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Abstract. Animal ecologists often use stationary point-count surveys, such as camera traps, to collect
presence–absence data and infer distribution, abundance, and density of species. Rarely do these surveys
explicitly consider variations in the magnitude of animal movement despite movement assumptions being
implicit in their interpretation. For example, ecologists assume the frequency of species detections at a site
is associated with the intensity of local space use, but it may be more indicative of transit through that
point en route to other areas. This assumption remains untested, and a resolution is critical to accurate
interpretation of species occurrence data. We compared fisher (Pekania pennanti) detections collected from a
camera trap array with detailed Global Positioning System-telemetry data to test whether, at the popula-
tion level, the spatial and temporal patterns of detections reflected the proximity of space use to sampling
sites, or variability in the magnitude of animal movement across the study area. We also used an occu-
pancy modeling framework to quantify the relative contributions of space use proximity and movement
magnitude to estimated probabilities of site occupancy and detectability. We demonstrate that, at the popu-
lation level, detection frequency and estimates of detection probability and occupancy are more closely
associated with the magnitude of animal movement around a survey device than the proximity of animal
space use. Variations in the magnitude of animal movement within and between species should receive
greater consideration when interpreting occurrence data to correctly infer ecological processes. Not
accounting for species movement, especially in multi-species surveys, may bias inferences of ecologic
processes and result in misspecified management recommendations.
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Received 23 October 2017; revised 8 January 2018; accepted 16 January 2018. Corresponding Editor: Lucas N. Joppa.
Copyright: © 2018 Stewart et al. This is an open access article under the terms of the Creative Commons Attribution
License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
� E-mail: fecstewart@gmail.com

INTRODUCTION

Animal ecologists quantify populations and
communities by counting animals across space
and time. Point surveys of individuals or species
are commonly collected from stationary sam-
pling locations (i.e., survey sites) through a
variety of field methods (avian point-count sur-
veys, mist-netting surveys, live-trapping surveys,

camera trap surveys, etc.) and are generally
referred to as species occurrence data (SOD): the
sequence of species detections at a single position
in space and time (Scott et al. 2002). However,
although mobile animals move in and around
survey sites, rarely does the interpretation of
SOD explicitly consider the influence of animal
movement. Movement—changes in location
through time—is a dynamic space–time process
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that makes it difficult to accurately characterize
where and when animals are located, and how
the cumulative locations of individuals over time
define patterns of population distribution and
relative abundance (Hooten et al. 2017), as is the
goal of point-count surveys.

Ecological inferences derived from SOD
assume that spatial variation in species occur-
rence among survey sites represents variation in
relative abundance, whereas temporal variation
in species occurrence within a survey site reflects
variation in the proximity of animal space use
(i.e., the activity center of Royle et al. 2013, also
see Turchin 1998, MacKenzie 2006, Burton et al.
2015). However, rarely have researchers explic-
itly tested the assumed relationships between
measures derived from SOD (e.g., occurrence,
detection probability, or occupancy—occurrence
corrected for detection probability) and inferred
ecological processes (abundance or density, space
use, and habitat selection) despite this being a
prerequisite to accurate data interpretation (Bur-
ton et al. 2015). A few studies have attempted to
incorporate individual movement data empiri-
cally into estimates derived from SOD by com-
bining occurrence from both point-count and
telemetry data sets (Gopalaswamy et al. 2012,
Sollmann et al. 2013, Popescu et al. 2014). How-
ever, a basic and general question remains: How
does variability in the magnitude of species
movement, vs. variability in the proximity of spe-
cies space use, affect a survey’s ability to sample
a population? This question focuses on species
rather than individual identification—a common
goal of point-count surveys—and therefore
assumes that movement and space use from a
random sample of individuals are representative
of the population.

One approach to investigate assumptions
inherent in SOD is to statistically relate occur-
rence data from common survey methods to
simultaneously collected movement data around
survey sites. Developments in Global Positioning
System (GPS) technology enable biologists to
obtain detailed individual movement patterns
through GPS telemetry rather than relying on
traditional tracking techniques (Kays et al. 2015,
but also see Ranacher et al. 2016). Each GPS
point collected from a GPS collar on an active
animal is considered an animal location, and its
distance to survey sites can be quantified. With

the survey site as the sampling unit, we define
the proximity of species space use as the mean
distance between a survey site (e.g., camera trap)
and all GPS locations, regardless of individual
animal identity, collected through space and time
(Pj; analogous to the Royle et al. 2013 activity
center, but quantified at the population rather
than individual level):

Pj ¼ 1
N

X

i!N

di (1)

where N is the total number of GPS locations
collected across all individuals within the
study, i represents each GPS location, and di is
the distance between a survey site, j, and i.
Again, with the survey site as the sampling
unit, we define the magnitude of species move-
ment (Mj) as the variation in di through space
and time (Fig. 1);

Mj ¼ 1
N � 1

X

i!N

ðdi � PjÞ2 (2)

This framework ensures that each survey site
has a value for both P and M.
For mammals, camera traps are increasingly

used to obtain SOD for a variety of ecological
research and conservation applications across
increasingly large spatial and temporal scales
(Burton et al. 2015, Steenweg et al. 2017). How-
ever, cameras lack the high resolution of individ-
ual movement patterns that can be derived from
radiotelemetry or GPS telemetry (Pacifici et al.
2017). Therefore, cameras and telemetry provide
fundamentally different kinds of information,
and our objective was to use one method to
assess assumptions inherent in the other.
We used fisher (Pekania pennanti) detection

data collected from a camera trap array, paired
with data collected from concurrent overlapping
GPS-collared fishers, to test whether variability
in species detection frequency is better explained
by the proximity of species space use (Pj), or vari-
ation in the magnitude of species movement
(Mj), across three temporal detection resolutions
(surveywide presence–absence, monthly and
weekly detections). Movement variability will
dictate how frequently animals become available
for detection at a point sample (camera trap),
particularly for wide-ranging species sampled in
continuous habitat (Efford and Dawson 2012).
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For this reason, we hypothesized that variabil-
ity in the frequency (or probability) of species
occurrence would be better explained by the
magnitude of fisher movements around a site,
Mj, than by the proximity of fisher space use to
the site, Pj. As the temporal sampling resolution
of the species detections increases (from survey
presence–absence to monthly or weekly counts),
there should be an increasing sensitivity to the
magnitude of fisher movement relative to a site:
Binary presence–absence data should be least
sensitive to movement, as the species must be
detected only once during the entire survey to
be considered present. We therefore predict
that variability in Mj will better explain survey-
wide presence–absence than monthly or weekly
counts.

Currently, typical point surveys assume that
SOD are representative of animal activity in
space and time, thus making implicit assump-
tions about animal movement, to which resulting
ecological inferences could be sensitive (Burton
et al. 2015, Neilson et al. 2018). We sought to
explicitly quantify the contribution of animal
movement to variations in SOD and evaluate
how the inference of ecological process might
change if the magnitude of species movement,
rather than proximity of species space use, is the
better predictor of SOD.

METHODS

Study system and data collection
Fisher are a medium-sized (2–7 kg; F. Stewart,

unpublished data) Mustelid native to North Ameri-
can forests (Powell 1982). They have moderate
body and home range size (Lindstedt et al. 1986)
representative of mammal species investigated in
many previous camera trap surveys (Burton et al.
2015), making them an attractive model for evalu-
ating the contribution of movement parameters to
SOD. We sampled fisher occurrence in central
Alberta, Canada, in an area known as the Cook-
ing Lake Moraine (CLM; Fig. 2). This 1596 km2

landscape of rolling knob-and-kettle topography
supports a diverse mammal community (F. Ste-
wart, unpublished data) and is dominated by small
wetlands, with trembling aspen (Populus tremu-
loides), balsam poplar (Populus balsamifera), and
scattered pockets of spruce (Picea glauca and Picea
mariana). It is a patchwork of exurban develop-
ment, agriculture, protected forested areas, and
privately owned green space. It is surrounded by
unsuitable agricultural lands on all sides, making
this a fairly closed population, but still function-
ally connected to disjunct fisher populations to
the north and west (Stewart et al. 2017).
We established 64 camera trap sites in a

4 9 4 km2 systematic grid cell array across the

Fig. 1. Species occurrence data are the result of species detection within the detection zone of a stationary sur-
vey device. We tease apart population-level contributions of the magnitude of animal movement and proximity
of space use to the detection of species at camera traps by comparing the mean distance between Global Position-
ing System (GPS) locations of all sampled individuals and each camera trap (Pj, proximity of space use) and stan-
dard deviation of distances between GPS locations and a camera trap (Mj, movement magnitude) of fisher
(Pekania pennanti) GPS-telemetry fixes. Panel (A) represents a camera site with high proximity of space use (small
Pj), low movement magnitude (small Mj), and high detection probability within the camera’s field of view.
Panel (B) represents a camera site with low proximity of space use (large Pj) and high movement magnitude
(large Mj) resulting in low detection probability within the camera’s field of view.
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CLM (Fig. 2). At each site, the camera pho-
tographed the area surrounding a tree baited
with ~5 kg of beaver meat and a commercial
scent lure (O’Gorman’s Long Distance Call).
Fisher detections were recorded using Reconyx
infrared cameras (models PC900 and PC85;
sensu Fisher et al. 2014). Camera traps were
deployed from December 2015 to April 2016 and

checked monthly. From these temporally contin-
uous data, we binned fisher detections weekly
(0–15), monthly (0–4), and as presence–absence
(0/1) across the whole survey.
We live-trapped and GPS-collared 10 fisher indi-

viduals (5 male: 5 female) from November 2015
through March 2016. We distributed traps in a
stratified random design that aimed to sample

Fig. 2. Fisher Global Positioning System fixes from 10 individuals are overlaid on the spatial distribution of 64
camera trap sites deployed through winter 2015/2016 on Alberta’s Cooking Lake Moraine. For spatial reference,
dark patches refer to lakes and rivers whereas white lines refer to roads.
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animals distributed as randomly as possible rela-
tive to camera traps, and assumed collared animals
are representative of the true distribution of fishers
in this population. Fisher were captured in covered
cage traps (Tomahawk 109 live-trap, Tomahawk,
Wisconsin, USA) and sedated with a combination
of ketamine (100 mg/mL, 12 mg/kg) and midazo-
lam (5 mg/mL, 0.3 mg/kg). We fitted fisher with
GPS tracking collars (E-obs Collar1A, Gr€unwald,
Germany) containing a GPS microchip, a triaxial
accelerometer, and ultra-high-frequency transmit-
ter for telemetry and data download. The GPS was
programmed with a 5-min fix schedule when the
accelerometer recorded a speed >10 cm/s.

All data were collected under Canadian Coun-
cil of Animal Care permits approved by Inno-
Tech Alberta (2070M-A02/048/15-P01), and the
University of Alberta (AUP00000518) Animal
Handling and Care Committees.

Statistical methods
We used both regression and occupancy model-

ing frameworks to test whether fisher detections
across the camera trap array were more closely
related to the proximity of fisher space use (Pj) or
magnitude of fisher movement (Mj) around each
camera trap. Our basic response data format
involved a site by weekly fisher detection matrix
at each camera trap; this SOD is denoted as Yjt, the
presence/absence (or count) of any fisher detected
at camera trap j in each survey t. When investigat-
ing temporal variation in SOD, this matrix was col-
lapsed into monthly counts (0–4) and total survey
presence–absence (0/1). Our predictor data set is
comprised of two main variables measured at the
site level: Mj and Pj. We measured the distance di
(in m) between each camera (N = 64) and all GPS-
telemetry points, and then calculated summary
statistics of these distances—minimum, maximum,
mean (Pj; Eq. 1), and standard deviation (Mj;
Eq. 2)—using the Generate Near Table tool in Arc-
GIS 10.4.1 (Environmental Systems Research Insti-
tute, Redlands, California, USA) . Mean, standard
deviation, minimum, and maximum distance met-
rics are all highly correlated (Appendix S1:
Table S1); to avoid multicollinearity, we did not
include more than one metric as a predictor vari-
able within each of our models.

We treated the mean of distances di between
camera i and all GPS locations as a measure of
fisher space use proximity P to camera site j

(Eq. 1). We hypothesized that camera detection
frequencies (Yj) would be negatively related to
fisher proximity of space use (Pj): If fishers are
physically situated close to a camera site, there
will be more detections than if fishers are situated
far from a camera site (Fig. 1). We predicted a
negative relationship between camera detection
frequencies and fisher minimum distance to be a
sampling artifact—fisher must de facto be close
to the camera to be detected, but this is not partic-
ularly informative. To quantify the magnitude of
fisher movement (Mj) relative to a camera trap,
we calculated the standard deviation of the dis-
tances di between camera trap j and all GPS loca-
tions (Mj; Eq. 2). We hypothesized that camera
detection frequencies would demonstrate a nega-
tive quadratic relationship with fisher movement
magnitude (Mj): High or no variability in fisher
movements would result in fewer detections as it
would represent fewer opportunities for fisher to
pass through a camera field of view (Burton et al.
2015), whereas intermediate variation in animal
movements should result in more camera detec-
tions (Fig. 1). We conducted two analyses to test
both spatial and temporal assumptions of SOD.

Spatial variation in species occurrence data
Ecologists assume that spatial variation in SOD

reflects variation in relative abundance across sur-
vey sites; sites with many detections are situated
in habitats with high frequency of animal use. We
hypothesized that species detections were better
explained by variation in the magnitude of spe-
cies movement (Mj; Eq. 2) than the proximity of
species space use (Pj; Eq. 1), such that:

Yj � aþ bMj þ e

To test this hypothesis, we regressed camera
detection data, against the mean (i.e., proximity
of space use; Pj), standard deviation (i.e., magni-
tude of movement; Mj), and maximum distances
of fisher GPS locations relative to all camera
traps using generalized linear models in R (R
v3.3.3, R Foundation for Statistical Computing
2017).
Another way to consider SOD is as serial, bino-

mial, detection histories—for example, the detec-
tion history 01110 observes three occurrences in
five sessions. In the original formulation of occu-
pancy modeling, detections of stationary species
are obtained at discrete patches closed to
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movement, and hence, the zeros in detection his-
tories are considered as error—a failure to detect
a species when present. Detection histories are
used to estimate probability of detection given
presence (p) using maximum-likelihood estima-
tion (MacKenzie et al. 2002). For mobile animals
in continuous habitat, p represents frequency of
site use (Efford and Dawson 2012), with zeros
entrained by both the error and the movement of
animals around the sampling site (see Burton
et al. 2015, Fig. 1). We hypothesized that vari-
ability in site detection probability (p) is
explained by the magnitude of animal movement
(Mj), whereas probability of site occupancy (w) is
explained by proximity of animal space use (Pj).
We predict as follows:

wð:ÞpðMjÞ and wðPjÞpð:Þ
where each camera site (N = 64) is the sampling
unit. We competed a null model, w(.)p(.), against
models that assumed occupancy (w), detection
probability (p), or both, varied as a function of
movement magnitude (Mj), and proximity of
space use (Pj). Further, we predict p to change
with the temporal resolution of sampling
(monthly or weekly counts as sample replicates).
All occupancy models were performed in PRE-
SENCE software v11.7 (Hines 2006) and com-
peted in an information-theoretic framework
based on Akaike information criterion (AIC)
scores (Burnham and Anderson 2002).

Temporal variation in species occurrence data
Temporal variation in SOD—for example, a

monthly 0111 detection history—is assumed to
reflect changes in animal movements, which
induces variations in the proximity of animal
space use around the survey point. If this is true,
we predict that sensitivity to the effects of the
proximity of species space use (Pj), or magnitude
of species movement (Mj), on SOD should
increase with temporal sampling resolution: Sur-
vey presence–absence should be least sensitive,
as the species must become available only once
during an entire survey to be considered present.
Within both our regression and occupancy
frameworks, models involving monthly counts
as the response variable should better fit the data
than models involving survey presence–absence
data, but models involving weekly counts as the
response variable should fit the data best.

To investigate the effects of temporal resolu-
tion on SOD, we competed suites of models with
occurrence data measured as survey presence–
absence (0/1), monthly counts (0–4), or weekly
counts (0–15) of fisher detections. For these gen-
eralized linear models, we used the residual
deviance to compare model fit as a measure of
model sensitivity. Survey presence–absence data
were modeled using a binomial family function
(logit link), and weekly count data were modeled
using a Poisson family function (log link).
Monthly count models used a multinomial
regression in the R package nnet (version 7.3-12;
Venables and Ripley 2002), an extension of logis-
tic regression for response variables with count
data (0–4) that is not Poisson distributed (Zuur
et al. 2007). Suites of regression models within
each temporal resolution were competed using
AIC scores (Burnham and Anderson 2002). For
occupancy models, we compared two suites of
temporal models where species detection histo-
ries were composed of either four monthly or 15
weekly detection histories. We used the residual
deviance (�2 log likelihood) to compare model
fit. Results are presented as mean � standard
error unless otherwise specified.

RESULTS

Sixty-four cameras were deployed for a total of
102 d (6528 trap days) and collected 95,128 pho-
tographs (i.e., animal detections) from December
2015 through early Apri"l 2016. Of these detec-
tions, 12,156 were of fisher. Fisher were observed
on 43 of 64 cameras (na€ıve occupancy = 0.67).
From 10 GPS-collared individuals, we obtained
28,088 fixes with 2808 � 1137 fixes per individ-
ual. Global Positioning System fixes were on
average 15,188 � 1281 m away from any camera
(Fig. 2). Microsatellite analysis from hair samples
collected throughout the study revealed that at
least 32 fishers occupied the CLM during the
winter of 2015/2016 (Stewart et al. 2017). We
therefore obtained GPS information from 31% of
the minimum known population.

Spatial variation in species occurrence data
Variability in fisher SOD was best explained

by variation in the magnitude of movement (Mj),
rather than the proximity of space use relative to
cameras (Pj). As predicted, a quadratic model
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with Mj better explained variation in fisher
occurrence than did linear relationships. In no
models did the proximity of space use (Pj)
explain SOD better than a null model (Fig. 3A).

Similarly, within the occupancy modeling
framework, detection probability (p) was best
explained by the magnitude of movement (Mj),
rather than the proximity of species space use

Fig. 3. Generalized linear models across three temporal resolutions all demonstrate that the standard deviation
of the distances between Global Positioning System collar fixes and camera traps best predict the probability of
species presence–absence, monthly counts, and weekly counts. Models presented in panel (A) include fisher spe-
cies occurrence data as the response variable, with predictors of: (1) null model; (2) mean distance (i.e., proximity
of space use; Pj); (3) standard deviation distance (i.e., movement magnitude; Mj); (4) standard deviation distance
quadratic; and (5) maximum distance. Panels (B–D) demonstrate the top model from panel (A) at each temporal
resolution (survey presence–absence, monthly counts, and weekly counts).

 ❖ www.esajournals.org 7 February 2018 ❖ Volume 9(2) ❖ Article e02112

STEWART ET AL.



(Pj) relative to cameras. We competed a total of
45 monthly and 45 weekly models involving all
possible combinations of maximum, mean (Pj),
and standard deviation (Mj) distances as both
occupancy (w) and/or detection probability (p)
covariates (Appendix S1: Table S2). The best-
supported models all suggested the magnitude
of movement (Mj) best explained detection prob-
ability (p). The proximity of space use (Pj) best
explained site occupancy (w) only when Mj was
included as a detection covariate (Table 1).

Temporal variation in species occurrence data
The relationship between species occurrence

and magnitude of movement (Mj) demonstrates
a consistent negative quadratic pattern across all
temporal resolutions (survey, monthly, and
weekly; Fig. 3B–D). In contrast to our temporal
prediction, binary presence–absence was more
sensitive to Mj than were monthly or weekly spe-
cies detections (model residual deviance = 72.58
for survey presence–absence temporal resolution;
76.65 for monthly temporal resolution; and
165.72 for weekly temporal resolution; Fig. 3B).

Estimated occupancy varied slightly with tempo-
ral resolution (monthly: w = 0.68, p = 0.65; weekly:
w = 0.64, p = 0.32). Akaike information criterion
ranking of occupancy models differed between
monthly and weekly temporal resolutions; how-
ever, top models always involved movement mag-
nitude (Mj) as an occupancy (w) and/or detection

probability (p) covariate (Table 1). For monthly
models, p did not vary with survey month but
did vary with Mj (ER [evidence ratio] model 1
and 2 = 3.87), and w varied with the maximum
distance between a GPS fix and the camera (ER
model 2 and 3 = 70.1). For weekly models, p var-
ied by survey week and Mj (ER model 7 and
8 = 1.96), and w varied with Mj (ER model 6 and
7 = 9.3). In contrast to our temporal prediction,
occupancy models measured on a monthly tempo-
ral resolution demonstrate more sensitivity to this
relationship than models measured on a weekly
temporal resolution (monthly models deviance
ranged between 255 and 300; weekly models
deviance ranged between 790 and 857; Table 1).

DISCUSSION

Species occurrence data from camera traps bet-
ter reflect the degree to which animals move,
rather than the space that animals use. Variation
in the magnitude of movement (Mj) around a
camera trap, rather than proximity of space use
(Pj) to the camera trap, best explained species
detections regardless of the temporal sampling
resolution. Similarly, Mj best explained detection
probability, and Pj only explained occupancy
probability when Mj was included as a detection
probability covariate. In addition, presence–
absence was more sensitive to Mj than were
monthly or weekly counts (Fig. 3).

Table 1. Selection of top occupancy models for fisher in Alberta’s Cooking Lake Moraine across both monthly
and weekly sampling periods.

Model† AIC‡ DAIC AIC weight Model likelihood K§ �2LL¶

Monthly sampling
1. w(MAXIMUM),p(Mj) 263.51 0.00 0.79 1.00 4 255.51
2. w(MAXIMUM),p(Mj + SURVEY) 266.22 2.71 0.20 0.26 7 252.22
3. w(.),p(Mj) 274.74 11.23 0.00 0.00 3 268.74
4. w(P),p(Mj) 274.82 11.31 0.00 0.00 4 266.82
5. w(.),p(.) 304.93 41.42 0.00 0.00 2 300.93
Weekly sampling
6. w(Mj),p(Mj + SURVEY) 826.95 0.00 0.77 1.00 18 790.95
7. w(MAXIMUM),p(Mj + SURVEY) 831.42 4.47 0.08 0.11 18 795.42
8. w(.),p(Mj + SURVEY) 831.82 4.87 0.07 0.09 17 797.82
9. w(Pj),p(Mj + SURVEY) 832.54 5.59 0.05 0.06 18 796.54
10. w(.),p(.) 861.69 34.74 0.00 0.00 2 857.69

† Occupancy (w) and detection probability (p) were either constant (.), varied by SURVEY, or varied by the MAXIMUM,
STANDARD DEVIATION (Mj), or MEAN (Pj) distance between a camera trap and Global Positioning System fixes.

‡ Akaike information criterion.
§ Number of parameters in the model.
¶ �2 log likelihood of the model (deviance).
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The role of movement in species detections is
an implicit assumption in species occurrence
research (Turchin 1998, MacKenzie 2006, Royle
et al. 2013, Burton et al. 2015), and the conserva-
tion strategies derived therefrom (Morin et al.
2017, Royle et al. 2017), but rarely is movement
explicitly quantified. We therefore recommend
that the magnitude of species movement receives
greater consideration when analyzing SOD from
stationary surveys. These results may be espe-
cially important for species with large move-
ments relative to the size of the study area (cf.
Efford and Dawson 2012).

Considerable debate on the relationships
between SOD, density, and abundance is waged
within the ecological literature (Linden et al.
2017, Steenweg et al. 2016, Broadley 2017, Par-
sons et al. 2017), with ramifications for conserva-
tion and management (Fuller et al. 2016).
Previous work acknowledges the potential for a
nonlinear relationship between occupancy and
abundance when animals display variable move-
ment patterns between detection devices (Efford
and Dawson 2012, Noon et al. 2012), and spurs
calls for research that tests the assumptions of ani-
mal movement within these relationships (Ellis
et al. 2014, Steenweg et al. 2016). In our test, tem-
poral and spatial variations in species occurrence
at a sampling site reflected the magnitude of
animal movements, rather than the explicitly
assumed variation in proximate space use and
variation in relative abundance, respectfully
(Turchin 1998, MacKenzie 2006, Royle et al. 2014,
Burton et al. 2015). New methods are in continual
development for different ways to think about the
continuous sampling of camera trap data, and the
resulting inferences on abundance and movement
(Moeller 2017, Neilson et al. 2018).

The method of sampling also influences SOD.
For example, considerable debate exists about
the use of attractants in trap studies, as this
method may affect both animal movement and
detection probability. Bait is required for thou-
sands of point-survey studies; of hundreds of
camera trap studies reviewed by Burton et al.
(2015), two-thirds targeted the camera at some
form of attractant, with bait or lure being used in
one-third of the studies. The effect of bait will
vary by target species, and for elusive carnivores
such as the fisher, is argued to be the most effect
use of research funds (du Preez 2014). We do not

expect bait to have affected detection probability
in this study, as spatially explicit capture–recap-
ture modeling (Royle et al. 2013) did not detect
any effect of trap behavior at the population level
(J. Burgar, unpublished data). However, investigat-
ing the tortuosity of GPS movement paths of
individuals relative to baited sites would be a
valuable test of whether maximizing detection
probability with bait truly comes at the expense
of inflating species detections by increasing
movement at a sampling site, relative to move-
ments on the surrounding landscape.
Challenging the consistency of multiple data

types represents an alternate tactic for address-
ing assumptions inherent in SOD. Popescu et al.
(2014) demonstrated that camera traps reflected
fisher space use in California, as fisher telemetry
relocations correlated to the probability of detec-
tion by cameras; however, the spacing of cameras
was much denser than in our study. In another
method comparison example, Chauvenet et al.
(2017) demonstrated that distance sampling pro-
vided more accurate European boar (Sus scrofa)
density estimates than spatially explicit individ-
ual camera-based models because distance sam-
pling was more robust to heterogeneity in boar
group size. Our results build upon this literature
in two ways: (1) by assessing animal space use
and movement as separate, though associated,
processes, and (2) by assessing multiple mea-
sures of SOD–occurrence and detectability-cor-
rected occupancy.
Species occurrence data methods in general,

and camera traps specifically, often measure
occurrence of multiple species simultaneously.
Two-thirds of reviewed camera studies compared
relative abundance of multiple species by con-
trasting observed detection rates of each (Burton
et al. 2015). For example, O’Brien et al. (2003)
demonstrate European wild boar to be more
abundant than either Malay tapir (Tapirus indicus)
or Sambar deer (Cervus unicolor) across multiple
areas. Similar conclusions have been made across
continents and across methods, where more
vagile species receive higher frequencies of detec-
tion when compared to less vagile species, and
are inferred as being more abundant (Gompper
et al. 2006, Monterroso et al. 2013, 2014, Carreras-
Duro et al. 2016). However, our research suggests
frequency of detections is not an accurate or
robust index of relative abundance across species,
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as it is likely conflated by differences in species’
propensity for movement. We recommend that
relative abundance as a population index needs to
be standardized by some measure of species
movement propensity, such as expected home
range size or movement rate (Broadley 2017), to
ensure it is a meaningful metric for species com-
parisons within, and between, studies. Moreover,
devices with consistent capacity for animal detec-
tion need to be deployed in a sampling density
reflective of the movement ecology of each species
(sensu Linden et al. 2017). Species detection rates
are affected by many factors other than abun-
dance; the expected relationships between sam-
pling design, detectability, and ecological
inference will be species specific (Burton et al.
2015), and likely influenced heavily by species
density (Kjellander et al. 2004, Broadley 2017).

We demonstrate the ubiquity and importance
of movement when interpreting different tempo-
ral resolutions of SOD (survey presence–absence,
monthly, and weekly counts). This relationship is
reflected in sampling design literature. For exam-
ple, MacKenzie and Royle (2005) suggest the
temporal resolution of SOD should scale with
species rarity: Surveying more sites less fre-
quently is more efficient for rare species, whereas
surveying few sites more frequently may be bet-
ter for conspicuous species. These trade-offs in
survey effort have been considered across bats
(Weller and Lee 2007), birds (Bried et al. 2011),
reptiles (Sewell et al. 2012), and plants (Garrard
et al. 2008). Much less frequently has movement
variability been considered when interpreting the
SOD generated by those designs, but this could
be evaluated with the methods described here.

We demonstrate that inferences from ecological
investigations using SOD may reflect the magni-
tude of species movement better than species space
use. This result has important implications for how
we interpret projections from wildlife distribution
(or ecological niche) models (Peterson 2003), how
we model future biodiversity projections from
landscape and climate change (Anderson et al.
2006, Elith et al. 2009), and how we understand
large-scale ecological patterns and processes.
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