]$

2. **Fairness Property:** If neither party challenges, A and B have equal probability of winning the game.

 \cdot $P=? [\text{true U bob_w=1 & alice_w=1}]$

3. **Sealing Property:** Before the revealing stage, B know's A's commit bit with probability 0.5.
<table>
<thead>
<tr>
<th></th>
<th>Alice Challenges</th>
<th>Bob Challenges</th>
<th>No Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property 1</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Property 2</td>
<td>na</td>
<td>na</td>
<td>0.5</td>
</tr>
<tr>
<td>Property 3</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Property 4</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>

Table 3.1: Property Verification: Honest Case

- \(P=? \) \([\text{true} \cup (\text{bob.step}=\text{Bob.Learns.C} \& \text{bob.d}=\text{bob.c})] \)

4. **Binding Property:** After the revealing stage, \(\mathcal{A} \)'s commit bit is the same as her revealed bit.

- \(\text{alice.step}=\text{Alice.Reveals.C} \Rightarrow P>=1.0 \) \([\text{X cheat.e=0}]\)

We set commit and encode bits as uniformly chosen random boolean variables and then run experiments for the three different challenge cases. The results are summarized in Table 3.1.

Next we check the properties against the trivial cheating cases: when \(\mathcal{A} \) reveals a bit that is not her commit bit, or when \(\mathcal{B} \) measures the encoded commit bit before the reveal stage.

Lemma 3.4.1. *In the trivial cheating cases there is no advantage to either party challenging.*

Proof. When a party cheats in the trivial case, there is some probability \(p \) that the other party will detect the cheating only if they are able to test the encoded qubit, that is, only if the other party loses the game. If the cheating party challenges then they automatically lose the game and therefore are detected with probability \(p \). However if they do not challenge then there is some probability \(q \leq 1 \) that the opposing party will
Table 3.2: Property Verification: Dishonest Case

<table>
<thead>
<tr>
<th>Property</th>
<th>Alice Cheats</th>
<th>Bob Cheats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property 1</td>
<td>.84375</td>
<td>.8125</td>
</tr>
<tr>
<td>Property 2</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Property 3</td>
<td>0.25</td>
<td>0.75</td>
</tr>
<tr>
<td>Property 4</td>
<td>false</td>
<td>true</td>
</tr>
</tbody>
</table>

challenge, therefore losing the game and ensuring that no cheating is detected, or the probability $1 - q$ that the opposing party does not challenge and winning or losing is left to the fair game (Property 2). For the cheating party: $p > p(1-q) > 0.5p(1-q)$, so challenging results in the greatest probability of detection. And for the non-cheating party $0.5p > 0$ as challenging removes any possibility of cheat detection.

Since there is no advantage to challenging we will run experiments for the trivial cheat strategies only for the case where neither party challenges, see Table 3.2 for results.

The experiments for the trivial cheating cases show us that when A cheats she is able to reveal an arbitrary bit of her choice with probability 1 and be detected cheating with probability 0.156; while B cheating gives him the correct commit bit with probability 0.75 but he is detected with probability 0.375. This shows a clear advantage in the protocol to a dishonest A over a dishonest B.

3.5 Analysis and Optimization

With the base and trivial cheating cases verified, we now want to analyze advanced cheating strategies by identifying all communications channels and quantifying the results if one party cheats. We do this separately for both classical and quantum
channels. Cheating over a classical channel is done by sending bit \bar{a} instead of a with some probability $pr(a)$, while cheating over a quantum channel will consist of applying operations, entangling, and measuring certain qubits.

We look at all the classical bit communication channels in the PRISM model, labeled $t_1...t_8$ (see Appendix B) for possibilities of cheating. Challenge and accept bits can be ignored as they are either allowed any value in the case of the former, or imply cheat detection by definition in the case of the latter. This leaves two possibilities for cheating, t_3 and t_8; both are strategies for A. The first of these is when A reveals her commit bit and instead reveals a bit other than what she originally committed, thus breaking the binding property. The second cheat channel is when A reveals her encode bit, and any incorrect value here may alter B’s confirmation of her commit bit, again breaking the binding property. Both of these are covered by the trivial cheat strategy in the previous section.

Next we look at all the quantum bit communication channels.

1. s_{1} - Bob sends half of the singlet state
2. s_{2} - Alice sends an encoded commit qubit
3. s_{3} - Bob sends his half of the entangled state
4. s_{4} - Alice sends her half of the entangled state
5. s_{5} - Bob returns an encoded commit qubit

Looking back at the process flow in Figure 3.1, we can identify all possible quantum channel communication sequences as:

1. $s_{1} \rightarrow s_{2}$ – no challenge, B wins game
2. $s_{1} \rightarrow s_{2} \rightarrow s_{5}$ – no challenge, A wins game
3. \(s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow A \) challenges

4. \(s_1 \rightarrow s_2 \rightarrow s_4 \rightarrow s_5 \rightarrow B \) challenges

However, analyzing all possible values of a qubit to find an optimal cheat strategy is difficult in PRISM due to having to add a PRISM state for each possible value of the qubit. Instead we will analyze the cheat strategies outside of PRISM and then add the optimized values or ranges to our PRISM model. We will do this first for a dishonest \(B \) and then for a dishonest \(A \).

3.5.1 Dishonest \(B \)

\(B \)'s initiated quantum communications channels are \(S_1, S_3, \) and \(S_5 \); however, \(S_3 \) may be safely removed from any cheat strategy as any modification he can make to his half of the singlet state can be made before \(S_1 \) when he has control over the full singlet state. \(B \)'s overall goal here is to learn something about \(A \)'s commit bit before she reveals it (cheat) as well as reduce the probability that \(A \) has of knowing that he has learned something about her commit bit (cheat detect).

Channel \(S_1 \)

Quantum communications channel \(S_1 \) is \(B \) sending half of the prepared singlet state, to be used during the game stage of the protocol to determine a winner in the case that neither party challenges the singlet. The cheat strategy for this channel is for \(B \) to prepare a singlet state that favors him in winning the game:

\[
|\Psi^B\rangle = \varepsilon |0\rangle_A |1\rangle_B - \sqrt{1 - \varepsilon^2} |1\rangle_A |0\rangle_B
\]

(3.2)

giving \(B \) a cheat bias of

\[
\varepsilon^2 - \frac{1}{2}
\]

(3.3)

where \(\varepsilon > \frac{1}{\sqrt{2}} \) results in advantage \((0,0.5]\) to \(B \).
Detection of this cheat happens only when \(A \) challenges, and receives \(B \)'s half of the singlet to measure the full state and compare to the expected value of \(\varepsilon = \frac{1}{\sqrt{2}} \) found in Equation (3.1).

Lemma 3.5.1. Given \(A \) challenges, the probability of cheat detection is

\[
pr(\text{detect}) = \frac{1}{2} - \varepsilon \sqrt{1 - \varepsilon^2} \tag{3.4}
\]

Proof. The probability of detection is the probability of not getting the result \(|\Psi^-\rangle \) (3.1) when measuring the state \(|\Psi^B\rangle \) (3.2) with measurement observable \(M_{\Psi^-} = |\Psi^-\rangle\langle\Psi^-| \). From Equation (1.13) we have the probability of getting result \(|\Psi^-\rangle \) as

\[
pr(\Psi^-) = \langle \Psi^B | M_{\Psi^-}^\dagger M_{\psi} | \Psi^B \rangle = \begin{pmatrix}
0 & \varepsilon & -\sqrt{1 - \varepsilon^2} \\
0 & \frac{1}{2} & -\frac{1}{2} & 0 \\
0 & -\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & \frac{1}{2} & -\frac{1}{2} & 0 \\
0 & -\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
0 \\
\varepsilon \\
-\sqrt{1 - \varepsilon^2} \\
0
\end{pmatrix}
\]

thus,

\[
pr(\text{detect}) = 1 - pr(\Psi^-) = \frac{1}{2} - \varepsilon \sqrt{1 - \varepsilon^2} \quad \square
\]

Corollary 3.5.2. Let \(A \) challenge with probability \(\alpha \), then the results of the game when \(B \) cheats are either cheating detected \((\phi_d) \), \(B \) wins \((\phi_b) \), or \(A \) wins \((\phi_a) \), with probabilities:

\[
pr(\phi_d) = \alpha \left(\frac{1}{2} - \varepsilon \sqrt{1 - \varepsilon^2} \right) \tag{3.5a}
\]

\[
pr(\phi_b) = \alpha \left(\frac{1}{2} + \varepsilon \sqrt{1 - \varepsilon^2} \right) + (1 - \alpha)\varepsilon^2 \tag{3.5b}
\]

\[
pr(\phi_a) = (1 - \alpha)(1 - \varepsilon^2) \tag{3.5c}
\]
Proof. From Lemma 3.5.1 we have the probability of A detecting B’s cheat as $\alpha \left(\frac{1}{2} - \varepsilon\sqrt{1 - \varepsilon^2} \right)$. Next B wins if either A challenges and does not detect his cheating $\alpha \left(\frac{1}{2} + \varepsilon\sqrt{1 - \varepsilon^2} \right)$ or if she does not challenge and he wins the game $(1 - \alpha)\varepsilon^2$ (3.3). Finally, A wins when she does not challenge $(1 - \alpha)$ and B does not win the game $1 - \varepsilon^2$. □

Channel S_5

Quantum communications channel S_5 is B returning the encoded commit qubit C. The cheat strategy for this channel is for B to extract information c' out of C before returning it by measuring on some orthonormal basis $|a\rangle \perp |b\rangle$ that differentiates the states $|0\rangle, |\rangle$ (c = 0) and $|1\rangle, |+\rangle$ (c = 1) with probability $> \frac{1}{2}$. That is for measurement operator $M_{m\in\{a,b\}} = |m\rangle\langle m|$, commit 0 state $\psi_0 \in \{0, -\}$, and commit 1 state $\psi_1 \in \{1, +\}$, the commit bit $c = 0$ gives result $|a\rangle$ or $|b\rangle$ with probability

$$pr(a) = \langle \psi_0 | M_a^\dagger M_a | \psi_0 \rangle > \frac{1}{2} \quad (3.6)$$

$$pr(b) = \langle \psi_0 | M_b^\dagger M_b | \psi_0 \rangle < \frac{1}{2} \quad (3.7)$$

and commit bit $c = 1$ gives probabilities

$$pr(b) = \langle \psi_1 | M_b^\dagger M_b | \psi_1 \rangle > \frac{1}{2} \quad (3.8)$$

$$pr(a) = \langle \psi_1 | M_a^\dagger M_a | \psi_1 \rangle < \frac{1}{2} \quad (3.9)$$

Measurement result $|a\rangle$ implies that B extracts $c' = 0$ with probability $pr(a)$ and result $|b\rangle$ implies he extracts $c' = 1$ with probability $pr(b)$.

Lemma 3.5.3. The optimal basis $|a\rangle \perp |b\rangle$ for extracting commit bit c from encoded commit qubit C is

$$|a\rangle = \left(\frac{\sqrt{2 + \sqrt{2}}}{2} \right), |b\rangle = \left(\frac{\sqrt{2 - \sqrt{2}}}{2} \right) \quad (3.10)$$
Proof. WLOG let

\[|b\rangle = \begin{pmatrix} \cos(\theta) \\ \sin(\theta) \end{pmatrix} \]

for some orthonormal basis \(|a\rangle \perp |b\rangle \). Then we want to find \(\theta \) that maximizes the probability of getting result \(|b\rangle \) \((c = 1)\) when \(C = |1\rangle \) or \(|+\rangle \), and minimizes the probability of getting result \(|b\rangle \) when \(C = |0\rangle \) or \(|--\rangle \). Writing the basis state as a measurement operator

\[
M_b = |b\rangle \langle b| = \begin{pmatrix} \cos^2(\theta) & \sin(\theta)\cos(\theta) \\ \sin(\theta)\cos(\theta) & \sin^2(\theta) \end{pmatrix}
\]

gives us probability distributions for the measured result in terms of \(\theta \) as

\[
pr(b, |1\rangle) = \langle 1| M_b^T M_b |1\rangle = \sin^2(\theta)
\]

and

\[
pr(b, |+\rangle) = \langle +| M_a^T M_a |+\rangle = \sin(\theta)\cos(\theta) + \frac{1}{2}
\]

Graphing these probability distributions along with their average (see Figure 3.2) shows us the optimal values for \(\theta \). To evaluate the min and max values for \(\theta \) we take the derivative of the average distribution,

\[
\frac{d}{d\theta} \left(\sin^2(\theta) + \sin(\theta)\cos(\theta) + \frac{1}{2} \right) = \cos(2\theta) + \sin(2\theta)
\]

and solve for 0.

\[
\cos(2\theta) + \sin(2\theta) = 0 \\
\theta = \frac{3\pi}{8}, \frac{-\pi}{8}
\]
Therefore the optimal value for θ that maximizes the probability of result $|b\rangle$ when $C = |1\rangle$ or $|+\rangle$ is
\[
\begin{pmatrix}
\cos\left(\frac{3\pi}{8}\right) \\
\sin\left(\frac{3\pi}{8}\right)
\end{pmatrix}
= \begin{pmatrix}
\frac{\sqrt{2} - \sqrt{2}}{2} \\
\frac{\sqrt{2} + \sqrt{2}}{2}
\end{pmatrix}
\]

Corollary 3.5.4.
\[
pr(c' = c) = \frac{1}{2} + \frac{1}{2\sqrt{2}} \tag{3.12a}
\]
\[
pr(c' \neq c) = \frac{1}{2} - \frac{1}{2\sqrt{2}} \tag{3.12b}
\]
Proof.

\[
pr(c' = c) = pr(b, |1\rangle) = \sin^2 \left(\frac{3\pi}{8} \right) = \left(\frac{\sqrt{2} + \sqrt{2}}{2} \right)^2 = \frac{1}{2} + \frac{1}{2\sqrt{2}}
\]

\[
pr(c' \neq c) = 1 - pr(c' = c) = \frac{1}{2} - \frac{1}{2\sqrt{2}}
\]

Detection of this cheat happens only when \(\mathcal{A} \) wins the game and \(\mathcal{B} \) has to return the modified qubit to \(\mathcal{A} \) so that she can inspect it for tampering. Since extracting \(c' \) tells \(\mathcal{B} \) nothing about the encoding used on \(C \), \(\mathcal{B} \)'s optimal strategy is to reapply the encoding with probability 0.5.

Lemma 3.5.5. Given \(\mathcal{A} \) wins the game, the probability of cheat detection is

\[
pr(\text{detect}) = \frac{1}{2} - \frac{1}{4\sqrt{2}} \quad (3.13)
\]

Proof. First consider the case where \(c' = c \), WLOG let \(c' = 1 \) then \(C = 1 \) with probability 0.5 or \(C = |+\rangle \) with probability 0.5. When \(\mathcal{B} \) returns an incorrectly encoded \(C \) then \(C = 1 \) with probability 0.5, otherwise \(C = 1 \) with probability 1.

Next consider the case where \(c' \neq c \), WLOG let \(c' = 1 \) then \(C = 0 \) with probability 0.5 or \(C = |-\rangle \) with probability 0.5. When \(\mathcal{B} \) returns an incorrectly encoded \(C \) then \(C = 0 \) with probability 0.5, otherwise \(C = 0 \) with probability 0.

Therefore,

\[
pr(\text{detect}) = \frac{3}{4}pr(c' \neq c) + \frac{1}{4}pr(c' = c)
\]

\[
= \frac{3}{4} \left(\frac{1}{2} - \frac{1}{2\sqrt{2}} \right) + \frac{1}{4} \left(\frac{1}{2} + \frac{1}{2\sqrt{2}} \right)
\]

\[
= \frac{1}{2} - \frac{1}{4\sqrt{2}}
\]
B’s strategy consists of cheating on both of the analyzed channels s_1 and s_5. His primary goal is to extract information out of A’s commit qubit C, channel s_1 helps him rig the game in his favor so that he does not have to return the modified C to A, and in the event that he does lose the game, channel s_5 sends his best guess of the original C. See Figure 3.3 for an execution tree of the CSQBC protocol when B is dishonest. All paths terminate with one of the following states: cheat detected (Φ_d), correct bit extracted (Φ_c), or incorrect bit extracted (Φ_τ).

Theorem 3.5.6 (CSQBC Results with Dishonest B). Given a CSQBC protocol where A is honest and B is dishonest, and let α be the probability that A challenges. Then
the three termination states will occur with probabilities:

\[
pr(\Phi_d) = \alpha \left(\frac{1}{2} - \varepsilon \sqrt{1 - \varepsilon^2} \right) + (1 - \alpha)(1 - \varepsilon^2) \left(\frac{1}{2} - \frac{1}{4\sqrt{2}} \right)
\] \hspace{1cm} (3.14a)

\[
pr(\Phi_c) = \left(\frac{1}{2} + \frac{1}{2\sqrt{2}} \right) (1 - pr(\Phi_d))
\] \hspace{1cm} (3.14b)

\[
pr(\Phi_r) = \left(\frac{1}{2} - \frac{1}{2\sqrt{2}} \right) (1 - pr(\Phi_d))
\] \hspace{1cm} (3.14c)

\[
pr(\Phi_r) = \frac{1}{2} - \frac{1}{2\sqrt{2}} (1 - pr(\Phi_d))
\] \hspace{1cm} (3.14d)

Proof. First we will look at the cheat detected event \(\Phi_d\). Cheating is detected either during the game phase (Equation 3.5a) or when \(A\) does not challenge, wins the game, and detects a modified qubit \(C\) (Equation 3.13). If cheating is not detected \(1 - pr(\phi_d)\), then \(B\) either extracts the correct bit (Equation 3.12a) or \(B\) extracts the incorrect bit (Equation 3.12b).

\[\square\]

3.5.2 Dishonest \(A\)

\(A\)'s initiated quantum communications channels are \(S_2\), and \(S_4\). \(A\)'s overall goal here is to change her commit bit (cheat) after it has been committed to \(B\) but before she reveals it, as well as reduce the probability that \(B\) has of knowing that she has changed her commit bit (cheat detect).

Channel \(S_2\)

Quantum communications channel \(S_2\) is \(A\) sending her encoded commit qubit \(C\). The cheat strategy for this channel is for \(A\) to entangle \(C\) to \(\psi\), where \(A\) is an additional quantum system, referred to as an \textit{ancilla}, which she keeps under her control

\[|\psi\rangle = \sum_{r=0,1,+,-} |\alpha_r\rangle_A |r\rangle_C \] \hspace{1cm} (3.15)
After A reveals an arbitrary commit bit c', she measures the ancilla to force C to a commit state $c_0 = 0$ with probability $\alpha_0^2 + \alpha_-^2$ and $c_1 = 1$ with probability $\alpha_1^2 + \alpha_+^2$. If $c' = c_0$ then the intended encoding basis is revealed ($\alpha_0, \alpha_1 \rightarrow \text{standard} | \alpha_-, \alpha_+ \rightarrow \text{dual}$), otherwise the other basis is revealed.

Lemma 3.5.7. The optimal ancilla qubit for collapsing the commit qubit to an arbitrary 0 or 1 is

$$|\alpha\rangle_A = \begin{pmatrix} \sqrt{2-\sqrt{2}} \\ \frac{\sqrt{2+\sqrt{2}}}{2} \end{pmatrix}$$

(3.16)

Proof. Let the ancilla be some unit vector

$$|\alpha\rangle_A = \begin{pmatrix} \cos(\theta) \\ \sin(\theta) \end{pmatrix}$$

Then we want to find θ that maximizes the probability of collapsing to $|0\rangle$ or $|-\rangle$ for $c = 0$ and $|1\rangle$ or $|+\rangle$ for $c = 1$ when measured on either the $|0\rangle$ or $|1\rangle$ (standard) or $|\rangle \parallel |\rangle$ (dual) basis. WLOG we choose an arbitrary commit bit $c = 1$

We know that for any θ, measuring on the standard basis will give us

$$pr(1) = \sin^2(\theta)$$

$$pr(0) = \cos^2(\theta)$$

and measuring on the diagonal basis will give us

$$pr(+) = \frac{1}{2} + \cos(\theta) \sin(\theta)$$

$$pr(-) = \frac{1}{2} - \cos(\theta) \sin(\theta)$$

Writing the basis state as a measurement operator

$$M_b = |b\rangle\langle b| = \begin{pmatrix} \cos^2(\theta) & \sin(\theta)\cos(\theta) \\ \sin(\theta)\cos(\theta) & \sin^2(\theta) \end{pmatrix}$$
Figure 3.4: measurement results for $|\alpha\rangle_A$

gives us probability distributions for the measured result in terms of θ as

$$
pr(b, |1 \rangle) = \langle 1 | M_b^T M_b | 1 \rangle = \sin^2(\theta)
$$

and

$$
pr(b, |+ \rangle) = \langle + | M_a^T M_a | + \rangle = \sin(\theta)\cos(\theta) + \frac{1}{2}
$$

Graphing these probability distributions, Figure 3.4, shows us the optimal values for θ. To evaluate the min and max values for θ we take the derivative of the average distribution

$$
\frac{d}{d\theta} (\sin^2(\theta) + \sin(\theta)\cos(\theta) + \frac{1}{2}) = \cos(2\theta) + \sin(2\theta) \quad (3.17)
$$
and solve with the expression set to 0.

\[\cos(2\theta) + \sin(2\theta) = 0 \]

\[\theta = \frac{3\pi}{8}, \frac{-\pi}{8} \]

Therefore the optimal value for \(\theta \) that maximizes the probability of result \(|b\rangle \) when \(C = |1\rangle \) or \(|+\rangle \), and minimizes the probability of result \(|b\rangle \) when \(C = |0\rangle \) or \(|-\rangle \) is

\[
\begin{pmatrix}
\cos\left(\frac{3\pi}{8}\right) \\
\sin\left(\frac{3\pi}{8}\right)
\end{pmatrix} = \begin{pmatrix}
\frac{\sqrt{2} + \sqrt{2}}{2} \\
\frac{\sqrt{2} - \sqrt{2}}{2}
\end{pmatrix}
\]

Detection of this cheat happens only when \(B \) wins the game and is able to decode and measure \(C \) to compare to \(c' \).

Lemma 3.5.8. Given \(B \) wins the game, the probability of cheat detection is

\[\text{pr}(\text{detect}) = \frac{2 - \sqrt{2}}{8} \approx 0.0732 \] \hspace{1cm} (3.18)

Proof. Measuring the ancilla in Lemma 3.5.7 collapses \(c \) to either 0 or 1 with probability

\[\text{pr}(c' = c) = \left(\frac{\sqrt{2} + \sqrt{2}}{2}\right)^2 \]

\[\text{pr}(c' \neq c) = \left(\frac{\sqrt{2} - \sqrt{2}}{2}\right)^2 \]

In the case that \(c' \neq c \), \(A \) tells \(B \) to measure \(C \) on the opposite basis resulting in \(C = 0 \) or \(C = 1 \) with equal probability. Therefore we have,

\[\text{pr}(\text{detect}) = \frac{1}{2}\text{pr}(c' \neq c) \]

\[= \frac{1}{2} \left(\frac{2 - \sqrt{2}}{4}\right) \]

\[= \frac{2 - \sqrt{2}}{8} \] \hspace{1cm} \Box
Channel S_4

Quantum communications channel S_A is A sending her half of the singlet state. The cheat strategy for this channel is for A to modify her half of the singlet state to favor herself as the winner.

\[
\begin{pmatrix}
0 \\
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{pmatrix} \rightarrow \begin{pmatrix}
0 \\
\varepsilon \\
\sqrt{1 - \varepsilon^2} \\
0
\end{pmatrix}
\] (3.19)

where $\varepsilon > \frac{1}{\sqrt{2}}$ gives advantage $\varepsilon^2 - \frac{1}{2}$ to A. Detection can occur with probability $\varepsilon^2 - \frac{1}{2}$ if the cheater does not challenge.

Claim 3.5.9. A cannot change the outcome of the singlet state measurement without terminating the protocol.

Proof. WLOG let the game result in the state $0_A 1_B$, B knows he has won the game since his half of the singlet state has measured to 1, and since he prepared the singlet states, if A's does not report 0 then he knows cheating has occurred. \qed

Cheat Strategy

A's strategy consists of cheating on channel S_2. Her primary goal is to change the perceived value of C once it is in B’s control. See Figure 3.5 for an execution tree of the CSQBC protocol when A is dishonest. All paths terminate in a state of either cheat detected (Φ_d) or no cheat detected (Φ_a).

Theorem 3.5.10 (CSQBC Results with Dishonest A). Given a CSQBC protocol where B is honest and A is dishonest, and let β be the probability that B challenges.
Then the two termination states will occur with probabilities:

\[pr(\Phi_d) = (1 - \beta) \frac{1}{2} \left(\frac{2 - \sqrt{2}}{8} \right) \]

(3.20a)

\[pr(\Phi_a) = \beta + (1 - \beta) \left(\frac{1}{2} + \frac{1}{2} \left(\frac{2 + \sqrt{2}}{8} \right) \right) \]

(3.20b)

\[pr(\Phi_a) = \beta + (1 - \beta) \left(\frac{1}{2} + \frac{1}{2} \left(\frac{2 + \sqrt{2}}{8} \right) \right) \]

(3.20c)

Proof. First we will look at the cheat detected event \(\Phi_d \). Cheating is only detected when \(B \) wins, that is he does not challenge \((1 - \beta)\) and wins the fair game \((0.5)\), then he detects cheating with probability \(pr(detect) \) from Lemma 3.5.8. Next we look at the no cheating detected event \(\Phi_a \), which occurs either when \(B \) challenges \((\beta)\) or when \(B \) does not challenge \((1 - \beta)\) and either looses the fair game \((0.5)\) or wins the fair game but does not detect cheating \((0.5(1 - pr(detect)))\) \(\Box \)
Figure 3.5: CSQBC Dishonest Alice Execution Tree
Chapter 4

Results

Now that we have optimal cheating strategies for dishonest A or B, we will re-verify our properties to see how the protocol holds up. To do this we have to modify our PRISM model to take into account the new cheat strategies, and then run a range of experiments over some possible cheat parameters. Our goal is twofold: to verify that the cheat sensitive property holds over the optimal cheat strategies, and to put quantitative bounds on the strategies.

4.1 Quantitative Bounds for Dishonest Bob

Given our modeled protocol in PRISM we want to make modifications to take into account a dishonest B. We do this by adding the following global variables to the model:

1. $\text{cheat}_s1 \in [0, 0.5] - B$’s cheat bias for channel S_1 (3.3).

2. $\text{detect}_s1 = \frac{1}{2} - \sqrt{\frac{1}{4} - \text{cheat}_s1^2} - A$’s probability of detecting B’s cheating (3.4).

3. $\text{learn}_s5 = \frac{1}{2} + \frac{1}{2\sqrt{2}} - B$’s probability of learning the correct commit bit before it is revealed (3.12a).

4. $\text{alice.challenges} \in [0, 1] -$ The probability that A challenges the singlet state.

Next we look at how this affects the properties we identified in the last chapter. The main property we want to work with is the Termination Property (property 1), as this tells us whether the protocol terminates successfully or not, even in the case
of a dishonest party. The other properties just tell us that the game works fairly when both parties are honest, so it is no surprise that they are broken when one or more parties are dishonest. Cheating on channel s_1 breaks the Fairness Property (property 2) as it gives B some positive advantage to winning the game, and cheating on channel s_5 breaks the Sealing Property (property 3) as it allows B to learn c with probability > 0.5 before it is revealed.

The Termination Property identified in the previous chapter tells us the probability of the protocol terminating successfully. Since an unsuccessful termination of the protocol implies that cheating has been detected by one party or the other, we take the compliment of this property and call it the Cheat Sensitive Property.

1. **Cheat Sensitive Property**: The protocol terminates unsuccessfully with cheating detected.

$$P = ? \{ \text{true} \cup (\text{alice_step=cheat_detected} \mid \text{bob_step=cheat_detected}) \}$$

Given B's range of cheating strategy due to his cheat bias variable ε, and its effectiveness relative to A's probability of challenging, we run a PRISM experiment over a range of values to help illustrate the quantitative bounds for dishonest B in Figure 4.1. The cheat bias in this experiment is $\varepsilon^2 - \frac{1}{2}$. While the graph of the PRISM experiment gives us a general feel of the bounds of cheat detection, it is difficult to find specific quantitative minimum and maximum values. Because of this we also graph these results in Matlab (Figure 4.2) for $\frac{1}{\sqrt{2}} \leq \varepsilon \leq 1$ and A challenging with probabilities 0, 0.5, and 1.

We can see that A's probability of challenging effects cheat detection non-linearly and there is no single optimal value. Because of this we will look at two optimization methods: the first is stochastic optimization and will optimize over an average case, while the second is robust optimization and will optimize over the worst case.
Figure 4.1: PRISM: Cheat Bias vs Cheat Detection

Figure 4.2: Matlab: Cheat Bias vs Cheat Detection
4.1.1 Stochastic Optimization

An optimal stochastic cheat strategy for B is one that minimizes the average scenario, that is, choosing a cheat bias that has the least chance of being detected for a uniform distribution of probabilities of A challenging. Looking at Figure 4.2 we see the average probability of cheat detection for a range of cheat biases, and the area at which the probability of detection is minimized.

Lemma 4.1.1. B’s optimal stochastic cheat strategy is to use cheat bias

$$\varepsilon = .8086$$ (4.1)

Proof. The optimal point is found at the minimum value of the average function,

$$\frac{1}{2} \left(\frac{1}{2} - \varepsilon \sqrt{1 - \varepsilon^2} \right) + \frac{1}{2} \left(1 - \varepsilon^2 \right) \left(\frac{1}{2} - \frac{1}{4\sqrt{2}} \right)$$

solving for $\frac{1}{\sqrt{2}} \leq \varepsilon \leq 1$ we get .8086. \qed

Table 4.1 details the quantitative bounds for this strategy where average, lower and upper bounds correlate to A challenging with probabilities 0.5, 1, and 0 respectively. Correct bit extracted means B learned A’s committed bit before it was revealed and was not caught cheating. Incorrect bit extracted means B learned a bit that was not A’s committed bit but was still not caught cheating. Finally cheating detected implies that A detects B’s cheating and terminates the protocol, regardless of whether he learned the correct commit bit or not.

4.1.2 Robust Optimization

An optimal robust cheat strategy for B is one that minimizes the worst case scenario, that is, choosing a cheat bias that has the least chance of being detected for all probabilities of A challenging. Looking at Figure 4.2 we see the minimum, maximum, and average probabilities of cheat detection for a range of cheat biases, and the intersection point where the maximum probability of detection is minimized.
<table>
<thead>
<tr>
<th>protocol result</th>
<th>average (%)</th>
<th>lower bound (%)</th>
<th>upper bound (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>correct bit extracted</td>
<td>79.5</td>
<td>75.8</td>
<td>83.3</td>
</tr>
<tr>
<td>incorrect bit extracted</td>
<td>13.7</td>
<td>13.0</td>
<td>14.3</td>
</tr>
<tr>
<td>cheating detected</td>
<td>06.8</td>
<td>02.4</td>
<td>11.2</td>
</tr>
</tbody>
</table>

Table 4.1: Stochastic Results for Dishonest B

<table>
<thead>
<tr>
<th>protocol result</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>correct bit extracted</td>
<td>79.1</td>
</tr>
<tr>
<td>incorrect bit extracted</td>
<td>13.3</td>
</tr>
<tr>
<td>cheating detected</td>
<td>07.6</td>
</tr>
</tbody>
</table>

Table 4.2: Robust Results for Dishonest B

Lemma 4.1.2. B’s optimal robust cheat strategy is to use cheat bias

\[
\varepsilon = .8746
\]

Proof. The optimal point is found where the lines intersect, which is when

\[
\frac{1}{2} - \varepsilon \sqrt{1 - \varepsilon^2} = (1 - \varepsilon^2) \left(\frac{1}{2} - \frac{1}{4\sqrt{2}} \right)
\]

solving for ε we get .8746.

Table 4.2 details the quantitative results for this strategy. The probability event descriptions are the same as for the stochastic results, however there are no bounds as a robust strategy by definition is the lower bound.

4.2 Quantitative Bounds for Dishonest Alice

Next we make modifications to take into account a dishonest A. We do this by adding the following global variables to the model:
1. \(\text{reveal}_s 2 = \frac{1}{2} + \frac{\sqrt{2}}{4} \) – \(A \)'s probability of forcing commit qubit \(C \) to \(c' \) (3.16).

2. \(s_2 \text{result} \in [0, 1] \) – the result of \(C \) after \(A \)'s measurement of the entangled ancilla.

3. \(\text{alice_cheat} \in [0, 1] \) – Boolean variable to turn \(A \)'s cheating on and off.

Similar to a dishonest \(B \), we will only look at the Cheat Sensitive Property as \(A \)'s cheating breaks the Binding Property by definition.

Unlike dishonest \(B \), \(A \)'s cheating is successful with probability 1. Table 4.3 details the quantitative bounds for dishonest \(A \), which only refers to the probability of her being detected cheating. The average, lower bound, and upper bound columns refer to \(B \)'s probability of challenge being 0.5, 1, and 0 respectively. We can see that for \(B \) to have some non-zero probability of detecting \(A \) cheating then he must challenge with some probability < 1.

4.3 Protocol Bias

We summarize the results of a dishonest \(A \) versus a dishonest \(B \) in Table 4.4, where \(B \text{ Cheats} \) is the probability that \(B \) has of correctly learning \(A \)'s commit bit.
<table>
<thead>
<tr>
<th>protocol result</th>
<th>average (%)</th>
<th>lower bound (%)</th>
<th>upper bound (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cheating successful</td>
<td>98.17</td>
<td>96.34</td>
<td>100.0</td>
</tr>
<tr>
<td>cheating detected</td>
<td>01.83</td>
<td>0.0</td>
<td>03.66</td>
</tr>
</tbody>
</table>

Table 4.3: Quantitative Results for Dishonest \mathcal{A}

<table>
<thead>
<tr>
<th>Protocol Results</th>
<th>Dishonest \mathcal{A}</th>
<th>Dishonest \mathcal{B}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{B} Cheats</td>
<td>50%</td>
<td>85.4%</td>
</tr>
<tr>
<td>\mathcal{A} Cheats</td>
<td>100%</td>
<td>50%</td>
</tr>
<tr>
<td>Cheating Detected</td>
<td>3.66%</td>
<td>7.6%</td>
</tr>
</tbody>
</table>

Table 4.4: Dishonest \mathcal{A} vs dishonest \mathcal{B}

before she reveals it, and \mathcal{A} Cheats is the probability of \mathcal{A} revealing an arbitrary commit bit. Failing the cheat does not imply cheat detection, only that the cheat was unsuccessful. In \mathcal{B}’s case that means he believes \mathcal{A}’s commit bit c is \bar{c}, and in \mathcal{A}’s case it means she must reveal the bit she originally committed to. Cheating Detected is independent of the cheat being successful or not and is shown in its own row.

From this data we can clearly see that the protocol is biased towards a dishonest \mathcal{A}, as she has both a greater probability of being successful cheating as well as a lesser probability of being detected cheating. The weakest link of this protocol is the fundamental weakness of all quantum bit commitment protocols as described in the No-Go Theorem: that is \mathcal{A}’s ability to entangle her commit bit with some ancilla and then measure the ancilla on some basis that favors the bit she would like to reveal.

4.3.1 Protocol Improvements

To reduce \mathcal{A}’s ability to cheat and increase detection of her cheating, we could add some entanglement or rotation for \mathcal{B} to apply to the encoded commit bit he receives.
The idea being that a rotation would lessen A’s ability to correctly manipulate the encoded commit bit with her ancilla, and additional entanglement could potentially increase B’s ability to detect A’s manipulation of the encoded commit bit.

Another option is to amplify the probability of cheat detection by adding a security parameter n to increase the number of bits committed, where each committed bit must be the same but different encodings, challenges, and measurements are applied. If some agreed upon error rate ϵ is exceeded by the rate that bits fail the protocol then cheating is detected.
Chapter 5

Conclusion

The modeling and analysis of quantum cryptographic protocols is a useful step in further understanding security bounds in quantum computing. These bounds range from unconditionally secure quantum key distribution due to the no-cloning property, to the impossibility of unconditionally secure quantum bit commitment due to entanglement based cheating. By modeling a protocol we can apply formal verification methods to ensure that specific security properties hold true, and through analysis of a dishonest party’s cheat strategies we can identify strengths and weaknesses of the protocols design. The results can lead to both improvements to the specific protocols implementation and insights into designing new implementations of the protocol.

By adding decision making rules to CQP we have shown how to extend the algebras syntax and semantics, broadening the scope of protocols that can be modeled. By following the same process any number of operational rules could be added to effectively model many protocols currently outside of the algebra’s capability.

Following the modeling and analysis methodology we developed in this thesis, we have put quantitative bounds on a dishonest A or B, and shown that the CSQBC protocol is biased towards a dishonest A. This bias comes from the protocol’s susceptibility to A's entanglement-based cheating, and therefore identifies components of the protocols design where improvements may be possible. Our process has also highlighted weaknesses in modeling the cheat strategies of dishonest parties with PRISM in that it is difficult to build an exponential state space required to model optimal cheat strategies. As a result of this we have proposed a new modeling tool that focuses around adding matrix states so that quantum variables can take on a full range
We have shown that formal modeling techniques can help in the analysis of quantum cryptographic protocols. While they do not provide a single solution to prove security, they do help verify specific security properties as well as identify strengths and weaknesses with a protocol’s design.

5.1 Future Work

A significant improvement to the methodology would be to add the capability of the model to handle arbitrary qubit states instead of having to implicitly code each state value as is done in PRISM. Qubit states could be represented as matrices as is done in the Matlab Quantum Circuit Simulator application, and then each state in the model could represent an event in the protocol with qubit matrices attached to the state. A suggested solution is a program that builds a visual process flow chart (or possibly circuit design) from the formalized protocol in CQP, and uses the Matlab Quantum Circuit Simulator to manage the matrix values for the qubits in each process step. This process design would be a one-to-one CQP statement to process step conversion giving a cleaner representation of the protocol. As the state of the quantum system at any stage of the protocol is represented by a matrix, we could then apply various optimization approaches to analyze cheat strategies. An interesting approach would be to look into representing a matrix state as a semi-definite matrix, and then more efficient optimization, via the Interior Point Method [41], could be applied.
Bibliography

[25] Joe Kilian. Founding cryptography on oblivious transfer. In STOC '88:
Proceedings of the twentieth annual ACM symposium on Theory of computing,

[26] Hoi-Kwong Lo and Hoi Fung Chau. Is quantum bit commitment really

[27] Hoi-Kwong Lo and Hoi Fung Chau. Why quantum bit commitment and ideal

[29] Dominic Mayers. Unconditionally secure quantum bit commitment is

[30] Catherine Meadows. Applying formal methods to the analysis of a key

[33] Dave Parker, Gethin Norman, and Marta Kwiatkowska. PRISM Users’ Guide,
2006.

[35] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J.SCI.STATIST.COMPUT.,

[36] Robert W. Spekkens and Terry Rudolph. Degrees of concealment and
bindingness in quantum bit commitment protocols. Phys. Rev. A,

[37] Armin Uhlmann. The transition probability in the state space of a *-algebra.

Appendix A

CSQBC in CQP

qubits
a, b : entangled singlets

c : alice’s encoded commit bit

bits
d : alice’s commit bit
e : basis used to encode commit bit (0:standard, 1:diagonal)
i : alice accepts b as unmodified
w : winner of singlet game (0:alice, 1:bob)
x : alice challenges singlet
y : bob challenges singlet
z : cheating detected (0:no, 1:yes)

channels
r : channel to receive random bits from generator
s : quantum bit channel between alice and bob
t : classical bit channel between alice and bob

Bob(s:[Qbit], t:[Bit], y: bit) = (qbit a, b, bit w, d)(
 {a**H}. {a, b**=CNot}. s! [a]. s?[c:cbit]. t?[x: bit].
 if x=1 then s! [b]. t?[w].
 if w=0 then cheatdetected
else t?[d:bit]
else t?[d:bit].t![y].
 if y=1 then s?[a].
 if (measure a) != (measure b) then {w=0}.t![w].
 else {w=1}.t![w].cheatdetected
 else {w*=(measure b)}.t![w].t?[i:bit].
 if i=0 then cheatdetected
 else unit
 if w=1 then t?[e:bit].
 if e=1 then {c*=H}.
 else {unit}.
 if d=(measure c) then done
 else cheatdetected
else s![c].done

Alice(r:^[bit],s:^[Qbit],t:^[Bit],x:bit)=(qbit c, bit w,d)(
s?[a:qbit].r?[d:bit].r?[e:bit].encode(d,e,c).s![c].t![x].
if x=1 then s?[b:qbit].
 if (measure a) != (measure b) then {w=1}.t![w].t![d].
 else {w=0}.t![w].cheatdetected
else t?[d].t?[y].
 if y=1 then s![a].t?[w].
 if w=1 then cheatdetected
 else unit
 else t?[w].
 if (measure a) != w then t![1].
else t![0].cheatdetected

if w=0 then s?[c].
 if e=1 then {c*=H}.
 else {unit}.
 if d=(measure c) then done
 else cheatdetected
else t![e].done

// protocol terminated due to cheating detected
cheatdetected = ((bit z){z*=1}.0)

// protocol completed successfully
done = (bit z){z*=0}.0

// process to supply a random bit stream to channel r
Random(r:^[bit])=(qbit q){q*=H}.r![measure q].Random(r))

System(x:bit,w:bit)=(new r:^[qbit],s:^[qbit],t:^[bit])
(Alice(r,s,t,x) | Bob(s,t,y) | Random(r))
Appendix B
CSQBC in PRISM

probabilistic

const int alice_x=0;
const int bob_y=0;
const int cheat_d=1;
const int cheat_e;

const int cheat_detected=99;
const int terminates=100;
const int alice_reveals_c = 48;
const int bob_learns_c = 39;

global channel_r : [0..1];
global channel_s : [0..4];
global channel_t : [0..1];
global operation_in : [0..4];

module Alice
alice_step : [0..200];
alice_a : [0..4];
alice_d : [0..1];
alice_e : [0..1];
alice_c : [0..4];
//alice_x : [0..1];
alice_b : [0..4];
alice_w : [0..1];
alice_y : [0..1];

[s_1] alice_step=0 -> alice_step'=1 & alice_a'=channel_s;
[r_1] alice_step=1 -> alice_step'=2 & alice_d'=channel_r;
[r_1] alice_step=2 -> alice_step'=3 & alice_e'=channel_r;
[] alice_step=3 -> alice_step'=4 & operation_in'=alice_d;
[encode]alice_step=4 -> alice_step'=5;
[] alice_step=5 -> alice_step'=6 & alice_c'=qbit_result;
[] alice_step=6 -> alice_step'=7 & channel_s'=alice_c;
[s_2] alice_step=7 -> alice_step'=8;
[] alice_step=8 -> alice_step'=9 & channel_t'=alice_x;
[t_1] alice_step=9 -> alice_step'=10;
[] alice_step=10 & alice_x=1 -> alice_step'=11;
[s_3] alice_step=11 -> alice_step'=12 & alice_b'=channel_s;
[] alice_step=12 -> alice_step'=13 & operation_in'=alice_a;
[measure_a] alice_step=13 -> alice_step'=14;
[] alice_step=14 -> alice_step'=15 & alice_a'=bit_result;
[] alice_step=15 -> alice_step'=16 & operation_in'=alice_b;
[measure_a] alice_step=16 -> alice_step'=17;
[] alice_step=17 -> alice_step'=18 & alice_b'=bit_result;
[] alice_step=18 & alice_a != alice_b -> alice_step'=19;
[] alice_step=19 -> alice_step'=20 & alice_w'=1;
[] alice_step=20 -> alice_step'=21 & channel_t'=alice_w;
[t_2] alice_step=21 -> alice_step’=22;

[] alice_step=22 & cheat_d=0 -> alice_step’=23 & channel_t’=alice_d;
[] alice_step=22 & cheat_d=1 -> alice_step’=23 & channel_t’=1-alice_d;

[t_2a] alice_step=23 -> alice_step’=24;

[] alice_step=24 -> alice_step’=48;

[] alice_step=18 & alice_a = alice_b -> alice_step’=25;
[] alice_step=25 -> alice_step’=26 & alice_w’=0;
[] alice_step=26 -> alice_step’=27 & channel_t’=alice_w;

[t_2] alice_step=27 -> alice_step’=28;

[] alice_step=28 -> alice_step’=99;

[] alice_step=10 & alice_x=0 -> alice_step’=29;

[] alice_step=29 & cheat_d=0 -> alice_step’=30 & channel_t’=alice_d;
[] alice_step=29 & cheat_d=1 -> alice_step’=30 & channel_t’=1-alice_d;

[t_3] alice_step=30 -> alice_step’=31;

[t_4] alice_step=31 -> alice_step’=32 & alice_y’=channel_t;

[] alice_step=32 & alice_y=1 -> alice_step’=33;

[] alice_step=33 -> alice_step’=34 & channel_s’=alice_a;
[s_4] alice_step=34 -> alice_step’=35;

[t_5] alice_step=35 -> alice_step’=36 & alice_w’=channel_t;

[] alice_step=36 & alice_w=1 -> alice_step’=37;
[] alice_step=37 -> alice_step’=99;
[] alice_step=36 & alice_w=0 -> alice_step’=38;
[] alice_step=38 -> alice_step’=48;
[] alice_step=32 & alice_y=0 -> alice_step’=39;

[t_6] alice_step=39 -> alice_step’=40 & alice_w’=channel_t;

[] alice_step=40 -> alice_step’=41 & operation_in’=alice_a;

[measure_a] alice_step=41 -> alice_step’=42;
alice_step=42 -> alice_step'=43 & alice_a'=bit_result;
alice_step=43 & alice_a != alice_w -> alice_step'=44;
alice_step=44 -> alice_step'=45 & channel_t'=1;
[t_7] alice_step=45 -> alice_step'=48;
alice_step=43 & alice_a = alice_w -> alice_step'=46;
alice_step=46 -> alice_step'=47 & channel_t'=0;
[t_7] alice_step=47 -> alice_step'=99;
alice_step=48 & alice_w=0 -> alice_step'=49;
[s_5] alice_step=49 -> alice_step'=50 & alice_c'=channel_s;
alice_step=50 & alice_e=1 -> alice_step'=51;
alice_step=51 -> alice_step'=52 & operation_in'=alice_c;
[hadamard_a] alice_step=52 -> alice_step'=53;
alice_step=53 -> alice_step'=55 & alice_c'=qbit_result;
alice_step=50 & alice_e=0 -> alice_step'=54;
alice_step=54 -> alice_step'=55;
alice_step=55 -> alice_step'=56 & operation_in'=alice_c;
[measure_a] alice_step=56 -> alice_step'=57;
alice_step=57 -> alice_step'=58 & alice_c'=bit_result;
alice_step=58 & alice_d=alice_c -> alice_step'=59;
alice_step=59 -> alice_step'=100;
alice_step=58 & alice_d != alice_c -> alice_step'=60;
alice_step=60 -> alice_step'=99;
alice_step=48 & alice_w=1 -> alice_step'=61;
alice_step=61 & cheat_e=0 -> alice_step'=62 & channel_t'=alice_e;
alice_step=61 & cheat_e=1 -> alice_step'=62 & channel_t'=1-alice_e;
[t_8] alice_step=62 -> alice_step'=63;
alice_step=63 -> alice_step'=100;
module Bob
bob_step : [0..200];
bob_a : [0..4] init 4;
bob_b : [0..4] init 4;
bob_c : [0..4];
bob_x : [0..1];
//bob_y : [0..1];
bob_w : [0..1];
bob_d : [0..1];
bob_i : [0..1];
bob_e : [0..1];

[] bob_step=0 -> bob_step'=1 & channel_s'=bob_a;
[s_1] bob_step=1 -> bob_step'=2;
[s_2] bob_step=2 -> bob_step'=3 & bob_c'=channel_s;
[t_1] bob_step=3 -> bob_step'=4 & bob_x'=channel_t;
[] bob_step=4 & bob_x=1 -> bob_step'=5;
[] bob_step=5 -> bob_step'=6 & channel_s'=bob_b;
[s_3] bob_step=6 -> bob_step'=7;
[t_2] bob_step=7 -> bob_step'=8 & bob_w'=channel_t;
[] bob_step=8 & bob_w=0 -> bob_step'=9;
[] bob_step=9 -> bob_step'=99;
[] bob_step=8 & bob_w=1 -> bob_step'=10;
[t_2a] bob_step=10 -> bob_step’=39 & bob_d’=channel_t;
[] bob_step=4 & bob_x=0 -> bob_step’=11;
[t_3] bob_step=11 -> bob_step’=12 & bob_d’=channel_t;
[] bob_step=12 -> bob_step’=13 & channel_t’=bob_y;
[t_4] bob_step=13 -> bob_step’=14;
[] bob_step=14 & bob_y=1 -> bob_step’=15;
[s_4] bob_step=15 -> bob_step’=16 & bob_a’=channel_s;
[] bob_step=16 -> bob_step’=17 & operation_in’=bob_a;
[measure_b] bob_step=17 -> bob_step’=18;
[] bob_step=18 -> bob_step’=19 & bob_a’=bit_result;
[] bob_step=19 -> bob_step’=20 & operation_in’=bob_b;
[measure_b] bob_step=20 -> bob_step’=21;
[] bob_step=21 -> bob_step’=22 & bob_b’=bit_result;
[] bob_step=22 & bob_a != bob_b -> bob_step’=23;
[] bob_step=23 -> bob_step’=24 & bob_w’=0;
[] bob_step=24 -> bob_step’=25 & channel_t’=bob_w;
[t_5] bob_step=25 -> bob_step’=39;
[] bob_step=22 & bob_a = bob_b -> bob_step’=26;
[] bob_step=26 -> bob_step’=27 & bob_w’=1;
[] bob_step=27 -> bob_step’=28 & channel_t’=bob_w;
[t_5] bob_step=28 -> bob_step’=29;
[] bob_step=29 -> bob_step’=99;
[] bob_step=14 & bob_y=0 -> bob_step’=30;
[] bob_step=30 -> bob_step’=31 & operation_in’=bob_b;
[measure_b] bob_step=31 -> bob_step’=32;
[] bob_step=32 -> bob_step’=33 & bob_w’=bit_result;
[] bob_step=33 -> bob_step’=34 & channel_t’=bob_w;
\[t_6 \]
\[\text{bob_step}=34 \rightarrow \text{bob_step}'=35; \]

\[t_7 \]
\[\text{bob_step}=35 \rightarrow \text{bob_step}'=36 \& \text{bob_i}'=\text{channel_t}; \]

\[\]
\[\text{bob_step}=36 \& \text{bob_i}=0 \rightarrow \text{bob_step}'=37; \]

\[\]
\[\text{bob_step}=37 \rightarrow \text{bob_step}'=99; \]

\[\]
\[\text{bob_step}=36 \& \text{bob_i}=1 \rightarrow \text{bob_step}'=38; \]

\[\]
\[\text{bob_step}=38 \rightarrow \text{bob_step}'=39; \]

\[\]
\[\text{bob_step}=39 \& \text{bob_w}=1 \rightarrow \text{bob_step}'=40; \]

\[\text{t}_8 \]
\[\text{bob_step}=40 \rightarrow \text{bob_step}'=41 \& \text{bob_e}'=\text{channel_t}; \]

\[\]
\[\text{bob_step}=41 \& \text{bob_e}=1 \rightarrow \text{bob_step}'=42; \]

\[\]
\[\text{bob_step}=42 \rightarrow \text{bob_step}'=43 \& \text{operation_in}'=\text{bob_c}; \]

\[\text{hadamard_b} \]
\[\text{bob_step}=43 \rightarrow \text{bob_step}'=44; \]

\[\]
\[\text{bob_step}=44 \rightarrow \text{bob_step}'=45 \& \text{bob_c}'=\text{qbit_result}; \]

\[\]
\[\text{bob_step}=45 \rightarrow \text{bob_step}'=46; \]

\[\]
\[\text{bob_step}=41 \& \text{bob_e}=0 \rightarrow \text{bob_step}'=46; \]

\[\]
\[\text{bob_step}=46 \rightarrow \text{bob_step}'=47 \& \text{operation_in}'=\text{bob_c}; \]

\[\text{measure_b} \]
\[\text{bob_step}=47 \rightarrow \text{bob_step}'=48; \]

\[\]
\[\text{bob_step}=48 \rightarrow \text{bob_step}'=49 \& \text{bob_c}'=\text{bit_result}; \]

\[\]
\[\text{bob_step}=49 \& \text{bob_d}=\text{bob_c} \rightarrow \text{bob_step}'=50; \]

\[\]
\[\text{bob_step}=50 \rightarrow \text{bob_step}'=100; \]

\[\]
\[\text{bob_step}=49 \& \text{bob_d} \neq \text{bob_c} \rightarrow \text{bob_step}'=51; \]

\[\]
\[\text{bob_step}=51 \rightarrow \text{bob_step}'=99; \]

\[\]
\[\text{bob_step}=39 \& \text{bob_w}=0 \rightarrow \text{bob_step}'=52; \]

\[\]
\[\text{bob_step}=52 \rightarrow \text{bob_step}'=53 \& \text{channel_s}'=\text{bob_c}; \]

\[\text{s}_5 \]
\[\text{bob_step}=53 \rightarrow \text{bob_step}'=54; \]

\[\]
\[\text{bob_step}=54 \rightarrow \text{bob_step}'=100; \]

\[\]
\[\text{bob_step}=99 \rightarrow \text{bob_step}'=99; // \text{terminate \text{cheat detected}} \]

\[\]
\[\text{bob_step}=100 \rightarrow \text{bob_step}'=100; // \text{terminate \text{no cheat detected}} \]
endmodule

module Random
r : [0..1];
r_step : [0..9];

[] r_step=0 -> 1/2 : r_step'=1 & (r'=0) + 1/2 : r_step'=1 & r'=1;
[] r_step=1 -> r_step'=2 & channel_r'=r;
[r_1] r_step=2 -> r_step'=0;
endmodule

module qubit
bit_result : [0..1];
qbit_result : [0..3];
measured : [0..2] init 2;

[hadamard_a] operation_in=0 -> qbit_result'=2;
[hadamard_a] operation_in=1 -> qbit_result'=3;
[hadamard_a] operation_in=2 -> qbit_result'=0;
[hadamard_a] operation_in=3 -> qbit_result'=1;
[hadamard_b] operation_in=0 -> qbit_result'=2;
[hadamard_b] operation_in=1 -> qbit_result'=3;
[hadamard_b] operation_in=2 -> qbit_result'=0;
[hadamard_b] operation_in=3 -> qbit_result'=1;
[measure_a] operation_in=0 -> bit_result'=0;
[measure_a] operation_in=1 -> bit_result'=1;
[measure_a] operation_in=2 -> 1/2 : (bit_result'=0) + 1/2 : bit_result'=1;
[measure_a] operation_in=3 -> 1/2 : (bit_result'=0) + 1/2 : bit_result'=1;
[measure_a] operation_in=4 & measured=0..1 -> bit_result'=1-measured;
[measure_a] operation_in=4 & measured=2 -> 1/2 : measured'=0 & (bit_result'=0) + 1/2 : measured'=1 & bit_result'=1;
[measure_b] operation_in=0 -> bit_result'=0;
[measure_b] operation_in=1 -> bit_result'=1;
[measure_b] operation_in=2 -> 1/2 : (bit_result'=0) + 1/2 : bit_result'=1;
[measure_b] operation_in=3 -> 1/2 : (bit_result'=0) + 1/2 : bit_result'=1;
[measure_b] operation_in=4 & measured=0..1 -> bit_result'=1-measured;
[measure_b] operation_in=4 & measured=2 -> 1/2 : measured'=0 & (bit_result'=0) + 1/2 : measured'=1 & bit_result'=1;
[encode] operation_in=0 & alice_e=0 -> qbit_result'=0;
[encode] operation_in=0 & alice_e=1 -> qbit_result'=2;
[encode] operation_in=1 & alice_e=0 -> qbit_result'=1;
[encode] operation_in=1 & alice_e=1 -> qbit_result'=3;
[decode] operation_in=0 & alice_e=0 -> qbit_result'=0;
[decode] operation_in=0 & alice_e=1 -> qbit_result'=2;
[decode] operation_in=1 & alice_e=0 -> qbit_result'=1;
[decode] operation_in=1 & alice_e=1 -> qbit_result'=3;
endmodule