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ABSTRACT

HD 106906 is a young, binary stellar system, located at ∼103.3 parsecs away in

the Lower Centaurus Crux (LCC) group. This system is completely unique among

known systems in that it contains an asymmetrical debris disk, as well as an 11 MJup

planet companion, at a separation of ∼735 AU. Only 4 other systems are known to

contain both a disk and detected planet, where HD 106906 is the only one in which the

planet has apparently been ejected. Furthermore, the debris disk is nearly edge on,

and extends roughly from 70 AU to >500 AU, where previous polarimetric studies

with HST have shown the outer regions to have high asymmetry. The presence

of a planet companion sparks questions about the origin of this asymmetry. To

better understand the structure and composition of the disk, deeper data have been

taken with the Gemini Planet Imager (GPI), which we have used to perform a deep

polarimetric study of HD 106906’s asymmetrical debris disk. The data were taken

in the H-band, and were supplemented with both J- and K1-band polarimetric data

which have been obtained through one of GPI’s Large and Long Programs (LLP).

Polarimetry is important in the study of debris disks in scattered light, as it helps

us constrain their dust grain characteristics, as well as allowing us to obtain high-

contrast images. Modelling the disk, along with an empirical analysis of our data,

supports a disk that is asymmetrical in surface brightness and structure, as well as

a disk that is highly eccentric. These results will be discussed in terms of possible

sources of asymmetry, such as dynamical interaction with the planet companion HD

106906b.
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Chapter 1

Introduction

The work done in this thesis will be published in Crotts et al. (2020), which will

be submitted to the Astrophysical Journal. While I am lead author for this work,

the observational data, MCFOST, and the GPI data reduction pipeline were obtained

from collaborators.

1.1 Debris Disks

As stars are born from massive molecular clouds, the conservation of angular mo-

mentum allows for a relatively thin disk of gas and dust to form around these young

stars. These are the environments and materials that give rise to planetary systems,

from smaller bodies such as asteroids and comets, all the way up to giant Jupiter-

sized planets. While there are several theories as to how planets form, such as core

accretion (Ormel & Klahr 2010; Levison et al. 2015), where small particles in a disk

accrete to form larger bodies, and gravitational instability (Boss 1997), where over

dense regions in a disk collapse, the details of planet formation are not yet fully under-

stood. In recent years, however, this knowledge has become more accessible with the

increasing number of discovered disks with planets, as well as directly imaged planets

undergoing formation within a disk, such as with the system PDS 70 (Keppler et al.

2018; Müller et al. 2018). It is for this reason that observations of circumstellar disks

themselves at different stages have become so important for better understanding

these processes, as this is where they take place.

Early in their lifetimes (∼first few million years), circumstellar disks are rich in

both primordial gas and dust from their origin. This stage is called the protoplanetary
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disk stage, as this is the time at which it is believed the majority of planet forma-

tion takes place. However, over the next ∼5-10 Myr, these disks will change as the

dust forms planetismals/planets and the gas is dispersed through accretion onto the

star, photo-evaporation, stellar winds, and other processes (Williams & Cieza 2011).

Eventually there will be little to no gas left in the disk, and the majority of the small

dust grains will have become a part of larger bodies. Once a planetary system has

formed from its protoplanetary disk, the smaller rocky bodies which failed to become

planets will create a new type disk, otherwise known as a debris disk.

While debris disks are typically not as large and bright as protoplanetary disks,

making them harder to directly observe, they are still equally important to study.

One of these reasons is due to the fact that the main characteristic of a debris disk

is not just the lack of primordial gas and dust, but also the presence of secondary

dust grains. Secondary dust grains differ from primordial dust grains in that they

did not originate from the initial formation of the protoplanetary disk. Instead, they

are a direct result from collisions between planetismals such as asteroids and comets

within the disk. In short, the mere presence of a debris disk indicates the successful

formation of bodies of at least several 100 to 1000 km in size. This can be confirmed

as small dust grains should have been cleared out from stellar radiation pressure and

winds on short timescales, however, their presence in debris disks indicates that small

dust grains need to be constantly replenished. This process of colliding planetismals

into smaller bodies down to sub-micron sized dust grains is called a collisional cascade

(Matthews et al. 2014). In order for a collisional cascade to occur and continually

produce smaller dust grains, planetismals need to have an efficient relative velocity

to cause fragmentation upon impact, meaning that some sort of stirring mechanism

is required to perturb their orbits.

There are several stirring mechanisms that could occur, such as late planetismal

formation at large distances from the star (Kennedy & Wyatt 2014; Kenyon & Brom-

ley 2008), interaction with the interstellar medium (ISM, Debes et al. 2009), close

encounters with nearby stars (Kennedy et al. 2014), as well as planetary scattering

(Kalas et al. 2015). The source of stirring may be determined by direct observation,

as each of these mechanisms can affect the morphology and properties of the disk in

slightly different ways, such as warps, eccentric disks, gaps, and spirals. Figure 1.1

shows the diversity in the debris disk structures as viewed in scattered and millimeter

thermal light, where some of these features can be observed.

In any of these cases, the chances of creating an asymmetrical debris disk, in either




