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Abstract: One of the tools and techniques concerned with the stability of nonlinear waves is the Evans
function which is an analytic function whose zeros give the eigenvalues of the linearized operator.
Here, in this paper, we propose a direct approach, which is based essentially upon constructing the
eigenfunction solution of the perturbed equation based upon the topological invariance in conjunction
with usage of the Legendre polynomials, which have presumably not considered in the literature
thus far. The associated Legendre eigenvalue problem arising from the stability analysis of traveling
waves solutions is systematically studied here. The present work is of considerable interest in the
engineering sciences as well as the mathematical and physical sciences. For example, in chemical
industry, the objective is to achieve a great yield of a given product. This can be controlled by
depicting the initial concentration of the reactant, which is determined by its value at the bifurcation
point. This analysis leads to the point separating stable and unstable solutions. As far as chemical
reactions are described by reaction-diffusion equations, this specific concentration can be found
mathematically. On the other hand, the study of stability analysis of solutions may depict whether
or not a soliton pulse is well-propagated in fiber optics. This can, and should, be carried out by
finding the solutions of the coupled nonlinear Schrödinger equations and by analyzing the stability
of these solutions.

Keywords: staionary waves (pulses) and wave fronts; Evans function; exponential dichotomies;
Legendre functions and Legendre polynomials; associated Legendre polynomials; Jacobi elliptic
functions; associated Legendre eigenvalue problem; traveling wave solutions

MSC: primary 33C45, 34A08, 35J99; secondary 33E05, 35A20, 35A22

1. Introduction

In what follows, we distinguish between stationary waves (pulses) and wave fronts. A traveling
wave Q(z) (z = x− ct) is a front if it travels at speed c 6= 0 and

lim
z→±∈

Q(z) = Q±.
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On the other hand, for a stationary pulse (with c = 0) and

lim
z→±∈

Q(z) = Q0.

In order to determine the stability of the solutions of a given partial differential equation,
we linearize it about the wave solution. Then, with a view to recognizing the stability, it suffices
to determine that the spectrum in the left-half plane (<(α) < 0) corresponds to stable places and
that the spectrum in the right-half plane (<(α) > 0) corresponds to unstable places. There are many
applications of the Legendre polynomials as they arise in mathematical models of the heat conduction
and fluid flow problems in spherical coordinates. The novelty of the proposed method via the finding
of the eigenvalues exactly is shown in Section 4. This is the advantage of our proposed method over a
previous method (see, for details [1]).

This paper is constructed as follows. It is devoted to a systematic study of the stability of traveling
waves through the use of the exponential dichotomies and the Evans function. In Section 2, we will
discuss the stability of pulses. In Section 3, we illustrate the results by considering two examples.
In Section 4, we will introduce the direct approach for analyzing the stability of traveling wave
solutions and compute the eigenvalues for the associated Legendre equation arising from the stability
analysis of traveling waves after making a convenient transformation. Finally, conclusions will be
presented in Section 4.

We first introduce the stability analysis of these waves by using exponential dichotomies.

1.1. Exponential Dichotomies

First of all, we consider the following set of first-order ordinary differential equations:

d~u
dz

= A(α)~u
(
~u = (u1, u2, · · · , un)

T
)

, (1)

where
A =

(
aij(α)

)
n×n,

~u ∈ Rn or ~u ∈ Cn

and
A ∈ Rn×n or A ∈ Cn×n.

If the eigenvalues of the matrix A have nonzero real parts, then the space Rn or Cn is split into
two stable or unstable eigenspaces according to whether the real parts of the eigenvalues are negative
or positive, respectively. Equation (1) has an exponential dichotomy on a subspace of R with the
following evaluation:

φ(z, z0) = eA(α)(z−z0),

where
u(z) = φ(z, z0)u(z0).

Now, for the Equation (1), we have

d~u
dz

= A(z)~u and A ∈ C0 (I,Cn×n) , (2)

where
I = R+ (or R− or R).

A fundamental set of solutions of the Equation (2) is a set of n linearly independent vectors
~u1(z),~u2(z), · · · ,~un(z). The square matrix K(z), which is constructed with columns consisting of the
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vectors ~u1(z),~u2(z), · · · ,~un(z), is the fundamental matrix of the differential Equation (2). We then
have the following representation (see [2]):

~u(z) = K(z)[K(z0)]
−1 ~u0 (3)

and
detK(z) = detK(z0)e

∫ z
z0

TrA(Z)dZ, (4)

where
~u0 = ~u(z0).

Equation (4) for the determinant of the fundamental matrix may serve as an introductory definition
of the Evans function.

1.2. Evans Function

The Evans function is an important tool for studying and investigating the stability of nonlinear
waves (see, for example, [3,4]). The Evans function is an analytic function whose zeros correspond
exactly, in location and multiplicity, to the eigenvalues of the linearized operator. The Evans function
was first formulated by Evans for a specific class of systems and is a generalization which is suited
for systems of partial differential equations of the transmission coefficient from quantum mechanics
(see, for details, [5–7]). Evans paid remarkable attention toward studying the stability of nerve
impulses, which he then classified as the category of nerve impulse equations. This class has an
important property that leads naturally to the formulation of blue the Evans function in a clear and
straightforward manner. The D(α) notation was used by Evans to refer to the determinant which,
in fact, played the same role as the determinant of an eigenvalue matrix in problems of finite dimensions.
Jones in [8] applied the stability of the traveling pulse (nerve impulse) of the Fitzhugh-Nagumo system
by following Evans’ idea. In fact, Jones gave the name “Evans function" as well as the notation E(α)
which is now in common usage. The authors in [9] presented the first general definition of the Evans
function E(α), which is based upon the idea of Evans, with its placement in a new conceptual form to
clearly give a general definition.

We consider the following eigenvalue problem:

d~u
dz

= A(z; α)~u
(
~u ∈ Rn (or Cn); − ∈< z <∈

)
(5)

and assume that (5) is rewritten in the form given by

d~u
dz

=
(

A0(α) + A1(z)
)
~u. (6)

Firstly, we consider the following equation:

d~u
dz

= A0(α)~u
(
α ∈ R (or C)

)
(7)

and assume that the eigenvalues of A0(α) are β1(α), β2(α), · · · , βn(α) and that the corresponding
eigenvectors are γ1(α), γ2(α), · · · , γn(α). Whenever <(β j) 6= 0 and the β j are distinct for j = 1, · · · , n,
the space Cn is represented as follows:

Cn = Es ⊕ Eu.

We assume that
<(β j) < 0 (j = 1, · · · , k)

and that
<(β j) > 0 (j = k + 1, · · · , n),
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while
Es = {~uj(α) and <

(
β j(α)

)
< 0 (j = 1, · · · , k)}

and
Eu = {~uj(α) and <

(
β j(α)

)
> 0 (j = k + 1, · · · , n)}.

Solutions belonging to Es are bounded as z→∈, while the solutions belonging to Eu are bounded
as z → − ∈ . We may then label these solutions as u+

j (α) or u−j (α), according to whether they are
bounded as z→∈ or z→ − ∈ . Also, these solutions satisfy the following limit relationship:

lim
z→±∈

~u±j (z, α)eβ∓(α)z = γ∓. (8)

We mention that there exist a set of values α0 and a common subspace of Es and Eu such that

lim
z→±∈

~u(z, α0) = 0.

We now give the following definition.

Definition 1. α = α0 ∈ C is an eigenvalue of (5) if the following condition holds true:

lim
z→±∈

~u±j (z, α0) = 0. (9)

We mention here that the values of α, which satisfy the equation <
(

β j(α)
)
= 0 determines the

essential spectrum of the Equation (5).
The spectrum of the Equation (5) generally consists of the pure point spectrum, isolated

eigenvalues of finite multiplicity, and the essential spectrum. The essential spectrum is contained
within the parabolic curves of the continuous spectrum (see [10]). In many cases, the essential spectrum
can be shown to be contained in the left-half complex plane and hence does not contribute to linear
instability. Now, we search for solutions of the Equation (5), namely

d~u±i
dz

= A(z, α)~u±, (10)

together with the boundary conditions given by

lim
z→±∈

u(z, α0) = 0.

The Evans function is defined after the solutions of (11) as follows:

E(α) = e−
∫ z

0 TrA(Z,α)dZdet
(
u+
` (α, z), u−j (α, z)

)
, (11)

where ` = 1, · · · , k and j = k + 1, · · · , n. As a consequence of Abel’s formula, the Evans function E(α)
given by (11) is independent of z and E(0) = 0. By fixing the orientation of the orthonormal basis of
the subspaces Es and Eu, the Evans function can be made unique and the following theorem holds
true (see [2,6,9,11]).

Theorem 1. The Evans function E(α) is analytic on {<(α) = 0} and satisfies the following properties:

(i) E(α) ∈ R whenever α ∈ {<(α) = 0}.
(ii) E(α) = 0 if and only if α is an eigenvalue of (5).

(iii) The order of α∗ as a zero of the Evans function E(α) is equal to the algebraic multiplicity of α∗ as an
eigenvalue of (5).

In applications, one finds that TrA(z, α) = 0, so that the Evans function E(α) reduces to
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E(α) = det
(
~u−(z, α),~u+(z, α)

)
.

The importance of the manner in which the Evans function E(α) is constructed is seen by the
following argument. Suppose that E(α0) = 0 for some α0. It is then clear that

~u−(α0, x) = γ ~u+(α0, x)

for some γ ∈ C. Hence, clearly, there is a localized solution of the Equation (10) when α = α0,
such that α0 is an eigenvalue. Similarly, if α0 is an eigenvalue, then it is not difficult to convince oneself
that E(α0) = 0. In general, the Equation (11) is not explicitly given as a function of α. It is then necessary
to evaluate the Evans function numerically (see, for details, [1,12–16]). In this case, the boundary
conditions for the Equation (10) are approximately used at infinity by approximating the boundary
conditions (see [17]). An alternative approximation is to set the Equation (10) on a bounded domain,
namely, on L−∈ 5 z 5 0 and 0 5 z 5 L∈, and then impose the exact asymptotic boundary conditions
for boundedness of the solution of the Equation (10) at these finite end-points. The use of approximate
boundary conditions usually has a dramatic impact on the essential (continuous) spectrum (see [18]).
One of the most useful numerical techniques is the exterior numerical computations of discrete
eigenvalues of the Equation (10), which has no effect on the essential spectrum (see [18]). In this case,
the exact boundary conditions are applied at finite values L±∈, which are taken to be sufficiently large
(see [19]). In the extended space of exterior products, the Equation (11) becomes

d~U±

dz
= A(k)(z, α)~U± and U±(z, α)|z→L±∈ = b(α) ∈ ∧k(Cn), (12)

where

A(k)U =
k

∑
j=1

u1 ∧ · · · ∧ Au1 ∧ · · · ∧ uk (13)

and
(~u1 ∧ ~u2) = det(~u1,~u2). (14)

The Evans function E(α) is defined here as follows:

E(α) = e−
∫ z

0

(
TrA(2)

(
Z,α)
)

dZ(~U+ ∧ ~U−). (15)

After the above fundamental theorem on the Evans function E(α), we give the following definition.

Definition 2. A traveling wave is said to be linearly unstable (or spectrally unstable) if, for some α0 ∈ C with
<(α0) > 0, there exits a solution of (5) which satisfies the following limit relationship:

lim
z→±∈

u(z, α0) = 0.

2. Stability of Stationary Traveling Waves (Pulses)

Consider the following reaction-diffusion equation:

ut = uxx + f (u). (16)

For the steady-state solution, we have

ut = 0 or u := u0(x),
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which satisfies the following condition:

u
′′
0 + f (u0) = 0. (17)

We assume that
f (u0) = au + f0(u),

where f0(u) is a polynomial at least of degree 2 in u. Exact solutions of the Equation (17) are given in
terms of Jacobi elliptic functions if f (u) is a polynomial of degree up 6 in u. In general, if the terms of
pulse solutions, this Equation (17) admits a solution of the following form:

u0 =

2
n−1

∑
j=0

αj [tanh(kx)]j or u0 =

2
n−1

∑
j=0

β j [sech(kx)]j, (18)

where 2/(n − 1) is assumed to be a positive integer and n is the degree of f0(u). Specially,
if f0(u) = bun, where b is a constant, then (16) and (17) become

ut = uxx + au + bun and u
′′
0 + au0 + bun

0 = 0. (19)

We mention that, if in the first equation in (19), we confine ourselves to solutions u = 0, then
the results of this section show that the necessary condition for traveling wave generation is a > 0
and b < 0 or a < 0 and b > 0. In the case when a < 0 and b > 0, the second equation in (19) admits
the solution

u0(x) = α[sech(kx)]
2

n−1 (n > 1), (20)

where

k2 = − a(n− 1)2

4
and α = (

2k2(n + 1)
b(n− 1)2 )

1
n−1 .

But, if a > 0 and b < 0, then (19) has the solution given by

u0(x) = [a0 + b0 tanh2(kx)]
1

n−1 , n > 1, (21)

where a0, b0 and k satisfy an over determined set of algebraic equations.
When solving these equations, we find that solutions in the form (21) exist only when n = 2 or

n = 3 and are given by

u0(x) =
a
|b|

(
− 1

2
+

3
2

tanh
(

x
√

a
2

))
(n = 2) (22)

and

u0(x) =
√

a
|b|

(
−2

3
+ 2 tanh(

√
a x)

) 1
2

(n = 3). (23)

We now introduce a perturbation around the solution u0(x) as follows:

u(x, t) = u0(x) + εU(x)eαt + O(ε2), (24)

with |ε| � 1. Upon substituting from (24) into (16), we find, up to first order in ε, that

U
′′ − (α− a)U +

∂ f0(u0)

∂u0
U = 0. (25)
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We remark that

lim
x→±∈

∂ f0(u0)

∂u0
= 0.

Equation (25) is a Sturm-Liouville eigenvalue problem. Our aim now is to find α0, where

lim
x→±∈

U(x, α0) = 0.

We note that α = 0 is an eigenvalue of (25), because, if we differentiate the second equation of (19)
with respect to x, it becomes

u
′′′
0 + au

′
0 + nun−1

0 u
′
0. (26)

We then find that (26) satisfies (25) with U = u
′
0 and α = 0. This is a result of the fact that (20)

is translationally invariant (see [20]). We assume that U
′
= V and construct the system of equations

given by
d~u
dx

= A0(α)~u + A1(x)~u, (27)

where
~u = (U, V)T ,

A0(α) =

(
0 1

α− a 0

)
and

A(x) =

(
0 0

− ∂ f0(u0)
∂u0

0

)
.

An important remark is that

trace
(

A0(α) + A1(x)
)
= 0,

which is independent of x and α. To continue our investigation, we distinguish two cases: a < 0 or
a > 0. Firstly, we assume that a < 0 (a = −a0, a0 > 0) and in (27) and that α + a0 > 0. If α + a0 < 0 or
α < −a0, then the solution is stable.

3. A Set of Examples

If, in (19), we set a = −1, b = 2 and n = 3, then the Equation (19) becomes

ut = uxx − u + 2u3 and U
′′
0 − u0 + 2u3

0 = 0 (28)

and the Equation (25) becomes
U
′′
0 − (α + 1)U + 6u2

0U = 0. (29)

The stability of the stationary pulse is determined by the spectrum of the following operator:

∂xx − 1 + 6[u0(x)]2.

This spectrum consists of a point spectrum of isolated eigenvalues and an essential spectrum (see,
for details, [21,22]). Because, for the stationary solution u0(x) → 0 as x → ± ∈, the location of the
essential spectrum on the spectral plane follows from considering the limits of the operator ∂xx − 1.
On looking for modal solutions exp(αt + iωx), it follows that the essential spectrum is given by

{α : α ∈ C and α = −w2 − 1 for some ω ∈ R}.
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Upon solving for ω, we obtain
ω± = ±

√
−1− α,

which shows how the spatial wave-numbers ω± depend on the temporal growth rate α. The absolute
spectrum given by

{α : α ∈ C and <(ω+) = <(ω−)} = {α : α ∈ R and α 5 −1}

consists of all points α for which the corresponding spatial wave-numbers ω+ and ω− have the same
real part. The transition to instability occurs when a discrete eigenvalue moves from the left-half plane
to the right-half plane.

A stationary pulse solution of the Equation (28) corresponds to a so-called “localized” solution
u0(x) of the Equation (19) and it is (20). Thus, clearly, the Equation (20) reduces to

u0(x) = sech(x).

Consequently, A0(α) and A1(x) become

A0(α) =

(
0 1

α + 1 0

)
and A1(x) =

(
0 0

−6 sech2(x) 0

)
, (30)

respectively.
We now show how the Evans function E(α) can be used in order to deduce the same conclusion.
It is important to note here that

lim
x→±∈

A1(x) = 0

and that the decay is exponentially fast. For the rest of this discussion, it will be assumed that

<(α) = −1.

The eigenvalues of A0(α) are given by

β±(α) = ±
√

1 + α, (31)

and the associated eigenvectors are as follows:

γ±(α) =
(
1, β±(α)

)T . (32)

One can construct solutions ~u(α, x) of the Equations (27) and (30), which satisfy the following
limit relationship:

lim
x→±∈

~u±(α, x)e−β∓(α)x = γ∓(α). (33)

It is noted that the construction implies that

lim
x→±∈

|~u(α, x)| = 0.

The Evans function E(α) is given by

E(α) = det(~u−,~u+)(α, x) (34)

and, by Abel’s formula, it is independent of x, namely, the Wronskian of ~u− or ~u+ is given by

W(U±, V±) = c,
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where c constant and
~u± = (U±, V±).

Now, the bases of the stable and unstable subspaces can be determined numerically in
the following manner. We calculate the eigenvalues of A0(α) with negative real part and their
corresponding eigenvectors. Then, by choosing a sufficiently large number L, we solve the following
homogeneous equation:

d~u+

dx
=
(

A0(α) + A1(x)
)
~u+

in [0, L] starting from the right-end point with the initial condition given by

~u(L) = γje
β j L (j = 1, · · · , k).

Hence, we obtain linearly independent (approximate) solutions of the differential equation.
Therefore, their values at x = 0 give a basis for Es. Similarly, by solving the differential equation in
[−L, 0], we obtain a basis of Eu and the determinant defining the Evans function can be computed.
The Evans function for the Equation (28) is shown in Figure 1, where we find that the Evans function
has two discrete eigenvalues at α = 0 and α = 3. Thus, the spectrum is given as mentioned above.

-1 1 2 3 4
Α

-0.20

-0.15

-0.10

-0.05

0.05

DHΑL

Present method

Previous method

Figure 1. Numerical evaluation of the Evans function E(α) for the Equation (28).

We now consider a = −1, b = +1 and n = 2 in (19), so that

ut = uxx − u + u2, u
′′
0 − u0 + u2

0 = 0 (35)

and
u0(x) =

3
2

sech2
( x

2

)
.

Consequently, A0(α) and A1(x) become

A0(α) =

(
0 1

α + 1 0

)
and A1(x) =

(
0 0

−3 sech2 ( x
2
)

0

)
, (36)

respectively.
The Evans function E(α) is computed numerically for the Equation (35) and is shown in Figure 2.

We find from Figure 2 that the Evans function E(α) has three discrete eigenvalues at α = − 3
4 , α = 0

and α = 5
4 . Since there exists a positive eigenvalue for the Evans function E(α) of the linearized

stability problem for a pulse solution of (24), therefore, this pulse solution is unstable. It is also
appropriate to compare our analytical and numerical results with the results in [1]. We can thereby see
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an excellent agreement between the results developed in this article and the earlier results in [1].

-1 1 2 3
Α

-0.10

-0.05

0.05

0.10

DHΑL

Present method

Previous method

Figure 2. Numerical evaluation of the Evans function E(α) for the Equation (35).

4. A Direct Approach for Analyzing the Stability of Traveling Wave Solutions

Here, in this section, we present an approach for solving the Sturm-Liouville problem arising
from a stability analysis for traveling waves. The idea behind this approach is inspired by some results
for the Legendre functions and the Legendre polynomials (see also the recent investigations [23,24]
involving applications of the substantially more general Jacobi polynomials).

The Legendre operator is given by

L̂ =
d

dx
(1− x2)

d
dx

= (1− x2)
d2

dx2 − 2x
d

dx
.

We consider the following eigenvalue problem:

L̂u = αu (37)

or, equivalently,
(1− x2)u

′′ − 2xu
′
= αu. (38)

This equation has regular singular points at x = ±1. However, if

α = −n(n + 1) (n = 0, 1, · · · ),

then the solution of the Equation (37) or (38) is finite as x → ±1. In this case, the solution of (32) is
known as a Legendre polynomial Pn(x). We also note that α = 0 is an eigenvalue of the problem (38).

We now consider the associated Legendre operator

L̂a = (1− x2)
d

dx
(1− x2)

d
dx

and consider the following eigenvalue problem:

L̂au = αu. (39)

We note that x = ±1 are regular singular points of (39). The solution of (39) is finite as x → ±1
if α = 0, so that α = 0 is an eigenvalue of (39). In order to find the relationship between the stability
analysis and the results for the Legendre functions, we consider the general example given by the
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Equation (19). Thus, for instance, we assume that a < 0 and b > 0, so that the solution u0(x) of the
second equation in (19) is given by

u0(x) = α[sech(kx)]
2

n−1 (n > 1), (40)

where

k2 = − a(n− 1)2

4
and α =

(
2k2(n + 1)
b(n− 1)2

) 1
n−1

.

Now, the perturbed equation for (19) is given by

U
′′ − (α + |a|)U +

|a|n(n + 1)
2

sech2(kx)U = 0. (41)

By using the transformation ξ = tanh(kx), (41) becomes

(1− ξ2)
(
(1− ξ2)U̇

)̇
− 4(α + |a|)
|a|(n− 1)2 U +

2n(n + 1)
(n− 1)2 (1− ξ2)U = 0 (42)

(
U̇ =

dU
dξ

; −1 < ξ < 1
)

.

Equation (42) has two regular singular points at ξ = ±1. In the original variable x, they correspond
to x → ± ∈ and are regular singular points of (19). Indeed, (42) can be written in the form:

(1− ξ2)Ü − 2ξU̇ − 4(α + |a|)
|a|(n− 1)2(1− ξ2)

U +
2n(n + 1)
(n− 1)2 U = 0. (43)

Equation (43) has the solution given by

U(ξ, α) = a0P±δ
β (ξ), β = −1

2
± 3n + 1

2(n− 1)
, δ =

2
n− 1

√
α + |a|
|a| (44)

In the Equation (44), the finite solutions require that β = n+1
n−1 and δ are positive integers. We

search now for solutions of (44) which satisfy the following limit relationship:

lim
ξ→±1

U(ξ, α) = 0.

This condition determines the solution of the eigenvalue problem (41). We remark that this
solution does not depend on the coefficient of the nonlinear term in (19), namely, b.

If β = n+1
n−1 is a positive integer, then we find from the properties of associated Legendre

polynomials that
Pδ

β(ξ) = 0 (δ > β)

or

α > |a| (n + 3)(n− 1)
4

.

The finite solutions of (42) as ξ → ±1 (or x → ± ∈) are given by

U = a0Pδ
β (δ 5 β),

where δ and β are integers and a0 is a constant. The required values of α are determined by the
following equation:

2
n− 1

√
α + |a|
|a| = δ = 0, 1, 2, · · · ,

n + 1
n− 1

. (45)



Appl. Sci. 2020, 10, 846 12 of 16

Among the values of α which satisfy (45), we select the values which satisfy the eigenvalue
condition. To make these results clear, we consider the following special cases:

(I) If n = 3, a = −1 and b = 2, the first equation in (19) becomes the Newell-Whitehead
equation. Then, from (45), we obtain α = −1, 0, 3. The corresponding eigensolutions are
given, respectively, by

U1 = a0(3ξ2 − 1),

U2 = a0ξ
√

1− ξ2

and
U3 = a0(1− ξ2).

We remark that the above results for α are exactly the zeros of the Evans function E(α) which we
have found numerically (see Figure 1). But α = −1 is not an eigenvalue as the corresponding solution

U1 = a0(3ξ2 − 1)

does not satisfy the eigenvalue condition. Thus, clearly, the only eigenvalues are α = 0 and α = 3,
so that the solution is unstable. To examine the effects of varying the parameter a, we take a = −4,
n = 3 and b = 2. We find that the values of α such that finite solutions as x → ± ∈ exist are α = −4 or
α = 9, besides α = 0, with eigensolutions given by

U1 = a0(1− 3ξ2),

U2 = a0(1− ξ2)

and
U3 = a0ξ(1− ξ2)

1
2 .

We find again that α = −4 is not an eigenvalue. Thus, the effect of increasing |a| is that the
positive eigenvalue shifts to the right on the α-axis.

(II) If n = 2, a = −1 and b = 1, then (19) becomes the Fisher equation.

From (45), we find that α = −1, −3/4, 0, 5/4. The corresponding eigensolutions are

U1 = a0ξ(5ξ2 − 3),

U2 = a0(1− ξ2)
1
2 (5ξ2 − 1),

U3 = a0ξ(1− ξ2)

and
U4 = (1− ξ2)

3
2 .

Here, α = −1 is again not an eigenvalue, while α = − 3
4 , 0, 5

4 are eigenvalues and they are
exactly the zeros of the Evans function E(α) (see Figure 2). We remark that the solution of the
Sturm-Liouville eigenvalue problem for (19) is too simple, because it is directly related to the associated
Legendre polynomials.

We summarize these results in the following table. We fix the value a = −1 and b is any arbitrary
positive real number.

From Table 1, we remark that the number of real eigenvalues for the Equation (41) is (n+ 1)/(n− 1).
We now present an approach which may enable us to treat general problems. It is based mainly on
polynomial solutions of differential equations (or truncation of the series solution).
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Table 1. Special cases for the non-eigenvalue and eigenvalue which satisfied the eigenvalue condition
and then it is the zeros of the Evans function E(α).

The Case Values of α Where Eigensolutions Eigenvalues Where
limξ→±∈U(ξ, α) Exists limξ→±∈U(ξ, α) = 0

n = 3
−1 U1 = a0P0

2 -
0 U2 = a0P1

2 0
3 U3 = a0P2

2 3

n = 2

−1 U1 = a0P0
3 -

−3/4 U2 = a0P1
3 −3/4

0 U3 = a0P2
3 0

5/4 U4 = a0P3
3 5/4

n = 3/2

−1 U1 = a0P0
5 -

−15/16 U2 = a0P1
5 −15/16

−3/4 U3 = a0P2
5 −3/4

−7/10 U4 = a0P3
5 -

0 U5 = a0P4
5 0

9/16 U6 = a0P5
5 9/16

We should remark that, in order to obtain the solution of (43) in the form of the associated Legendre
polynomials, the solution expansion is taken near the regular point ξ = 0. In what follows, the solution
expansions are taken near a regular singular point at either plus or minus infinity (x = ± ∈). In the
Equation (40), we assume that sech(kx) = γ, so that it becomes

γ2(1− γ2)Ü + γ(1− 2γ2)U̇ − 4(α + |a|)
|a|(n− 1)2 U +

2n(n + 1)
(n− 2)2 γ2U = 0 (0 < γ < 1). (46)

In connection with the Equation (46), we remark that γ = 0, ± 1 are regular singular points and
γ = 0 corresponds to x → ± ∈, which are regular singular points. We search for solutions of (46) in
the form of

U =
∈
∑

m=0
anγm+d.

The indicial equation gives rise to

d = ± 2
n− 1

√
α + |a|
|a| .

Here a0 is arbitrary, while a1 = 0. In order to obtain finite solutions, we take the upper sign in the
last equation for d. The general recursion formula is given by[

(m + d)2 − 4(α + |a|)
|a|(n− 1)2

]
am

−
[
(m + d− 1)(m + d− 2)− 2n(n + 1)

(n− 1)2

]
am−2 = 0 (m = 2), (47)

where

d =
2

(n− 1)

√
α + |a|
|a| (α > −|a|).

Equation (47) admits a polynomial solution if there exists an integer m = 2 and d > 0 such that
the coefficient of am−2 vanishes. This holds true for

d + m =
3n− 1
n− 1

. (48)
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Certainly, when analyzing the Equation (47) by taking

m = 2, 4, · · · and 2k <
3n− 1
n− 1

,

we find the same results as before. So, instead, we can find results from (47) and (48).
In view of (47), we have a lower bound for α and from (47) we obtain the least upper bound for α

(or the dominant value of α), namely, α0 when m = 2. This is true because, for m > 2, the values of d
decrease, and then α decreases. In fact, when m = 2, we obtain

α0 = |a| (n + 3)(n− 1)
4

and the following result holds true:

− |a| < α 5 |a| (n + 3)(n− 1)
4

. (49)

The last result suggests the introduction of the following general localization concepts of
eigenvalues of the Sturm-Liouville problem.

We now define what is meant by a dominant eigenvalue and a dominant solution. A dominant
eigenvalue α0 is the least upper bound of the eigenvalues α 5 α0. A dominant solution is a solution
which corresponds to a dominant eigenvalue α0. In the solution expansion near a regular singular
point, we conjecture that a dominant solution is obtained at the lowest-order truncation of the series,
namely, at m = 2. Consequently, the dominant eigenvalue is determined by the solution of the
recursion formulas for m = 2. We return to (47) in order to check that we get the same results found
previously. To this end, we reconsider the same examples.

For n = 3, a = −1 and b = 2, we find that (48) gives

m = 4−
√

1 + α = 2.

For m = 2 and m = 4, we have α = 3 and α = −1, respectively. For n = 2, a = −1 and b = 1,
(48) gives rise to

m = 5− 2
√

1 + α = 2.

Thus, we obtain α = − 3
4 , 5

4 for m = 2, 4, respectively. The corresponding eigensolution can be
obtained as well.

We remark that we have obtained the same results as above. On the other hand, polynomial
solutions found through an expansion near a regular singular point gives rise to values of α 6= 0.
We mention that, when analyzing the stability of pulse solutions of the first equation in (19) when
a > 0 and b < 0, we find that the eigenvalues are non-positive. These solutions are then stable.

5. Conclusions

In our present investigation, we have studied the stability analyses of traveling wave solutions
(pulses) for a single reaction-diffusion equation. This stability has been studied here by using the Evans
function E(α) and a direct approach. We have successfully recovered the results which are known in
the literature on the stability of solutions of a single reaction-diffusion equation. The numerical results
presented in this article have been computed with the aid of Mathematica.

In view of the recent investigations on traveling waves, using fractional-order derivatives (see,
for example, [25–27]), which have successfully accomplished important advancements on the subject,
it is believed that these interesting situations can be treated adequately by the approach presented in
this article. Thus, remarkably, this work is capable of further motivating and advancing researches
on the subject dealt with in our present investigation. Moreover, in several other fields involving
wide-spread applications of various families of fractional-order derivatives in the study of the
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reaction-diffusion and other important equations of the mathematical and physical sciences, this
article may lead to the modeling and analysis of such interesting phenomena as the distributed
time-delay, the behavior of solutions in transition states, and so on. All such developments are
significantly meritorious and potentially useful in the engineering sciences as well (see also the related
recent works [28–30]).
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