

Citation for this paper:

Poo-Caamaño, G.; Knauss, E.; Singer, L.; & German, D.M. (2017). Herding cats in

a FOSS ecosystem: a tale of communication and coordination for release

management. Journal of Internet Services and Applications, 8, article 12.

https://doi.org/10.1186/s13174-017-0063-2

UVicSPACE: Research & Learning Repository

Faculty of Engineering

Faculty Publications

Herding cats in a FOSS ecosystem: a tale of communication and coordination for

release management

Germán Poo-Caamaño, Eric Knauss, Leif Singer and Daniel M. German

August 2017

© 2017 Poo-Caamaño et al. This is an open access article distributed under the terms of the

Creative Commons Attribution License. http://creativecommons.org/licenses/by/4.0

This article was originally published at:

https://doi.org/10.1186/s13174-017-0063-2

http://creativecommons.org/licenses/by/4.0
https://doi.org/10.1186/s13174-017-0063-2

Journal of Internet Services
and Applications

Poo-Caamaño et al. Journal of Internet Services and Applications (2017) 8:12
DOI 10.1186/s13174-017-0063-2

RESEARCH Open Access

Herding cats in a FOSS ecosystem: a tale
of communication and coordination for
release management
Germán Poo-Caamaño1* , Eric Knauss2, Leif Singer1 and Daniel M. German1

Abstract

Release management in large-scale software development projects requires significant communication and
coordination. It is particularly challenging in Free and Open Source Software (FOSS) ecosystems, in which hundreds of
loosely connected developers and their projects are coordinated to release software to a schedule. To better
understand this process and its challenges, we analyzed over two and half years of communication in the GNOME
ecosystem and studied developers’ interactions. Through a case study, we cataloged communication channels,
determined the main channel from which we categorized high level communication and coordination activities
spanning five releases, and triangulated our results by interviewing ten key developers. We found that a release
schedule, influence (instead of direct control), and diversity are the main factors that positively impact the release
process in the GNOME ecosystem. We report a set of lessons learned that encapsulates our understanding of how the
Release Management process function in a FOSS ecosystem, we learned that: (1) ensure that the release team follows
the main communication channels used by developers, (2) provide a common place for coordination for an
ecosystem, (3) consider including both good technical and social skills in a release team, (4) aim for a diverse release
team, (5) based on lack of power, lobbying and consensus based management must be followed, (6) help the release
team in the coordination process with a well defined schedule, and (7) release team work is different from regular
software work. Our results can help organizations build better large-scale teams and show that research focused on
individual projects might miss important parts of the picture.

Keywords: Release management, Software ecosystem, Empirical study

“We need to communicate to make sure ... we have a
product altogether that works. That components are
well integrated with each other ... we don’t consider
GNOME a random set of tools that are totally separated
from each other, we want [them] to work well [together].”

—A GNOME release team member

1 Introduction
Releasing a single software product is already challenging,
but consider the challenges of releasing a complex prod-
uct that consists of a multitude of independent software
products. Each of these individual software products is

*Correspondence: gpoo@uvic.ca
1Department of Computer Science, University of Victoria, 3800 Finnerty Road,
Victoria, British Columbia, Canada
Full list of author information is available at the end of the article

developed autonomously, with distributed teams of devel-
opers, different motivations, many of them working as
volunteers. And yet, most of the time, the complex prod-
uct with all its individual pieces is released on time and
in high quality. The developers of each of these pieces
must communicate and coordinate effectively throughout
an ecosystem of interrelated software products to achieve
the goal of releasing a cohesive product.
Release management in such an ecosystem relates to

both technical and social aspects of software engineering
[15, 59] in a highly distributed setting [27, 30] and better
understanding of this phenomenon is important both for
closed and open source development.
Software development is more than writing code, it

involves a set of technical and social aspects that must be
taken in consideration [15, 59].

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-017-0063-2&domain=pdf
http://orcid.org/0000-0001-8570-8128
mailto: gpoo@uvic.ca
http://creativecommons.org/licenses/by/4.0/

Poo-Caamaño et al. Journal of Internet Services and Applications (2017) 8:12 Page 2 of 24

Especially in distributed settings, the software develop-
ment process requires additional work to overcome dif-
ferent strategic and cultural views to design, implement,
and test software [27, 30]. Empirical studies in industrial
settings report that “cross-site communication and coordi-
nation issues are critical to achieving speed in multi-site
development” [30].
Yet, communication and coordination is challenging in

distributed teams, and since such distributed teams is the
nature of many FOSS projects [53] they offer a unique
opportunity to further our understanding of release man-
agement in ecosystems.
FOSS projects can encompass a variety of methods or

process es for developing software, which can vary accord-
ing to the type of governance model they have [5]. The
purpose of FOSS governance is three fold: to solve collec-
tive action dilemmas, to solve development coordination
problems, and to create a climate for contributors [48].
Projects with a strong leadership may not require to reach
consensus in the decision making process.
In solo projects as well as projects lead by a benev-

olent dictator (for example, Linux, and Perl) or by a
corporation (for example, MySQL and BerkeleyDB) the
direction and decision making process are clear; whereas
in community and Foundation-based projects, the deci-
sions are usually reached via consensus [4]. GNOME
is a project governed by a Foundation, and it needs to
find different ways to align all projects and developers.
Furthermore, GNOME is a FOSS ecosystem, where the
developers and leaders of multiple independent projects
must reach consensus to decide what features to deliver
in a common integrated product, when to deliver it,
and how to reach the minimum acceptable quality to
deliver it.
A FOSS ecosystem is a set of independent, interrelated

FOSS applications that operate together to deliver a com-
mon user experience. Besides GNOME, other examples
of FOSS ecosystems include Linux distributions (such as
Debian), or the R ecosystem (R language, libraries and
tools). Because in a FOSS ecosystem a release comprises
many different independent applications, the releaseman-
agement of the ecosystem can be significantly more diffi-
cult than any of its applications alone. Release managers
need to coordinate the goals and schedules of multiple
teams to deliver, from the point of view of the user, one
single release.
Previous research on communication and coordination

in software ecosystems has focused in a temporal analysis
of information flows [37], and then obtained a structural
map about flows between actors [38]. To our knowl-
edge, the requirements and challenges that release man-
agers face in software ecosystems have not been explored,
and little is known about how FOSS ecosystems conduct
release management.

In this study, we empirically investigate in the complex
phenomenon of the GNOME FOSS ecosystem by employ-
ing three theories that provide a lens for our inquiry: the
media richness theory [14], the channel expansion the-
ory [10], and the shared understanding theory [1]. We rely
on these three theories to obtain a holistic and complete
account of communication and coordination for release
management.
In their media richness theory, Daft and Lengel [14]

argue that organizations process information to reduce
uncertainty and ambiguity, for which the communication
channels and organizational structure play an important
role. The communication channels vary in their capacity
for providing richer or leaner information.
Rich communication channels, such as face-to-face and

video interactions, enable immediate feedback, cross-
check of information, and provide additional cues, such as
body language, tone, and message content in natural lan-
guage. In contrast, leaner communication channels, such
as email or instant messaging, lack the ability of con-
veying nonverbal cues, and the feedback is limited [41].
In addition, a second source of uncertainty is produced
by the need of integration between multiple teams or
projects within an ecosystem: “people come to a problem
with different experience, cognitive elements, goals, val-
ues, and priorities” [14]. FOSS ecosystems may be limited
to use certain communication channels, and the diversity
of projects and developers’ background may increase the
difficulties to reach consensus, motivating our first two
research questions:

RQ1 What are the communication channels used for
release management?

RQ2 How do developers communicate and coordinate for
release management?

The channel expansion theory, proposed by Carlson
and Zmud [10], presumes that as individuals gain expe-
rience in the use of a channel, they are able to use the
media channel more effectively; such experience involves
the use of the channel itself, the organizational context,
the message topic, and the understanding of how their
co-participants communicate. Furthermore, according to
Dennis and Valacich [16], the development of standards
and norms increases with the experience that a group
gains, and as a result such a group may also experience
an improvement in the interplay and the tasks they per-
form over time. This theory may or may not apply on how
a successful FOSS ecosystem releases software on time
and indicates a need to further understand the usage of
channels for release management.
Finally, the theory of shared understanding proposed by

Aranda [1], argues that the formalization of a process in
a software project helps reduce the overall complexity,

Poo-Caamaño et al. Journal of Internet Services and Applications (2017) 8:12 Page 3 of 24

because once a process is formalized, it facilitates that the
stakeholders familiarize with the process itself rather than
the details of each part of the organization. As a conse-
quence, the stakeholders can make assumptions on parts
of the organizations that are unfamiliar to them, and the
organizational complexity is reduced.
Motivated by the channel expansion and shared under-

standing theories, we aim to understand the key actors
that help to align a distributed team of mostly volunteers,
and to understand what kind of tasks they have that enable
the coordination across the ecosystem.

RQ3 Who are the key actors in the release management
process?

RQ4 What are the release management tasks in a FOSS
ecosystem?

Finally, motivated by all three theories, and to under-
stand what could be missing in any or all of them when
we study a FOSS ecosystem, we investigate research
question five:

RQ5 What are the challenges that release managers face
in a FOSS ecosystem?

To answer these research questions, we studied how the
release management is done in the GNOME project.
We chose GNOME because it is a large and mature

software ecosystem [49], it has been studied before
[22, 36, 39, 46, 47, 67, 79], its official release is a single
product comprised of many independent and distributed
projects, and more important, it has a successful and sta-
ble release schedule: a newGNOME release is issued every
six months. We studied the high level communication of
the release management process across five releases.
This research will improve the way of working in

GNOME and similar FOSS ecosystems.
While other software development efforts might be able

to profit from our insights as well, our research does not
allow generalization of results beyond the specific scope of
our study, i.e. the releasemanagement within the GNOME
FOSS ecosystem.
The contribution of this paper is threefold:
(i) An empirical study of Release Management in

a FOSS ecosystem: This empirical study deepens our
understanding of the release management practices in
a FOSS ecosystem. Empirical studies aim to investi-
gate complex real life issues where analytical research
might not be enough [66]. In particular, empirical soft-
ware engineering aims to understand the software engi-
neering discipline by treating software engineering as
an empirical science [60]. In this sense, our study is
contributing empirical data to the body of knowledge
about release management in FOSS ecosystems, which in
turn will improve the way of working in GNOME and

similar FOSS ecosystems and facilitate future research in
this area.
(ii) A set of lessons learned: Based on the empirical stud-

ies, we report a set of lessons learned that encapsulates our
understanding of how the Release Management process
function in FOSS ecosystems. We learned that: (1) ensure
that the release team follows the main communication
channels used by developers, (2) provide a common place
for coordination for an ecosystem, (3) consider including
both good technical and social skills in a release team,
(4) aim for a diverse release team, (5) based on lack of
power, lobbying and consensus based management must
be followed, (6) help the release team in the coordination
process with a well defined schedule, and (7) release team
work is different from regular software work.
(iii) An exception to the richness media theory in a FOSS

ecosystem: In a FOSS ecosystem, with the variety of cul-
tural and technical backgrounds of its members, the main
communication channel for coordination is asynchronous
(usually mailing). Email is egalitarian because it allows
contributors with different levels of English skills to par-
ticipate in equal terms (something that it is hard to achieve
in synchronous channels, where contributors with better
language skills can dominate a discussion). In an overview
of the research literature, we did not find references to lan-
guage barriers in the use of communication channels in
software development, perhaps because they did not study
teams with the same level of variability of national origins
as the FOSS ecosystem we studied.

2 Background
A software ecosystem is a set of software projects that
evolve together, share infrastructure, and are themselves
part of a larger software project [45, 46].
In previous work [38] we identified the existence of

three major streams in software ecosystems in research:
(1) software platforms and architecture, which includes
modelling and architecture such as software evolution,
software architecture, and software development as prod-
uct lines [8] (2) business and managerial perspectives
[34, 35], and (3) FOSS ecosystems [45, 68]. In addition, an
ecosystem can be studied in-the-large or in-the-small [49].
That is, the interactions with external actors, or the inner
ones, respectively. Our research complements these works
and is focused in the inner parts of a FOSS ecosystem, that
is, an ecosystem “in-the-small”.
Goeminne and Mens first explored potential research

questions to assess the quality of FOSS projects and that
could lead to an improvement of the software develop-
ment process [24]. A further study focused on the social
aspects in FOSS ecosystems; in particular, the intersection
of roles among developers and their activities. Devel-
opers might play multiple roles in a FOSS ecosystem,
each role involves a set of activities and interactions with

Poo-Caamaño et al. Journal of Internet Services and Applications (2017) 8:12 Page 4 of 24

other developers that are needed to articulate the tasks in
software development [49].
This paper aims to further the understanding of com-

munication and coordination in a software ecosystem
with respect to release management. We studied the
enabling factors to deliver a product in a FOSS ecosystem
with many individual projects. To this end, we considered
the organizational structure, its communication chan-
nels, and the interaction between developers of different
projects towards a common goal.

2.1 Social aspects and communication channels
FOSS development teams use multiple communication
channels. There is a prevalence of certain channels over
others, depending on the projects and the resources avail-
able to them, and because usually FOSS projects are devel-
oped by groups of people distributed across the globe.
FOSS projects might use different communications chan-
nels, among them mailing lists and IRC are the most
frequently used [21, 23, 25]. Mailing lists are used as
public forums for asynchronous communication whereas
IRC is used as instant messaging for synchronous com-
munication. Both communication channels correspond to
leaner channels because of lack the ability of conveying
nonverbal cues and the limited feedback [41].
Leaner communication channels are effective to process

standard data and well understood messages, however,
they may require rules and procedures. The complexity
in the communication increases when there are multi-
ple teams or projects within an ecosystem that require
coordination, and who may have multiple conflicting
interpretations of the same piece of information. High
ambiguity in an organization means confusion and lack of
understanding [14].
When the differentiation between teams and projects is

small, but with high interdependence, then the coordina-
tion can rely on leaner communication channels because
the ambiguity is low. When the differences are high,
then a communication channel with high richness can
help reduce ambiguity, which may be challenging for a
FOSS ecosystem to use. The frequency of communication
will depend on the interdependence between them. The
higher the dependency, the higher the coordination needs.
Michlmayr and Fitzgerald [51] reported that the parallel

and independent nature of FOSS development reduces the
amount of active coordination needed in such projects.
Yet, it is important to synchronize teams and projects
regularly to establish awareness of changes that may
create conflict.
From a cognitive point of view, the media richness

of communication channels is not enough to get the
information understood by the participants. The par-
ticipants must be motivated to process a message and
have the ability to process it [63]. Richer communication

channels induce a higher motivation, but the receiver
requires more abilities to process such information
because there is more information to process; and
richer communication channels are also synchronous,
giving the receiver less time to process the message.
The opposite happens with leaner communication chan-
nels: they decrease the motivation but increase the abil-
ity to process a message. This is what Robert and
Dennis [63] call “richness media paradox” because the
rich media can simultaneously improve and impair the
communication.

2.2 Release management
We studied the factors that allow a distributed FOSS
ecosystem to deliver a product that involves coordina-
tion among many individual projects. To this end, we
considered the organizational structure of the ecosystem,
its communication channels, and the interaction between
developers of different projects towards a common goal.
Michlmayr [50] studied the impact of schedules on

release management in FOSS projects, with an emphasis
on time-based schedules in seven projects. He charac-
terized the challenges in release management that FOSS
projects face and the practices they use to cope with them.
Building on top of these contributions, this paper con-
siders the communication needs to coordinate multiple
teams and projects in software ecosystems with focus on
release management.
To overcome the challenge imposed by the appar-

ent informality in the FOSS development, Erenkrantz
[19] examined the release management in three FOSS
projects and proposed a taxonomy for identifying com-
mon properties to compare the release management in
FOSS projects. The properties evaluated were: release
authority (who decides the release content), versioning
(what is the scheme to name the release versions), pre-
release testing, approval of releases (who approves a the
software is ready to be released), distribution (how the
software is distributed), and formats (in which formats
the software is released).We did not find evidence of other
studies using this taxonomy.

2.3 Background on selected case: the GNOME ecosystem
The GNOME Project was started in 1997 by Miguel de
Icaza and Federico Mena-Quintero to create a collec-
tion of libraries and applications that could make Linux
a viable alternative in the desktop. The main compo-
nents of GNOME are: an easy-to-use GUI environment,
a suite of applications for general use (for example,
email client, web browser, music player), and a collec-
tion of tools and libraries to develop applications for
GNOME [22]. All of these components are highly inte-
grated, resulting in a common product: the GNOME
Desktop.

Poo-Caamaño et al. Journal of Internet Services and Applications (2017) 8:12 Page 5 of 24

2.3.1 Organization of the GNOME ecosystem
From an organizational point of view, GNOME is a feder-
ation of projects in which each project acts independently
of the rest and has its own internal organization, yet they
collaborate to create the GNOME Desktop.
To organize around these highly integrated compo-

nents a non-profit organization was created in 2000: the
GNOME Foundation [22]. According to official state-
ments, the goals of the GNOME Foundation are: (1) to
create a legal entity around GNOME (2) to manage the
infrastructure to develop and deploy GNOME, and (3) to
coordinate releases.
The GNOME Foundation does not have direct power

over the individual projects or developers, most of whom
are either volunteers or paid employees of companies.
Instead, it aims to fulfill its goals by creating consensus
and policies. The GNOME Foundation is headed by a
Board of Directors that is democratically elected by the
developers who are Foundation members. Any developer
who has made a non-trivial contribution to GNOME can
apply to become a Foundation member, a membership
that has to be renewed every two years [73]. The Char-
ter of the GNOME Foundation states that one of the first
duties of the Board of Directors was to appoint a Release
Management Team [74].
The GNOME Foundation’s Board of Directors receives

input from an Advisory Board. The Advisory Board is
comprised of members of companies who directly fund
GNOME. The Board of Directors delegates administra-
tion tasks to an executive director and technical issues to
the release team.

2.3.2 Cross-cutting teams
Cross-cutting teams are teams who contribute to multi-
ple projects within the GNOME ecosystem; they provide
specialized expertise on areas that are common across all
projects, and that usually individual projects may lack.
Examples of such teams are the Translation Team, the
Accessibility Team, as well as teams for Quality Assurance
and Documentation. Cross-cutting teams are responsible
for supporting the activities of project teams and the over-
all success of GNOME as an integrated environment. For
instance, the Accessibility Team makes sure that every
application in GNOME can be used by users with disabil-
ities; the Accessibility Team develops libraries to enable
applications to interact properly with screen readers,
braille keyboards, and other similar devices, and simul-
taneously, the Accessibility Team works in every other
library and application in GNOME to use such APIs. The
Translator Team makes sure the applications, with their
respective documentation, are available in multiple lan-
guages, and that these translations are consistent across
applications; to accomplish that, the Translator Team
monitor that every text available in the user interfaces

can be translatable, and maintain the tools that facili-
tate the work for developers and translators. Like project
teams, they have their own internal structures and deci-
sion making processes, and act independently of other
teams; however, their purpose is to help other projects on
specific tasks.

2.3.3 Relation between projects and cross-cutting teams
In GNOME, the release management tasks are performed
by the release team. This team does not have any official
power over any other team or its members. However, the
release team decides which projects to include—and by
extension, to exclude from—the official GNOMEDesktop
release.
The release team decisions are expected to help in

the scheduling of activities of the cross-cutting teams.
For example, the Translation Team requires time without
changes to the user interface to translate applications into
different languages. This demand can be satisfied better at
the end of a release cycle.

2.3.4 Previous studies of GNOME
The GNOME project has been widely studied. There are
studies on the workload of contributors and projects in the
GNOME ecosystem. Vasilescu et al. [78] determined that
the workload varies depending of the type of contributor.
Koch and Schneider [39], and German [22] reported that
the distribution of workload with respect to file touches
is left–skewed, where few developers contribute most of
code. Casebolt et al. [11] compared authoring with respect
to the file size, and suggested that large files are likely to be
authored by one dominant contributor. Lungu et al. [46]
focused on the visualization of the source code activity
in the GNOME ecosystem over time, and distinguished
three phases in GNOME’s lifetime: introduction, growth,
and maturity.
Several studies have focused on GNOME’s bug database

(Bugzilla), whose purpose have been: (1) predict the bug
severity [40, 42] (2) determine quality of bug reports
[2, 69], and (3) determine the efficiency of developers to
address issues [44].
Studies related to communication channels have been

focused in set of projects, for example, Shihab et al. [71]
mined the meeting logs of the GTK+ project (a core
library in the GNOME ecosystem) held on IRC (Internet
Relay Chat). Pagano and Maalej [57] used LDA to explore
how developers communicate through blogs. One of the
outcomes was that developers usually write blog posts
after an engineering activity such as committing a new
feature, fixing a complex or important bug, or releasing a
new version of a piece of software. Lungu et al. [47] argued
that studies based on multiple projects treated individu-
ally, and not as part of an ecosystem, miss the opportunity
to study the context of the projects.

Poo-Caamaño et al. Journal of Internet Services and Applications (2017) 8:12 Page 6 of 24

3 Study design
To answer the research questions, we used a mixed meth-
ods approach [18] that employs data collection and anal-
ysis with both quantitative and qualitative data analysis
[13, 66, 82]. The study was composed of four steps: (1) we
identified the main communication channel used for high
level coordination between projects and teams within the
ecosystem (2) we collected and cleaned the data from that
channel (3) we analyzed the data collected and extracted
discussion themes, and (4) we conducted interviews to tri-
angulate our findings and obtain additional insights from
developers.

3.1 Communication channel selection
To identify the communication channels used for release
management, we learned about the GNOME organiza-
tion by gathering and consolidating information found
on its website. Two main communication channels are
recommended: mailing lists and IRC.We focused onmail-
ing lists, as they are archived and publicly available. We
did not find evidence that communication over IRC was
archived by GNOME, which makes its historical analysis
harder, if not impossible.

3.2 Data collection and cleaning
We identified 285 mailing lists archived in the GNOME
ecosystem. We searched for mailing lists used for cross-
project communication and release management. We
found that the release team recommends to its new team
members to follow two mailing lists (desktop-devel-list
and release-team) to help new release team members
grasp background information about the development
process within the ecosystem [76]. The subscription to
the release-teammailing list is limited to the release team
members, therefore, it is an internal mailing list and no
a cross-project communication channel. Because we are
interested in cross-project communication and coordina-
tion within the software ecosystem, we focused our study
in the main channel that serves that purpose.
We identified the DesktopDevelopmentmailing list [75]

as the main channel for information related to release
management: it is where the discussion of the desktop and
platform development takes place. To study the commu-
nication across several releases, we retrieved data for 32
months spanning from January 2009 to August 2011. We
used MLStats [64] to split into threads the mailing list
archive data sets. We chose this period because it com-
prises 5 release cycles, including the transition between
two major releases–from the series 2.x to 3.x. The transi-
tion from the series 1.x to 2.x lead to frustrations among
developers, as well as skepticism that a—back then new—
time-based release would allow to pursue a new major
version [50]. Therefore, the transition between major
releases was compelling to study. In total, we analyzed

6947 messages (an average of 214 messages per month).
These were grouped into 945 discussions with 1 to 50
participants each, and a median of 2 participants per
discussion.
To associate multiple email addresses with a single

individual, we used an approach similar to the clus-
ter algorithm described by Bird et al. [6]. We created
clusters of similar identities and then manually pro-
cessed them. To create the clusters we used both name
and email; we first normalized the names, then we
looked for name similarities, name-email similarities, and
email similarities. To match identities, we also collected
names and email addresses from other data sources,
such as commit logs and projects’ metadata. Based on
GNOME’s account name policy [72], we merged email
addresses ending in gnome.org that had the same user
name (for example, we merged in jhs@gnome.org email
addresses like jhs@cvs.gnome.org, jhs@src.gnome.org, and
jhs@gnome.org).

3.3 Analysis
We followed a Grounded theory [12, 13] approach to ana-
lyze the discussions in the desktop-devel-list mailing list.
In Grounded theory, researchers label or code openly the
data to uncover themes and extract concepts. Through
manual analysis we segmented the email subjects into cat-
egories and labeled them with a term, extracting themes
from the discussion threads.
To code the messages we read the email subjects and

associated a code to each thread. The code then repre-
sented the message’s theme. Whenever the subject was
unclear, we read the discussion thread in detail, and
searched in other data sources (for example, wiki, web-
sites, related bugs and source code commits referenced
in the discussion) for additional clues about the topic
discussed. Thus, we also considered the role in the ecosys-
tem of the person initiating a discussion, the roles of
the other participants in the discussion, the number
of messages in such discussion, the number of partici-
pants in a discussion, and the time in the release cycle
were the discussion occurred—from early planning to
finally releasing a stable version. We used those details
as follow:

Role (initiator). To know an individual’s status in a
project within the ecosystem, and the potential moti-
vations to bring a topic to discuss. We assumed that
the intention of a message may vary depending of the
sender (user, regular developer, project maintainer,
or team member).

Role (participants). To know specialties and type of
discussion they became involved with. We could dis-
tinguish among people who replied to regular devel-
opers or newcomers in the mailing list, and whether

Poo-Caamaño et al. Journal of Internet Services and Applications (2017) 8:12 Page 7 of 24

developers would participate in familiar subjects or
in broader discussions.

Number of messages. To order the discussions. Discus-
sions with only one message (no reply) were left to
the end.

Number of participants. To order the discussions. Dis-
cussions with several participants were investigated
with more detail.

Release cycle time. To contextualize the discussions
studied and determine discussion patterns that
depended on the stage in the release cycle.

We clustered codes into categories of communication
and coordination. The first author manually categorized
the email subject fields, which were presented to the
other authors for discussion, avoid misinterpretation, and
to derive categories. Later, we validated these categories
through interviews with the corresponding developers.

3.3.1 Social network analysis
To determine key developers in GNOME’s release man-
agement, we conducted a social network analysis of
the mailing list. In this social network, a node rep-
resents a participant in a discussion. A participant
who replies an email is connected to all the previous
authors who have participated in the same discussion
thread sorted chronologically. As Bohn et al. [7], we
assume a respondent is aware of all the previous emails
in the same discussion thread. An edge between two
nodes represents—undirected—communication between
two developers who share some interest in the topic
discussed.
We explored this social network using Gephi [3]. We

applied the ForceAtlas algorithm [33] provided by Gephi
[3]. This algorithm spatializes small-world networks with
an emphasis on layouts to support analysts interpreting
the graph. It pushes influential nodes to the centre and less
influential ones to the border.
We determined influential nodes by calculating the

degree centrality and eigenvector centrality.We calculated
degree centrality to determine key participants in discus-
sions based on the numbers of messages sent or received
by a developer. The eigenvector centrality determined
the influence of certain developers in the social network.
Although degree centrality also measures the influence,
eigenvector centrality favors nodes connected to other
nodes that are themselves central within the network.
Through betweenness centrality, we determined gate-

keepers between developers. The higher the betweenness,
the higher the potential of an actor to be a gatekeeper [70].

3.4 Interviews and triangulation
The purpose of interviewing developers was twofold: first,
to triangulate our findings, and second, to enrich our find-
ing with additional insights of the development practices

and release management process. We conducted semi-
structured interviews with GNOME developers who had
actively participated in the discussions we studied. We
recruited 10 (out of the top 35 candidates) developers
during GNOME’s main conference, the GUADEC, where
we performed the interviews in person. The length of
the interviews varied from 26 to 93 min. All our inter-
views were recorded, later transcribed, and code following
a Grounded theory [12, 13] approach. We added labels
next to each answer in the transcriptions, in particular
to determine when there were several topics combined in
the same answer. Then we grouped the common themes
across interviews, and manually analyzed them. The cod-
ing was performed by the first author, and reviewed and
discussed with the fourth author.
The interviews consisted of three parts: (1) inquiry

about roles in the project and communication channels
our interviewees used (2) to comment on our findings;
to probe the extend to which our findings matched their
perception of their and others’ communication and collab-
oration activities (3) to comment on specific interactions
with other developers and on the circumstances in which
they would feel inclined to talk with them.
First, we asked each interviewee questions of the use of

communication channels as consumers and producers of
information, frequency they used each channel, how and
when they used each channel, and the importance they
gave to each channel and to elaborate their answers. We
also asked each interviewee how their roles influenced the
use of certain channels, and how they take decisions when
there were disagreements between developers in charge of
different components in the project.
Second, we probed the extend to which our findings

matched their perception of their and others’ communi-
cation and collaboration activities. We presented to our
interviewees our categorization of the communication
in the desktop-devel-list mailing list, the distribution of
the question types, what were their perceptions of our
findings, and what we could have missed.
Finally, we used the social network to ask the inter-

viewees about their interactions with other developers
on the mailing list. To make it easier to spot the inter-
viewees in the social network, we printed custom social
network charts per developer, highlighting their interac-
tions with others developers. In an open question style, we
asked each interviewee about their interactions with other
developers, and to elaborate the circumstances they would
feel inclined to participate with them, their relationship
if they had any, if they were aware of amount of interac-
tions they had (for example, their importance in the social
network). To enable us to engage in the interviews bet-
ter, we familiarized ourselves with the type of discussions
that each of these developers participated, and selected
the ones we considered may bring us richer answers

Poo-Caamaño et al. Journal of Internet Services and Applications (2017) 8:12 Page 8 of 24

(in case we needed to remind the interviewee their
interactions).

3.5 Threats to validity
In this section we discuss potential threats to the validity
we identified on this case study and its results.

3.5.1 Construct validity
Construct validity refers to whether the studied param-
eters are relevant to the research questions, and actually
measure the social constructs or concepts intended to
be studied. Our analysis is based on data we extracted
from public archives. We found two main communica-
tion channels in GNOME: IRC and mailing lists. We also
found several secondary communication channels, such
as blogs and conferences. As we focused on communica-
tion on onemailing list in our study, wemight havemissed
some interactions that happened on other channels, such
as IRCwhich is not archived. There could also beGNOME
developers who do not participate in the mailing lists at
all and instead rely on other communication channels.
However, previous research suggests that the majority of
discussions occur in mailing lists [6, 21, 22, 54, 55]. We
also triangulated our results by interviewing key devel-
opers we identified. It is thus unlikely that our analysis
missed important coordination types, patterns, strategies,
or challenges.

3.5.2 Internal validity
Internal validity relates to the validity of causal infer-
ences made by the study, and the researcher bias is a
threat to the internal validity. The first author manually
categorized the email subject fields, and he might have
introduced subjective bias in the results. We followed
Creswell’s guidelines [13] for coding, which consists of
abstracting common patterns in the communication pro-
cess. This activity involves segmenting sentences—in this
case an email’s subject field—into categories and labeling
them with a term. The first author extracted the topics to
build the categories based on the interpretation of the sub-
ject field of each email thread. To avoid misinterpreting
the actual discussions, before the coding, the first author
familiarized himself with the email threads, read some
of the messages to obtain more contextual information,
and discussed with the other researchers in the team to
soundcheck intermediate results and particular interpre-
tations of the data. Finally, the results were triangulated by
interviewing developers.

3.5.3 External validity
External validity is concerned with the extent to which it
is possible to generalize the findings. In this paper, we pre-
sented a single case study, which may impose a threat to
generalization of the results. However, a single study case

can lead to a generalization through analytical generaliza-
tion, which is performed by comparing the characteristics
of a case to a possible target [20]. The case study presented
can facilitate the analytical generalization and comparison
with other cases.

4 Findings
In this section we present our findings structured by the
respective research questions they answer. We report our
findings based on the analysis of mailing list communi-
cation, social network analysis, interviews. To illustrate
some findings, we provide quotations from interviews and
give examples of developer viewpoints. Among similar
opinions, we chose to quote only the one we considered
the most representative for each case

4.1 What are the communication channels used for
release management?

In our interviews, we found that the release team may
monitor a variety of communication channels to have
multiple sources of information that could be relevant
to a release. All these communication channels can help
the release team to track the development progress in
GNOME. As indicated by a former release team member:

“[The release team] may include any input [—data
source or communication channel—] when they decide.”

According to our analysis of mailing lists and follow-
up interviews, however, the release team prioritizes in
four of them. This is consistent with the guide for new
release team members [76], which recommends par-
ticipating in three mailing lists (release-team, desktop-
devel-list, and devel-announce-list) and one IRC channel
(#release-team).
In this section, we report the main communication

channels, provide an overview of the other communica-
tion channels, and describe how they are used for release
management.

4.1.1 Main communication channels

Mailing lists. In GNOME, there are internal and global
mailing lists. The former are used by teams for their own
purposes, the latter are used to discuss topics that concern
the whole ecosystem. The release team uses an internal
mailing list (release-team) to discuss and decide issues
directly related to release management, and a global one
(desktop-devel-list) for the whole ecosystem.

“ If you [need] high level coordination that affect the
entire project that tends to be on the mailing lists.”

Membership to the internal list is limited to the release
team members, although it can receive emails from any
address and the archives are publicly available.

Poo-Caamaño et al. Journal of Internet Services and Applications (2017) 8:12 Page 9 of 24

IRC. An interactive chat system. Similar to mailing lists,
there are internal and global chat channels. The release
team holds meetings once or twice per release cycle using
an internal channel (#release-team), which is also used
for discussions within the team and for developers to get
quick answers on release management. For awareness of
the ecosystem, the release teammonitors #gnome-hackers.

“If people are already involved in working on something,
IRC works very nicely for coordination.”

4.1.2 Other communication channels
Bugzilla, the web-based bug tracking system, is used to
keep track of features and critical bugs for future releases
[76]. The bug tracker is also used in conjunction with
mailing lists and IRC to obtain awareness of issues that
must be solved or require further discussion.
A wiki is used to maintain information of the release

process, provides instructions for developers to make
releases, and details of the current release schedule, such
as important dates.
In GNOME, the developers’ blogs are aggregated in a

common location called Planet (“a window into the world,
work and lives of GNOME hackers and contributors” [80].
Some release team members use them to communicate
release-related decisions and to inform others about the
release status, as well to monitor any concern from devel-
opers, who express their points of view regarding the
project.
Face-to-face interactions occur in conferences and hack-

fests. During the annual conference, the release team dis-
cusses GNOME’s future with developers. Hackfests are
focused face-to-face meetings of developers to work on
a specific project, feature, or release; and depending on
the topic, some release team members are invited to par-
ticipate to bring their perspective. Although face-to-face
interactions are highly valued because of the “high band-
width”, the participation is limited only to the developers
able to attend.

In GNOME, the release team uses mailing lists and
IRC as the main communication channels for coor-
dination; for long term discussions, and for quicker
decisions that involve less than four people, respec-
tively. Regardless, the release team might use multiple
channels as input to gauge their decisions, including
face–to–face meetings.

4.2 How do developers communicate and coordinate for
release management?

We found that developers use different communication
channels, some of them specific to a particular topic or
project and others for wider discussion. In the latter,

discussions can be either about process management,
technical issues, or both.
From our analysis of the desktop-devel-list mailing list,

nine discussion categories emerged. Five of them are
directly related to release management activities:

Request for comments. Long-term proposals that affect
the entire ecosystem and require a high level of coordina-
tion. They may involve discussing the vision of the project
for the next releases and beyond or major changes whose
execution could take one or more releases. These dis-
cussions start at the beginning of each release cycle, and
revisited during the release cycle. The release team gauges
the overall sentiments. Examples: “empathy integration
with the desktop”, “Consolidating Core Desktop libraries”,
“RFC: gtk-doc and gobject introspection”.
Figure 1 shows that requests for comments happen

through the whole development cycle in spite that these
discussions are encouraged at the beginning of the cycle.
The x-axis shows the milestones of the release cycle (com-
pare Fig. 2), and the y-axis shows a box plot of the number
of discussions we found in each milestone.

Proposals and discussions. Short-term proposals
focused on the current release cycle and tied to a par-
ticular project, but with potential indirect impact on
other projects or teams. For example, a project wanting
to use a library that is external to GNOME must submit
a proposal. Other projects interested in the library might
support the idea or raise concerns if they are already
using an alternative library. The release team may raise
concerns regarding the long-term sustainability of the
external library—such as development activity, availabil-
ity, or the library’s track record regarding security fixes.
Examples: “systemd as external dependency”, “Module
Proposal: GNOME Shell”, “New proposed GnomeGoal:
Add code coverage support”.
Figure 3 shows that proposals and discussions happen

through the whole cycle.

Announcement Notifications for developers about the
status of a component or the whole project. The purpose
is to raise awareness among developers and keep them
engaged. Announcements include the releases of new ver-
sions, a new branch, new external dependencies, and
status reports of the project goals. Examples: “GNOME
3.0 Release Candidate (2.91.92) Released!”, “GNOME 3.0
Blocker Report”.
Figure 4 shows when the announcements take place

during the development cycle.

Schedule reminders. Specific type of announcement
used by the release team to send periodic reminders of
the release cycle’s stage. The release team reminds devel-
opers to release a new version, start the period of feature

Poo-Caamaño et al. Journal of Internet Services and Applications (2017) 8:12 Page 10 of 24

Fig. 1 Request for comments during the release cycle

proposals, and so on. Its nature and recurrence make
it worth a category by itself. Examples: “Release Notes
time!”, “GNOME 2.29.90 beta tarballs due”, “Last call for
comments on module proposals”.
Figure 5 shows that schedule reminders happen through

the whole cycle, however, some milestones receive more
reminders than others.

Request for approval. Request to break the freeze period
at the end of the release cycle, once the release team

controls the changes (See Section 4.4). The discussion is
open to everyone, but the decision is taken by the release
team, the Documentation Team, or the Translation Team.
These requests require a timely decision as they occur
close to the release date. All decisions require at least
two votes from the release team. Changes in translat-
able strings will also require the approval of the Docu-
mentation and Translation Teams. Changes in the user
interface will also require the approval of the Documenta-
tion Team [76]. Examples: “Hard code freeze break request

Fig. 2 GNOME six-month release schedule in weeks and its milestones. A release cycle starts immediately after a major release. The stable version is
kept in a branch for bug fixes, whereas the regular development continues in the main branch. The release cycle starts with a release meeting to
evaluate the last cycle, and to discuss the next cycle. The stages drive the type of communication. This illustration is based on data obtained from
multiple release schedules available on the release team’s wiki page and from our interviewees

Poo-Caamaño et al. Journal of Internet Services and Applications (2017) 8:12 Page 11 of 24

Fig. 3 Proposals and discussions during the release cycle

Fig. 4 Announcements during the release cycle

Poo-Caamaño et al. Journal of Internet Services and Applications (2017) 8:12 Page 12 of 24

Fig. 5 Schedule reminders during the release cycle

for gvfs”, “[Freeze break request] gtksourceview crash”,
“String change in gnome-session”.
Figure 6 shows that requests for approval happen

at the end of the development cycle, in the period
when the release team must approve changes to the
project.
Table 1 presents the amount of discussions and

messages during the period studied. Both help balance
their importance. Although there are less Request for
comments and Proposal and discussions than Announce-
ments, the proportion of messages of each of them
reflects that those are the core of the discussions in the
mailing list.
We noticed that discussions started by well-known

developers attract other well-known developers, more
than discussions started by other people. Our intervie-
wees reported that they would be more inclined to partic-
ipate in a discussion started by known developers, as they
already know their expertise.
The remaining four categories are less relevant to

release management activities: Events coordination (spe-
cial type of announcement related to the organization
of conferences, sprints, or hackfests), expertise seeking
(questions on seeking others working on or in charge of
a specific part in GNOME), knowledge seeking (questions
from developers on specific organizational issues), and
Out of scope (any other message).

The release schedule of GNOME guides the type
and timing of coordination activities discussed in the
main communication channel. The scope of discus-
sions span from long-term to short-term planning, and
from the entire ecosystem to localized in particular
projects

4.3 Who are the key actors in the release management
process?

As described in Section 3, we conducted a social net-
work analysis to determine key developers in the release
management process, which we then complemented with
interviews. Figure 7 shows such a social network. We
present the reach of six different release team mem-
bers in the same social network, whose interactions are
highlighted in each subfigure. The box in each subfig-
ure surrounds the developers (nodes) that interact directly
with each release teammember. Thus, we can observe the
scope of interaction of each release team member within
the social network.
Among the three major nodes, the bigger one is the

release-teammailing list in which only release teammem-
bers participate. The release-team mailing list has a nor-
malized eigenvector of 1.0, which means that this node
is the most influential in the social network. In other

Poo-Caamaño et al. Journal of Internet Services and Applications (2017) 8:12 Page 13 of 24

Fig. 6 Request for approvals during the release cycle

words, the release-team list is usually added to discus-
sions to make release team members aware of them. On
the opposite side, its betweenness centrality is 0.0: the
release-team list is not a gatekeeper or bridge between
developers at all. As mailing lists are not associated with
any person and do not send emails, this is expected. The
eigenvector and betweenness centrality values for release-
team list were the same before we pruned other mailing

lists from the social network, that is, to visualize bet-
ter the developers. With respect to the other two major
nodes, one is a senior release team member (highlighted
in more detail in Fig. 7e) and the another one a core
developer.
Considering the prominence of the release team mail-

ing list in the social network, the overall coverage of
the release team members in the discussions (Fig. 7),

Table 1 Summary of discussions and messages per category

Category Discussions Messages Median of messages per

% # % Discussion Release

Discussions related to release management

Announcement 238 25.19 740 10.65 1 413

Proposals and discussions 219 23.17 2074 29.85 4 427

Request for approval 22 2.33 83 1.19 3 18

Request for comments 181 19.15 2505 36.06 6 1192

Schedule reminders 45 4.76 236 3.40 2 12

Discussions unrelated to release management

Events coordination 27 2.86 44 0.63 1 120

Expertise seeking 25 2.65 184 2.65 3 70

Knowledge seeking 151 15.98 764 11.00 3 971

Out of scope 37 3.92 317 4.56 2 26

Total 945 100.00 6947 100.00

Poo-Caamaño et al. Journal of Internet Services and Applications (2017) 8:12 Page 14 of 24

a b c

d e f

Fig. 7 Scope of interaction of six different release team members in the mailing list social network. The underlying social network is the same. Each
graph highlights the direct interaction of a different release team member with other developers. Two participants are connected if one of them
replies to the other. The size of the node represents the number of messages that a participant is involved. Red (dark) color edges indicate direct
interaction (neighbors), orange (mild) color edges indicate a tie among developers to whom a release team member has direct interaction, and grey
(pale) color represents the remaining participants. The biggest node close to the center is the release team mailing list

and the proportion of discussions related to release man-
agement, we can infer that desktop-devel-list is rele-
vant for the release management process. The list is
described as being for general use, however the top-
ics that emerged and the influence of the release-team
indicate that this mailing list is used for release man-
agement communication and coordination within the
ecosystem.
The release team members tend to participate in a wide

range of discussions. In the social network, this would
mean being connected to the majority of the nodes. How-
ever, a release team member is less prone to participate
in a discussion where other release team members are
already participating. According to our interviewees, if a
release team member is already taking care of a discus-
sion, the other members would leave them to lead the
discussion. When members of the release team have dif-
ferent opinions, they discuss them in their internal mailing
list. Once they reach consensus, one of them goes back
to the discussion on the global mailing list and contin-
ues the discussion as a representative of the release team.

Other members then do not participate in the public
discussion.

“When someone from the release team takes ownership
of a topic, for instance, in a mailing list, if we agree with
this person we can let this person handle the topic and so
we do not participate in the discussion, and we also have
a lot of discussion on the release team mailing list and
on IRC, which does not appear on desktop-devel-list.”

Members of the release team also contribute to other
areas of the project, which are not restricted to soft-
ware programming. As a matter of fact, some release
team members do not code. This provides the release
team with awareness and a closer connection to differ-
ent areas of the project. The areas can be documentation,
translation, accessibility, quality assurance, system admin-
istration, and, in general, anything necessary to develop
a software project. Most of these areas are represented
by teams. The more diverse the release team members
are, the most representative the release team would be

Poo-Caamaño et al. Journal of Internet Services and Applications (2017) 8:12 Page 15 of 24

of the whole project. That keeps the release team aware
of the different points of view of contributors earlier in
the development process; and by increasing the areas of
participation, the teams would be more willing to listen
the release team. In other words, the more diverse the
release team members are, the wider its coverage would
be.When amember leaves, the release teammembers dis-
cuss which areas need improvement and recruit someone
accordingly.

“When somebody wants to leave the release team, we do
discuss which areas we would like to have more
coverage [by release team members] ... to get a better
flow of information and to also have some influence in
both directions.”

The diversity in the composition of the release team
works in both ways: it helps the release team to have first
hand insights from a variety of teams or projects, and it
helps projects and teams to have first hand access to the
release team. Furthermore, the diversity helps the release
team to better address different sensibilities within the
ecosystem, especially in controversial topics.

“Is is little bit about peer groups, [...] who works with
whom [...] in a topic that is a bit heated [...] somebody
from the release team who is in the same team that this
person answers, or I even ask ‘you have a better
connection to this person, could you provide the
answer?’ ”

The release team is comprised of nine individuals, and
to support diversity across supporting organizations, the
release team does not allow that more than two members
share the same affiliation—directly or indirectly [74].

In GNOME, the release team members participate
in most of the discussions, although rarely more than
one member participate in the same discussion. This
unwritten policy reduces the possibility of showing
conflicting views between each other in public forums,
minimizing any potential confusion among develop-
ers. Through social network analysis we visualized
such behaviour, which is inline with the diversity in the
composition of the release team.

4.4 What are the release management tasks in a FOSS
ecosystem?

The objectives of the release team are (1) defining the
requirements of GNOME releases, (2) coordinating and
communicating with projects and teams; and (3) ship-
ping a release within defined quality and time specifica-
tions. The release team makes all the decisions regarding
release management and is accountable to the Board of

Directors. While the Board of Directors is not directly
involved in day-to-day activities, it has the power to dis-
solve the release team. The GNOME Foundation mem-
bers are encouraged to participate in the discussion to
affect the decisions of the release team. In extreme cases of
disagreement, members can propose a referendum [74].
As we described in Section 4.2, the release schedule

of GNOME guides the type and timing of coordination
activities discussed in the main communication chan-
nel. Each of the resulting categories of communica-
tion can be mapped to the release team objectives.
Thus, the first objective maps to Request for com-
ments and Proposals and discussions; the second maps
to Proposals and discussions, Schedule reminders, and
Request for approval; and the third objective maps
to Announcement, Schedule reminders, and Request for
approval.
From our analysis of mailing lists, the release team

leads the discussions to define the requirements of a
GNOME Release. These discussions occur during the fea-
ture proposals stage at the beginning of every release cycle.
GNOME releases follow a time-based release cycle of six
months (26 weeks). Figure 2 illustrates the release cycle. A
release cycle starts immediately after a major release. The
stable version is kept in a branch for bug fixes, whereas
the regular development continues in the main branch.
The release cycle starts with a release meeting to evalu-
ate the last cycle, and to discuss the next cycle [76]. At
this point, the release team creates a schedule of activities
to deliver a release on time. The release team keeps the
teams informed of this schedule, verifying that the activ-
ities are completed as required. In one of the interviews,
a release team member described, in general terms, how
the schedule is created:

“GNOME is expected [by distributions] to release a new
version at the end of March and at the end of
September. This is well known among most developers.
[However,] we propose a schedule trying, for example, to
not have a release on Christmas or Easter weekend, or
when people are expected to travel, like before or after
GUADEC [the GNOME conference].”

During the first 20 weeks of a release cycle, there are
development releases every four weeks [77]. In the 21st
week, a stabilization phase begins with the release of a
first beta version. The stabilization is characterized by an
incremental freeze period: after this point, every change
requires the approval of the release team. When the first
freeze starts, it is not allowed to introduce new features
nor user interfaces changes; the former is to focus in fix-
ing issues and finishing the features already started, and
the later, is to give enough time to the Documentation
Team tomake themanuals.When the second freeze starts,

Poo-Caamaño et al. Journal of Internet Services and Applications (2017) 8:12 Page 16 of 24

a new restriction is added on top of the previous ones: it
is forbidden to change any strings exposed to the users;
this allows the Documentation Team to polish the screen
shots for the documentation, and the Translator Team to
polish the translation of the user interface of applications
to multiple languages. The third and last freeze focuses on
testing and fixing critical bugs, no changes can be made
without approval by the release team. In week 26, the final
version is released and a new cycle begins.
The schedule planning takes in account activities such

as short-term and long-term proposals and discussions,
development, testing, and translations. As we reported in
Section 4.2, the release schedule drives the main types
of communication for coordinating the ecosystem. Based
on the schedule, developers propose new features early
in the release cycle which are openly discussed in the
mailing list. The proposals are expected to have a work-
ing plan and the approval of the maintainers in charge
of the projects involved. To help reaching consensus, the
release team may guide the discussions to increase the
community participation, make sure that all major con-
cerns from developers are raised and addressed, minimize
potential conflicts between proposals and long term plan,
and keep under control new dependencies. Because of
the lack power over developers, the release teammust rely
on their social skills and technical merits before taking
decisions that may be controversial within the ecosystem
(see Section 4.5.1); however, the diversity of backgrounds
among release team members is useful to understand and
better address the variety of projects and teams within the
ecosystem.
Our data shows how, to ship a release within defined

quality and time specifications, the release team takes
control of the changes planned to be included in the
release. As the release date approaches, the project main-
tainers require approval to make changes in their projects.
The release team also coordinates the release notes, work-
ing with developers and teams—such as the marketing
team—to write cohesive release notes for GNOME.
To make a release, the release team builds every com-

ponent and validates that the software runs as expected.
If a component fails to build the release team will get
in touch with the developers of the failing component to
fix the build. Release team members acknowledged that
this is one of the most time-consuming and challenging
tasks. The purpose of continuously building and testing a
planned release is to enable the release team to monitor
the quality of the product during the whole release cycle,
determine critical bugs and follow-up with developers to
fix them. They also need to coordinate with distributors
of GNOME regarding potential issues.
Our interviews confirm that within the release team

there are no official roles. The tasks are self-assigned
among release team members themselves, who volunteer

to perform a task depending of their experience, workload,
or interest.

The release team defines what a GNOME release is,
sets the schedule, coordinates with projects and cross-
cutting teams to reach the goal on time, integrates
and validates the product as a whole, and releases
GNOME. Because the release team lacks power over
the developers, it relies on building consensus on
technical merits to convince the developers of their
judgment.

4.5 What are the challenges that release managers face in
a FOSS ecosystem?

From our analysis and interviews, we identified the
four major challenges that release managers face in the
GNOME ecosystem, they: (1) need to coordinate projects
and teams of volunteers without direct power over them
(2) keep the build process manageable (3) monitor for
unplanned changes, and (4) test the GNOME release.

4.5.1 Coordinate projects and teams of volunteers without
direct power over them

GNOME contributors participate as volunteers, even
though some of them are paid by external companies for
their involvement. Projects are “owned” by the contribu-
tors who actively work on them, and these people make
decisions regarding their projects.

“Maintainers have the last word most of the time. If the
conflict is about a maintainer not agreeing with your
vision ..., with specific technical decision, then it is [the
maintainer’s call].”

The release team lacks of power to mandate developers
to perform a task, it relies on building consensus based
on technical merit and engaging developers to embrace
the release process as theirs. One challenge the release
team faces is to convince developers of its judgment and
knowledge in the release process.

“It is difficult to coordinate well; there are so many
people, so many teams. You need to be sure that
everybody is aware on what is going on, that everybody
is really involved when you need input. It is hard to
coordinate people, it is really hard ... we try to do the
best we can, but still is not perfect.”

The release team builds awareness of the whole release
process by increasing the community participation. The
time-based schedule facilitates this task by providing the
same information to everyone beforehand [53], providing
developers a sense of ownership of specific tasks and to
become more involved in the process. This emphasizes

Poo-Caamaño et al. Journal of Internet Services and Applications (2017) 8:12 Page 17 of 24

the importance of social skills and power of persuasion of
the release team members.

4.5.2 Keep the build processmanageable
GNOME is composed of multiple piece of software, each
one with its own set of dependencies. When the num-
ber dependencies grows, building the whole GNOME
becomes cumbersome as it takes longer, and with more
points of build failures. As a consequence, less volun-
teers build and test the whole GNOME before the release,
which in turn increases the workload of the release team.
The release team addresses the scalability issue by keep-

ing the building stack as small as possible, however, it
is challenging to keep the stack small. We learned this
observation directly from the interviews, as a release team
member stated:

“In GNOME 3, we tried to make the stack smaller, [by
reducing] the set of modules. For a short while we
managed to get it below 200 [dependencies]. But then,
new dependencies trap you back and now we have like
220 or so.”

Our interviews show that one way to make the building
stack smaller is by avoid managing external dependen-
cies whenever is possible. To do so, the release team
defines two kind of dependencies: system dependencies
and regular dependencies. The system dependencies are
the preferred external dependencies as they are mature
enough to be readily available in the most common distri-
butions. The regular dependencies are any other andmust
be built by GNOME, they can be software within GNOME
or an external dependency.

4.5.3 Monitor for unplanned changes
Changes in the Application Programming Interfaces (API)
and Application Binary Interfaces (ABI) of libraries pose a
challenge to release managers. The libraries that GNOME
provides try to guarantee stability in both API and ABI;
thus, any application that uses a public API of a stable
series will continue working with future releases with-
out recompilation. Because the GNOME stack has sev-
eral libraries, each one maintained by different people, it
is challenging to track unintentional breakages before a
release. Some changes in the API or ABI might work well
in some configurations, but break in others; or may be
specific for a platform or architecture. To illustrate this
observation, a release team member indicated:

“A change ... that works fine in my local system, maybe
breaks some application somewhere else in the stack, or
maybe it breaks only on a 32-bits system that I don’t
test locally because my laptop is 64-bits. Or in some
parts of our stack ... we have to be worried about
Windows or FreeBSD.”

To enable applications to be ported to multiple operat-
ing systems and architectures, in the GNOME ecosystem
the core libraries are multi-platform. However, the sup-
port for other operating systems is limited by the number
developers working on them. Because the main platform
of development is Linux, some breaks in other oper-
ating systems (Windows or FreeBSD) may be noticed
late in the development process if nobody monitors
them.
Each project can decide on its ownwhether to add a new

public API. However, the release team monitors the API
and ABI stability, and makes sure the API documentation
is up-to-date. To this end, the release team needs to detect
API changes and make sure they follow the programming
guidelines.

4.5.4 Test the GNOME release
The number of projects to coordinate, as well as depen-
dencies on external projects, make cumbersome testing
the latest development version of GNOME. These qual-
ity assurance activities are performed by a small group of
developers, mainly the release team as who is in charge
of continuous integration. In the words of a release team
member, continuous integration is a necessity:

“[full automated continuous integration] would allow
us [to be] more aggressive: if something causes a
problem, we can just back it out. Nowadays we commit
something [that] works in our systems, and people keep
working on top. [Months] later, we find out ... problems
somewhere else, but nobody noticed them because
nobody managed to build the whole tree and actually
test it.”

OSTree [79] is a project that aims to address this issue by
continuously building GNOME and providing a testable
system ready to be downloaded and run. The release team
uses it to build and test GNOME. Although promising,
it may require intervention from the release team when
some builds fail.

The challenges of the release team in GNOME are
associated with the size and complexity of manag-
ing multiple independent projects, and developed by
volunteers in a distributed setting.

5 Discussion
In this section, we discuss our findings and present the
lessons we learned from studying release management in
the GNOME ecosystem. Our empirical investigation was
based on three theories: the media richness theory, the

Poo-Caamaño et al. Journal of Internet Services and Applications (2017) 8:12 Page 18 of 24

channel expansion theory, and the theory of shared under-
standing. Based on these, we arrived to a set of lessons
learned.

5.1 Media richness theory
Media richness theory [14] argues that the communication
channels and organizational structure play an important
role to reduce uncertainty and ambiguity in the orga-
nizational processes. In a community of developers, the
selection of a communication channel delimits who can
participate and how much can be communicated in a
period of time. In FOSS, developers need to find a bal-
ance between inclusion (number of participants) and the
“bandwidth” provided by the communication channel.
The “bandwidth” in a communication channel corre-
sponds to the number of cues in which an information
can be transferred [14]. The cues can be verbal (speech,
writing) or non–verbal (seeing, touching, tone of voice,
vocal inflection, physical gesture, smelling, touching)
[14, 16, 17, 62].
In our observations, participants value synchronous

and asynchronous communication. Therefore, an ecosys-
tem may consider using a combination of both type of
media channels: asynchronous and synchronous. Asyn-
chronous channels, like mailing lists, allow a wide range
of participants, can be an egalitarian medium (explained
in detail below), and be archived (and searchable). Syn-
chronous channels, like face–to–face interactions and
video-conferencing, allow higher bandwidth, but are less
“open” as it may exclude participants as they cannot attend
to a conference, or some participants may not be as fluent
as English-native speakers.

Lesson 1: Ensure that the release team follows the
main communication channels used by developers.
The release team needs to communicate in a vari-
ety of ways. They use electronic channels that vary
from asynchronous (such as email and blogs) to more
direct, interactive ones (such as IRC). They value
face-to-face communication; for this purpose they
organize gatherings (such as conferences and hack-
fests) where the release team can host sessions to
address specific issues, or communicate one-on-one
with some contributors.

Regardless of having communication channels that pro-
vide higher bandwidth, an important factor documented
by Olsen and Olsen [56] is the knowledge that the par-
ticipants have in common, and they are aware that they
have it in common; this concept is known as common
ground. The use of mailing lists can succeed in FOSS

ecosystems because the community of developers have
established a common ground. Olson and Olson argue
the more common ground people can establish, the eas-
ier the communication and the greater the productivity
[56]. They also argue that when people have established
little common ground, even if they have met in per-
son or using high bandwidth channels, there will be low
communication productivity regardless of the commu-
nication channel. The properties discussed here are in
line with the related research literature on media chan-
nels [14, 41], except one that we did not find evidence
of being addressed: the difference in English fluency.
The asynchronous channels provide a better platform
for communication and are more participatory for those
who do not speak English fluently. We can argue that
is another instance of “richness media paradox” [63],
where the rich media can simultaneously improve and
impair the communication; in this particular case, the rich
media can impair the participation of non-native English
speakers.

Lesson 2: Provide a common place for coordination
for an ecosystem. Every software project has its
own communication channel infrastructure, such as
their own git repository or mailing list. However,
to coordinate multiple projects is necessary a com-
mon infrastructure across projects. This facilitates
the communication to flow from the release team
to the projects and vice versa. In the GNOME
ecosystem, this is performed by having an asyn-
chronous ecosystem-wide mailing list for high-level
discussions, and an synchronous ecosystem-wide
IRC channel for quick feedback. Thus, an asyn-
chronous communication channel (such as mailing
list) is ideal for the main coordination activities,
and a synchronous channel (particularly face–to–
face interactions at conferences or sprints) is good for
synchronization of activities among developers.

In a FOSS ecosystem, with the variety of cultural and
technical backgrounds of its members, the main com-
munication channel for coordination is asynchronous
(usually mailing). Email is egalitarian because it allows
contributors with different levels of English skills to par-
ticipate in equal terms (something that it is hard to achieve
in synchronous channels, where contributors with better
language skills can dominate a discussion). In an overview
of the research literature, we did not find references to lan-
guage barriers in the use of communication channels in
software development, perhaps because they did not study
teams with the same level of variability of national origins

Poo-Caamaño et al. Journal of Internet Services and Applications (2017) 8:12 Page 19 of 24

as the FOSS ecosystem we studied. This finding may have
implication also in any regular FOSS project whose con-
tributors proceed from a variety of cultural and technical
backgrounds.
Face—to—face interactions at conferences and hack-

fests are appreciated by most of the interviewees in spite
of its lack of inclusiveness. It is not-inclusive because
not all developers have the opportunity to attend to con-
ferences or gatherings (because of limited budget, work
restriction, or other restrictions), and even if they attend
they might not be present during a particular discussion.
In addition, conferences and hackfests provide opportu-
nities for socialization and to establish group identity,
both enhance the respect of social norms. These social
norms are particularly important to deal with excep-
tional events, such as, the potential lack of responsiveness
of a developer or delays in the development of a given
feature [65].

Lesson 3: Consider including both good technical
and social skills in a release team. Different visions
of the project might create friction between devel-
opers and release managers, as their expectations for
what should be in a release might differ. Technical
skills are needed to understand the technical aspects
of the project, and to build consensus on technical
merits; technical skills are also needed to gain respect
from their peers and to convince developers of their
judgment. The release managers need social skills to
convince developers to perform the necessary actions
to deliver the software on time, especially because
release managers lack direct power over developers.

Achieving agreement between participants may be
more difficult in electronic media channels than face–
to–face interactions [81]. Therefore, virtual teams rely on
trust; but it takes time to establish trust in complex envi-
ronments [32, 43, 50] like in a FOSS ecosystem. Building
trust is important for team coordination, as it has been
reported that the lack of trust is a barrier to team coordi-
nation that geographically distributed organizations face
[28, 29].
To build trust, the GNOME release team is composed

of members of the community who work on different
projects and teams. Therefore, they are exposed to the
same issues that other contributors might face, they can
raise an issue before it escalates, or they can find better
ways to communicate with certain groups of developers.
The diversity in the release team composition can provide
different backgrounds, which helps enrich the discus-
sions and to increase awareness across different projects
and teams.

Lesson 4: Aim for a diverse release team. This
implies that its members should be recruited from
different teams and with different skill sets. It helps
having first-hand knowledge and understanding of
the different projects and teams, and to be able to
reach everybody in the ecosystem. This diversity is
also likely to provide different points of views. They
also need to be (or at least have been) members of
the teams that they expect to guide. By being “one of
them”, both sides will be able feel more affinity to the
challenges and problems of the other side, especially
when the release team makes decisions that contra-
vene the wishes of a given team. In a way, members
of the release team are not only release managers, but
they are also representatives of the teams. They are
expected to make the best decisions that benefit both
the ecosystem and the individual teams as a whole.

The GNOME release team has used different strategies
to cope with the lack of official power over developers,
and the diversity of projects to coordinate. For exam-
ple, the release team presents an unified position to the
ecosystem, informs constantly the ecosystem about the
release process, looks pro-actively to reach all members
of the ecosystem, and keeps itself aware of the ecosystem.
Another strategy followed by the release team is to recruit
key contributors from different teams into the release
team. The recruited contributors by the release team may
or may not be leaders (maintainers) of their correspond-
ing projects, however, they represent different groups of
developers.
By comparing the results of the analysis of discussions in

the mailing list against the interviews, we found that some
release team members underestimate their role because
of lack of official power over developers—their decisions
could be challenged by developers at any time.
We found that the release team decisions are respected

even when there is disagreement. For example, in 2010,
the release team decided that GNOME 3.0 was not ready
yet. Instead, it would make a maintenance release of
the GNOME 2.x series (GNOME 2.32). This decision
was announced, first, during the major GNOME con-
ference (GUADEC), and second, in the desktop-devel-
list mailing list [61]. The announcement triggered a
strong disagreement by a group of vocal core devel-
opers, who argued that this decision would delay: (1)
porting applications to the new platform (2) testing the
new GNOME Desktop in the wild, where it is actu-
ally tested after a release. To highlight their disagree-
ment, some developers hung a banner during GUADEC
stating “Down w/release team” and the symbol of anarchy
(see Fig. 8). In GNOME, the maintainers of each project

Poo-Caamaño et al. Journal of Internet Services and Applications (2017) 8:12 Page 20 of 24

Fig. 8 Banner hung by GNOME developers to show their
dissatisfaction with the release team. The banner was hung during
GUADEC 2010, where the release team proposed the delay the release
of GNOME 3.0, later announced in the desktop-devel-listmailing list

decide what to release, and therefore, the disagreeing
developers could have released newer version of their
projects (for GNOME 3.0) regardless of the release team.
However, the release team’s decision was respected, even
though it was unpopular.

Lesson 5: Based on lack of power, lobbying and
consensus based management must be followed. To
build trust, raise awareness, and keep the ecosys-
tem aligned to the goals of the release process, the
release team needs to be surrounded by contribu-
tors who are (or can become) “influencers”, because
these influencers may already be trustworthy in dif-
ferent parts of the ecosystem. Influencers can help
the release managers communicate more effectively
with the whole ecosystem.

5.2 Channel expansion and shared understanding
theories

Channel expansion theory [10] presumes that as individ-
uals gain experience in the use of a channel they are able
to use the media channel more effectively; such experi-
ence involves the use of the channel itself, the organiza-
tional context, the message topic, and the understanding
of how their co-participants communicate. Furthermore,
according to Dennis and Valacich [16], the development
of standards and norms increases with the experience that
a group gain, and as a result there may also experience an
improvement in the interplay and the tasks they perform
over time.
We have seen that the communication flow is flat in

GNOME, the communication and coordination is driven

by the release team; every developer participates in the
discussions and the maintainers of each project take
the decisions. The release team members see them-
selves as peers of the developers; they build trust based
on technical merits to reach consensus and they align
the developers towards a common goal: the integrated
product.
Michlmayr et al. [50, 52] argue that a set of clear poli-

cies and deadlines, which are followed and enforced, helps
build trust in complex FOSS projects. Hence, it is impor-
tant to follow and enforce policies and deadlines, oth-
erwise the effect may be the opposite: the loss of trust
in the work of the release managers. As an example of
such enforcement, according to Michlmayr [52], release
managers can proactively omit or postpone unfinished
features.
According to the theory of shared understanding [1],

the formalization of a process in a software project helps
reduce the overall complexity, and once the stakeholders
are familiarized with the process itself, they can make
assumptions on parts of the organizations that are
unfamiliar to them. Paraphrasing Aranda [1], the formal-
ization of the release process in a FOSS ecosystem, enables
the coordination of a large group of people, and allows the
ecosystem to grow. However, this formalization of pro-
cesses in our study is constrained to the management of
the release process, not how each project develops its
own software.
We observed that the formalization of process described

by Aranda [1], and Michlmayr et al. [50, 52] correspond
to the definition of the release schedule and each one of
its stages. After a period of proposals and discussions, the
release team decides the features will be part of the official
release of GNOME. These features are offered by libraries
and applications, which once accepted must follow the
release schedule strictly. However, there are also applica-
tions that follow the schedule even though they are not
required to do so. Again, this dynamic might also be over-
looked if projects are studied individually and not in the
context of the whole ecosystem.
We found that the communication activity in the

desktop-devel-list mailing list is tied to the release
schedule. Five out of nine discussion categories in a
general GNOME development mailing list were in related
to release management and showed temporal synchro-
nization with the development cycle schedule. One main
reason for this is that some cross-cutting teams increase
their participation at specific stages of the process. The
documentation and translation teams are more active in
the mailing list at the end of the development cycle,
reviewing change proposals that might affect their work.
The release team members play an active role in the dis-
cussion during the whole cycle, but publish reminders at
key moments in the development cycle.

Poo-Caamaño et al. Journal of Internet Services and Applications (2017) 8:12 Page 21 of 24

According to the discussions we studied in the GNOME
ecosystem, the message subjects were predictable and
tended to follow a common pattern at every release cycle
(RQ2 in Section 4.2), patterns that were also inline with
the objectives of the release team (RQ4 in Section 4.4). We
speculate that this behaviour occur because the GNOME
ecosystem is a mature project. We based our speculation
in that over time developers find a common ground to
use more effectively the communication channels used
for coordination [56], which also is inline with the theory
of collaboration through open superposition by Howison
and Crowston [31].

Lesson 6: Help the release team in the coordination
process with a well defined schedule.Once the coordi-
nation process is internalized by the community, the
release team can focus its efforts on other challenges.
In addition, the time–based schedule release provides
the release team a powerful tool: even though the
release teammight not know beforehand the features
to be included in any release ahead, it makes it cer-
tain when the features need to be discussed, decided
and released. The time–based release schedule sets
the expectations for developers and stakeholders,
enabling them to plan ahead with confidence. The
planning helps the ecosystem to develop features
incrementally. The tasks that might appear too large
are likely to be planned in the long term, and deferred
if they cannot be finished on time (“there will be
another release in six-months”).

A challenge of time-based releases is choosing the right
release frequency. Too frequent releases may limit inno-
vation as developers may target features that can be
implemented within the release interval. Too far apart
releases, may provide long-term stability but also be seen
as a sign of stagnation and drive contributors away of the
project [51].
Guzzi et al. [26] argue that the development mailing list

is one of several communication channels used in FOSS
projects. We concur, as we noticed in our case study that
developers communicate using IRC, face–to–face interac-
tions at conferences, sprints and hackfests, issue trackers
(Bugzilla), among others. Furthermore, Guzzi et al. [26]
determined that the mailing list only drives a few of
the coordination project discussions (3% among all the
discussions in the Lucene project), arguing that as a conse-
quence, the role of mailing lists had changed. For example,
both Brooks [9] and Parnas [58] argue that when the tasks
are clearly divided, there is less coordination required;
and according to Michlmayr [53] a decomposed system
has the advantage that allows the division of labour with

limited communication through well defined channels.
However, Michlmayr and Fitzgerald [51] argue that reg-
ular synchronization helps raise awareness and reduce
conflict. In an ecosystem, coordination is important to
coordinate multiple projects if they work towards a com-
mon integrated product, each project may have its own
mailing list, but they still need a common channel for
cross–project coordination.
In contrast to Guzzie et al. [26], we state that the use of

the mailing lists depends on the project dynamics, and the
dynamics of a FOSS ecosystem and regular FOSS projects
may differ in terms of complexity and coordination needs.
Nevertheless, mailing lists can have multiple uses, and
projects and ecosystems may adapt or evolve their use of
mailing lists over time. In the long term, developers with
an established common groundmay use a communication
channel to coordinate effectively [56]. We also disclose
when and for what to use each channel. For this, we pro-
vide the rational from the GNOME release team. We can
conclude that release management is behaving different
from general development.

Lesson 7: Release team work is different from regu-
lar software work. Any software system needs to plan
and manage its releases. In large ecosystems of inter-
related (but independent) projects this task is much
more complex than in a single system. The release
team plays a coordination role without participating
directly in any particular project. The release man-
agement activities are not recorded in commits of
any project, but in discussions in various channels,
including email, IRC, and even face—to—face. For
researchers studying coordination, the release team
role can be overlooked if not explicitly controlled for.

6 Conclusions and outlook
We explored the GNOME ecosystem to gain a deeper
understanding of its dynamics. We determined the main
communication channel used to coordinate the ecosys-
tem, extracted meaningful discussion topics, determined
the relevant actors, whose later confirmed and enriched
our findings.
The release team is a key player in the communica-

tion and coordination among developers in GNOME. The
communication coverage that the release team has in the
GNOME community is far-reaching. This phenomenon
has so far been undocumented. Our interviewees were
surprised by this finding, yet they all agreed that it
made sense.
In GNOME, the release team members come from a

variety of teams or projects, as some of their members
acknowledged in the interviews. Some of them are from

Poo-Caamaño et al. Journal of Internet Services and Applications (2017) 8:12 Page 22 of 24

the system administrators team, bug squadron, accessi-
bility team, or maintainers of individual projects. This
variety allows the release team to monitor and address
almost all communications. Our interaction analysis could
be beneficial for the release team, either to detect commu-
nication anomalies in time or to discard irrelevant issues
faster.
The release team leads the coordination efforts in the

GNOME ecosystem, it is the glue that keeps multiple
projects and teams working together towards a goal. It is
a crucial team for the success of GNOME, even if some of
its members write little or no code at all.
The focus of our case study was an ecosystem “in-

the-small”. However, projects in an ecosystem are not
developed in a vacuum, they have dependencies and other
ecosystem may depend on them, as well. A study of an
ecosystem “in-the-large” may show interactions between
software ecosystems, with individuals acting as brokers
between them. As our results show, GNOME projects
already rely on external libraries, utilities, systems, and
organizations that at least the release team needs to coor-
dinate with. Some of those external dependencies may be
part of another ecosystem, with developers in common
ecosystems who may act as bridges between ecosystems.
The operational details of release management among

ecosystems might vary. The characteristics of the release
team, tasks, challenges, the interaction with projects and
teams, and the lessons learned of this case study can be
compared against other ecosystems in future research.
Specially, how the release management in ecosystems
cope with similar challenges than the GNOME ecosystem.
The similarities may help build a theory of coordina-
tion and communication for release management in FOSS
ecosystems.

Abbreviations
ABI: Application binary interfaces; API: Application programming interfaces;
FOSS: Free and Open source software; IRC: Internet relay chat; LDA: Latent
dirichlet allocation; MSR: Mining software repositories

Acknowledgements
This paper is an extended version of the article presented at OSS 2016, under
the title of “Herding Cats: A Case Study of Release Management in an Open
Collaboration Ecosystem”. Acknowledgements for Claudio Saavedra for the
photo used in Fig. 8 which was released under a Creative Commons License
(CC-NC-BY, https://flic.kr/p/8AsFbW).

Funding
This work was partially supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC). GPC was a PhD fellowship from Becas
Chile, granted by Government of Chile. The funding agency had no role in
study design, data collection and analysis, decision to publish, or preparation
of the manuscript.

Authors’ contributions
GPC carried out data-collection and analysis, conducted the interviews, and
had a major role in drafting the manuscript. EK and LS participated in the
discussion of the analysis, and drafted the manuscript. DMG provided
guidance with the research design, interviews, analysis, and drafted the
manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate
The research was carried out in accordance with the Canadian Tri-Council
Policy Statement (TCPS 2): Ethical Conduct for Research Involving Humans,
and has been approved by the Human Research Ethics Board of the University
of Victoria, British Columbia, Canada. Informed consent was obtained from
each developer interviewed. The protocol numbers approved for conducting
interviews is 12-024, and the protocol number of the waiver for studying
archives publicly available is 12-023.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Computer Science, University of Victoria, 3800 Finnerty Road,
Victoria, British Columbia, Canada. 2Chalmers | University of Gothenburg,
Gothenburg, Sweden.

Received: 24 August 2016 Accepted: 1 August 2017

References
1. Aranda J. A Theory of Shared Understanding for Software Organizations:

PhD thesis, University of Toronto; 2010.
2. Bachmann A, Bernstein A. When process data quality affects the number

of bugs: Correlations in software engineering datasets. In: Proceedings of
the 7th IEEE Working Conference on Mining Software Repositories (MSR
2010). Cape Town: IEEE; 2010. p. 62–71.

3. Bastian M, Heymann S, Jacomy M. Gephi: An Open Source Software for
Exploring and Manipulating Networks. In: Proceedings of the
International Conference on Weblogs and Social Media; 2009. p. 361–2.

4. Berkus J. The 5 Types of Open Source Projects. 2005. Online. Visited on 28
Feb 2013. http://web.archive.org/web/20090130091039/http://
powerpostgresql.com/5_types.

5. Bird C. Sociotechnical coordination and collaboration in open source
software. In: Proceedings of the 27th IEEE International Conference on
Software Maintenance (ICSM 2011). Williamsburg: IEEE; 2011. p. 568–73.
doi:10.1109/ICSM.2011.6080832.

6. Bird C, Gourley A, Devanbu P, Gertz M, Swaminathan A. Mining Email
Social Networks. In: Proceedings of the 3rd. International Workshop on
Mining Software Repositories. Shanghai: (MSR 2006); 2006. p. 137–43.

7. Bohn A, Feinerer I, Hornik K, Mair P. Content-Based Social Network
Analysis of Mailing Lists. R J. 2011;3(June):11–18.

8. Bosch J. From Software Product Lines to Software Ecosystems. In:
Proceedings of the 13th International Software Product Line Conference
(SPLC 2009). San Francisco; 2009. p.111–9.

9. Brooks Jr FP. The Mythical Man-Month: Essays on Software Engineering,
1st ed. Massachusetts: Addison-Wesley Publishing Company, Reading;
1975, p. 195.

10. Carlson JR, Zmud RW. Channel Expansion Theory and the Experiential
Nature of Media Richness Perceptions. Acad Manag J. 1999;42(2):153–70.

11. Casebolt JR, Krein JL, MacLean AC, Knutson CD, Delorey DP. Author
entropy vs. file size in the gnome suite of applications. In: Proceedings of
the 6th Ieee International Working Conference on Mining Software
Repositories (MSR 2009). Vancouver: IEEE; 2009. p. 91–4.

12. Corbin JM, Strauss A. Grounded theory research: Procedures, canons, and
evaluative criteria. Qual Sociol. 1990;13(1):3–21.

13. Creswell JW. Research Design: Qualitative, Quantitative, and Mixed
Methods Approachesvol. 2. Thousand Oaks: Sage Publications; 2009, p. 260.

14. Daft RL, Lengel RH. Organization Information Requirements, Media
Richness and Structural Design. Manag Sci. 1986;32(5):554–71.

15. de Souza C, Froehlich J, Dourish P. Seeking the Source: Software Source
Code as a Social and Technical Artifact. In: Proceedings of the 2005
International ACM SIGGROUP Conference on Supporting Group Work
(GROUP 2005). Sanibel Island: ACM; 2005. p. 197–206.

16. Dennis AR, Valacich JS. Rethinking media richness: towards a theory of
media synchronicity. In: Proceedings of the 32nd Annual Hawaii

https://flic.kr/p/8AsFbW
http://web.archive.org/web/20090130091039/http://powerpostgresql.com/5_types
http://web.archive.org/web/20090130091039/http://powerpostgresql.com/5_types
http://dx.doi.org/10.1109/ICSM.2011.6080832

Poo-Caamaño et al. Journal of Internet Services and Applications (2017) 8:12 Page 23 of 24

International Conference on Systems Sciences (hicss 1999). Maui: IEEE;
1999. p. 1–10. doi:10.1109/HICSS.1999.772701.

17. Dennis AR, Kinney ST, Hung Y-TC. Gender Differences in the Effects of
Media Richness. Small Group Res. 1999;30(4):405–37.

18. Easterbrook S, Singer J, Storey MA, Damian D. Selecting Empirical
Methods for Software Engineering Research. In: Guide to Advanced
Empirical Software Engineering. London: Springer; 2008. p. 285–311.

19. Erenkrantz JR. Release management within open source projects. In:
Proceedings of the 3rd Open Source Software . . . Portland; 2003. p. 51–5.

20. Flyvbjerg B. Five Misunderstandings About Case-Study Research. Qual
Inq. 2006;12(2):219–45.

21. Fogel K. Producing Open Source Software: How to Run a Successful Free
Software Project. Paramount: O’Reilly Media, Inc.; 2005.

22. German DM. The GNOME Project: A Case Study of Open Source, Global
Software Development. Softw Process Improv Pract. 2003;8(4):201–15.

23. German DM, Adams B, Hassan AE. The Evolution of the R Software
Ecosystem. In: Proceedings of the 17th European Conference on Software
Maintenance and Reengineering (CSMR 2013). Williamsburg: IEEE; 2013.
p. 243–52. doi:10.1109/CSMR.2013.33.

24. Goeminne M, Mens T. Towards the Analysis of Evolution OSS Ecosystems.
In: Proceedings of the 8th BElgian-NEtherlands Software eVOLution
Seminar (BENEVOL 2009); 2009. p. 30–5.

25. Gutwin C, Penner R, Schneider K. Group awareness in distributed
software development. In: Proceedings of the Conference on Computer
Supported Cooperative Work (CSCW 2004). Chicago; 2004. p. 72–81.

26. Guzzi A, Bacchelli A, Lanza M, Pinzger M, Deursen AV. Communication
in Open Source Software Development Mailing Lists. In: Proceedings of
the 10th Working Conference on Mining Software Repositories (MSR
2013). San Francisco: IEEE; 2013. p. 277–86.

27. Halverson CA, Ellis JB, Danis C, Kellogg WA. Designing task visualizations
to support the coordination of work in software development. In:
Proceedings of the Conference on Computer-Supported Cooperative
Work (CSCW 2006). Banff; 2006. p. 39–48.

28. Herbsleb JD, Grinter RE. Architectures, coordination, and distance:
Conway’s law and beyond. IEEE Softw. 1999;16(5):63–70.

29. Herbsleb JD, Grinter RE. Splitting the organization and integrating the
code: Conway’s Law Revisited. In: Proceedings of the 21st International
Conference on Software Engineering (ICSE 1999). Los Angeles: ACM Press;
1999. p. 85–95.

30. Herbsleb J, Mockus A, Finholt TA, Grinter RE. An empirical study of
global software development: distance and speed. In: Proceedings of the
23rd International Conference on Software Engineering ICSE 2001; 2001.
p. 81–90.

31. Howison J, Crowston K. Collaboration through open superposition: A
theory of the open source way. MIS Q. 2014;38(1):29–50.

32. Iacono CS, Weisband S. Developing Trust in Virtual Teams. 30th Hawaii
International Conference on System Sciences (HICSS) Volume 2:
Information Systems Track-Collaboration Systems and Technology.
1997412–420.

33. Jacomy M, Venturini T, Heymann S, Bastian M. ForceAtlas2, a
Continuous Graph Layout Algorithm for Handy Network Visualization
Designed for the Gephi Software. PLoS ONE. 2014;9(6):98679.

34. Jansen S. Measuring the health of open source software ecosystems:
Beyond the scope of project health. Inf Softw Technol. 2014;56(11):
1508–19.

35. Jansen S, Finkelstein A, Brinkkemper S. A sense of community: A research
agenda for software ecosystems. In: Proceedings of the 31st International
Conference on Software Engineering (ICSE 2009). Vancouver: IEEE; 2009.
p. 187–90.

36. Jergensen C, Sarma A, Wagstrom P. The Onion Patch: Migration in Open
Source Ecosystems. In: Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering (ESEC/FSE 2011). Szeged; 2011. p. 70–80.

37. Knauss E, Damian D, Poo-Caamaño G, Cleland-Huang J. Detecting and
classifying patterns of requirements clarifications. In: 2012 20th IEEE
International Requirements Engineering Conference (RE 2012). Chicago;
2012. p. 251–60. doi:10.1109/RE.2012.6345811.

38. Knauss E, Damian D, Knauss A, Borici A. Openness and requirements:
Opportunities and tradeoffs in software ecosystems. In: Proceedings
of the IEEE 22nd International Requirements Engineering Conference
(RE 2014). Karlskrona, Sweden; 2014. p. 213–22.

39. Koch S, Schneider G. Effort, co-operation and co-ordination in an open
source software project: GNOME. Inf Syst J. 2002;12:27–42.

40. Lamkanfi A, Demeyer S, Giger E, Goethals B. Predicting the severity of a
reported bug. In: Proceedings of the 7th IEEE Working Conference on
Mining Software Repositories (MSR 2010). Cape Town: IEEE; 2010. p. 1–10.

41. Lanubile F. Collaboration in Distributed Software Development. In:
Software Engineering; 2009. p. 174–93.

42. Linstead E, Baldi P. Mining the coherence of GNOME bug reports with
statistical topic models. In: 2009 6th IEEE International Working
Conference on Mining Software Repositories. Vancouver: IEEE; 2009. p.
99–102.

43. Ljungberg J. Open source movements as a model for organising. Eur J Inf
Syst. 2000;9(4):208–16.

44. Luijten B, Visser J, Zaidman A. Assessment of issue handling efficiency. In:
Proceedings of the 7th IEEE Working Conference on Mining Software
Repositories (MSR 2010). Cape Town: IEEE; 2010. p. 94–7.

45. Lungu M. Towards reverse engineering software ecosystems. In:
Proceedings of the 24th IEEE International Conference on Software
Maintenance (ICSM 2008). Edmonton; 2008. p. 428–31.

46. Lungu M, Malnati J, Lanza M. Visualizing Gnome with the Small Project
Observatory. In: Proceedings of the 6th International Working Conference
on Mining Software Repositories (MSR 2009). Vancouver; 2009. p. 103–6.
doi:10.1109/MSR.2009.5069487.

47. Lungu M, Lanza M, Gîrba T, Robbes R. The Small Project Observatory:
Visualizing Software Ecosystems. Sci Comput Program. 2010;75(4):264–75.

48. Markus ML. The governance of free/open source software projects:
monolithic, multidimensional, or configurational? J Manag Governance.
2007;11(2):151–63.

49. Mens T, Goeminne M. Analysing the Evolution of Social Aspects of Open
Source Software Ecosystems. In: Proceedings of the 3rd International
Workshop on Software Ecosystems (ISWSECO 2011). Brussels; 2011.
p. 1–14.

50. Michlmayr M. Quality Improvement in Volunteer Free and Open Source
Software Projects Exploring the Impact of Release Management: PhD
thesis, University of Cambridge; 2007.

51. Michlmayr M, Fitzgerald B. Time-Based Release Management in Free
and Open Source (FOSS) Projects. Int J Open Source Softw Process.
2012;4(1):1–19.

52. Michlmayr M, Fitzgerald B, Stol K-J. Why and How Should Open Source
Projects Adopt Time-Based Releases? IEEE Softw. 2015;32(2):55–63.

53. Michlmayr M, Hunt F, Probert D. Release Management in Free Software
Projects: Practices and Problems. In: Open Source Development,
Adoption and Innovation; 2007. p. 295–300.

54. Mockus A, Fielding RT, Herbsleb JD. A case study of open source
software development: the Apache server. In: Proceedings of the 22nd
International Conference on Software Engineering (ICSE 2000). Limerick:
ACM; 2000. p. 263–72.

55. Mockus A, Fielding RT, Herbsleb JD. Two case studies of open source
software development: Apache and Mozilla. ACM Trans Softw Eng
Methodol. 2002;11(3):309–46.

56. Olson GM, Olson JS. Distance matters. Human-Computer Interact.
2000;15(2):139–78.

57. Pagano D, Maalej W. How do developers blog? In: Proceeding of the 8th
Working Conference on Mining Software Repositories (MSR 2011).
Honolulu: ACM Press; 2011. p. 123–32.

58. Parnas DL. On the criteria to be used in decomposing systems into
modules. Commun ACM. 1972;15(12):1053–8.

59. Peiwei Mi, Scacchi W. Modeling Articulation Work in Software
Engineering Processes. In: Proceedings of the 1st International
Conference on the Software Process; 1991. p. 188–201.

60. Perry DE, Porter AA, Votta LG. Empirical Studies of Software Engineering.
In: Proceedings of the Conference on The Future of Software Engineering
(ICSE 2000); 2000. p. 345–55.

61. Péters F. GNOME 3.0 in March 2011. 2010. Online. Visited on 28 Feb 2014.
https://mail.gnome.org/archives/desktop-devel-list/2010-July/
msg00133.html.

62. Rasters G. Communication and Collaboration in Virtual Teams Did we get
the message? PhD thesis, Radboud Universiteit Nijmegen; 2004.

63. Robert LP, Dennis AR. Paradox of richness: A cognitive model of media
choice. IEEE Trans Prof Commun. 2005;48(1):10–21.
doi:10.1109/TPC.2003.843292.

http://dx.doi.org/10.1109/HICSS.1999.772701
http://dx.doi.org/10.1109/CSMR.2013.33
http://dx.doi.org/10.1109/RE.2012.6345811
http://dx.doi.org/10.1109/MSR.2009.5069487
https://mail.gnome.org/archives/desktop-devel-list/2010-July/msg00133.html
https://mail.gnome.org/archives/desktop-devel-list/2010-July/msg00133.html
http://dx.doi.org/10.1109/TPC.2003.843292

Poo-Caamaño et al. Journal of Internet Services and Applications (2017) 8:12 Page 24 of 24

64. Robles G, González-Barahona JM, Izquierdo-Cortazar D, Herraiz I. Tools
for the Study of the Usual Data Sources found in Libre Software Projects.
Intl. J Open Source Softw Process. 2009;1(1):24–45.
doi:10.4018/jossp.2009010102.

65. Rocco E. Trust breaks down in electronic contexts but can be repaired by
some initial face-to-face contact. In: Proceedings of the Sigchi Conference
on Human Factors in Computing Systems - Chi ’98. New York: ACM Press;
1998. p. 496–502.

66. Runeson P, Host M, Rainer A, Regnell B. Case Study Research in Software
Engineering: Guidelines and Examples. Hoboken: Wiley Blackwell; 2012,
p. 256.

67. Sarma A, Maccherone L, Wagstrom P, Herbsleb JD. Tesseract: Interactive
visual exploration of socio-technical relationships in software
development. In: 2009 IEEE 31st International Conference on Software
Engineering. Vancouver: IEEE; 2009. p. 23–33.

68. Scacchi W, Alspaugh TA. Understanding the role of licenses and
evolution in open architecture software ecosystems. J Syst Softw.
2012;85(7):1479–94. doi:10.1016/j.jss.2012.03.033.

69. Schackmann H, Lichter H. Evaluating process quality in GNOME based on
change request data. In: 2009 6th Ieee International Working Conference
on Mining Software Repositories. Vancouver: IEEE; 2009. p. 95–8.

70. Scott JP. Social Network Analysis: A Handbook. Thousand Oaks: SAGE
Publications; 2000.

71. Shihab E, Hassan AE. On the use of Internet Relay Chat (IRC) meetings by
developers of the GNOME GTK+ project. In: 2009 6th Ieee International
Working Conference on Mining Software Repositories (MSR 2009).
Vancouver: IEEE; 2009. p. 107–10.

72. The GNOME Accounts Team. The GNOME Project. 2013. Visited on 28 Feb
2014. https://wiki.gnome.org/AccountsTeam/AccountNamePolicy.

73. The GNOME Foundation. GNOME Foundation Bylaws. The GNOME
Project. Boston; 2002. Visited on 28 Feb 2014. http://www.gnome.org/
wp-content/uploads/2012/02/bylaws.pdf.

74. The GNOME Foundation. GNOME Foundation Charter Draft 0.61. Online.
Boston; 2002. Visited on 28 Feb 2014. http://foundation.gnome.org/
charter.html.

75. The GNOME Project. GNOME Desktop Development List. 2001. Online.
Visited on 28 Feb 2014. https://mail.gnome.org/archives/desktop-devel-
list/.

76. The GNOME Release Team. Guide for New Release Team Members. 2011.
Online. Visited on 28 Feb 2014. https://wiki.gnome.org/ReleasePlanning/
NewReleaseTeamMembers.

77. The GNOME Release Team. Account Name Requirements. The GNOME
Project. 2013. Visited on 28 Feb 2014. https://wiki.gnome.org/
ReleasePlanning/TimeBased.

78. Vasilescu B, Serebrenik A, Goeminne M, Mens T. On the variation and
specialisation of workload - A case study of the GNOME ecosystem
community. Empir Softw Eng. 2014;19(4):955–1008.

79. Walters C, Poo-Caamaño G, German DM. The Future of Continuous
Integration in GNOME. In: Proceedings of the 1st Intl. Workshop on
Release Engineering (RELENG 2013). San Francisco: IEEE; 2013. p. 33–6.

80. Waugh J. Planet GNOME Guidelines. 2003. Online. Visited on 28 Feb 2014.
https://wiki.gnome.org/PlanetGnome.

81. Yamauchi Y, Yokozawa M, Shinohara T, Ishida T. Collaboration with Lean
Media: How Open-Source Software Succeeds. In: Proceedings of the
Conference on Computer Supported Cooperative Work (CSCW 2000).
Philadelphia; 2000. p. 329–38.

82. Yin RK. Case Study Research: Design and Methods (Applied Social
Research Methods), 4th ed. Thousand Oaks: Sage Publications; 2008.

http://dx.doi.org/10.4018/jossp.2009010102
http://dx.doi.org/10.1016/j.jss.2012.03.033
https://wiki.gnome.org/AccountsTeam/AccountNamePolicy
http://www.gnome.org/wp-content/uploads/2012/02/bylaws.pdf
http://www.gnome.org/wp-content/uploads/2012/02/bylaws.pdf
http://foundation.gnome.org/charter.html
http://foundation.gnome.org/charter.html
https://mail.gnome.org/archives/desktop-devel-list/
https://mail.gnome.org/archives/desktop-devel-list/
https://wiki.gnome.org/ReleasePlanning/NewReleaseTeamMembers
https://wiki.gnome.org/ReleasePlanning/NewReleaseTeamMembers
https://wiki.gnome.org/ReleasePlanning/TimeBased
https://wiki.gnome.org/ReleasePlanning/TimeBased
https://wiki.gnome.org/PlanetGnome

	poo-caamano_german_jisa_2017-cover.pdf
	s13174-017-0063-2.pdf
	Abstract
	Keywords

	Introduction
	Background
	Social aspects and communication channels
	Release management
	Background on selected case: the GNOME ecosystem
	Organization of the GNOME ecosystem
	Cross-cutting teams
	Relation between projects and cross-cutting teams
	Previous studies of GNOME

	Study design
	Communication channel selection
	Data collection and cleaning
	Analysis
	Social network analysis

	Interviews and triangulation
	Threats to validity
	Construct validity
	Internal validity
	External validity

	Findings
	What are the communication channels used for release management?
	Main communication channels
	Mailing lists.
	IRC.

	Other communication channels

	How do developers communicate and coordinate for release management?
	Request for comments.
	Proposals and discussions.
	Announcement
	Schedule reminders.
	Request for approval.

	Who are the key actors in the release management process?
	What are the release management tasks in a FOSS ecosystem?
	What are the challenges that release managers face in a FOSS ecosystem?
	Coordinate projects and teams of volunteers without direct power over them
	Keep the build process manageable
	Monitor for unplanned changes
	Test the GNOME release

	Discussion
	Media richness theory
	Channel expansion and shared understanding theories

	Conclusions and outlook
	Abbreviations
	Acknowledgements
	Funding
	Authors' contributions
	Ethics approval and consent to participate
	Competing interests
	Publisher's Note
	Author details
	References

