
Network Intrusion Detection for Distributed Denial-of-Service (DDoS) Attacks
using Machine Learning Classification Techniques

by

Yasar Shahid Hussain
Honours Bachelor of Science (H.B.Sc.), University of Toronto, 2011

A Report Submitted in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF ENGINEERING

in the Department of Electrical and Computer Engineering

©Yasar Shahid Hussain, 2020
University of Victoria

All rights reserved. This report may not be reproduced in whole or in part, by
photocopying or other means, without the permission of the author.

ii

Network Intrusion Detection for Distributed Denial-of-Service (DDoS) Attacks
using Machine Learning Classification Techniques

by

Yasar Shahid Hussain
Honours Bachelor of Science (H.B.Sc.), University of Toronto, 2011

Supervisory Committee

Dr. T. Aaron Gulliver, Supervisor
(Department of Electrical and Computer Engineering)

Dr. Mihai Sima, Departmental Member
(Department of Electrical and Computer Engineering)

iii

Supervisory Committee

Dr. T. Aaron Gulliver, Supervisor
(Department of Electrical and Computer Engineering)

Dr. Mihai Sima, Departmental Member
(Department of Electrical and Computer Engineering)

ABSTRACT

Distributed Denial-of-Service (DDoS) is the number one cyber threat to the availability of busi-
ness networks, applications, and services [1]. DDoS is a malicious attempt to disrupt normal
traffic to a target server, service or network by overwhelming the target with illegitimate traf-
fic. The consequences can be devastating such as financial losses, loss of productivity, brand
damage, credit and insurance rating downgrades, compromised customer and supplier rela-
tionships, and IT budget overruns [2]. DDoS attacks continue to rise in complexity, volume
and frequency, threatening the network security of all enterprises, regardless of their size [1].
The number of DDoS attacks is predicted to almost double to 14.5 million in 2022 compared
to 2017 [3]. In 2017, the top motivations behind these attacks were criminals demonstrating
attack capabilities, gaming, and extortion [1].

There is a critical need to devise Network Intrusion Detection Systems (NIDSs) to accu-
rately predict DDoS attacks. In this work, supervised Machine Learning (ML) techniques are
evaluated using the CICDDoS2019 dataset which consist of 80 network traffic features with
benign (legitimate) traffic and 12 DDoS attacks [4]. This dataset was modified to create six
datasets with the 24 best features [4] to predict DDoS attacks and benign traffic by employing
undersampling and oversampling techniques. The ML algorithms evaluated are Bayesian Net-
work (BayesNet), Bootstrap Aggregating (Bagging), k-Nearest Neighbors (kNN), Sequential
Minimal Optimization (SMO), and Simple Logistic. The Waikato Environment for Knowl-
edge Analysis (WEKA) tool is used for implementing the ML algorithms using k-fold (k = 5)
cross validation. The evaluation metrics precision, recall, F-measure, True Positive Rate (TPR),
False Positive Rate (FPR), and execution time are determined for the six datasets. The results
obtained show that Bagging provides the best overall performance followed by kNN, BayesNet,

iv

SMO, and Simple Logistic. Further, the execution time is approximately linear with the dataset
size.

v

Contents

Supervisory Committee ii

Abstract iii

Table of Contents v

List of Tables vii

List of Figures viii

Abbreviations ix

Acknowledgements xi

Dedication xii

1 Introduction 1
1.1 Motivation . 5
1.2 Related Work . 6
1.3 Report Outline . 7

2 The Intrusion Detection System 8
2.1 Main Components of the System . 9
2.2 Features Used in the System . 10
2.3 Multi-label Classification Used in the System 11

3 Machine Learning 12
3.1 Types of Machine Learning Tasks . 12
3.2 Data Splitting . 13
3.3 The WEKA Workbench for Machine Learning 14

vi

3.3.1 Basic Concepts of WEKA . 14
3.4 Overview of the Machine Learning Classifiers 17

3.4.1 Bayesian Network (BayesNet) . 17
3.4.2 Bootstrap Aggregating (Bagging) . 17
3.4.3 k-Nearest Neighbors (kNN) . 17
3.4.4 Sequential Minimal Optimization (SMO) 18
3.4.5 Simple Logistic . 18

4 Performance Evaluation 19
4.1 CICDDoS2019 Dataset . 19
4.2 Evaluation Metrics . 21
4.3 Accuracy of the Classifiers . 22

4.3.1 DDoS_1 Dataset . 22
4.3.2 DDoS_2 Dataset . 23
4.3.3 DDoS_3 Dataset . 24
4.3.4 DDoS_4 Dataset . 24
4.3.5 DDoS_5 Dataset . 25
4.3.6 DDoS_6 Dataset . 25
4.3.7 BayesNet Across the Six Datasets . 26
4.3.8 Bagging Across the Six Datasets . 27
4.3.9 kNN Across the Six Datasets . 27
4.3.10 SMO Across the Six Datasets . 28
4.3.11 Simple Logistic Across the Six Datasets 28
4.3.12 Average Performance of the Classifiers 29
4.3.13 Comparison of Balanced and Imbalanced Datasets 30

4.4 Discussion . 30

5 Conclusions 31
5.1 Future Work . 31

Bibliography 33

vii

List of Tables

Table 1.1 Reflection-based and exploitation-based DDoS attacks. 4

Table 2.1 The feature set used in the Intrusion Detection System (IDS) [37]. . . . 10

Table 4.1 The hardware and software configuration. 19
Table 4.2 Number of instances of attributes in the CICDDoS2019 dataset [4]. . . . 20
Table 4.3 Six datasets obtained using undersampling and oversampling. 21
Table 4.4 Accuracy results for the DDoS_1 dataset. 23
Table 4.5 Accuracy results for the DDoS_2 dataset. 23
Table 4.6 Accuracy results for the DDoS_3 dataset. 24
Table 4.7 Accuracy results for the DDoS_4 dataset. 25
Table 4.8 Accuracy results for the DDoS_5 dataset. 25
Table 4.9 Accuracy results for the DDoS_6 dataset. 26
Table 4.10 Accuracy results for BayesNet across the six datasets. 26
Table 4.11 Accuracy results for Bagging across the six datasets. 27
Table 4.12 Accuracy results for kNN across the six datasets. 28
Table 4.13 Accuracy results for SMO across the six datasets. 28
Table 4.14 Accuracy results for Simple Logistic across the six datasets. 29
Table 4.15 Average performance of the classifiers across the six datasets. 29

viii

List of Figures

Figure 1.1 Distributed Denial-of-Service (DDoS) attack on a victim [7]. 2
Figure 1.2 Distributed Denial-of-Service (DDoS) attack taxonomy [9]. 3
Figure 1.3 Global DDoS attacks forecast, 2017-2022 [3]. 5

Figure 2.1 Signature-based and anomaly-based detection mechanisms [34]. 9

Figure 3.1 The two phases of a supervised learning algorithm [39]. 13
Figure 3.2 The WEKA Explorer Preprocess pane. 14
Figure 3.3 The WEKA Explorer Classify pane. 15
Figure 3.4 The WEKA Explorer Classify pane with classifier output. 16

ix

Abbreviations

AI Artificial Intelligence

API Application Programming Interface

DDoS Distributed Denial-of-Service

DNS Domain Name System

GUI Graphical User Interface

HIDS Host-based Intrusion Detection System

HTTP Hypertext Transfer Protocol

IDS Intrusion Detection System

IoT Internet of Things

IP Internet Protocol

IPS Intrusion Prevention System

IT Information Technology

kNN k-Nearest Neighbors

LDAP Lightweight Directory Access Protocol

ML Machine Learning

MSSQL Microsoft Structured Query Language

x

NetBIOS Network Basic Input/Output System

NIDS Network Intrusion Detection System

NTP Network Time Protocol

SIEM Security Information and Event Management

SMO Sequential Minimal Optimization

SMOTE Synthetic Minority Oversampling TEchnique

SNMP Simple Network Management Protocol

SSDP Simple Service Discovery Protocol

SVM Support Vector Machine

SYN Synchronize

TCP Transmission Control Protocol

TFTP Trivial File Transfer Protocol

UDP User Datagram Protocol

WEKA Waikato Environment for Knowledge Analysis

xi

ACKNOWLEDGEMENTS

First and foremost, I am very thankful to the Almighty Allah for letting me pursue and fulfill
my dreams. I would like to thank my parents from the bottom of my heart for their continu-
ous support throughout my educational and professional career. They have always supported
and encouraged me to do my best in all matters of life. They have made immense sacrifices
to provide a better life for me and my siblings. I will be forever in their debt. I would also
like to take this opportunity to thank my supervisor, Dr. T. Aaron Gulliver for his consistent
guidance and support during my educational career. Dr. Gulliver is a very kind, passionate,
and approachable person. Without his guidance and patience, this degree would not have been
possible. Thank you Dr. Gulliver! My heartfelt thanks to committee member Dr. Mihai Sima
and all the University of Victoria staff who contributed in various ways towards the successful
completion of this work. My wife Maheen Afridi for her patience and support throughout
my studies. My mentor Aman Bukhari for his mentoring, support, and encouragement. Mr.
Bukhari provided me with great advice that allowed me to progress in the right direction. Shah-
baz Ali, Malek Elgadi, Ahmed Elgarewi, Muhammad Naveed Jokhio, and Salahuddin Jokhio
for their time and support. Last but not the least, my friend Wasif Hasan Baig for ramping me
up on LATEX at the very last moment.

Yasar Shahid Hussain

xii

DEDICATION

To my mother and father for their sacrifices, prayers, support, and encouragement.
Thank you for believing in me.

Chapter 1

Introduction

The information age has had a huge impact on traditional industry similar to the industrial
revolution. This has allowed the Information Technology (IT) sector to flourish into a multi-
billion dollar economy globally. The world has started to see data as the new oil and oil is no
longer considered to be the most valuable resource [5]. Enterprises now profit by performing
analytics on data such as customer purchasing and voting habits. Governments and private
enterprises have invested heavily in IT infrastructure and services which has raised security and
privacy issues. Many financial institutions have shifted to online repositories for their business
needs. However, this opens new avenues for criminal activities. Cybercriminals or attackers are
individuals who use technology to commit malicious acts on digital systems or networks with
the intention of stealing sensitive company information or personal data for profit [6]. These
malicious acts are called cyberattacks and can vary depending on the intent. Some common
examples of these attacks are phishing and Distributed Denial-of-Service (DDoS). The latter
remains the number one cyber threat to the availability of business networks, applications, and
services [1], and is the main focus of this report.

DDoS is a malicious attempt to disrupt normal traffic to a target server, service or network
by overwhelming the target with bogus traffic. The target becomes unavailable to legitimate
users because their computing resources are exhausted [2]. DDoS attacks mainly target the
application layer which is the human to computer interaction layer where applications access
network services. This layer is responsible for producing web pages on servers and deliver-
ing responses to Hypertext Transfer Protocol (HTTP) requests. The HTTP protocol allows
communications between clients and servers and is a request and response protocol. HTTP
requests are not resource intensive on the client slide, but can be for the target server due to
database queries or loading files to produce web pages [7]. DDoS attacks are usually carried out
by gaining control of infected computers which are commonly referred to as bots. An attacker

2

Figure 1.1: Distributed Denial-of-Service (DDoS) attack on a victim [7].

directs the bots by sending instructions remotely via the internet. Figure 1.1 depicts a common
DDoS attack scenario [7] where an attacker has control over multiple bots and sends instruc-
tions via the internet. The bots send a large number of HTTP requests to the Internet Protocol
(IP) address of the victim or target which exhausts their computing resources, resulting in a
denial of service to normal traffic. Application layer attacks are difficult to defend against as it
can be hard to determine which traffic is malicious because most bots are legitimate internet
devices infected with malware [7].

DDoS attacks are a serious threat to the democratic process, information technology and
economic sectors [8]. DDoS attacks continue to rise in complexity, volume and frequency,
threatening the network security of all enterprises, regardless of their size [1]. DDoS attacks
can be categorized into two groups: reflection-based and exploitation-based [9]. Reflection-
based DDoS attacks are those in which the identity of the attacker is hidden by utilizing le-
gitimate third-party components such as internet devices to send attack traffic (e.g. HTTP
requests) to the victim. These requests are sent to the reflector servers (bots) by the attacker
with the source IP address set to the target IP address. These requests are then sent to the vic-
tim. Typically, these attacks are carried out using an application protocol, namely Transmission
Control Protocol (TCP), User Datagram Protocol (UDP), or a combination of them. TCP
based attacks can employ Microsoft Structured Query Language (MSSQL) or Simple Service
Discovery Protocol (SSDP) whereas UDP based attacks utilize CharGen, Network Time Pro-
tocol (NTP) or Trivial File Transfer Protocol (TFTP) [9]. Certain attacks use a combination
of these protocols and include Domain Name System (DNS), Lightweight Directory Access
Protocol (LDAP), Network Basic Input/Output System (NetBIOS), Simple Network Manage-
ment Protocol (SNMP), or PORTMAP [9]. Exploitation-based DDoS attacks are also carried

3

Figure 1.2: Distributed Denial-of-Service (DDoS) attack taxonomy [9].

out using TCP and UDP. TCP based attacks include Synchronize (SYN) flood and UDP based
attacks include UDP flood and UDP-Lag [9]. Figure 1.2 provides a DDoS attack taxonomy
[9]. Table 1.1 provides a brief description of reflection-based and exploitation-based DDoS
attacks.

Class Description

SYN Flood SYN flood is a denial-of-service attack in which an attacker sends a succes-
sion of SYN requests to a target system in an attempt to consume server
resources so the system is unresponsive to legitimate traffic [10].

WebDDoS WebDDoS is an attack to take down the target website or slow it by flood-
ing the network, server or application with bogus traffic [7].

TFTP A TFTP attack exploits the buffer overflow vulnerability in a Trivial File
Transfer Protocol (TFTP) server [11].

DNS A DNS attack exploits vulnerabilities in the DNS [12].
PORTMAP PORTMAP is an attack on TCP or UDP port 111 which is a service used

to direct clients to the proper port number so they can communicate with
the requested Remote Procedure Call (RPC) service [13].

MSSQL Microsoft Structured Query Language (MSSQL) injection is an attack that
makes it possible to execute malicious SQL statements [14].

4

Class Description

LDAP LDAP injection is an attack used to exploit web based applications that
construct LDAP statements based on user inputs [15].

NETBIOS A security exploit in Network Basic Input/Output System (NetBIOS) al-
lows an attacker to see information in computer memory over a network
[16].

NTP NTP is an amplification attack in which the attacker exploits publically-
accessible NTP servers to overwhelm the target with UDP traffic [17].

SSDP An SSDP attack exploits Universal Plug and Play (UPnP) networking pro-
tocols in order to send a large amount of traffic to a victim to overwhelm
their computing resources [18].

SNMP A Simple Network Management Protocol (SNMP) attack generates a large
amount of traffic which is directed at victims from multiple networks [19].

UDP User Datagram Protocol (UDP) flooding is an attack in which a large num-
ber of UDP packets are sent to a victim with the aim of overwhelming their
ability to process and respond. The firewall protecting the target server is
exhausted as a result [20].

UDP-Lag UDP-Lag is an attack that disrupts the connection between the client and
server [9].

CharGEN Character Generator Protocol (CharGEN) flooding is an attack that is car-
ried out by sending small packets carrying a spoofed IP of the victim to in-
ternet enabled devices running CharGEN to exhaust computing resources
[21].

Table 1.1: Reflection-based and exploitation-based DDoS attacks.

According to CISCO [3], the number of DDoS attacks will almost double to 14.5 million
by 2022 as compared to 2017 (see Figure 1.3). They are a serious threat to service providers be-
cause DDoS attack size and traffic are increasing at a rapid rate, and the largest attack recorded
was 1.7 terabits per second (Tb/s) [1]. In 2018, the cost of downtime associated with out-
ages caused by DDoS attacks was $221,836.80 per attack [1]. Attacks targeting firewalls and
Intrusion Prevention System (IPS) devices almost doubled from 16% in 2017 to 31% in 2018
[1]. In this period, there has also been a significant increase in attacks against third-party data
centers and cloud services, from 11% to 34%. DDoS remains the number one threat to the

5

Figure 1.3: Global DDoS attacks forecast, 2017-2022 [3].

availability of business networks, applications, and services. Symptoms of DDoS attack are
similar to non-malicious availability issues such as technical problems with the network or sys-
tem administrators performing maintenance [22]. This poses a challenge to accurately identify
(and defend) against these attacks. To identify a DDoS attack, an indication may be slow net-
work performance (accessing files), or unavailability of a particular website [22]. In 2017, the
top motivations behind these attacks were criminals demonstrating attack capabilities, gaming,
and extortion [1]. Attackers are continuously increasing their computing resources to perform
DDoS attacks [23].

1.1 Motivation

Cybercriminals have used DDoS attacks to shut down target servers and infiltrate enterprise
networks which can have devastating consequences. Many organizations are ill-equipped to
manage modern cyberattacks due to increases in DDoS attack size and complexity. Cyber-
criminals are aware of the latest technology such as smart devices and the Internet of Things
(IoT) and these devices are more susceptible to large-scale DDoS attacks due to their resource
limitations (e.g. limited memory and processing capabilities) [2] [24] [7]. In 2016, organizations
such as CNN, Netflix, Twitter, Pinterest, and Reddit were offline for nine hours due to an at-
tack on their internet service providers. This resulted in financial losses, loss of productivity,
brand damage, credit and insurance rating downgrades, compromised customer and supplier
relationships, and IT budget overruns [2].

For as little as $25, cybercriminals can launch a DDoS attack that disables access to a
website or server [8]. It is imperative to devise Intrusion Detection Systems (IDSs) to detect
DDoS attacks to protect democratic processes, information technology, and economic sectors.
Cybersecurity costs can be reduced significantly if technologies such as automation, artificial

6

intelligence, and machine learning are used by security teams [25]. In this project, Machine
Learning (ML) algorithms are used to predict DDoS attacks.

1.2 Related Work

In recent years, significant research has been carried out to mitigate and counter DDoS attacks.
Various techniques have been employed such as ML and statistical methods to detect and de-
fend against this threat [9]. However, statistical methods are unable to accurately determine
normal network packet distributions whereas ML methods require a feature set for prediction
[9]. Many researchers have tried to devise a dataset for this purpose but there are issues such as
incomplete traffic, anonymized data, and outdated attack scenarios which limit testing and vali-
dating the proposed detection and defense models [9] [26]. A dataset is a collection of instances
and attributes (input and output to a model) which is used to train and test an ML model [27].
A dataset is required for all machine learning algorithms. Each instance consists of attributes
which can be nominal, numeric, or a string [28]. Machine learning is part of the Artificial Intel-
ligence (AI) paradigm in which systems can automatically learn and improve from experience
without being explicitly programmed. The primary goal is to allow the system to learn without
human intervention and self-adapt [25]. Machine learning will be further discussed in Chapter
3.

To overcome limitations such as an incomplete dataset, Lashkari et al. [9] devised a com-
prehensive DDoS dataset called CICDDoS2019 which consists of 80 network traffic features
with benign and denial of service flows created using CICFlowMeter. The features were an-
alyzed to obtain the best feature set to detect reflection-based and exploitation-based DDoS
attacks. Using this feature set, four common machine learning algorithms were used to predict
DDoS attacks, namely ID3, Random Forest, Naïve Bayes, and Logistic Regression. A weighted
average of the three evaluation metrics precision, recall, and F-measure was used. Precision
is the proportion of correct positive classifications (true positives) from all cases that are pre-
dicted as positive. Recall is the proportion of correct positive classifications (true positives)
from all cases that are actually positive. F-measure is the weighted harmonic mean of precision
and recall and is used as an overall measure of accuracy. In [9], ID3 and Random Forest had
the highest accuracy followed by Naïve Bayes and Logistic Regression. In [9], ID3 was chosen
as the best algorithm because it had good accuracy and the shortest execution time.

In this project, ML algorithms available in the WEKA tool are evaluated for predicting
DDoS attacks. WEKA is a tool used for data analysis and predictive modeling and consists of
visualization tools and algorithms [28], [29]. The metrics precision, recall, and F-measure are

7

determined for the Bayesian Network (BayesNet), Bootstrap Aggregating (Bagging), k-Nearest
Neighbors (kNN), Sequential Minimal Optimization (SMO), and Simple Logistic algorithms.
The CICDDoS2019 dataset from the Canadian Institute for Cybersecurity [4] was modified to
have 24 features (see Table 2.1) with 13 class labels (see Table 2.2). The performance of these
classifiers is evaluated to identify the best ML algorithm to predict DDoS attacks. The results
are discussed in Chapter 4.

1.3 Report Outline

This report is structured as follows.
Chapter 1 provided a brief overview of DDoS attacks including how these attacks are con-

ducted and DDoS attack statistics from the literature. The types of DDoS attacks, evaluation
metrics, dataset, and machine learning were introduced. The motivation of the project and
related work were discussed.

Chapter 2 presents two types of Intrusion Detection Systems (IDSs) along with two de-
tection mechanisms. The relevant feature and class labels to predict DDoS attacks are also
discussed.

Chapter 3 introduces the machine learning tasks along with the parameters used. A brief
description of the dataset used in this project is also given. The machine learning tool WEKA
is introduced and the most effective classifiers to predict attacks are identified.

Chapter 4 presents the approach employed for intrusion detection along with details of the
test environment. First, the hardware and software configuration and evaluation metrics are
explained. Then the performance of the Bayesian Network (BayesNet), Bootstrap Aggregating
(Bagging), k-Nearest Neighbors (kNN), Sequential Minimal Optimization (SMO), and Simple
Logistic classifiers is given and discussed.

Chapter 5 concludes this report and summarizes the results. It also provides directions
for future work.

8

Chapter 2

The Intrusion Detection System

An Intrusion Detection System (IDS) is a device or software application that monitors a net-
work for malicious activity or policy violations. It detects vulnerability exploits against a target
application or device so appropriate actions can be taken [30]. Most IDSs can be categorized
into two groups, Network Intrusion Detection Systems (NIDSs) and Host-based Intrusion
Detection Systems (HIDSs). An NIDS is a system which monitors and analyzes incoming net-
work traffic for malicious activity (e.g. SYN flooding) which is then collected centrally using a
Security Information and Event Management (SIEM) system. An SIEM system is a software
solution that aggregates and analyzes activity from different sources such as network devices,
servers, and domain controllers across the entire IT infrastructure. It collects security data
and applies analytics to this data to discover trends, detect threats, and enable organizations
to investigate any alerts [31]. An HIDS monitors and analyzes the internal components of a
computing system (e.g. operating system files) for malicious activity such as the installation of
malware [30].

An IDS is based on one of two detectionmechanisms, signatures or anomalies [30]. Signature-
based detection is based on detecting predefined attacks. Files are mapped to attacks and once
matched, an attack type is returned [32]. In the case of a virus, there may be a unique code pat-
tern in a file. If it is discovered again, the file can be flagged as being infected [33]. The benefit
of this approach is that the false-positive rate is low [32]. However, modern malware is becom-
ing more sophisticated (polymorphism) so the pattern can change each time the virus is spread
from one system to another making it more difficult to detect. Signature-based detection is a
reactive approach because it is necessary to have knowledge about a threat in order to develop
a signature to detect it [32]. Thus, signatures can only identify threats that are already known.
Anomaly-based detection is based on heuristics or rules rather than signatures and attempts to
detect behavior that is beyond normal system operation. To identify attacks, a baseline needs

9

Figure 2.1: Signature-based and anomaly-based detection mechanisms [34].

to be established for the system to recognize normal system activity. This approach can handle
unseen or new scenarios, but unfortunately it has a high false-positive rate [32]. Figure 2.1
[34] gives a simplified view of the detection mechanisms. In this project, an anomaly-based
NID system is employed. This system considers both reflection-based and exploitation-based
attacks based on a feature set and then predicts these attacks using ML algorithms.

2.1 Main Components of the System

The proposed network intrusion detection system employs 24 features (see Table 2.1) to predict
12 different types of DDoS attacks along with benign traffic (see Table 2.2). Once NIDSs pre-
dict the attacks, further analysis can be performed by directing the network traffic to centralized
data cleansing stations known as scrubbing centers. This attack mitigation system blocks the
malicious traffic and allows benign traffic to pass through [35]. The performance and accuracy
of the five machine learning algorithms are evaluated based on 5-fold cross-validation which
means the dataset is split into 5 groups, and the model is then trained and tested 5 separate
times on each individual group to reduce the bias [36]. The evaluation metrics precision, recall,
F-measure, True Positive Rate (TPR), False Positive Rate (FPR), and execution time are used
to assess the performance of a classifier. Chapter 3 provide details of the machine learning
algorithms.

10

2.2 Features Used in the System

This section presents the 24 best features used in [9] to predict DDoS attacks. The Random-
ForestRegressor was used to calculate the importance of each feature (out of 80 features) in
the dataset. Table 2.1 lists the features which are employed here along with a brief description
[37].

Feature Description

Fwd Packet Length Max Maximum packet size in the forward (outgoing) direction
Fwd Packet Length Min Minimum packet size in the forward direction
Min Packet Length Minimum length of a packet
Max Packet Length Maximum length of a packet
Average Packet Size Average size of a packet
FWD Packets/s Number of forward packets per second
Fwd Header Length Header length of a forwarded packet
Fwd Header Length 1 Number of bytes in a header in the forward direction
Min_Seg_Size_Forward Minimum segment size in the forward direction
Total Length of Fwd Packet Packet size in the forward direction
Fwd Packet Length Std Standard deviation of a packet in the forward direction
Flow IAT Min Minimum time between two packets in the flow
Subflow Fwd Bytes Average number of bytes in a sub flow in the forward direc-

tion
Destination Port Address to receive TCP or UDP packets
Protocol TCP or UDP for data transmission
Packet Length Std Standard deviation of the packet length
Flow Duration Duration of the flow in µs
Fwd IAT Total Total time between two packets in the forward direction
ACK Flag Count Number of packets with ACK
Init_Win_Bytes_Forward Number of bytes in initial window in the forward direction
Flow IAT Mean Mean time between two packets in the flow
Flow IAT Max Maximum time between two packets in the flow
Fwd IAT Mean Mean time between two packets in the forward direction
Fwd IAT Max Maximum time between two packets in the forward direction

Table 2.1: The feature set used in the Intrusion Detection System (IDS) [37].

11

2.3 Multi-label Classification Used in the System

This section presents the 13 class labels used in the system for attack detection. The following
class labels are employed, SYN, TFTP, WebDDoS, DNS, Benign, MSSQL, LDAP, NETBIOS,
NTP, SSDP, SNMP, UDP, and UDP-Lag and are described in Table 1.1. These attacks are
predicted based on the 24 features listed in Table 2.1.

12

Chapter 3

Machine Learning

ML is a method of data analysis that automates analytical model building which is a branch of
AI based on the idea that systems can learn from data, identify patterns and make decisions
with minimal human intervention [38]. ML and AI based IDSs have been studied extensively
during the last decade. The amount of data produced by computing resources such as smart
devices and sensors has increased significantly and this allows for detailed analysis which makes
ML a popular paradigm. ML allows complex decision-making and problem-solving tasks to be
automated such as attack prediction in IDSs. Currently, ML is utilized in many disciplines such
as healthcare and engineering [38]. For this project, the dataset CICDDoS2019 was obtained
from Canadian Institute for Cybersecurity, University of New Brunswick, Canada [4]. This
comprehensive dataset consists of 50063112 instances with 80 features along with 13 class
labels to predict DDoS attacks.

3.1 Types of Machine Learning Tasks

There are three types of machine learning algorithms, supervised, semi-supervised, and unsu-
pervised [38], [39]. Supervised learning algorithms attempt to learn the input-output relation-
ship. In classification problems (pattern recognition), the training dataset consists of examples
from different classes or labels. The learning task is to construct classifiers that can classify un-
seen data. These classification problems occur in areas such as object recognition and disease
analysis [39]. Unsupervised learning algorithms infer patterns from a dataset without known
or labeled instances [38], [39]. They cannot be applied to classification problems because the
values for the output data are not known, making it a challenge to train the algorithm [39].
Semi-supervised learning lies between supervised and unsupervised learning. Semi-supervised
algorithms are used to solve problems with a small percentage of labeled data and a large per-

13

Figure 3.1: The two phases of a supervised learning algorithm [39].

centage of unlabeled data [38], [39]. They are usually utilized in areas such as speech process-
ing, and text and web categorization [39]. This project employs supervised learning algorithms.
These algorithms have two phases as shown in Figure 3.1 [39]. The first phase is the learning
(training) phase where the algorithm constructs a mathematical model of a classifier based on
the training data. The second phase is the application (test or generalization) phase which is
used to predict the output for data which was unseen in the learning phase [39].

3.2 Data Splitting

The two most popular approaches to splitting a dataset for training and testing purposes are
cross-validation and holdout. Cross-validation is a resampling procedure used to evaluate ma-
chine learning models on limited data [39], [40]. It is used to evaluate a machine learning model
on unseen data. It uses limited data from the dataset in order to estimate how the model will
perform in general when used to make predictions on data not used during training [40]. In
this project, k-fold cross-validation is used with k = 5 where k is the number of groups that
the dataset is split into. Thus, the model is trained on multiple train/test splits. The results are
less biased when this approach is used as compared to holdout, since it takes all available data
into account [41]. The holdout method is inferior to cross-validation because it uses just one
train-test split and the results rely heavily on how the data is split, e.g. 80/20 or 70/30 [40],
[41]. Holdout is the simplest and most common method for large datasets as the model only
needs to be trained once [40], [41]. One of the drawbacks of this approach is that when the
dataset is not balanced (e.g. class imbalance), the training set can be very different from the
testing set. This can lead to overfitting and poor performance [40].

14

Figure 3.2: The WEKA Explorer Preprocess pane.

3.3 The WEKA Workbench for Machine Learning

WEKA is an open source machine learning tool which is built on the Java platform. It can be
accessed through a Graphical User Interface (GUI), standard terminal applications, or a Java
Application Programming Interface (API) [29]. It was developed at the University of Waikato,
New Zealand and has been widely used for teaching, research, and industrial applications [29].
It consists of supervised, semi-supervised, and unsupervised ML algorithms such as Random
Forest, Linear Regression, kNN, and Support Vector Machine (SVM). These algorithms can
be modified by tuning their parameters (called hyperparameters) which makes this tool very
powerful [28], [29]. Tuning the parameters can increase performance of the algorithms but
this is often a trial and error process which is highly dependent on the ML problem [28].

3.3.1 Basic Concepts of WEKA

A dataset is required for all machine learning algorithms. The dataset is input using WEKA
Explorer. In the data preprocessing stage, the dataset is selected from the Preprocess pane.
Different formats such as .CSV and .ARFF are supported. Figure 3.2 shows a screenshot of
the WEKA Explorer Preprocess pane. It provides information on the dataset such as the
number of instances and attributes.

15

Figure 3.3: The WEKA Explorer Classify pane.

The next step is to select the ML algorithm(s). This is done using the Classify pane. There
are various test options supported by the tool, e.g. train/test split and cross-validation. Before
building and evaluating a model, the class labels need to be specified. In this project, these
labels are the 12 DDoS attacks and legitimate network traffic. Figure 3.3 shows a screenshot of
the Classify pane. Once the model is built and evaluated, the results are shown in the Classifier
output space. These results are evaluation metrics such as precision, recall, and F-measure
along with selected parameters. The results can be exported in various formats such as .TXT.
Figure 3.4 shows the results in the Classifier output space.

16

Figure 3.4: The WEKA Explorer Classify pane with classifier output.

17

3.4 Overview of the Machine Learning Classifiers

Many Intrusion Detection Systems (IDSs) rely on machine learning algorithms to produce
accurate results, so it is critical to choose appropriate ones. The following classifiers are used
in this project with their default settings, namely Bayesian Networks (BayesNet), Bootstrap
Aggregating (Bagging), and Simple Logistic. The k-Nearest Neighbors (kNN) classifier was
used with k = 13 parameters since the dataset contains 13 class labels. Sequential Minimal
Optimization (SMO) for training the SVMwas used with LibSVM because it is a popular choice
for solving classification problems [39], [42]. Supervised learning classifiers were chosen and
evaluated using the dataset. The most popular classifiers (listed below) were selected based on
a literature review [39], [43]–[45]. The ML algorithms used in this project are briefly explained
below.

3.4.1 Bayesian Network (BayesNet)

The Bayesian Network (BayesNet) ML algorithm is based on the joint probability distribution
of a set of random variables with a possible mutual causal relationship [45]. The network
consists of nodes representing the random variables, and the edges between pairs of nodes
represent the causal relationship of these nodes [45]. The aim of this method is to model the
posterior conditional probability distribution of the variables. Bayesian networks are suitable
for representing probabilistic relationships and predicting the likelihood of possible causes and
contributing factors [45].

3.4.2 Bootstrap Aggregating (Bagging)

The Bootstrap Aggregating ML algorithm is an ensemble method. An ensemble method is
a technique that combines predictions from multiple ML algorithms together to make more
accurate predictions than an individual model. It sequentially combines weak learners to reduce
prediction errors. The algorithm employs a majority vote from a number of bootstrap samples
[46]. It is designed to improve the stability and accuracy of the classifier which reduces variances
and avoids overfitting. It is often applied to decision tree methods [46].

3.4.3 k-Nearest Neighbors (kNN)

The kNN machine learning algorithm is based on nearest neighbors which is regarded as
instance-based learning or lazy learning since it does not learn much from training data [47].
This algorithm is considered to be one of the most effective for classification and regression

18

problems and it is simple and easy to implement [48]. It is based on feature similarity and
employs a majority vote of neighbors. The class with the most votes is taken as the prediction
[43], [47]. kNN has some drawbacks such as large storage requirements, high computational
complexity in the testing phase, and low tolerance to noise [47].

3.4.4 Sequential Minimal Optimization (SMO)

The SMO algorithm is based on an SVM and uses the LIBSVM library. This algorithm finds the
optimal separating hyperplane between two classes by maximizing the closest points between
classes [42], [49]. SMO has been used to solve quadratic programming problems that arise
during SVM training [42]. SMO breaks these problems into smaller ones which can be solved
analytically [42]. It is a powerful algorithm for classification problems but it is computationally
expensive to train. It is also sensitive to noisy or erroneous data, so overfitting can be an issue
[49].

3.4.5 Simple Logistic

The Simple Logistic machine learning algorithm is based on linear logistic regression. It is
widely used due to its simplicity for binary classification problems [49]. This algorithm belongs
to the class of generalized linear models which use the logit function. Simple Logistic performs
well when the relationship between the data is approximately linear, but performs poorly if a
complex nonlinear relationship exists. It also does not handle missing data in the dataset very
well [49]. Missing data is defined as data values that are not given for features in the dataset.

19

Chapter 4

Performance Evaluation

This chapter presents the detection performance of the five supervised machine learning clas-
sifiers, namely Bayesian Network (BayesNet), Bootstrap Aggregating (Bagging), k-Nearest
Neighbors (kNN), Sequential Minimal Optimization (SMO), and Simple Logistic. Six sets
of data were created from the CICDDoS2019 dataset based on the number of instances and
these were used for training and evaluating the model [4]. All the tests were performed using
a laptop with the hardware and software configuration details shown in Table 4.1.

Manufacturer Dell Inc.
Model Precision M4600
System Type 64-bit Operating System, x64-based processor
Operating System Windows 10 Professional
Processor Type Intel® Core™ vPro™ i7-2860QM
Processor Speed 2.50 GHz
Installed Memory (RAM) 32 GB
Number of Cores 4
Number of Threads 8
Machine Learning Tool WEKA version 3.8.3

Table 4.1: The hardware and software configuration.

4.1 CICDDoS2019 Dataset

The DDoS attacks in the CICDDoS2019 dataset and the number of instances are given in
Table 4.1 [4]. The full dataset contains 50063112 instances including 50006249 DDoS attacks

20

and 56863 instances of benign (legitimate) network traffic. The 24 features listed in Table 2.1
are used to detect these attacks. The classifiers were trained and evaluated using 5-fold cross
validation so the dataset is split into 5 groups. The model is then trained and evaluated 5
separate times.

Attribute (Class Label) Number of Instances

Benign (legitimate traffic) 56863
DDoS_DNS 5071011
DDoS_LDAP 2179930
DDoS_MSSQL 4522492
DDoS_NetBIOS 4093279
DDoS_NTP 1202642
DDoS_SNMP 5159870
DDoS_SSDP 2610611
DDoS_SYN 1582289
DDoS_TFTP 20082580
DDoS_UDP 3134645
DDoS_UDP-Lag 366461
DDoS_WebDDoS 439

Table 4.2: Number of instances of attributes in the CICDDoS2019 dataset [4].

Due to the size of the CICDDoS2019 dataset and the attribute distribution, it was necessary
to modify the original dataset. Table 4.2 shows that the classes are imbalanced, meaning the
number of instances differ between classes. This can be a problemwhen training and evaluating
a machine learning model. It can lead to overfitting, for example, DDoS_WebDDoS attack has
only 439 instances whereas DDoS_TFTP attack has 20082580 [50].

To overcome the overfitting problem, two techniques are utilized in this project, under-
sampling and oversampling of the dataset. Undersampling is a simple technique which under-
samples large classes randomly. Oversampling is achieved by increasing the minority (smallest)
classes using the Synthetic Minority Oversampling TEchnique (SMOTE) [50]. SMOTE is a
statistical technique for increasing the number of instances in a dataset such that all class labels
have the same number of instances. It generates new instances from existing minority cases
[50]. Six sets were created from the CICDDoS2019 dataset and their sizes are shown in Table
4.3. Undersampling was used for the DDoS_1 and DDoS_6 datasets, while both undersam-

21

pling and oversampling were employed for the DDoS_2, DDoS_3, DDoS_4, and DDoS_5
datasets. The DDoS_1 to DDoS_5 datasets are balanced meaning they have equal number
of instances for all 13 class labels while the DDoS_6 dataset is imbalanced as the class label
DDoS_WebDDoS had only 30 instances.

Dataset Total Number of Instances Benign (normal) Traffic DDoS Attacks

DDoS_1 5707 439 5268
DDoS_2 26000 2000 24000
DDoS_3 50050 3850 46200
DDoS_4 100100 7700 92400
DDoS_5 739219 56863 682356
DDoS_6 92430 7700 84730

Table 4.3: Six datasets obtained using undersampling and oversampling.

4.2 Evaluation Metrics

An intrusion detection system should have high detection accuracy in predicting DDoS attacks.
If the system fails to detect an attack, there can be serious implications for an organization [2].
The evaluation metrics are defined below.

True Positive (tp)–The number of DDoS attacks identified as attacks.
True Negative (tn)–The number of legitimate network traffic instances (benign) identified

as legitimate.
False Positive (fp)–The number of legitimate network traffic instances (benign) misidenti-

fied as attacks.
False Negative (fn)–The number of DDoS attacks misidentified as legitimate.

Precision is the proportion of true positives from all instances that are predicted as positive
and is given by

p =
tp

tp+ fp

Recall is the proportion of true positives from all instances that are actually positive and is given
by

r =
tp

tp+ fn

22

F-measure is the weighted harmonic mean of precision and recall and is given by

f −measure =
2 × p × r

(p+ r)

True Positive Rate is the number of DDoS attacks detected as attacks divided by the number
of DDoS attacks in the dataset and is given by

TPR =

∑
tp∑

DDoS attacks in dataset

False Positive Rate is the number of benign instances incorrectly classified as DDoS attacks
divided by the total number of benign instances in a dataset and is given by

FPR =

∑
fp∑

Benign traffic in dataset

4.3 Accuracy of the Classifiers

TheDDoS attack detection accuracy was obtained for the Bayesian Network (BayesNet), Boot-
strap Aggregating (Bagging), k-Nearest Neighbors (kNN), Sequential Minimal Optimization
(SMO), and Simple Logistic classifiers. The results are shown for each of the six datasets,
DDoS_1 (Table 4.4), DDoS_2 (Table 4.5), DDoS_3 (Table 4.6), DDoS_4, DDoS_5 (Table
4.7), and DDoS_6 (Table 4.8). Tables 4.9 to 4.14 show the results for each classifier across the
datasets. The average performance of the classifiers is then given in Table 4.15.

4.3.1 DDoS_1 Dataset

Table 4.4 shows the accuracy of the five classifiers for the DDoS_1 dataset. The precision,
recall, and F-measure are highest for Bagging at 0.961, 0.958, 0.956, respectively, followed by
BayesNet at 0.950, 0.944, 0.943, kNN at 0.947, 0.943, 0.940, Simple Logistic at 0.933, 0.915,
0.917, and SMO at 0.899, 0.905, 0.890. The highest TPR (95.79%) was observed for Bagging
and the lowest (90.50%) for SMO. Further, Simple Logistic had the longest execution time
(8100 s) while Bagging had the lowest (380 s). Bagging provides the best tradeoff between
performance and execution time.

23

Execution
Dataset Precision Recall f –measure TPR FPR Time (s)

BayesNet 0.950 0.944 0.943 94.37% 5.63% 460
Bagging 0.961 0.958 0.956 95.79% 4.21% 380
kNN 0.947 0.943 0.940 94.26% 5.74% 5840
SMO 0.899 0.905 0.890 90.50% 9.50% 980
Simple Logistic 0.933 0.915 0.917 91.51% 8.49% 8100

Table 4.4: Accuracy results for the DDoS_1 dataset.

4.3.2 DDoS_2 Dataset

The results for the DDoS_2 dataset are shown in Table 4.5. The best classifier for this dataset
is kNN with precision, recall, and F-measure at 0.972, 0.967, 0.966 followed by Bagging at
0.970, 0.966, 0.965, BayesNet at 0.965, 0.963, 0.961, SMO at 0.934, 0.936, 0.930, and Simple
Logistic at 0.902, 0.898, 0.893. The highest TPR (96.67%) was observed for kNN and the
lowest (89.80%) for Simple Logistic. In terms of FPR, kNN had the lowest (3.33%) and Simple
Logistic the highest (10.20%). Further, kNN had an execution time of 7074 s which is slightly
better than Simple Logistic which took 8931 s. Bagging was the fastest at 616 s followed by
BayesNet which took 660 s. Since there is minimal performance difference between kNN and
Bagging, the latter provides the best tradeoff between performance and execution time.

Execution
Dataset Precision Recall f –measure TPR FPR Time (s)

BayesNet 0.965 0.963 0.961 96.32% 3.68% 660
Bagging 0.970 0.966 0.965 96.57% 3.43% 616
kNN 0.972 0.967 0.966 96.67% 3.33% 7074
SMO 0.934 0.936 0.930 93.59% 6.41% 1864
Simple Logistic 0.902 0.898 0.893 89.80% 10.20% 8931

Table 4.5: Accuracy results for the DDoS_2 dataset.

24

4.3.3 DDoS_3 Dataset

Table 4.6 shows the performance evaluation for the classifiers with the DDoS_3 dataset. In
this case, Bagging is the best classifier with precision, recall, and F-measure at 0.968, 0.960,
and 0.958, respectively. It is followed by kNN at 0.962, 0.953, 0.951, BayesNet at 0.960, 0.952,
0.949, SMO at 0.943, 0.916, 0.913, and Simple Logistic at 0.939, 0.938, 0.934. The highest TPR
(95.95%) was observed for Bagging and the lowest (91.55%) for SMO. In terms of execution
time, Bagging is the fastest at 927 s followed by BayesNet at 1183 s. There is minimal perfor-
mance difference between the classifiers except for the execution time, so Bagging provides
the best tradeoff between performance and execution time.

Execution
Dataset Precision Recall f –measure TPR FPR Time (s)

BayesNet 0.960 0.952 0.949 95.18% 4.82% 1183
Bagging 0.968 0.960 0.958 95.95% 4.05% 927
kNN 0.962 0.953 0.951 95.30% 4.70% 13266
SMO 0.943 0.916 0.913 91.55% 8.45% 2718
Simple Logistic 0.939 0.938 0.934 93.78% 6.21% 29428

Table 4.6: Accuracy results for the DDoS_3 dataset.

4.3.4 DDoS_4 Dataset

Table 4.7 shows the accuracy of the five classifiers for the DDoS_4 dataset. In this case,
precision, recall, and F-measure for the kNN classifier are the highest at 0.969, 0.962, 0.961,
respectively, followed by Bagging at 0.966, 0.959, 0.958, BayesNet at 0.959, 0.953, 0.952, SMO
at 0.947, 0.927, 0.926, and Simple Logistic at 0.916, 0.909, 0.908. The highest TPR (96.19%)
was observed for kNN and the lowest (90.91%) for Simple Logistic. Simple Logistic had the
highest execution time (41760 s) while Bagging had the lowest (1399 s). There is minimal per-
formance difference between the classifiers except for the execution time, so Bagging provides
the best tradeoff between performance and execution time.

Execution
Dataset Precision Recall f –measure TPR FPR Time (s)

BayesNet 0.959 0.953 0.952 95.30% 4.70% 2022
Bagging 0.966 0.959 0.958 95.93% 4.07% 1399

25

Execution
Dataset Precision Recall f –measure TPR FPR Time (s)

kNN 0.969 0.962 0.961 96.19% 3.81% 20400
SMO 0.947 0.927 0.926 92.70% 7.30% 4128
Simple Logistic 0.916 0.909 0.908 90.91% 9.09% 41760

Table 4.7: Accuracy results for the DDoS_4 dataset.

4.3.5 DDoS_5 Dataset

Table 4.8 shows the performance for the DDoS_5 dataset. kNN is the best classifier, followed
by Bagging, BayesNet, Simple Logistic, and SMO. The precision, recall, and F-measure for
kNN is 0.982, 0.976, 0.975, Bagging is 0.981, 0.976, 0.975, BayesNet is 0.977, 0.971, 0.970,
Simple Logistic is 0.963, 0.962, 0.960, and SMO is 0.965, 0.950, and 0.950. The highest TPR
(97.62%) was obtained with kNN and the lowest (95.05%) with SMO. In terms of execution
time, Simple Logistic had the highest time (91200 s) while Bagging had the lowest (4200 s).
Again, Bagging provides the best tradeoff between performance and execution time.

Execution
Dataset Precision Recall f –measure TPR FPR Time (s)

BayesNet 0.977 0.971 0.970 97.10% 2.90% 4560
Bagging 0.981 0.976 0.975 97.57% 2.43% 4200
kNN 0.982 0.976 0.975 97.62% 2.38% 79400
SMO 0.965 0.950 0.950 95.05% 4.95% 7820
Simple Logistic 0.963 0.962 0.960 96.20% 3.80% 91200

Table 4.8: Accuracy results for the DDoS_5 dataset.

4.3.6 DDoS_6 Dataset

Table 4.9 shows the performance for the DDoS_6 dataset. In this case, Bagging is the best
classifier with precision, recall, and F-measure at 0.970, 0.963, and 0.961, respectively. It is
followed by kNN at 0.969, 0.962, 0.960, BayesNet at 0.962, 0.931, 0.941, SMO at 0.945, 0.929,
0.924, and Simple Logistic at 0.931, 0.905, 0.913. The highest TPR (96.27%) was obtained with
Bagging and the lowest (90.54%) with Simple Logistic. In terms of execution time, Bagging was

26

the lowest at 1232 s followed by BayesNet at 1951 s. There is minimal performance difference
between the classifiers except for the execution time. Thus, Bagging provides the best tradeoff
between performance and execution time.

Execution
Dataset Precision Recall f –measure TPR FPR Time (s)

BayesNet 0.962 0.931 0.941 93.14% 6.86% 1951
Bagging 0.970 0.963 0.961 96.27% 3.73% 1232
kNN 0.969 0.962 0.960 96.19% 3.81% 19781
SMO 0.945 0.929 0.924 92.88% 7.12% 3870
Simple Logistic 0.931 0.905 0.913 90.54% 9.46% 39952

Table 4.9: Accuracy results for the DDoS_6 dataset.

4.3.7 BayesNet Across the Six Datasets

The BayesNet classifier had the best performance with the DDoS_5 dataset as shown in Table
4.10. The worst performance in terms of TPR was obtained for the DDoS_6 dataset. The
highest execution time (4560 s) was with the DDoS_5 dataset while the lowest was with the
DDoS_1 dataset at 460 s. The DDoS_1 dataset provides the best tradeoff between perfor-
mance and execution time. This is due to the size of the dataset which provides comparable
results and the lowest execution time, as the execution time depends on the size of the dataset.

Execution
Dataset Precision Recall f –measure TPR FPR Time (s)

DDoS_1 0.950 0.944 0.943 94.37% 5.63% 460
DDoS_2 0.965 0.963 0.961 96.32% 3.68% 660
DDoS_3 0.960 0.952 0.949 95.18% 4.82% 1183
DDoS_4 0.959 0.953 0.952 95.30% 4.70% 2022
DDoS_5 0.977 0.971 0.970 97.10% 2.90% 4560
DDoS_6 0.962 0.931 0.941 93.14% 6.86% 1951

Table 4.10: Accuracy results for BayesNet across the six datasets.

27

4.3.8 Bagging Across the Six Datasets

The performance of Bagging was the best for the DDoS_5 dataset as shown in Table 4.11.
The worst performance in terms of TPR was obtained with the DDoS_1 dataset. The highest
execution time (4200 s) was with the DDoS_5 dataset while the lowest was with the DDoS_1
dataset. The DDoS_1 dataset provides the best tradeoff between performance and execution
time. This is due to the size of the dataset which provides comparable results and the lowest
execution time, as the execution time depends on the size of the dataset.

Execution
Dataset Precision Recall f –measure TPR FPR Time (s)

DDoS_1 0.961 0.958 0.956 95.79% 4.21% 380
DDoS_2 0.970 0.966 0.965 96.57% 3.43% 616
DDoS_3 0.968 0.960 0.958 95.95% 4.05% 927
DDoS_4 0.966 0.959 0.958 95.93% 4.07% 1399
DDoS_5 0.981 0.976 0.975 97.57% 2.43% 4200
DDoS_6 0.970 0.963 0.961 96.27% 3.73% 1232

Table 4.11: Accuracy results for Bagging across the six datasets.

4.3.9 kNN Across the Six Datasets

The performance of the kNN classifier is shown in Table 4.12. In terms of TPR, the worst per-
formance was obtained with the DDoS_1 dataset but this provided the fastest execution time
(5840 s). The best performance was with the DDoS_5 dataset but the execution time (79400
s) was the highest. The DDoS_1 dataset provides the best tradeoff between performance and
execution time. This is due to the size of the dataset which provides comparable results and
the lowest execution time, as the execution time depends on the size of the dataset.

Execution
Dataset Precision Recall f –measure TPR FPR Time (s)

DDoS_1 0.947 0.943 0.940 94.26% 5.74% 5840
DDoS_2 0.972 0.967 0.966 96.67% 3.33% 7074
DDoS_3 0.962 0.953 0.951 95.30% 4.70% 13266
DDoS_4 0.969 0.962 0.961 96.19% 3.81% 20400
DDoS_5 0.982 0.976 0.975 97.62% 2.38% 79400

28

Execution
Dataset Precision Recall f –measure TPR FPR Time (s)

DDoS_6 0.969 0.962 0.960 96.19% 3.81% 19781

Table 4.12: Accuracy results for kNN across the six datasets.

4.3.10 SMO Across the Six Datasets

Table 4.13 shows the performance of SMO with the six datasets. In terms of TPR, the worst
performance was obtained with the DDoS_1 dataset at 90.50% but this provided the fastest
execution time (980 s). The best performance was with the DDoS_5 dataset at 95.05% but
the execution time (7820 s) is the highest. The DDoS_1 dataset provides the best tradeoff
between performance and execution time. This is due to the size of the dataset which provides
comparable results and the lowest execution time, as the execution time depends on the size
of the dataset.

Execution
Dataset Precision Recall f –measure TPR FPR Time (s)

DDoS_1 Dataset 0.899 0.905 0.890 90.50% 9.50% 980
DDoS_2 Dataset 0.934 0.936 0.930 93.59% 6.41% 1864
DDoS_3 Dataset 0.943 0.916 0.913 91.55% 8.45% 2718
DDoS_4 Dataset 0.947 0.927 0.926 92.70% 7.30% 4128
DDoS_5 Dataset 0.965 0.950 0.950 95.05% 4.95% 7820
DDoS_6 Dataset 0.945 0.929 0.924 92.88% 7.12% 3870

Table 4.13: Accuracy results for SMO across the six datasets.

4.3.11 Simple Logistic Across the Six Datasets

Table 4.14 shows the performance of Simple Logistic with the six datasets. In terms of TPR,
the worst performance was obtained with the DDoS_2 dataset at 89.80% but this provided one
of the lowest execution times (8931 s). The best performance was with the DDoS_5 dataset
at 95.05% but this had one of the highest execution times (91200 s). The DDoS_1 dataset
provides the best tradeoff between performance and execution time. This is due to the size of
the dataset which provides comparable results and the lowest execution time, as the execution

29

time depends on the size of the dataset.

Execution
Dataset Precision Recall f –measure TPR FPR Time (s)

DDoS_1 Dataset 0.933 0.915 0.917 91.51% 8.49% 8100
DDoS_2 Dataset 0.902 0.898 0.893 89.80% 10.20% 8931
DDoS_3 Dataset 0.939 0.938 0.934 93.78% 6.21% 29428
DDoS_4 Dataset 0.916 0.909 0.908 90.91% 9.09% 41760
DDoS_5 Dataset 0.963 0.962 0.960 96.20% 3.80% 91200
DDoS_6 Dataset 0.931 0.905 0.913 90.54% 9.46% 39952

Table 4.14: Accuracy results for Simple Logistic across the six datasets.

4.3.12 Average Performance of the Classifiers

The average performance of the classifiers is shown in Table 4.15. These results were obtained
using Tables 4.11 to 4.15. For each table, the average was calculated by taking the sum of each
column namely, precision, recall, F-measure, TPR, and FPR and then dividing it by the total
number (six) of datasets. These results show that Bagging has the best average performance.
The average precision, recall, F-measure, TPR, and FPR for Bagging are 0.969, 0.964, 0.962,
96.35%, and 3.65%, respectively. Simple Logistic is the worst performing classifier with the
lowest average results for precision, recall, F-measure, TPR, and FPR at 0.931, 0.921, 0.921,
2.12%, and 7.88%, respectively.

Average Average Average Average Average
Classifier Precision Recall f –measure TPR FPR

BayesNet 0.962 0.952 0.953 95.24% 4.77%
Bagging 0.969 0.964 0.962 96.35% 3.65%
kNN 0.967 0.961 0.959 96.04% 3.96%
SMO 0.939 0.927 0.922 92.71% 7.29%
Simple Logistic 0.931 0.921 0.921 92.12% 7.88%

Table 4.15: Average performance of the classifiers across the six datasets.

30

4.3.13 Comparison of Balanced and Imbalanced Datasets

As mentioned earlier, the DDoS_6 dataset is imbalanced as the class label DDoS_WebDDoS
has only 30 attack instances. To evaluate the effect of balancing a dataset, this is compared with
theDDoS_4 dataset which is slightly larger as the number of instances of theDDoS_WebDDoS
attack is the same as for the other 12 class labels. In terms of TPR and FPR, BayesNet and
Simple Logistic performed better (except for the execution time) with the DDoS_4 dataset (Ta-
ble 4.7) whereas Bagging and SMO had better performance with the DDoS_6 dataset (Table
4.9). For example, TPR and FPR for BayesNet are 95.30% and 4.70% for the DDoS_4 dataset
compared to 93.14% and 6.86% for the DDoS_6 dataset. kNN had similar results for both
datasets at 96.19% and 3.81%, respectively. Bagging provided the best overall results across
both datasets which are 95.93% and 4.07% for the DDoS_4 dataset and 96.27% and 3.73%
for the DDoS_6 dataset. The DDoS_4 dataset had a higher execution time for the five clas-
sifiers which was expected due to the higher number of instances compared to the DDoS_6
dataset. The execution time for Bagging was 1399 s for the DDoS_4 dataset and 1232 s for
the DDoS_6 dataset.

4.4 Discussion

The results in Table 4.9 to 4.14 are weighted averages over all 13 class labels. The execution
time was approximately linear with the dataset size, e.g. DDoS_1 dataset had 5707 instances
and the execution time was 380 s for Bagging, while DDoS_5 dataset had 739219 instances
which took 4200 s. The classifiers had the best performance (except for execution time) with
the DDoS_5 dataset because it is the largest. In this case, the ML model is better able to learn
during the training phase due to the higher number of instances in the dataset, resulting in
better prediction.

31

Chapter 5

Conclusions

In this project, the accuracy of an IDS to detect DDoS attacks was evaluated. The dataset em-
ployed was CICDDoS2019 from the Canadian Institute for Cybersecurity which is the most
current and comprehensive dataset available [4]. This dataset was split into six different datasets
based on the number of instances using undersampling and oversampling. From [9], the 24
best features were selected to predict DDoS attacks using five supervised machine learning
classifiers, namely Bayesian Network (BayesNet), Bootstrap Aggregating (Bagging), k-Nearest
Neighbors (kNN), Sequential Minimal Optimization (SMO), and Simple Logistic. All classi-
fiers were trained and evaluated using 5-fold cross validation. In order to evaluate the accuracy,
the precision, recall, F-measure, TPR, and FPR metrics were used. The results obtained show
Bagging provides the best performance and also the lowest execution time. The average pre-
cision, recall, F-measure, TPR, FPR and execution time for Bagging were 0.969, 0.964, 0.962,
96.35%, 3.65%, and 1459 s, respectively, followed by kNN at 0.967, 0.961, 0.959, 96.04%,
3.96%, and 24294 s, BayesNet at 0.962, 0.952, 0.953, 95.24%, 4.77%, and 1806 s, SMO at
0.939, 0.927, 0.922, 92.71%, 7.29%, and 3564 s, and Simple Logistic at 0.931, 0.921, 0.921,
92.12%, 7.88%, and 36562 s. Simple Logistic had the highest execution time. Overall, it was
concluded that Bagging provides the best tradeoff between performance and execution time.
Bagging is an ensemble method that allows multiple models (including weak learners) to be
trained. These models then solve the problem by combining several decision trees to produce
better predictive performance. This leads to better decisions and more accurate results [51].

5.1 Future Work

For future work, other supervised and also unsupervised machine learning algorithms such as
Recurrent Neural Networks and Convolutional Neural Networks could be explored using the

32

CICDDoS2019 dataset. Real-time packets can be collected and tested against the classified
training dataset. The holdout technique for splitting the data could be used to compare with
the performance of the classifiers using k-fold cross validation. Increasing the k-value in cross
validation may have an impact on classifier performance so it could also be explored.

33

Bibliography

[1] C. Hildebrand, Cloud in the crosshairs, Mar. 2019. [Online]. Available: https://www.netsc
out.com/blog/cloud-crosshairs (visited on 01/20/2020).

[2] Deloitte, Defending against distributed denial of service (DDoS) attacks. [Online]. Available: ht
tps://www2.deloitte.com/ca/en/pages/risk/articles/DDoSattacks.html (visited on
01/07/2020).

[3] Cisco, Cisco annual internet report, Feb. 2020. [Online]. Available: https://www.cisco.com
/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-p
aper-c11-741490.html (visited on 01/14/2020).

[4] Canadian Institute for Cybersecurity,DDoS evaluation dataset (CICDDoS2019), 2019. [On-
line]. Available: https : / / www . unb . ca / cic / datasets / ddos - 2019 . html (visited on
01/17/2020).

[5] “The world’s most valuable resource is no longer oil, but data,” The Economist, [Online].
Available: https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuab
le-resource-is-no-longer-oil-but-data (visited on 03/08/2020).

[6] G. Grispos, “Criminals: Cybercriminals,” in Encyclopedia of Security and Emergency Manage-
ment, L. R. Shapiro and M.-H. Maras, Eds., Springer, 2019, pp. 1–7.

[7] Cloudflare, What is a distributed denial-of-service (DDoS) attack? [Online]. Available: https:
//www.cloudflare .com/en- ca/learning/ddos/what- is- a- ddos- attack/ (visited on
01/09/2020).

[8] Canadian Centre for Cyber Security, “Cyber threats to Canada’s democratic process,”
Tech. Rep., Aug. 2018. [Online]. Available: https : / / cyber . gc . ca / en/ (visited on
01/21/2020).

[9] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani, “Developing realistic dis-
tributed denial of service (DDoS) attack dataset and taxonomy,” in International Carnahan
Conference on Security Technology, Chennai, India, Oct. 2019, pp. 1–8.

34

[10] O. C. Ibe, Fundamentals of Data Communication Networks. Hoboken, NJ, USA: Wiley, Nov.
2017.

[11] FortiGuard, TFTP server buffer overflow. [Online]. Available: https://fortiguard.com/ency
clopedia/ips/10268 (visited on 01/09/2020).

[12] The most popular types of DNS attacks. [Online]. Available: https://securitytrails.com/blog
/most-popular-types-dns-attacks (visited on 01/06/2020).

[13] D. Smith, Portmapper is preying on misconfigured servers to amplify attacks, Sep. 2015. [Online].
Available: https://blog.radware.com/security/2015/09/portmapper-preying-on-serve
rs/ (visited on 01/25/2020).

[14] Akamai, Attackers using new MS SQL reflection techniques, Feb. 2015. [Online]. Available:
https://blogs.akamai.com/2015/02/plxsert-warns-of-ms-sql-reflection-attacks.html
(visited on 01/08/2020).

[15] J. M. Alonso, R. Bordon, M. Beltran, and A. Guzman, “LDAP injection techniques,” in
IEEE Singapore International Conference on Communication Systems, Guangzhou, China, Nov.
2008, pp. 980–986.

[16] Microsoft, MS03-034: Flaw in NetBIOS could lead to information disclosure, Sep. 2019. [On-
line]. Available: https://support.microsoft.com/en-us/help/824105/ms03-034-flaw-i
n-netbios-could-lead-to-information-disclosure (visited on 01/16/2020).

[17] Cloudflare, NTP amplification DDoS attack. [Online]. Available: https://www.cloudflare
.com/learning/ddos/ntp-amplification-ddos-attack/ (visited on 01/09/2020).

[18] M. Majkowski, Stupidly simple DDoS protocol (SSDP) generates 100 Gbps DDoS, Jun. 2017.
[Online]. Available: https://blog.cloudflare.com/ssdp-100gbps/ (visited on 01/17/2020).

[19] Imperva, SNMP reflection/amplification. [Online]. Available: https://www.imperva.com/l
earn/application-security/snmp-reflection/ (visited on 01/22/2020).

[20] F. Lau, S. Rubin, M. Smith, and L. Trajkovic, “Distributed denial of service attacks,” in
IEEE International Conference on Systems, Man and Cybernetics, Nashville, TN, USA, Oct.
2000, pp. 2275–2280.

[21] JavaPipe, 35 types of DDoSattacks (that hackers will use against you in 2020), Jun. 2019. [Online].
Available: https://javapipe.com/blog/ddos-types/ (visited on 01/11/2020).

[22] CISA, Understanding denial-of-service attacks, Nov. 2019. [Online]. Available: https://www
.us-cert.gov/ncas/tips/ST04-015 (visited on 01/08/2020).

35

[23] D. Makrushin, The cost of launching a DDoS attack, Mar. 2017. [Online]. Available: https://s
ecurelist.com/the-cost-of-launching-a-ddos-attack/77784/ (visited on 01/12/2020).

[24] N. R. Fulbright, Legal implications of DDoS attacks and the Internet of Things (IoT), Dec. 2016.
[Online]. Available: https://www.dataprotectionreport.com/2016/12/legal-implicatio
ns-of-ddos-attacks-and-the-internet-of-things-iot/ (visited on 01/18/2020).

[25] A. Parisi,Hands-on Artificial Intelligence for Cybersecurity. Birmingham, UK: Packt, Aug. 2019.

[26] T. Subbulakshmi, K. Balakrishnan, S. M. Shalinie, D. Anandkumar, V. Ganapathisubra-
manian, and K. Kannathal, “Detection of DDoS attacks using enhanced support vector
machines with real time generated dataset,” in International Conference on Advanced Comput-
ing, Chennai, India, Dec. 2011, pp. 17–22.

[27] J. Brownlee, Data, learning and modeling, Dec. 2013. [Online]. Available: https://machinel
earningmastery.com/data-learning-and-modeling/ (visited on 01/10/2020).

[28] R. R. Bouckaert, E. Frank, M. Hall, R. Kirkby, P. Reutemann, A. Seewald, and D. Scuse,
“WEKA Manual for Version 3-7-8,” 2013.

[29] Waikato Environment for Knowledge Analysis (WEKA), University of Waikato, New Zealand.
[Online]. Available: https://www.cs.waikato.ac.nz/ml/weka (visited on 01/02/2020).

[30] H.-J. Liao, C.-H. Richard Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detection system: A
comprehensive review,” Journal of Network and Computer Applications, vol. 36, no. 1, pp. 16–
24, Jan. 2013.

[31] S. Bhatt, P. K. Manadhata, and L. Zomlot, “The operational role of security information
and event management systems,” IEEE Security & Privacy, vol. 12, no. 5, pp. 35–41, Sep.
2014.

[32] R. A. Jamadar, “Network intrusion detection system using machine learning,” Indian Jour-
nal of Science and Technology, vol. 7, no. 48, pp. 1–6, Dec. 2018.

[33] C. Nachenberg, “Polymorphic virus detection module,” patent US5696822A, Dec. 1997.
[Online]. Available: https://patents.google.com/patent/US5696822A/en (visited on
03/08/2020).

[34] J. Gómez, C. Gil, N. Padilla, R. Baños, and C. Jiménez, “Design of a snort-based hybrid
intrusion detection system,” inDistributed Computing, Artificial Intelligence, Bioinformatics, Soft
Computing, and Ambient Assisted Living, S. Omatu, M. P. Rocha, J. Bravo, F. Fernández, E.
Corchado, A. Bustillo, and J. M. Corchado, Eds., vol. 5518, Berlin, Germany: Springer,
2009, pp. 515–522.

36

[35] Radware, What is a scrubbing center? [Online]. Available: https://security.radware.com/d
dos-knowledge-center/ddospedia/scrubbing-center/ (visited on 04/08/2020).

[36] J. Brownlee, A gentle introduction to k-fold cross-validation, May 2018. [Online]. Available: htt
ps://machinelearningmastery.com/k-fold-cross-validation/ (visited on 01/15/2020).

[37] Canadian Institute for Cybersecurity, Network traffic flow analyzer. [Online]. Available: htt
p://www.netflowmeter.ca/netflowmeter.html (visited on 01/04/2020).

[38] E. Alpaydin, Introduction to Machine Learning. Cambridge, MA, USA: MIT Press, 2020.

[39] T.-M. Huang, Kernel Based Algorithms for Mining Huge Data Sets: Supervised, Semi-Supervised,
and Unsupervised Learning. Berlin, Germany: Springer, 2009.

[40] S. Yadav and S. Shukla, “Analysis of k-fold cross-validation over hold-out validation on
colossal datasets for quality classification,” in IEEE International Conference on Advanced
Computing, Feb. 2016, pp. 78–83.

[41] P. Gupta, Cross-validation in machine learning, Jun. 2017. [Online]. Available: https://tow
ardsdatascience.com/cross-validation- in-machine- learning-72924a69872f (visited on
01/10/2020).

[42] J. Platt, “Sequential minimal optimization: A fast algorithm for training support vector
machines,” Microsoft Research, Tech. Rep. MSR-TR-98-14, Apr. 1998.

[43] S. Kanj, F. Abdallah, T. Denœux, and K. Tout, “Editing training data for multi-label
classification with the k-nearest neighbor rule,” Pattern Analysis and Applications, vol. 19,
no. 1, pp. 145–161, Feb. 2016.

[44] D. Miyamoto, H. Hazeyama, and Y. Kadobayashi, “An evaluation of machine learning-
based methods for detection of phishing sites,” inAdvances in Neuro-Information Processing,
M. Köppen, N. Kasabov, and G. Coghill, Eds., vol. 5506, Berlin, Germany: Springer,
2009, pp. 539–546.

[45] E. Charniak, “Bayesian networks without tears,” AI Magazine, vol. 12, no. 4, pp. 50–50,
Dec. 1991.

[46] J. Brownlee, Bagging and random forest ensemble algorithms for machine learning, Apr. 2016. [On-
line]. Available: https://machinelearningmastery.com/bagging-and-random-forest-ens
emble-algorithms-for-machine-learning/ (visited on 01/11/2020).

[47] Z. Zhang, “Introduction tomachine learning: k-nearest neighbors,”Annals of Translational
Medicine, vol. 14, no. 11, Jun. 2016.

37

[48] O. Harrison, Machine learning basics with the k-nearest neighbors algorithm, Jul. 2019. [Online].
Available: https://towardsdatascience.com/machine-learning-basics-with-the-k-neares
t-neighbors-algorithm-6a6e71d01761 (visited on 01/10/2020).

[49] S. Abu-Nimeh, D. Nappa, X. Wang, and S. Nair, “A comparison of machine learning
techniques for phishing detection,” in Proceedings of the Anti-PhishingWorking Groups Annual
eCrime Researchers Summit, Pittsburgh, PA, USA, Oct. 2007, pp. 60–69.

[50] R. Blagus and L. Lusa, “SMOTE for high-dimensional class-imbalanced data,” BMC
Bioinformatics, vol. 14, no. 1, p. 106, Mar. 2013.

[51] A. Nagpal, Decision tree ensembles- bagging and boosting, Oct. 2017. [Online]. Available: https
://towardsdatascience.com/decision-tree-ensembles-bagging-and-boosting-266a8ba6
0fd9 (visited on 01/29/2020).

