This is a post-review version of the following article:
MORB differentiation: *In situ* crystallization in replenished-tapped magma chambers
Laurence A. Coogan, M.J. O’Hara
2015

The final published version of this article can be found at:
https://doi.org/10.1016/j.gca.2015.03.010

Citation for this paper:
MORB differentiation: \textit{in situ} crystallization in replenished-tapped magma chambers

1*L.A. Coogan, and 2#M.J. O’Hara

1School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada, V8P 5C2; Tel: (1) 250 472 4018; Fax: (1) 250 721 6200; lacoogan@uvic.ca

*corresponding author

2Institute of Geography and Earth Sciences, Aberystwyth University, Aberystwyth SY23 3DB, UK, #deceased

Revised version returned 2nd March 2015
ABSTRACT

The differentiation of mid-ocean ridge basalt (MORB) is investigated with a focus on intermediate- to fast-spreading ridges and two recently proposed differentiation mechanisms: (i) differentiation in replenished-tapped crystallizing (RTX) magma chambers, and (ii) chromatographic element separation during melt-rock reaction in the lower crust. There is compelling evidence in the petrology and geochemistry of MORB indicating that magma chambers at mid-ocean ridges behave as open systems, as required on thermal grounds in locations where a steady-state magma chamber exists. It has recently been suggested that the commonly observed over-enrichment of more-to-less incompatible elements during MORB differentiation can be explained by such an RTX model. However, the petrology of samples from the lower oceanic crust suggests an alternative mechanism could produce this over-enrichment. Clinopyroxene crystals in oceanic gabbros are commonly strongly zoned in incompatible elements with crystal rims apparently having grown from melts with very high incompatible element abundances. Elevated Zr/LREE in clinopyroxene rims, which has been interpreted as indicating growth from a melt in which these elements had been fractionated from one another by melt-rock reaction (chromatographic separation), is shown to be more simply explained by post-crystallization diffusive fractionation. However, the high incompatible element abundances in crystal rims demonstrates that the interstitial melt in crystal mush zones becomes highly differentiated. Disaggregation of such mush zones is indicated by the crystal cargo of MORB and must be accompanied by the return of interstitial melt to the eruptible reservoir – a form of in situ crystallization. Both a magma chamber undergoing
closed system in situ crystallization, and a RTX magma chamber in which crystallization occurs in situ, are shown to be capable of reproducing the differentiation trends observed in MORB. Simple stochastic models of the latter process suggest that significant variations of incompatible element abundances and ratios, at a constant MgO content, are likely to be generated from a single parental melt compositions. Additionally, parental melt compositions will generally be substantially more depleted than would be suggested if only fractional crystallization is considered. This has important implications for understanding the composition of the upper mantle. For example, the Sm/Nd of MORB are likely to be significantly lower than that of the Moho-crossing melt complicating analysis of the Nd-isotopic evolution of the upper mantle.

Keywords: differentiation, gabbro, magma chamber, MORB
1. INTRODUCTION

The compositions of mid-ocean ridge basalts (MORB) provide a window into the composition and temperature of the upper mantle. However, it has long been known that MORB compositions are more evolved (e.g., lower Mg# = Mg/(Mg+Fe) in molar units) than primary mantle melts and that they have compositions close to low-pressure cotectics. This demonstrates that erupted melt compositions are strongly influenced by low-pressure crystallization (e.g., O’Hara, 1968). However, low-pressure differentiation has generally been thought to play a minor role in changing the ratios of incompatible elements in MORB; this is largely because incompatible elements are difficult to fractionate from one another during perfect fractional crystallization. The favoured place to produce variations in incompatible element ratios has generally been in the mantle, either due to differences in melting (extent, process, etc) or mantle composition. This is despite several early studies noting that apparently co-genetic suites of MORB show evidence that partial crystallization can fractionate incompatible elements in ways not expected during perfect fractional crystallization (Bryan et al., 1976; White and Bryan, 1977; Perfit et al., 1983, Hekinian and Walker, 1987).

Recently, O’Neill and Jenner (2012) reopened the debate about whether incompatible element abundances and ratios in MORB provide a transparent window into the mantle or are significantly modified by differentiation processes. Using a global dataset of MORB major and trace element compositions (Jenner and O’Neill, 2012) they demonstrated that with decreasing MgO content there is more enrichment in incompatible element abundances than can be achieved by fractional crystallization. The extent of
enrichment of incompatible elements correlates with the elements bulk partition coefficient meaning that more-to-less incompatible element ratios increase with differentiation. They propose that a series of steady-state replenished-tapped-crystallizing (RTX) magma chambers along the global ridge system can explain these observations. However, this model requires a specific relationship between the mass fractions of melt crystallized in, and tapped from, the steady-state magma chamber with both of these decreasing with decreasing melt MgO content (their Fig. 4b; see Section 3).

Plutonic rocks from the lower oceanic crust are the crystallization products of MORB differentiation and hence provide important insights into the processes involved in driving compositional variations in erupted basalts (e.g. Coogan, 2014). Relative to the upper crust, lower crustal rocks are strongly depleted in incompatible elements. Moreover, the extent of depletion correlates with both the elements bulk partition coefficient, and with the variability of the element in the overlying upper crust (Coogan et al., 2001). For example, La is roughly twice as enriched in the upper crust relative to the lower crust compare to Lu (Coogan, 2014). However, the concentration of incompatible elements in plutonic rocks is strongly influenced by any “trapped melt” (Barnes, 1986), complicating the use of whole-rock compositions of plutonic rocks in understanding MORB differentiation.

In part because of the problems associated with “trapped melt”, the compositions of minerals in plutonic rocks have generally been thought to be more informative about differentiation processes than bulk-rock analyses. The basic premise is that spot analyses of minerals can be used to directly calculate parental melt compositions by dividing by an appropriate partition coefficient. Trace element analyses of clinopyroxene in oceanic
gabbros show strong fraction of more-to-less incompatible elements both from core-to-rim within individual crystals and within regional and global datasets (Ross and Elthon, 1997; Coogan et al., 2000a; Gao et al., 2007; Drouin et al., 2009; Lissenberg et al., 2013).

Incompatible element abundances can vary by an order of magnitude from core-to- rim within a clinopyroxene crystal despite major and compatible minor elements showing little variation. Most striking is the substantial fractionation of Zr from the LREE’s that has been interpreted to indicate that within the crystal mush Zr behaves significantly more incompatibly than the LREE. Based on the assumption that the clinopyroxene compositions record growth from melts with equally variable trace element compositions, the observed fractionation of Zr from LREE’s has been suggested to be generated by porous melt migration and melt-rock reaction (Coogan et al., 2000a; Gao et al., 2007; Lissenberg et al., 2013). Return of such differentiated interstitial melt to an eruptible reservoir could lead to substantial fractionation of incompatible element ratios in the mixed magma. This has been proposed as an alternative mechanism to explain the over-enrichment of incompatible elements in MORB (Lissenberg et al., 2013; Coogan, 2014).

However, the use of mineral compositions to track melt differentiation relies on the largely untested assumption that elements are immobile after crystal growth (Coogan, 2014).

Here the differentiation of MORB is reconsidered. After recapping some key observational constraints on MORB differentiation (Section 2) the RTF model of O’Neill and Jenner (2012) is re-examined with a focus on intermediate- to fast-spreading ridges where steady-state magma chambers are common (Section 3). The use of the compositions of mineral in oceanic gabbros to determine their parental melt compositions
is considered in Section 4 and it is demonstrated that post-crystallization diffusion modifies mineral compositions preventing simple determination of their parental melt compositions. Thus, models of melt-rock reaction in a crystal mush, based on mineral trace element compositions, need reconsidering. That said, there is unambiguous evidence that interstitial melts become highly enriched in incompatible elements and return of this melt to an eruptible reservoir (in situ crystallization) is hence examined (Section 5). In situ crystallization in a magma chamber undergoing replenishment and tapping is able to explain the global incompatible trace element over-enrichment observed in the MORB dataset of Jenner and O’Neill (2012) and the range of compositions in a broadly cogenetic suite of MORB and plutonic rocks from Hess Deep. We conclude that in situ crystallization in a magma chamber undergoing replenishment and tapping is consistent with the geochemistry and petrology of the oceanic crust, as well as thermal constraints. This has important implications for the interpretation of MORB in terms of mantle processes and composition (Section 6).

2. OBSERVATIONAL CONSTRAINTS ON MORB DIFFERENTIATION

Models for the differentiation of MORB, and crystallization of the plutonic section of the oceanic lithosphere, must explain how a primitive parental melt composition differentiates to produce more fractionated magmas. The simplest model to compare observed MORB compositions to is perfect fractional crystallization in a closed system. Studies of MORB differentiation have identified four key features of the differentiation trends that are inconsistent with closed system fractional crystallization being the sole differentiation process and that any successful model of MORB differentiation must be able to explain.
Firstly, the relative increase in the abundance of highly incompatible elements with differentiation is commonly greater than can be explained by fractional crystallization (e.g., Fig. 1a). This was demonstrated many years ago for both a global dataset of MORB (Bryan et al., 1976) and well-studied samples from specific locations, some of which have been shown to be nearly isotopically homogeneous, such as the FAMOUS area (Bryan et al., 1977; White and Bryan, 1977), the Galapagos area (Perfit et al., 1983) and 21°N on the East Pacific Rise (EPR; Hekinian and Walker, 1987). Both crystallization (e.g., O’Hara, 1977; Langmuir, 1989) and mantle melting (e.g., Frey et al., 1993) processes have been used to explain such data. These observations have recently been re-emphasized with a greatly expanded dataset (O’Neill and Jenner, 2012). It is important to note that all authors agree that parental melt heterogeneity is also required (e.g., Bryan et al., 1976; O’Neill and Jenner, 2012).

Secondly, the depletion of the highly compatible elements is commonly much less than is predicted by perfect fractional crystallization (Fig. 1b; e.g., O’Hara and Fry, 1996a,b). This observation is less readily quantified than the over-enrichment of incompatible elements because the bulk partition coefficients for the highly compatible elements (largely Ni and Cr in most datasets) are more uncertain and vary with crystallizing assemblage and temperature. However, the large range of Ni (and Cr) contents in moderately evolved basalts are difficult to explain if differentiation occurs solely by perfect fractional crystallization (Fig. 1b).

Thirdly, for a single suite of MORB the mineral assemblage extract required to drive the differentiation of the more primitive compositions to produce the more evolved compositions is commonly inconsistent with the observed ‘phenocryst’ assemblage.
and/or the phase assemblage that the melt is saturated with. The most well-known
example of this is the so-called “pyroxene paradox” in which in some locations modeling
shows that clinopyroxene must be part of the bulk crystal extract that generates more
evolved lava compositions from more primitive one (e.g., due to decreasing or constant
Ca/Al with decreasing MgO) but clinopyroxene is commonly neither observed as a
phenocryst phase nor is on the liquidus of all of the more evolved lavas (e.g., Bryan et al.,
1976; Dungan and Rhodes, 1978). This can be seen in the Smithsonian global MORB
glass database, in which the average Ca/Al of MORB stays approximately constant
during differentiation (Fig. 1c). Least squares modeling of the cumulate extract required
to drive the changes in MORB composition (e.g., Bryan et al., 1969) shows that
clinopyroxene is required to be part of the crystallizing assemblage even in the most
primitive compositions. Likewise, primitive MORB that only have olivine on their
liquidus have been shown to have negative Eu anomalies suggestive of plagioclase
fractionation (Rhodes et al., 1979).

Finally, the ‘phenocryst’ assemblage in MORB is commonly not in equilibrium
with the lava they are hosted in – i.e., the crystal cargo of most MORB are not true
phenocrysts. This can be determined texturally (e.g., Dungan and Rhodes, 1978) and/or
compositionally; most olivine and plagioclase crystals in MORB are more primitive than
those in equilibrium with the host basalt (Fig. 1d; Bryan and Moore, 1977; Rhodes et al.,
1979; Pan and Batiza, 2003; Coogan, 2014). In many cases it can be shown that mixing
occurred within weeks to months before eruption (e.g., Pan and Batiza, 2002; Costa et al.,
2009; Moore et al., 2014). Additionally, glomerophyric clusters of crystals, and small
plutonic xenoliths containing interstitial melt, are found in some MORB suites (e.g.,
Hekinian et al., 1985; Ridley et al., 2006) suggesting disruption of mush zones accompanies eruption in some instances; this provides a mechanism for interstitial melt to be returned to an eruptible melt reservoir.

In addition to these four features, chlorine is commonly substantially over-enriched with respect to other similarly incompatible elements in evolved MORB from fast- but not slow-spreading ridges (Michael and Schilling, 1989; Michael and Cornell, 1998). This suggests assimilation of country rock that had interacted with seawater (Michael and Schilling, 1989; Michael and Cornell, 1998). However, whether small amounts of Cl-rich material (brine; e.g., Michael and Schilling, 1989), or large amounts of Cl-poor material (altered rock; e.g., Coogan et al., 2003), is assimilated is debated and, for simplicity, assimilation is not considered further here; this will need including in any comprehensive model of MORB differentiation.

3. REPLENISHED-TAPPED MAGMA CHAMBERS

At intermediate- to fast-spreading mid-ocean ridges geophysical studies have shown that much of the ridge axis is underlain by a melt lens or sill near the base of the sheeted dike complex (the axial magma lens or AML; e.g., Detrick et al., 1987; Kent et al., 1993). Preventing such a body freezing requires replenishment on a decadal timescale (Phipps Morgan and Chen, 1993; Liu and Lowell, 2009; Moore et al., 2014) similar to the average timescale for dike emplacement. This physical constraint appears robust and hence replenished-tapped magma chambers must be common at intermediate- to fast-spreading mid-ocean ridges.

O’Neill and Jenner (2012) recently re-invigorated the idea that an open system magma chamber undergoing replenishment and tapping could lead to the over-
enrichment of incompatible elements in MORB that has been widely documented (Fig. 1a). The basic premise behind this model is that, at steady-state, the replenishing material must match the crystallized and erupted material both in mass and composition. Different forms of this model exist depending on two main variables: (i) the crystallization process in the magma chamber (e.g., equilibrium, fractional, \textit{in situ} crystallization, etc); and (ii) the relative orders of replenishment (R; potentially including assimilation), mixing (M), crystallization (X) and tapping (T). O’Hara (1977) introduced the equations for the steady-state open system model assuming the sequence RTMX and Albarède (1985) introduced the equations (subsequently reformulated by O’Hara and Herzberg, 2002) for the sequence RMTX.

O’Neill and Jenner (2012) used Albarède’s (1985) equations to explain the global variation in over-enrichment of incompatible trace elements with decreasing MgO relative to fractional crystallization that they observed (e.g., Fig. 1a). They suggested that to explain the data with this model, a systematic relationship between the mass fractions of the steady-state magma chamber that are crystallized (x) and tapped (y) must exist. O’Neill and Jenner (2012) took the novel approach of determining the values of x and y required to produce a melt with any given MgO content from the covariation of those elements that appear to behave perfectly incompatibly. The most highly incompatible elements Th, Rb, Cs, Ba, Nb and Ta all have the same slope on plots of Log[X] v MgO and O’Neill and Jenner (2012) interpret this as indicating that they all share a partition coefficient of zero. Given this, and the bulk partition coefficient for MgO (\[\square\]), the values of x and y required to fit this slope at any given MgO content are fixed (Fig. 4b in O’Neill and Jenner, 2012). Unfortunately, the Albarède (1985) formulation is not
constrained so that the mass fraction crystallized and the mass fraction tapped cannot exceed unity; this means that the bounds on the steady-state region in Fig. 4 of O’Neill and Jenner (2012) are incorrect. A correct equation for a RMTX magma chamber composition is presented by O’Hara and Herzberg (2002). Figure 2a reproduces the RMTX modeling of Fig. 4b of O’Neill and Jenner (2012) but using the O’Hara and Herzberg (2002) equations. This is similar to that of O’Neill and Jenner (2012), except at high MgO contents which are achievable at steady-state, and thus their main conclusions are unaffected.

Because analytical solutions to the RMTX models only exist under the assumption of constant partition coefficients, the approach described above is a simplification using a fixed value for as well as for trace elements. As discussed by Nielsen (1988; 1990), bulk partition coefficients in replenished-tapped magma chambers will depend on the mass fractions replenished, tapped and crystallized due to phase equilibria constraints. In this study constant trace element partition coefficients are assumed throughout to make the results transparent. However, since O’Neill and Jenner (2012) used MgO as an indicator of the extent of differentiation the effect of variable, and treating major element differentiation robustly, is investigates using a series of Petrolog (Danyushevsky and Plechov, 2011) models to simulate RMTX. The initial melt was allowed to crystallize a given amount and then the resulting melt composition was mixed back with the initial composition (simulating replenishment) and the process repeated.

The steady-state melt MgO content produced by the Petrolog model is broadly similar to that determined using $= 1.9$, as used by O’Neill and Jenner (2012; Fig.
2b). The models shown in Figure 2b were not iterated enough times to reach the steady-state K$_2$O content (K behaves perfectly incompatibly in this modeling and thus can be treated analytically), but the MgO content reached near-steady-state changing by <0.02 wt% per cycle. The constant $\alpha = 1.9$ approximation somewhat over-estimates the steady-state MgO content in this modeling, especially at high steady-state MgO contents, but only by a small amount. The inset in Figure 2b shows that under some conditions a very large number of cycles of replenishment, tapping and crystallization are required for perfectly incompatible elements to reach the steady-state composition. For example, roughly 100 cycles are required to reach steady-state for the (realistic) case of 4% tapped and 16% crystallized per cycle (Fig. 2b inset). Thus, only at ridges with long-lived magma chambers are the maximum incompatible element abundances, of the steady-state magma chamber, likely to be achieved.

An important feature of open system magma chambers, discussed by Nielsen (1990) and clearly demonstrated by the Petrolog modeling, is that the behaviour of elements that have highly non-linear differentiation paths, due to changes in the crystallizing assemblage and hence bulk partition coefficients, can be complex. This is demonstrated for CaO-MgO in a RMTX magma chamber (Fig. 2c). As the mass fraction crystallized per cycle increases, the residual melt before replenishment becomes more depleted in both MgO and CaO; in turn the larger mass fraction crystallized requires a larger mass fraction of replenishing magma to maintain the magma chamber mass (assuming a fixed mass fraction tapped). This leads to a higher melt MgO content at a given CaO content in the erupted (mixed) magma in the RMTX model. The variation in differentiation paths shown in Fig. 2c for models with different mass fraction tapped and
crystallized per cycle are similar to those that have been interpreted as indicating variable pressures of differentiation, questioning whether such interpretations are valid. For example, the near-steady-state compositions shown in Fig. 2c give pressures of 1.4, 3.8 and 5.8 kbars when processed through the Villiger et al. (2007) melt barometer despite all models being run at 1 kbar.

4. INTERSTITIAL MELT DIFFERENTIATION

Despite compelling evidence that mid-ocean ridge magma chambers are open systems (Section 3), the mechanism of crystal-melt separation is also important in controlling the differentiation path followed – oceanic plutonic rocks potential provide important insight into this. Clinopyroxene crystals in oceanic gabbros commonly show strong zoning of incompatible elements (Ross and Elthon, 1997; Coogan et al., 2000a; Gao et al., 2007; Lissenberg et al., 2013) suggesting that the interstitial melt that the rims of these crystals grew from was enriched in incompatible elements (Fig. 3a). Return of such interstitial melt to an eruptible magma reservoir (i.e., a form of in situ crystallization; Langmuir, 1989) could be important in controlling MORB differentiation. Perhaps the most striking feature of the trace element enrichment in the clinopyroxene rims is the substantial over-enrichment of Zr with respect to the LREE (Fig. 3a; Coogan et al., 2000a; Gao et al., 2007; Lissenberg et al., 2013). This enrichment cannot be explained by closed system fractional crystallization of interstitial melt (Coogan et al., 2000a) and has been interpreted to indicate melt-rock reaction during migration of an interstitial melt through a crystal mush (Coogan et al., 2000a; Gao et al., 2007; Lissenberg et al., 2013). Return of interstitial melt, that has differentiated via melt-rock
reaction, to an eruptible reservoir has been proposed to play an important role in MORB differentiation (Lissenberg et al., 2013).

Given the large increases in Zr/LREE in the rims of many clinopyroxene crystals in oceanic gabbros, a striking feature of the Jenner and O’Neill (2012) MORB database is that there is no such over-enrichment of Zr with respect to LREE in MORB; instead, Nd and Zr have identical slopes on plots of MgO v Log[X]. The same is true in the MORB database of Gale et al. (2013; inset Fig. 3a). Thus, if the over-enrichment of Zr observed in clinopyroxene rims is due to crystallization from an interstitial melt over-enriched in Zr with respect to Nd, then return of this interstitial melt to the eruptible reservoir plays little or no role in MORB differentiation. However, before discounting the return of interstitial melt to an eruptible reservoir we reconsider the melt-rock reaction model for producing the high Zr/LREE in clinopyroxene rims in light of trace element diffusion coefficients for clinopyroxene and plagioclase (Van Orman et al., 2001; Cherniak, 2003) that have been published since this model was first proposed.

To investigate whether magmatic trace element zoning could be modified by diffusion during cooling of an oceanic gabbro a simple numerical model of this process was constructed as follows. A plane sheet geometry was assumed with a 1 mm diameter clinopyroxene adjacent to a 2 mm diameter plagioclase. Arrhenius relationships for the diffusion coefficients of REE’s were taken from Van Orman et al. (2001) for clinopyroxene and Cherniak (2003) for plagioclase (Supplementary material Appendix 1); the latter are about one order of magnitude larger for the HREE and two orders of magnitude larger for the LREE’s at magmatic temperatures. Temperature-dependent partition coefficients for the REE’s between plagioclase and clinopyroxene were
determined using the crystal-melt partition coefficients of Wood and Blundy (2003) with
the subsolidus relationship derived by taking the ratio of the crystal-melt partition
coefficients (i.e., $k_{d_{\text{plag/melt}}}/k_{d_{\text{cpx/melt}}} = k_{d_{\text{plag/cpx}}}$; Supplementary material Appendix 1). The
initial concentration profiles were set assuming closed system fractional crystallization
(using the same partition coefficients), producing strongly zoned crystals with
incompatible element enriched rims (Fig. 4). Diffusion was modeled from an initial
temperature of 1200°C down to 700°C (below which diffusion is too slow to modify REE
distributions significantly) at cooling rates of 1x10^3 and 5x10^3 °C Myr$^{-1}$ appropriate for
much of the lower oceanic crust (John et al., 2004; Coogan et al., 2007).

While the models shown in Figure 4 are for one specific texture, and should not
be expected to match all natural samples, the overall behaviour appears to explain many
observations from natural samples. Perhaps most importantly the models show that
subsolidus modification of REE (and Y) distributions is likely in the lower oceanic crust
(and many mafic plutons) and must be considered when interpreting intra-crystal
compositional variations (the same is true for Nd- and Sr-isotopes). The behaviour of an
element depends on both its partition and diffusion coefficients.

Lanthanum diffuses much more rapidly in plagioclase than in clinopyroxene and
has a slightly higher partition coefficient for plagioclase than clinopyroxene at magmatic
temperatures, and there is a small increase in $k_{d_{\text{cpx}}}$ during cooling. The higher
diffusivity of La in plagioclase than clinopyroxene means that during cooling the
plagioclase tends to homogenize its La content much more rapidly than the
clinopyroxene. In turn, due to the assumed equilibrium between plagioclase and
clinopyroxene at the grain boundary, there is a flux of La into plagioclase from
clinopyroxene leading to an increase in the bulk La content of plagioclase (Fig. 4a, b).

Furthermore, during cooling increases providing a continued driving force for a flux of La from clinopyroxene into plagioclase.

Ytterbium is used as an example of the HREEs (Fig. 4e, f), but is compared to measured Y concentrations (Fig. 3) because the higher abundances of the latter leads to smaller analytical uncertainties in plagioclase compositions (and diffusion coefficients for Y are not available). As with La, the higher diffusivity of Yb in plagioclase than clinopyroxene means that during the initial stages of cooling the plagioclase tends to homogenize its Yb content much more rapidly than the clinopyroxene. Again, due to the assumed equilibrium between plagioclase and clinopyroxene at the grain boundary there is a flux of Yb into plagioclase from clinopyroxene leading to an overall enrichment in the concentration of Yb in plagioclase. This behaviour is somewhat counter-intuitive because during cooling decreases driving Yb from plagioclase to clinopyroxene.

These counteracting driving forces lead to potentially quite complex behaviour. For sufficiently slow cooling rates the change in with temperature will lead to plagioclase with Yb depleted rims (Fig. 4f). The flux of HREE’s from plagioclase into clinopyroxene will have little effect on the clinopyroxene composition due to the low abundance of these elements in plagioclase compared to clinopyroxene. The distribution of HREE and Y appear to have the potential to provide quantitative information about cooling rates in such rocks.

In combination the behaviour of La and Yb (or Y) in plagioclase may be diagnostic of diffusive modification of REE distributions. All REE’s (and Y) are incompatible in the main phases found in oceanic cumulates (olivine, plagioclase,
pyroxenes, FeTi oxides) and hence crystal-melt separation at decreasing melt mass will tend to enrich these elements in the later crystallization products. Thus, in general, one would expect crystal rims to be relatively REE enriched over crystal cores. This is generally the case for La in plagioclase with rim-to-core ratios >1 in most crystals (Fig. 3c). In contrast, Y is commonly depleted in plagioclase rims compared to their cores (Fig. 3b and c). This led both Coogan et al. (2000b) and Lissenberg et al. (2013) to suggest that different parental melts had to be involved. Instead, it appears that the high mobility of REEs in plagioclase (Cherniak, 2003) leads to post-crystallization diffusive loss of Y from plagioclase into clinopyroxene (Fig. 4f).

To our knowledge the diffusion coefficient of Zr in clinopyroxene has not been determined experimentally. However it is likely that Zr, a tetravalent cation, will diffuse more slowly than Nd in clinopyroxene tending to fractionate these elements. Further, the partition coefficient for Zr in plagioclase is extremely small meaning that the clinopyroxene acts as an effectively closed system for Zr. This is important because it means that magmatic Zr zoning can only be lost via diffusion of Zr into the clinopyroxene core, and not via loss from the clinopyroxene rim into plagioclase as occurs for the REEs. As a first approximation, the initial profile for Nd (Nd$_{ini}$) is assumed to match the final Zr profile (i.e., assuming infinitely slow Zr diffusion) and the zoning of Nd$_{ini}$/Nd is shown as a proxy for Zr/Nd in Fig. 4c (inset). The drop of Nd in the clinopyroxene rim due to the same diffusive fluxes discussed above for La and Yb lead to elevated Nd$_{ini}$/Nd in clinopyroxene rims and somewhat depleted Nd$_{ini}$/Nd in clinopyroxene cores. This matches the common observation of sub-chondritic Zr/Nd in clinopyroxene cores and supra-chondrite Zr/Nd in clinopyroxene rims in oceanic gabbros.
Thus, it appears that elevated Zr/LREE in clinopyroxene rims, relative to their cores, in ocean gabbros (or other gabbroic cumulates) does not require melt-rock reaction and chromatographic separation of these elements; instead, this is an expected consequence of slow cooling.

In summary, closed system fractional crystallization of interstitial melt in a crystal mush, followed by subsolidus diffusion, appears to be able to explain the broad variation in trace element compositions in clinopyroxene and plagioclase in oceanic gabbros. While this does not mean that the interstitial melt in the crystal mush evolves via closed system fractional crystallization, there is currently no justification for assuming a more complex crystallization process. However, the high abundance of some incompatible elements, such as La, in both clinopyroxene and plagioclase rims requires that the interstitial melt was highly enriched in incompatible elements. Likewise, the absolute enrichment of Zr in clinopyroxene crystal rims compared to the core of the same crystal cannot be explained by subsolidus processes and must reflect crystallization of the rim from a much more evolved melt than the core. Thus, return of interstitial melt to an eruptible melt reservoir has the potential to lead to substantial enrichment of incompatible elements in erupted MORB. This is evaluated in the following section.

5. REPLENISHED-TAPPED MAGMA CHAMBERS UNDERGOING IN SITU CRYSTALLIZATION

The enrichment of La in both plagioclase and clinopyroxene rims (Fig. 3) shows that interstitial melt within crystal mush zones at mid-ocean ridges can become highly fractionated. Evidence for disruption of such crystal mush zones prior to, and during,
eruptions come from the crystal cargo in MORB (e.g., Hekinian et al., 1985; Ridley et al., 2006; Costa et al., 2009; Moore et al., 2014) indicating that evolved interstitial melt must become mixed back into the eruptible magma reservoir. These observations lead us to explore whether in situ crystallization (Langmuir, 1989; Nielsen and DeLong, 1992; O’Hara and Fry, 1996b) can explain the observed differentiation trends in MORB. Even though there is clear evidence that mid-ocean ridge magma chambers operate as open systems, we start with a closed system in situ crystallization model as this has fewer free parameters and is thus simpler to understand. We then expand this to RMTX magma chambers undergoing in situ crystallization – a magma chamber model that appears to be required by the crystal cargo of MORB.

5.1. Closed system in situ crystallization

The in situ crystallization model (Langmuir, 1989) was developed to explore the geochemical effects of crystallization of melt within a crystal mush boundary layer, followed by return of interstitial melt to an eruptible magma reservoir although the approach can describe other “small packet” crystallization processes (O’Hara and Fry, 1996b). Relative to fractional crystallization, in situ crystallization leads to higher abundances of compatible elements at any given mass fraction of crystallization because these elements are only depleted from the melt in the crystallizing boundary layer. In contrast, incompatible elements can become substantially enriched in the residual melt in the mush zone, and fractionated from one another, and return of this interstitial melt to the eruptible reservoir allows fractionation of incompatible element abundances and ratios in erupted melts.
As a starting point the simplest model of Langmuir (1989; Eq. 6) is used to test whether \textit{in situ} crystallization can broadly explain the differentiation trends observed by O’Neill and Jenner (2012). In this the mush zone is assumed to undergo equilibrium partial crystallization to a uniform extent with return of the interstitial melt to the eruptible reservoir after a given extent of crystallization. Bulk partition coefficients are held constant despite the possibility of various phases saturating in the boundary layer; this would lead to variable bulk partition coefficients (Nielsen and DeLong, 1992).

Following O’Neill and Jenner (2012), the fit of the model to the data is compared using the slopes of plots of \(\log[X_i] \) versus MgO. The slopes of the lines in these plots depend on the relative fractionation of element \(i \) from MgO during differentiation assuming a constant parental melt composition. The main parameter (other than the partition coefficients) in this modeling that has a strong control on the slope of plots of \(\log[X_i] \) versus MgO for realistic ranges of the parameters is \(f \), the fraction of melt remaining in the boundary layer at the stage at which interstitial melt is returned to the eruptible reservoir. Variations in the total fraction of melt remaining in the system (\(F \)) and the proportion of the interstitial melt that is trapped within the mush (\(f_T \)) versus returned to the eruptible reservoir (\(f_a \)) largely play off against one another and have a lesser effect on the slope of plots of \(\log[X_i] \) versus MgO (Supplementary material Appendix 2). To make the results directly comparable to the model of O’Neill and Jenner (2012) all partition coefficients were taken from their study, and the slope of the model was determined for melt MgO contents between 5.5 to 9 wt%. Trial and error showed that for a value of \(f \) of 0.4 the \textit{in situ} crystallization model reproduces the general variation observed in the data.
indicating that *in situ* crystallization is a plausible mechanism for generating the observed over-enrichments in incompatible trace elements observed in MORB (Fig. 1a).

5.2. A replenished-tapped *in situ* crystallization model

To explore a more realistic model we consider a RMTX magma chamber in which crystallization occurs *in situ* (O’Hara and Fry, 1996a, 1996b; O’Hara and Herzberg, 2002). The inputs for this modeling are the relative mass fractions replenished, tapped and crystallized per cycle and the extent and mechanism of crystallization in the boundary layer. The relative mass fractions tapped and crystallized per replenishment cycle are set to 1:4 to approximate the ratio of upper (lava and dike) to lower (plutonic) crust formed at intermediate- to fast-spreading ridges. A rough estimate of the mass of magma in the axial magma lens at a fast-spreading ridge is ~35,000 m3 per m along axis based on a ~750-1000 m wide by 30-50 m high magma chamber. Comparing this to the average mass required to form a dike that breaches the surface and produces a lava flow (~1500 m3 per m along axis) leads to an estimate of the replenishing magma mass being ~20% of the magma chamber mass (i.e., 4% of the mass is tapped, and 16% crystallized, per cycle). The simplest crystallization process to envisage in the mush zone is perfect fractional crystallization and this is assumed here – this gives less fractionation of incompatible elements from one another than equilibrium crystallization and is thus a conservative model. We assume melt is returned from a ‘boundary layer’ in which the melt fraction varies linearly from 0.2 to 1 (i.e. 20% to 100% melt) giving an average extent of crystallization in the boundary layer of 40%. The returned melt is the integrated melt composition across this range of extents of crystallization (O’Hara and Fry, 1996b).
At steady-state a replenished-tapped magma chamber will have a fixed composition if all parameters are constant. This is clearly not realistic as MORBs show compositional variability on small time and space scales (steady-state results are shown in Supplementary material Appendix 2). To simulate natural variability we allow the mass fraction replenished to vary about the average value of 0.2±0.05 (1σ) using a Gaussian distribution (truncated at zero). Similar numerical models, but of the RMXT process and with fractional crystallization rather than in situ crystallization, have been presented by Robson and Cann (1982), Cox (1988) and Nielsen (1988). Synthetic datasets were generated and the slopes of the model results, on plots of MgO versus Log[X] for elements (X) with different partition coefficients, are shown in Figure 5. Numerical experiments show no variation in the slope of the data arrays with the size of the standard deviation in the mass fraction replenished – this just changes how much variation of Log[X] there is at a given MgO content. The similarity between the model and observed slopes demonstrates that a replenished-tapped-crystallizing magma reservoir, in which crystallization occurs in situ, can broadly explain the trace element differentiation trends observed in the global MORB dataset of Jenner and O’Neill (2012).

5.3. Comparison of the RMTX in situ crystallization model to a well studied MORB suite

It is useful to determine whether the RMTX in situ crystallization model can reproduce the general features of a suite of spatially associated MORB as a further test of the plausibility of this model. Using spatially associated samples minimizes the likelihood that variations in parental melt composition will lead to variations in trace element abundances that correlate with MgO. Hess Deep provides one of the best studied
sections of fast-spread crust, being one of the few places for which there is a comprehensive dataset for upper crustal (lava and dike) compositions along a timeline (Stewart et al., 2002). Additionally, this area has the best-sampled section of lower crust from a fast-spread ridge allowing, to a first-order, a comparison of the model results with the lower crustal composition. Using the same input parameters described above for the mass fractions replenished and tapped per cycle, but a somewhat smaller extent of crystallization of the boundary layer (from 50% to 100% melt), models were run for a highly incompatible element (Nb) and a moderately incompatible element (TiO$_2$) using the partition coefficients from O’Neill and Jenner (2012). A parental melt MgO content of 10 wt% was used and the parental melt Ti and Nb contents were iterated to find a visual fit to the data. Figure 6 shows that the co-variation of these elements with MgO in the Hess Deep upper crust is entirely compatible with the predictions of this model. Comparison of the model results and data for the plutonic rocks is also useful. The lower crust at the Hess Deep has a bulk TiO$_2$ content of 0.46±0.08 wt% (Gillis et al., 2014; Nb data are unavailable). However, the upper gabbros have very high bulk-rock TiO$_2$ contents (1.15±0.09 wt% TiO$_2$; Gillis et al., 2014) due to large amounts of trapped melt (Coogan et al., 2002). The RMTX in situ crystallization model shown in Figure 6 produces an average plutonic rock TiO$_2$ of 0.33 wt%. An average of 7% trapped melt in the lower crust would explain the difference between the modeled TiO$_2$ content (0.33 wt% TiO$_2$) and that observed (0.46 wt% TiO$_2$). Thus, an RMTX magma chamber undergoing in situ crystallization appears to be consistent with the compositions of the lower crust as well as the upper crust.
The modeling shown in Figure 6 demonstrates both that: (i) significant variations in incompatible element abundances and ratios, at constant MgO content, should be expected to be generated by crustal processes, and (ii) parental melt incompatible element abundances may be far lower than expected if simple differentiation processes are assumed. For example, at a constant MgO content there is a factor of two variation in melt TiO$_2$, and factor of four variation in melt Nb, in the model shown in Fig. 6. Furthermore, there is little correlation of Nb/Ti with MgO but this ratio varies by a factor of 1.8 at constant MgO. This scatter reflects the different response times of elements of different bulk partition coefficient to changes in the mass fractions tapped and replenished (e.g., Fig. 2b). An even more important feature of this differentiation process is that the model parental melts contain significantly lower Nb (0.7 ppm) and TiO$_2$ (0.65 wt%) than might be expected given standard estimates of the composition of the upper mantle and the average extent of melting. For example, assuming Nb behaves perfectly incompatibly, and the parental melt was generated by 10% melting (e.g. Langmuir et al., 1992), the upper mantle Nb content would be 0.07 ppm substantially lower than most estimates of the Nb content of depleted MORB mantle (e.g. 0.15 to 0.3 ppm; Saal et al., 2002; Workman and Hart, 2005).

6. A VIEW OF MORB DIFFERENTIATION AND BROADER IMPLICATIONS

The AML at intermediate- to fast-spreading ridges is underlain by a zone of mixed crystals and melt that extends to the base of the crust (Sinton and Detrick, 1992; Dunn et al., 2000; Crawford and Webb, 2002) and must also commonly have mush zones at its roof and sides. Within any of these mush zones, if heat extraction allows crystallization to occur, the interstitial melt will become more evolved. Extraction of this
interstitial melt into eruptible magma will lead to erupted basalt compositions that show
the chemical signatures of *in situ* crystallization. Extraction of interstitial melt into the
eruptible reservoir may occur via numerous processes (e.g. compaction, compositional
convection) but the crystal cargo of MORB suggests that at least some fraction of the
interstitial melt is returned because of mush zone disaggregation associated with
replenishment (e.g. Hekinian et al., 1985; Ridley et al., 2006; Moore et al., 2014). In this
model, eruptions triggered by replenishment will produce basalts with compositions that
are mixtures of the resident melt in the AML, the interstitial melt in the mush zone
surrounding the AML and the replenishing melt; the latter may be modified by
crystallization prior to or during mixing (e.g., Huppert and Sparks, 1980).

6.1. Backtracking MORB compositions to a fixed melt MgO content

Backtracking an erupted melt composition towards a parental melt composition,
for either major or trace elements, is not straightforward if realistic magma chamber
processes are considered (e.g., O’Hara and Herzberg, 2002). This is demonstrated in the
stochastic differentiation model, with random variation in the mass fraction replenished,
shown in Figure 6. As shown in the inset, fluctuations in the input parameters lead to
multiple apparent differentiation paths; for each path regression of model TiO$_2$ content
back to a constant MgO content would give the impression of the need for variable
parental melt compositions. For example, regression through the three sub-datasets
shown in the inset of Fig. 6a lead to TiO$_2$ contents at 8 wt% MgO of 0.5, 1.3 and 2.1 wt%
(compared to an actual model parental melt of 0.65 wt% TiO$_2$ at 10 wt% MgO). While
these three examples were selected to show the range of plausible outcomes, it is clear
that simple regression may be misleading both in suggesting variability in parental melt
composition when none exists, and in determining what the parental melt composition is.

6.2. Do erupted MORB have the same Sm/Nd as parental MORB?

An example of the importance of quantitatively understanding the differentiation
of MORB comes from the use of MORB to estimate the Sm/Nd ratio of the upper mantle.
It is important to quantify the upper mantle Sm/Nd ratio to help differentiate between
models that explain the non-chondritic $^{142}\text{Nd}/^{144}\text{Nd}$ ratios of most of the “accessible
Earth” (e.g., Boyet and Carlson, 2005) in terms of a “hidden reservoir” versus a non-
chondritic bulk Earth composition (e.g., Gale et al., 2013). In either model the “accessible
Earth” has a Sm/Nd ~6% higher than chondrites (Jackson and Carlson, 2011). Gale et al.
(2013) show that (using their nomenclature) ALL MORB and N-MORB have Sm/Nd
ratios of 0.319 ± 0.005 and 0.325 ± 0.0046 respectively. They then make a critical
assumption, that the basalt Sm/Nd matches that of the parental mantle melt, and back-
calculate an upper mantle Sm/Nd ratio of <0.34 from their ALL MORB composition.
This is less depleted than that calculated for the “accessible Earth” based on the observed
$^{142}\text{Nd}/^{144}\text{Nd}$ (0.342-0.352) which is inconsistent with the standard model of the MORB
source being the complementary depleted reservoir formed by continental crust extraction
(e.g., Hofmann, 1988). However, the calculation of the upper mantle Sm/Nd from MORB
compositions described above neglects any change in the Sm/Nd due to partial
crystallization in the lower crust.

Using the RMTX model shown in Fig. 6, but for Nd and Sm, allows estimation of
the difference in the Sm/Nd ratio in the parental melt and the erupted melt given the
partition coefficients for these elements. O’Neill and Jenner (2012) estimate $\square =
0.118 and $= 0.179$ which would produced a steady-state melt with a Sm/Nd ratio of ~85% of the parental melt. The partition coefficients used by O’Neill and Jenner (2012) for plagioclase are at the low end of the range of plausible values, thus as an alternative we use bulk partition coefficients determined from Wood and Blundy (2003; Supplementary material Appendix 1). Assuming a crystallizing assemblage of 30% clinopyroxene, 50% plagioclase and 20% olivine ($kd_{ol} = 0$) gives a smaller difference in the partition coefficients between these phases ($= 0.14$ and $= 0.16$). This results in a steady-state melt with a Sm/Nd ratio of ~95% of the parental melt. In either case the MORB source has a significantly higher Sm/Nd than is calculated without accounting for changes in Sm/Nd due to partial crystallization.

A prediction of the model just described is that the Sm/Nd ratio in plutonic rocks of the lower oceanic crust should be higher than in cogenetic MORB. Sampling of the lower crust is very limited at fast-spreading ridges. However, sampling of the upper and lower crust at Pito Deep allows direct comparison of their Sm/Nd ratios. In this location the Sm/Nd of lavas and dikes (0.361 ± 0.001; 1 standard error; Pollock et al. 2009) is substantially lower than that of the plutonics (0.396 ± 0.01; 1 standard error; Perk et al. 2007) or the bulk crust (0.377 assuming 15% upper crust and 85% lower crust). The same observation of a higher Sm/Nd of lower crustal than associated upper crustal rocks appears to be true in all locations that lower crustal samples are available from (Coogan, 2014). The point here is not to estimate the Sm/Nd of the upper mantle, nor to resolve the origin of the non-chondritic 142Nd/144Nd ratios of most terrestrial samples, but simply to demonstrate that ignoring the changes in trace element ratios that can be imparted in magma chambers can have far-reaching implications.
7. CONCLUSIONS

The main conclusions of this study are:

1. Consideration of the petrology and geochemistry of MORB and oceanic gabbros suggests a model for MORB differentiation involving both open system magma chambers and *in situ* crystallization. These processes may be linked through replenishment driving the extraction of interstitial melt from crystal mush zones. Both processes likely play a role in generating the over-enrichment in incompatible elements observed in MORB. Other complexities such as diversity in parental melt compositions (Sims et al., 2002; Coogan et al., 2002; Gillis et al., 2014) and assimilation are likely but have not been considered here.

2. Sub-solidus diffusive modification of trace element distributions in minerals in plutonic rocks may be common (e.g., for REE’s in pyroxene) or ubiquitous (e.g., for REE’s in plagioclase) and needs considering before these are used to interpret magmatic processes. For example, extreme zoning of Zr/LREE in some clinopyroxene crystals in oceanic gabbros does not require growth from a melt with a very high Zr/LREE ratio but may instead reflect post-crystallization diffusive modification of the clinopyroxene compositions (Fig. 4). If clinopyroxene crystal rims in oceanic gabbros did grow from a melt with an elevated Zr/LREE ratio then the lack of significant variation of Zr/Nd with decreasing MgO in MORB would indicate that such interstitial melts do not play a significant role in MORB differentiation.

3. Simple crystallization models cannot be used to back-track the incompatible element abundances in MORB to determine those of the parental melts (e.g., by
assuming fractional crystallization). This will generally lead to substantial over-
estimates of the concentration of incompatible elements. If such estimates are
used in calculating upper mantle compositions serious problems may ensue.

4. Incompatible element ratios in MORB cannot be assumed to match those of the
parental melt. For example, significant variations in Nb/Ti occurs at constant
MgO content in the model shown in Figure 6. Even similarly compatible elements
like Sm and Nd are fractionated from one another in RMTX magma chambers
undergoing in situ crystallization. Thus, the Sm/Nd of sampled MORB cannot be
assumed to match that of the parental melts and doing so may led to erroneous
conclusions about the evolution of the Nd-isotopic composition of the mantle.

ACKNOWLEDGEMENTS

Correspondence with Hugh O’Neill was helpful in clarify the ideas presented here. Ron
Fodor, Roger Nielsen and two anonymous reviewers are thanked for constructive
critiques.

REFERENCES

Barnes, S. J. (1986). The effect of trapped liquid crystallization on cumulus mineral

Doi:10.1029/2011GC003516

Gillis K. M., Snow J. E., Klaus A., Abe N., Adria A. B., Akizawa N., Ceuleneer G.,
Cheadle M. J., Faak K., Falloon T. J., Friedman S. A., Godard M., Guerin G.,
Harigane Y., Horst A. J., Hoshide T., Ildefonse B., Jean M. M., John B. E., Koepke
fast-spreading lower oceanic crust. Nature 505, 204–207.

gabbroic xenoliths in basalts from the East Pacific Rise axis near 12°50’N. Bull.

Huppert H. E. and Sparks R. S. J. (1980) The fluid dynamics of a basaltic magma
75, 279–289.

Jackson M. G. and Carlson R. W. (2012) Homogeneous superchondritic $^{142}\text{Nd}/^{144}\text{Nd}$ in
the mid-ocean ridge basalt and ocean island basalt mantle. Geochemistry, Geophys.
Geosystems 13. Doi:10.1029/2012GC004114

John, B.E., Foster, D.A., Murphy, J.M., Cheadle, M.J., Baines, A.G., Fanning, C.M. and
Copeland, P., (2004). Determining the cooling history of in situ lower oceanic crust-

FIGURE CAPTIONS:

Figure 1. Features of MORB inconsistent with fractional crystallization being the sole differentiation mechanism: (a) over-enrichment of incompatible elements (here shown as Th) with respect to that predicted by fractional crystallization shown for an isotopically homogeneous suite of MORB from the East Pacific Rise (Regelous et al., 1999) and the MORB dataset of Jenner and O’Neill (2012 excluding seamounts, aseismic ridges and back arc basins; inset). Fractional crystallization is shown by the solid lines with Kd$_{\text{Th}}$ set to zero and Kd$_{\text{Mg}}$ as labeled on the main figure; (b) under-depletion of compatible elements (here shown as Ni from the global MORB glass dataset of Jenner and O’Neill (2012; excluding seamounts, aseismic ridges and back arc basins) with respect to a fractional crystallization model. The fractional crystallization model (solid grey line) was derived by Petrolog modelling of the bulk crustal composition of Gillis et al. (2014) with a temperature and composition dependent k_d^{ol} calculated following Li and Ripley (2010) with k_d^{ol} set to 0.3, k_d^{ol} and $k_d^{\text{pl}} = 0$. The initial melt Ni content is 350 ppm, in equilibrium with mantle-like olivine containing 2700 ppm Ni. The dashed grey line connects the parental melt and the most evolved glass demonstrating that most samples could be produced by mixing evolved and primitive melts; (c) variation in CaO/Al$_2$O$_3$ with MgO in the Smithsonian MORB glass database (filtered to
K$_2$O/TiO$_2<0.15$ to exclude T- and E-MORB) and averages of these data binned in decreasing MgO content at every 11 samples (black symbols) and every 0.5 wt% MgO (large open symbols). Troctolite crystallization drives CaO/Al$_2$O$_3$ up and gabbro fractionation drives CaO/Al$_2$O$_3$ down, as shown in the Petrolog model (solid grey line calculated as for part b). The data show little or no evidence of any change from clinopyroxene-free to clinopyroxene-bearing cumulates with decreasing MgO. This is supported by least-squares modeling of the cumulate mode required to drive the average melt composition to lower MgO contents shown as histograms (labeled by the range of MgO content the crystal extract was calculated over); and (d) comparison of the composition of olivine ‘phenocrysts’ in MORB and their host glass (“spreading center” data downloaded from PetDB June 2014; 2127 olivine-glass pairs). Lines show equilibrium compositions for three different exchange coefficients (0.27, 0.30, 0.33); most olivine are too magnesium-rich to be in equilibrium with their host. Due to rapid diffusion of Mg and Fe in olivine this disequilibrium requires mixing within years of eruption and suggests that mixing of an olivine-poor evolved magma with an olivine bearing primitive magma is common.

Figure 2. Results of modeling RMTX magma chambers: (a) relative mass fractions of the maximum magma chamber mass tapped and crystallized per cycle of replenishment to achieve a given steady-state erupted melt MgO content using the equations of O’Hara and Herzberg (2002; Note that the definitions of their properties C$_D$ and C$_E$ are inverted in their appendix but the equations are correct). Following O’Neill and Jenner (2012) this is calculated assuming a perfectly incompatible element (X$_{kd=0}$) has a slope on a plot of
MgO vs. Log($X_{kd=0}$) of -0.26 and the parental melt has a MgO content of 10 wt%; (b) result of simulation of RMTX magma chamber using Petrolog (Danyushevsky and Plechov, 2011) iterated manually for three different sets of values of the mass fractions tapped and crystallized per cycle (see key in part c). K_2O behaves perfectly incompatible in this modeling. The labels on the tops of the Petrolog models are the steady-state values (MgO/K_2O both in wt%) determined using the analytical solution for constant partition coefficients ($kd_{MgO}^{vulc} = 1.9; kd_{K_2O}^{vulc} = 0$). This is identical to the Petrolog solution for K_2O as this has a partition coefficient of zero throughout but is somewhat different for MgO. The model MgO content was changing by $<$0.015 wt% when the modeling was stopped (suggesting a close approach to the steady-state value) but the steady state K_2O content was not reached in any case as this takes many cycles (O’Hara, 1977). The inset shows a numerical solution for the constant partition coefficient model (4% tapped, 16% crystallized) showing the large number of cycles (labeled) required to reach the steady-state composition; (c) result of simulation of RMTX magma chamber using Petrolog (Danyushevsky and Plechov, 2011) for MgO-CaO showing the different steady-state melt compositions and the different pathways followed to reach the steady-state for different mass fractions tapped and crystallized per cycle. These could be misinterpreted as indicating different pressures of crystallization. For example, the labels show the pressures of crystallization calculated for the steady-state compositions using the approach of Villiger et al. (2007). Petrolog models used the same starting composition as O’Neill and Jenner (2012), a crystallization pressure of 1 kbar, oxygen fugacity buffered at QMF, and the crystal-melt exchange models of Langmuir et al. (1992) for olivine, plagioclase and clinopyroxene and of Beattie (1993) for orthopyroxene. Models were
iterated manually to simulate a RMTX chamber undergoing perfect fractional crystallization.

Figure 3: Examples of the behaviour of incompatible trace elements in clinopyroxene and plagioclase in oceanic gabbros: (a) strong zoning of 100xLa, Y and Zr/Nd in the best-studied clinopyroxene crystal (Mg#79-85) from Coogan et al. (2000b) in a coarse grained gabbro from the MARK area of the Mid-Atlantic Ridge. The inset shows that although the Zr/Nd ratio of the clinopyroxene increases by about an order of magnitude from core-to-rim there is no change in this ratio in MORB during differentiation (data from global compilation of Gale et al., 2013); (b) zoning of La and Y in the plagioclase crystal (An57-60) adjacent to the clinopyroxene shown in part a. Note the lack of enrichment in Y at the plagioclase rim in contrast to clinopyroxene; (c) ratio of rim-core concentrations of La and Y in plagioclase crystals in plutonic rocks from the MARK area (Coogan et al., 2000b) and Hess Deep (Lissenberg et al., 2013). Plagioclase rims are enriched in La relative to their cores but are generally depleted in Y consistent with diffusive loss of Y from plagioclase to clinopyroxene during cooling. Samples of the shallowest gabbros from Hess Deep, that would have cooled the fastest (and hence undergone the least diffusive exchange), have higher Y in plagioclase rims than cores.

Figure 4. Models of zoning in adjacent clinopyroxene (left column) and plagioclase (right column) produced by fractional crystallization (initial profiles) and then subsequent subsolidus diffusive relaxation at two different cooling rates (note different scales for different phases). Details of the modeling are given in the text. (a, b) La; (c, d) Nd; (e, f)
Yb. The inset in part c shows the ratio of the initial Nd concentration (Nd_{ini}) to the final Nd concentration with the former used as a proxy for the Zr concentration as discussed in the text. The large increase in Nd_{ini}/Nd in the clinopyroxene rim in the model mimics the large increase in Zr/Nd observed in clinopyroxene in oceanic gabbros that has previously been interpreted as reflecting growth from melts with highly fractionated Zr/Nd ratios (Fig. 3a). Plagioclase Y zoning can invert from showing high Y rims after crystallization to low Y rims after diffusive exchange with clinopyroxene. This provides a simple explanation for low Y rims in plagioclase in oceanic gabbros (e.g. Fig. 3c). Concentration units are arbitrary.

Figure 5. Comparison of the observed (O’Neill and Jenner, 2012) and modeled slopes of plots of Log[X] versus MgO for the closed system in situ crystallization model of Langmuir (1989) and an open system in situ crystallization model (O’Hara and Fry, 1996b; O’Hara and Herzberg, 2002). The closed system model assumes equilibrium crystallization in the mush zone until 40% melt remains followed by return of this interstitial melt to the eruptible reservoir. The slope was calculated from synthetic data generated for various values of F and f_a. The open system model of O’Hara and Fry (1996b) gives a steady-state (i.e., fixed) composition. To allow comparison to the data a numerical approach was used in which the mass fractions tapped (0.04) and crystallized (0.16) are held constant but the mass fraction of replenishment was drawn from a Gaussian distribution about the steady-state value of 0.2 (±0.05 1σ). Both models use the partition coefficients of O’Neill and Jenner (2012) for ease of comparison to their results. No attempt was made to optimize either model to fit the data.
Figure 6. Comparison of the results of a numerical RMTX model, in which crystallization occurs in situ, and the composition of a suite of lavas and dikes from Hess Deep (Stewart et al., 2002) for: (a) MgO-TiO$_2$ and (b) MgO-Nb. One thousand synthetic data points are shown. A mass fraction of 0.2±0.07 (1σ, with the distribution truncated to avoid negative values) of the chamber was replenished per cycle and the mass fractions erupted (0.04) and crystallized (0.16) were held constant. The slightly higher standard deviation on the mass fraction replenished used in this modeling than that shown in Fig. 5 was found to produce a visually better fit to the data. The slopes of MgO v Log[λ] for the data and model compare well for both TiO$_2$ (-0.11 v -0.10) and Nb (-0.19 v -0.17). The inset in part a shows small sub-sets of the model results produced over 10-20 consecutive cycles with mass fractions of replenishment that are below average (path 1), average (path 2) or above average (path 3; see also Caroff et al., 1997). The solid line depicts fractional crystallization. Co = parental melt composition.
Figure 1

(a) Ni (ppm) vs. MgO

(b) MgO/FeO (glass) vs. MgO

(c) MgO/Al₂O₃ vs. MgO

(d) MgO/FeO (olivine) vs. MgO/FeO (glass)

Legend:
- olivine (o)
- clinopyroxene (c)
- plagioclase (p)

Mass fraction:
- 6.5-5.5
- 7.5-6.5
- 8.5-7.5
- 9.5-8.5

Equilibrium mixing evolved and parental magmas

Entrain disequilibrium crystals
Figure 2

(a) Mass fraction tapped and mass fraction crystallized.

(b) Fractional crystallization:
- 4% tapped, 16% crystallized
- 15% tapped, 30% crystallized
- 30% tapped, 40% crystallized

(c) CaO (wt%) vs MgO (wt%) for different pressures:
- 1.4 kbar
- 3.8 kbar
- 5.8 kbar
Figure 3

(a) Concentration (ppm) / ratio in clinopyroxene (mm)

(b) Concentration (ppm) in plagioclase (mm)

(c) Plagioclase La$_{\text{rim}}$/La$_{\text{core}}$ vs. Y$_{\text{rim}}$/Y$_{\text{core}}$

MORB

Zr/Nd

MgO (wt%)

Hess Deep (shallow)

MARK area

Hess Deep (deeper)

Crystallization

Diffusive exchange
(a) La in cpx

(b) La in plag

(c) Nd in cpx

(d) Nd in plag

(e) Yb in cpx

(f) Yb in plag

Figure 4
Figure 5

- Observed slope \(\frac{d \log[X]}{d \text{MgO}} \)
- Model slope \(\frac{d \log[X]}{d \text{MgO}} \)

- Closed system in situ crystallization
- Open system in situ crystallization

1:1 line
Figure 6

(a)

$\text{TiO}_2\ (\text{wt}\%) - \text{MgO} (\text{wt}\%)$

- **Data**
- **Model**

$C_o = 10 \text{ wt}\% \text{ MgO}, 0.65 \text{ wt}\% \text{ TiO}_2$

(b)

$\text{Nb} \ (\text{ppm}) - \text{MgO} (\text{wt}\%)$

$C_o = 10 \text{ wt}\% \text{ MgO}, 0.7 \text{ ppm Nb}$