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ABSTRACT

Examining fish behaviour through acoustic tracking is a technique being employed

more and more. Typically, research using this method focuses on detections without

fully considering the influence of both the physical and acoustic environment. Here we

link the aquatic environment of Cumberland Sound with factors influencing the detec-

tion effectiveness of fish tracking equipment and found multi-path signal interference

to be a major issue while seasonal variabilty had little impact. Cumberland Sound

is a remote Arctic embayment, where three species of deep-water fish are currently

tracked, that can be considered as two separate layers. Above the 300 m deep sill,

the cold Baffin Island Current follows a geostrophic pattern, bending into the sound

along the north shore, circulating before leaving along the south shore. The warm

deep water is replenished from the recirculated arm of the West Greenland Current

occasionally flowing over the sill and down to a stable depth. This influx of water

prevents deep water hypoxia, allowing the deep-dwelling fish populations in the sound

to thrive. To complement the work done in Cumberland Sound, a year-long study of

the underwater soundscape of another Arctic coastal site, Cambridge Bay, Nunavut,

was conducted over 2015. Unlike other Arctic locations considered to date, this site

was louder when covered in ice with the loudest times occurring in April. Sounds

of anthropogenic origin were found to dominate the soundscape with ten times more

snowmobile traffic on ice than open water boat traffic.
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Chapter 1

Introduction

Arctic marine ecosystems experience extremes in light and dark, heat and cold, ice

cover and open water in addition to the tidal forces shared by more southern loca-

tions. These rhythms combine to create habitats where the link between biological

processes and the physical environment are strong (Dayton et al., 1994). Even subtle

hydrographic changes to that environment can profoundly impact the animals that

reside there (Carmack and Wassmann, 2006). In addition to these physical forces,

the underwater acoustic environment, or soundscape, also impacts how ecosystems

function (Staaterman et al., 2013). For Arctic sites, times of ice cover versus open

water can dramatically alter the local soundscape (Kinda et al., 2013).

Because direct observations of aquatic animals are difficult to obtain, especially at

sites experiencing ice cover, implanting passive acoustic tags into these animals is a

method gaining in popularity. This technique is providing new information about how

animals live in their aquatic environments (Hussey et al., 2015; Lennox et al., 2017),

which is especially important in polar ecosystems where climate change is occurring

more rapidly and the animals that live there are more vulnerable due to their slow

growth and low fecundity (Thomas et al., 2008).

By tagging these animals and recording detections, more information can be ob-

tained beyond simple presence and absence. Multiple detections of the same ani-

mal can provide data on movement allowing inferences to be made about animal

behaviours such as habitat use and predator/prey dynamics (Kessel et al., 2013).

However, understanding the limitations of this technique puts the resulting data into

context and prevents incorrect conclusions (Payne et al., 2010; Kessel et al., 2013).

One major limitation is the detection range of the receivers which is variable and

impacted by both the equipment and the local environment.
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The objective of this thesis is to gain a better understanding of the link between

Arctic coastal oceanography and soundscapes and the impact on the range of passive

detection of acoustically-tagged fish. To achieve this, three main questions are posed

and addressed:

1. What are the oceanographic processes that define the underwater environment

in an Arctic coastal embayment?

2. What sounds dominate the underwater soundscape of the site?

3. How do the oceanography and soundscape impact acoustic tag function in the

local environment?

By answering these questions, biological behaviour recorded by the acoustic tags

can be put into context with the physical and acoustic environment. In this study in

situ data collection, water sampling and acoustic ray-tracing modelling are used to

obtain results.

1.1 Study Sites

The original intent of this research project was to consider all three questions at a

single site, Cumberland Sound, a large embayment on the east coast of Baffin Island

(Figure 1.1). The work was started as part of a cross-discipline team within the

Ocean Tracking Network (OTN) (Cooke et al., 2011). Biologists addressing questions

around habitat use for three species of fish were included in addition to oceanogra-

phers. However, at the end of the first year (summer 2012) all moored equipment was

removed at the request of the local Inuit community, before any underwater acoustic

recordings were made. Unfortunately, only a single year of mooring data was col-

lected (2011-2012). Surface-based measurements were not part of the ban, allowing

collection to continue resulting in three years of summer data (2011-2013).

As a result of being unable to collect acoustic data in Cumberland Sound, the

soundscape component of this work was performed in Cambridge Bay (Figure 1.1),

another Arctic coastal site. Cambridge Bay has an underwater platform collecting

data as part of the Ocean Networks Canada (ONC) array. This platform hosts a

variety of oceanographic instruments measuring aspects of the local environment as

well as a continuously-recording hydrophone. Data from 2015 were chosen, because
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Figure 1.1: Relative locations of study sites. Red box is Cumberland Sound and blue box is
Cambridge Bay.

the acoustic data were nearly complete (the exception being September 2015) and

that year coincided with an acoustic range test of the same acoustic tags used in

Cumberland Sound. The original intent of moving to this site was to expand the

evaluation of range tests to a very shallow (∼9 m water depth) location. However,

the range test data set proved to be unusable as it was heavily contaminated by a

nearby ship running a 50 kHz sonar from May until September. This range test was

abandoned and a shift was made to consider the soundscape instead.

Unfortunately, Cumberland Sound and Cambridge Bay are fundamentally differ-

ent sites with only seasonal ice cover and their position within the Canadian Arctic

Archipelago (CAA) in common. Cumberland Sound is a large embayment heavily

influenced by outside water. The sound is ∼80 km wide by ∼250 km long with a 300

m deep sill and maximum depths of over 1400 m. In comparison Cambridge Bay is

more complex in shape. Near the study site it is ∼4 km wide by ∼3 km long, with

maximum depths of only 86 m.

There is an ongoing anthropogenic presence at both of these sites involving fishing

activity and vehicle use. In Cumberland Sound, Greenland halibut (Reinhardtius
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hippoglossodies) is a fish species of commercial interest with population dynamics

that are only beginning to be understood (Peklova et al., 2012). While in Cambridge

Bay, vehicle noise at times dominates the aquatic environment which, in general, has

been shown to have a negative effect on the fauna (Williams et al., 2015).

1.2 Outline of Thesis

This thesis is based on three papers written to address each of the questions posed

above. Details of the methodologies used are presented in each paper.

1. The first paper (Chapter 2) discusses the outside influences on the water col-

umn of Cumberland Sound. This is the first oceanographic work in this location

where even the bathymetry is not fully known. The water column in the sound

is divided into two layers: the water above the 300 m deep sill, and the water

below. Two different mechanisms are presented that bring in different water

masses. The first is geostrophic flow cycling through the upper layer and the

second is seasonal, intermittent deep water replenishment that prevents the bot-

tom waters from becoming hypoxic. Local processes that contribute to mixing

within the sound are also presented. This paper has been published as Bedard

et al. (2015).

2. The second paper (Chapter 3) examines the variability in detection ranges of

passive acoustic tags in an Arctic embayment. Three year-long range tests were

performed with acoustic fish tags in Cumberland Sound, with tags programmed

to transmit at known intervals deployed at a variety of ranges from receivers.

Results from these range tests are linked with factors influencing the detection

effectiveness using a simple ray tracing model. Multi-path interference is found

to be a major issue impacting detections while seasonal variability is not an

issue at this site. This paper will be submitted to Animal Biotelemetry.

3. The final paper (Chapter 4) presents results from a year-long study of the

soundscape in Cambridge Bay. Unlike other Arctic locations considered to

date, this site is louder when covered in ice with the loudest times occurring in

April. Sounds of anthropogenic origin are found to dominate the soundscape

with roughly ten times more snowmobile traffic on ice than open-water boat
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traffic. Precipitation, wind and ice noise are the other major contributors and

non-human biological sources are not found to be significant.

The following chapters were written as stand-alone papers with their own intro-

duction, methods, results, discussion and conclusion sections.
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Chapter 2

Outside inuences on the water

column of Cumberland Sound,

Ba�n Island

Cumberland Sound, host to a commercially viable fish population in the deepest

depths, is a large embayment on the southeast coast of Baffin Island that opens

to Davis Strait. Conductivity, temperature and depth profiles were collected dur-

ing three summer field seasons (2011-2013) and two moorings were deployed during

2011-2012. Within the sound, salinity increases with increasing depth while water

temperature cools reaching a minimum of −1:49 �C at roughly 100 m. Below 100

m, the water becomes both warmer and saltier. Temperature-salinity curves for each

year followed a similar pattern, but the entire water column in Cumberland Sound

cooled from 2011 to 2012, then warmed through the summer of 2013. Even though

the sound’s maximum depth is over a kilometre deeper than its sill, water in the

entire sound is well oxygenated. A comparison of water masses within the sound and

in Davis Strait shows that, above the sill, the sound is flooded with cold Baffin Island

Current water following an intermittent geostrophic flow pattern entering the sound

along the north coast and leaving along the south. Below the sill, replenishment

is infrequent and includes water from both the Baffin Island Current and the West

Greenland Current. Deep water replenishment occurred more frequently on spring

tides, especially in the fall of 2011. Although the sound’s circulation is controlled by

outside currents, internal water modifying processes occur such as estuarine flow and

wind-driven mixing.
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2.1 Introduction

The tight link between physical and biological processes found in Arctic aquatic

ecosystems (Dayton et al., 1994) creates an environment where even subtle hydro-

graphic changes can profoundly impact local biological activity (Carmack and Wass-

mann, 2006). Located on the cusp of the Arctic Circle, Cumberland Sound’s benthic

ecosystem is especially vulnerable to change. Currents containing water from both

the Pacific and Atlantic Oceans cross the sound’s mouth (Jones et al., 2003), while its

shallow sill is poised to cut off most of the water column. However, a kilometre below

the depth of the sill, a permanent population of Greenland Halibut (Reinhardtius

hippoglossoides) reside (Peklova et al., 2012). These fish are harvested in the only

community-run commercial Greenland Halibut fishery in Nunavut, providing needed

economic support to the small Inuit community of Pangnirtung. In addition, this fish-

ery is being used as a model to create similar fisheries in other northern communities.

As we will show, Cumberland Sound is periodically renewed by intrusions of dense,

mixed shelf water supplying oxygen to support the Greenland Halibut and their as-

sociated ecosystem. The sound’s renewal dynamics depend on the temperature and

salinity of the currents passing across Cumberland Sound’s mouth. As these currents

change with our changing climate (Steiner et al., 2013), the sound’s ecosystem will

also change.

Previous observations of physical water properties within Cumberland Sound are

sparse: a naturalist from the Smithsonian spent a winter there in 1877-78 (Kumlien,

1879) observing the flora and fauna while taking meteorological measurements, and

in 1952, Dunbar (1958) sampled temperature and salinity at three stations across the

mouth of the sound. Dunbar found a temperature minimum around 100 m and no

evidence of geostrophic flow in and out of the sound. Since 1952, no further sam-

pling has been reported. Even though no oxygen measurements have been previously

reported in Cumberland Sound, based on the existence of a bottom dwelling popula-

tion of Greenland Halibut in the sound (Peklova et al., 2012), we can assume that the

deepest regions are not hypoxic. However, oxygen levels may be low, as Greenland

Halibut have been found in regions with 18–25% oxygen saturation and can survive

down to 15% in laboratory studies (Dupont-Prinet et al., 2013).

Cumberland Sound opens to southwestern Davis Strait (Figure 2.1) where roughly

equal quantities of Pacific- and Atlantic-origin water transit heading south (Jones

et al. 2003; Lique et al. 2010). Several properties distinguish these water masses.
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Pacific origin water is colder and fresher than the warmer, saltier Atlantic origin

water (Jones et al., 2003). Additionally, Pacific origin water contains less nitrate

than Atlantic water creating different relationships between nitrate and phosphate,

a ratio which is conserved and can be used to identify a water mass origins (Jones

et al., 1998). Due to higher sea levels in the Pacific, water flows from the Pacific

across the Arctic Ocean to the Atlantic (Carmack, 2007). Once in the Arctic Ocean,

Pacific water flows east along the north coast of North America (Rudels 2012; Hu

and Myers 2013), before passing through the Canadian Arctic Archipelago’s (CAA)

maze of channels (Prinsenberg and Bennett 1989; Jones et al. 2003; McLaughlin et al.

2004; Michel et al. 2006; Rudels 2012). This flow exits into Baffin Bay, a large body of

water between northern Baffin Island, southern Ellesmere Island and the west coast

of Greenland, joining the cyclonic flow pattern within the bay (Tang et al. 2004; Cuny

et al. 2005).

Once in Baffin Bay, Pacific and Arctic Ocean origin water mix, becoming ‘Arctic

Water’ (AW) (Cuny et al. 2005; Curry et al. 2014). AW (� ≤ 2 �C and S ≤ 33.7 g

kg�1) remains in the surface layer (< 300 m) incorporating winter cooling remnants

in a temperature minimum around 100 m (Tang et al., 2004). On the Greenland

side of Baffin Bay, denser Atlantic-origin water moves away from the coast, sliding

beneath the colder, but lighter AW (Bacle et al., 2002) becoming Transitional Water

(TrW) (� > 2 �C and S > 33:7 g kg�1) (Cuny et al. 2005; Curry et al. 2014). With

an interface around 300 m, these two layers flow south, hugging Baffin Island, as the

Baffin Island Current (BIC). Some of the southward flowing BIC water recirculates

north of Davis Strait (e.g. Myers and Ribergaard 2013; Gladish et al. 2015). The

BIC ultimately crosses Cumberland Sound’s mouth (Tang et al., 2004; Curry et al.,

2014) (Figure 2.1).

Flowing north along the Greenland coast through Davis Strait into Baffin Bay, is

the West Greenland Current (WGC). This current carries two distinct water masses

flowing side-by-side (Curry et al., 2014). Arctic origin ‘West Greenland Shelf Water’

(WGSW) (� < 7 �C and S < 34:1 g kg�1) flows along the Greenland coast. Adjacent

to the WGSW along the West Greenland slope, flows West Greenland Irmiger Water

(WGIW) (� > 2 �C and S > 34:1 g kg�1) of Atlantic origin. At the southern edge of

Davis Strait the WGC splits, with one part continuing north through the strait and

the other part turning westward (Cuny et al. 2002; Fratantoni and Pickart 2007; Myers

et al. 2009) (Figure 2.1). The westward arm crosses Davis Strait before circulating

southward adjacent to the BIC roughly 100 km away from Cumberland Sound’s mouth




