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Abstract

This review paper offers a contemporary literature survey on symbol spotting in architectural drawing images.
Research on isolated symbol recognition is quite mature; the same cannot be said for recognizing a symbol in
context. One important challenge is the segmentation/recognition paradox: a system should segment symbols
before recognizing them, but some kind of recognition may be necessary to obtain a correct segmentation. Research
has thus been recently directed toward symbol spotting, a way of locating possible symbol instances without using
full recognition methods. In this paper, we thoroughly review symbol spotting methods with a focus on architectural
drawings, an application domain providing the document image analysis and graphic recognition communities with
an interesting set of challenges linked to the sheer complexity and density of embedded information, that have yet to
be resolved. While most existing methods perform well in terms of recall, their performance is rather poor in terms of
precision and false positives. In light of the review, we also propose a simple yet effective symbol spotting method
based on template matching and a novel clutter-tolerant cross-correlation function that achieves state-of-the-art
results with high precision, high recall, and few false positives, able to cope with “real-life clutter” found in
industry-standard architectural drawings.

Keywords: Architectural drawing, Document image analysis, Graphic recognition, Symbol spotting

1 Introduction
Symbol recognition is a particular application of the gen-
eral problem of pattern recognition, in which unknown
input patterns are classified as belonging to one of many
classes (i.e., predefined symbol types) in the application
domain. According to [1], symbols can be defined as the
graphical entities which hold a semantic meaning in a
specific domain and which are the minimum constituent
that conveys the information. Logos, silhouettes, musical
notes, and simple line segment groups with an engi-
neering, electronics, or architectural flair constitute some
examples of symbols that have been investigated by the
document image analysis (DIA) community.
The research on isolated symbol recognition is quite

mature. Several comprehensive papers summarizing the
state of the art in symbol recognition can be found in the
literature (see Table 1). However, the research on symbol
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recognition in context, i.e., the retrieval of symbols that
are embedded in larger images as part of complex draw-
ings, is still lacking in maturity. Recognizing a symbol in
context has many more practical applications than rec-
ognizing an isolated symbol, but also entails many more
challenges. In the earlier algorithms of symbol recogni-
tion in context, the retrieval process is mostly done by
first using a segmentation step to extract regions of inter-
est and then using a recognition step to validate these
regions. However, the main challenge here is the segmen-
tation/recognition dilemma (known as Sayre’s paradox
[2], originally formulated in the context of an automated
handwriting recognition system): a system should seg-
ment the symbols before recognizing them but, at the
same time, some kind of recognition might be necessary
to obtain a correct segmentation [3]. This dilemma may
explain why the older survey papers in Table 1 did not
cover retrieval methods or only talked about possible seg-
mentation approaches. The second challenge is that due
to the ever-growing size of document image repositories,
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Table 1 Key review papers on symbol recognition and spotting methods

Survey Recognition Spotting Categorization approach

Chhabra [81], 1997 � × Application domains (circuit diagrams, engineering
drawings, architectural drawings, etc.)

Kasturi and Luo [82], 1997 � × Application domains

Cordella and Vento [9], 2000 � Segmentation only Stages of a general recognition method

Lladós et al. [83], 2001 � Segmentation only Application domains and pattern recognition methods
(structural vs. statistical)

Tombre et al. [4], 2005 � � Challenges and research directions

Rusiñol and Lladós [1], 2010 � � Stages of a general spotting method

Tabbone and Terrades [84], 2014 � � Stages of a general spotting method

Santosh et al. [85–87], 2015, 2016, and 2018 � � Statistical, structural, and syntactic approaches

fast(er) methods are necessary to handle large databases.
To overcome these bottlenecks, the research trend has
gradually shifted in recent years from the traditional con-
cept of symbol recognition toward the new concept of
symbol spotting, a way of locating a given query sym-
bol within a graphical document image without using full
recognition methods [4], while limiting the computational
complexity. As a consequence, symbol spotting has expe-
rienced a growing interest in the Graphics Recognition
community in such a way that the evaluation of symbol
spotting approaches was added for the first time in 2011
to the series of IAPRWorkshops on Graphics Recognition
(GREC) symbol recognition contests [5]. Even though the
research on symbol spotting is quite young, several review
papers can be found in the literature that focus on the
topic and are included in Table 1.
In this paper, we propose a review of the recent progress

on symbol spotting with a specific focus on digital archi-
tectural floor plans as an application, along with a simple
yet effective approach to architectural symbol spotting
that addresses the issue of clutter, an important industrial
requirement. An architectural floor plan (or architectural
drawing) is a scaled two-dimensional diagram of one level
of a building, consisting of lines, symbols, and textual
markings. Created by an architect, an architectural floor
plan shows the relationships between rooms and physical
features from above and typically includes walls, doors,
windows, staircases, fixtures, dimensions, labels of vari-
ous kinds, and sometimes furniture. Figure 1 shows an
example of the floor plan of a residential dwelling unit’s
foyer and kitchen areas.
Digital architectural drawings constitute a very chal-

lenging dataset for testing symbol spotting methods. This
application was also noticed as being of particular inter-
est in DIA communities, as can be seen in the Graph-
ics Recognition workshops and related conferences. For
example, [5–8] report on the four editions of the Inter-
national Symbol Recognition Contest, which were held at
GREC’03, GREC’05, GREC’07, andGREC’11, respectively.

The main purpose of these contests was to provide some
standard evaluation tools (datasets, ground truth data,
evaluation metrics, and evaluation protocols) in order to
compare the performance of different symbol recognition
methods (and symbol spotting methods in the latest edi-
tion). As a result, one of the most popular databases for
symbol recognition and spotting, Systems Evaluation SYn-
thetic Documents (SESYD), was proposed in [3], focusing
on synthetic architectural drawings and electrical dia-
grams, part of which was used to create the dataset for the
latest contest edition [5].
Symbol spotting methods are usually based on a query-

by-example approach (QBE) [3]: an input symbol model is
used as a query to locate similar symbols in architectural
drawings. The output of a spotting method is a ranked
list of similar symbols along with their localization data.
This process can be more complex when no library of
models is available at first and the input query is selected
interactively. In this case, which is known as on-the-fly
symbol recognition [4], learning-based methods cannot
be used, and no initial assumption can be made about the
shape of the input model. Finding and locating architec-
tural symbols in context, i.e., as embedded elements of
a realistic and complex complete architectural drawing,
brings substantial difficulties to the analysis process due to
the presence of clutter, connecting lines with other parts
of the design, and overlaps with text and/or other symbols.
In the literature, symbol recognition and spotting meth-

ods have been categorized differently based on the
authors’ viewpoint. Categorizations follow, for instance,
the application domains, the various stages involved in
the overall process, and the challenges in the field (see
Table 1). In this paper, we review papers according to
their contributions with respect to the different steps
involved in symbol spotting. The general framework of
a symbol spotting method can be considered as consist-
ing of three main levels [1]. First, the query symbol and
input document images are described via feature descrip-
tors. The descriptors can either extract features based
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Fig. 1 Architectural floor plan example. Part of an architectural floor plan (kitchen and foyer areas of a residential dwelling unit)

on image pixels or on some vectorial primitives such as
arcs, lines, and segments. At the second level, descriptors
are organized in such a way that they can be efficiently
employed for the purpose of matching. In some meth-
ods, this organization requires the extraction of regions of
interest which are more likely to contain symbols. Finally,
at the third level, hypotheses arising from the matching
between models and document images are validated and
a ranked list of localized symbols is obtained. Recent sym-
bol spotting methods mostly bring novelty to the first two
steps since the validation step is usually subjective and
application-dependent. Figure 2 gives an overview of the
categorization of the reviewed methods and correspond-
ing sections in the paper.

1.1 Contributions
Our contributions are two-fold. From a theoretical view-
point, we offer a thorough review of the literature on
symbol spotting advances with a specific focus on archi-
tectural drawings, a particularly challenging application
domain. Considering the performance of existing sym-
bol spotting methods and industry-driven requirements,
we propose, from a practical viewpoint, a simple sym-
bol spotting method based on template matching and a

clutter-tolerant cross-correlation function that is able to
cope with overlapping elements and achieves state-of-
the-art results on the dataset of the latest edition of the
International Symbol Recognition and Spotting contest
[5], strongly outperforming the contest participant.
The paper is structured as follows: Sections 2 and 3

review the literature on symbol spotting methods appli-
cable to architectural drawings according to the pro-
posed two-step categorization. In particular, Section 2
targets papers contributing to the description level,
and Section 3 to the matching/locating (spotting) level.
Section 4 focuses on the performance of symbol spotting
methods on architectural drawings. Section 5 discusses
key findings from the literature review. Section 6 describes
our proposed symbol spotting method and discusses
its experimental results. Section 7 presents concluding
remarks.

2 Symbol spotting: description phase
As a first step of any symbol spotting method, much
like for any other vision algorithm, the most signifi-
cant and relevant information should be extracted from
the document images for further processing. In this
section, we review symbol information representations
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Fig. 2 Categorization of methods. Hierarchical overview of processes and concepts in the reviewed methods and corresponding sections in the
paper

and descriptors which are used for architectural floor
plan analysis. In [9], a distinction is made between the
representation and the description of symbols as follows:

1. Representation phase: aims to reduce noise and
extract only the most significant information from
the images. Some examples are image
skeletonization, polygonal approximation, and
Hough or other transforms.

2. Description phase: tries to use preliminary
information provided by the representation phase to
build a new descriptor.

Here, we opted to review methods tackling the descrip-
tion phase, since representation phase methods are typ-
ically low-level, have been well-studied before and are
not specific to architectural floor plan images nor symbol
spotting.
In architectural floor plan analysis, images are typically

bi-level or grayscale, and thus, shape [10], as opposed to
color for instance, is the most important visual cue for
describing them. The main challenges present in this step
are scale and rotation changes, occlusions, elastic defor-
mations, and intra- and inter-class variations for symbols.
Ideally, images should be coarse to decrease the computa-
tion load of the matching/locating phase but at the same
time accurate enough to yield a reasonable recognition
rate. Several ad hoc descriptors have been introduced in
the literature to address those challenges. They can be
divided into two main categories based on the type of
primitives that are used for representing a query symbol:
pixel-based vs. vector-based. Pixel-based descriptors work

directly on the raster image format. They are usually asso-
ciated with statistical approaches and are typically (more)
robust to noise. On the other hand, vector-based descrip-
tors require the raster image format to be converted to
vectorial primitives such as segments, polylines, and arcs.
They typically allow for a more compact description,
are usually associated with structural approaches (e.g.,
graphs), and typically lead to more false alarms and are
more sensitive to noise. Table 2 summarizes descriptors
according to this pixel-vector paradigm, which we review
in the following subsections. Descriptors for both sym-
bol recognition and symbol spotting are included as some
relevant descriptors were proposed prior to the advent of
symbol spotting. The table also mentions the low-level
representation methods (corresponding to the represen-
tation phase in [9]) that are used in conjunction with each
descriptor.

2.1 Pixel-based descriptors
One of the earliest pixel-based signatures (compact rep-
resentations) of line drawing images was proposed in
[11] based on the idea of the F-signature, which is a
particular histogram of forces. This signature calculates
exerted attraction forces, based on an attraction function,
between different segments of a symbol in each direction
θ . This description is invariant to fundamental geomet-
ric transformations such as scaling, translation, symmetry,
and rotation and is also able to handle symbol degra-
dation to some extent. Although this descriptor is fast
to implement with a computational complexity equal to
O(p.n), where n is the number of image pixels and p the
number of digitalization steps of angles in the histogram,
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Table 2 Reviewed representations and descriptors for symbol recognition and spotting

Paradigm* Descriptor Robustness and invariance Features used

P F -signature [11] Robust to geometric transformations and
noise

Image pixels

P Pixel-Level Constraint [12] Scale and rotation invariant and robust to
degradation

Image skeleton

P Blurred Shape Model (BSM) [13, 14] Robust to soft, rigid, and elastic deformations Skeleton points

P Circular Blurred Shape Model
(CBSM) [15, 16],

BSM properties + rotation invariant Contour map (flexible for other
representations)

P Shape Context Descriptor (SCIP)
and extensions [20, 22]

Scale and rotation invariant Interest points

V Perceptual grouping, Fully Visibility
Graph (FVG) [24]

Rotation and scale invariant Vectorial primitives

V Structural representation and
Attributed Relational Graph (ARG)
[25, 26, 29, 30]

Scale and rotation invariant, robust to small
variations

Vectors and quadrilateral primitives

V Hierarchical Plausibility Graph
(HPG) [32, 33]

Robust to various distortions Critical points and lines

V Shape, topology, and Region
Adjacency Graph (RAG) [35, 36]

Rotation and scale invariant Image regions

V Boundary and Region Adjacency
Graph (RAG) [37]

Rotation and scale invariant Image regions

V Convexity and Near Convex Region
Adjacency Graph (NCRAG) [38]

Rotation and scale invariant Oriented line segments

V Bag-of-GraphPaths (BoGP) [39] Rotation invariant Critical points

V Jacobs’ statistical grouping [45] Scale and rotation invariant Contour map

V Bag-of-Relations (BoR) [31] Scale and rotation invariant and robust to
irregularities

Thick (solid) components, circles,
corners, and extremities

V Cassinian ovals [47] Not invariant to scaling and rotation Polylines of closed region contours

*P = pixel-based, V = vector-based

the descriptor does not lend itself easily to recognizing
symbols in context, embedded in a floor plan.
In [12], geometric constraints such as length ratios or

angles between pair of pixels considering a third pixel
as the reference point are summarized via histograms.
These histograms are used to determine the similarity
between symbols. Considering the constraints makes the
descriptor rotation- and scale-invariant and also robust
to degradation. One issue is that the complexity of the
resulting algorithm is roughly equal to O(n3), and like
F-signature, it is not easily applicable to recognition in
context.
The Blurred Shape Model (BSM) descriptor was first

introduced in [13] for recognizing handwritten symbols
and further developed in [14]. To define BSM using skele-
ton points, the images are partitioned into a grid of n ×
n equal-sized sub-regions (where n × n identifies the
blurring level allowed for the shapes). Each bin of the
grid receives votes from the shape points it contains and
also from the shape points in the neighboring bins. The
most interesting property of this descriptor is its robust-
ness to elastic and non-uniform distortions. However, it

cannot cope with geometric transformations like rota-
tion and scale changes. According to the experiments in
[13], BSM outperformed several other descriptors (e.g.,
Zernike descriptors) in terms of accuracy and scalability.
In terms of computational complexity, for a region of n×n
pixels, k ≤ n × n skeleton points are considered to obtain
the BSM with a cost of O(k) simple operations, which
is faster than the compared descriptors. To make BSM
rotational invariant, an extension named Circular Blurred
Shape Model (CBSM) was proposed in [15, 16]. CBSM is
also able to handle irregular deformations and is fast to
compute (O(k) for k contour points). Using correlograms
(radial distribution of sub-regions of the image) and shape
features derived from the Canny edge detector, CBSM is
defined based on a spatial arrangement of pixels (contour
map). Figure 3 shows the grid structures being used for
BSM and CBSM. The correlogram grid of CBSM makes
its rotation invariant when the final result is rotated and
aligned around the main diagonal of the correlogram with
the highest density. Results show that CBSM can outper-
form many other descriptors, including the original BSM,
for multi-class object categorization problems. Although
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Fig. 3 Pixel-based descriptors. Grid structures of BSM (a) and CBSM (correlogram) (b) for describing a door symbol. Each boundary pixel votes based
on its distance to the adjacent points

CBSM was successful in making BSM invariant to rota-
tion, occlusion and noise can highly affect the location
of the main diagonal of the correlogram. Moreover, the
calculation of the scale change remains a challenge.
Some symbol descriptors are inspired from the con-

cept of visual words in text indexing/retrieval approaches.
This concept has been studied in many works related to
video/image retrieval (see for instance [17–19]). In [20],
a new descriptor, known as Shape Context for Interest
Points (SCIP), is proposed in order to describe a graphic
symbol using visual words. The shape context of a contour
point is defined based on the bivariate histogram (dis-
tance and angle) of the relative coordinates of neighbor-
ing contour points. Since the number of contour points
may be huge in real documents, shape context is only
computed on key points (for instance obtained via the
difference of Gaussian operator, or DoG). SCIP can adap-
tively reflect the local geometry of symbols based on their
complexity and details and also guarantee invariance to
scaling and rotation for isolated symbols. Unfortunately,
the rotation and scale invariance is accomplished via a
normalization step at the symbol level, and it is there-
fore difficult to apply the descriptor at the document level,
i.e., for recognition in context. For this reason, an exten-
sion of SCIP (sometimes called ESCIP in some papers,
such as in [21]) for the document level was introduced
in [22]. In that paper, ESCIP is used to describe a doc-
ument with a library of visual words. This allows for
floor plans to be processed as text documents; thus, text
retrieval/indexing techniques can be applied. Although
the experimental results of this method are promising,
false detections are a major issue, due to spatial relations
between visual words being ignored and to an instability of
the key point detection in the case of symbols composed
of curves.

2.2 Vectorial descriptors
Considering the fact that architectural floor plans are
man-made and digitally born, symbols are usually com-
posed of regular primitives such as lines, arcs, and poly-
lines. For this reason, a vectorial representation of sym-
bols may seem appropriate to describe their shape. Typ-
ically, a vectorial representation of the meaningful parts
of document images and symbols is first obtained via
primitives, which are then further grouped via a suitable
vector-based descriptor. We further categorize vectorial
descriptors into graph-based and other, due to the promi-
nent role of graph structures.

2.2.1 Graph-based
Graph structures constitute one popular way of utiliz-
ing vector-based descriptors. Although they cannot be
considered themselves as descriptors, they constitute a
flexible and powerful tool for describing the relational
information found in architectural symbols. For that
reason, we introduce here some related background infor-
mation on graph structures typically used in the descrip-
tion phase for symbol spotting in architectural floor plan
images. The main advantage of using graphs is their capa-
bility to represent individual symbols with variable size
and complexity. This is because a graph size (number of
nodes and edges) does not have to be set a priori and can
be adjusted depending on the data. Moreover, graphs can
simultaneously encode both the numeric properties and
the structural data of a symbol. This latter property is what
makes graphs popular in structural pattern recognition.
To define nodes and edge attributes, scale and rotation
invariant descriptors, in addition to relational informa-
tion, are typically used in a way that makes the final
description scale and rotation invariant, to avoid putting
an extra computational load on the graph matching step.
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A drawback of using a graph structures for describing
objects (or symbols) is that pattern recognition (or sym-
bol spotting) is converted to a subgraph matching (or
isomorphism) problem which is NP-complete. Another
disadvantage of graphs is their sensitivity to noise, as noise
can affect the adjacency and Laplacian matrices of the
graphs, and thus may negatively affect the final perfor-
mance [23]. Nonetheless, graph structures remain highly
popular for vector-based symbol description and spotting.
Figure 4 shows several graph-based representations of a
bed symbol.
In [24], vectorial primitives are considered as the nodes

of a graph called Fully Visibility Graph (FVG), and edges
represent the visibility between every pair of primitives.

Figure 4c shows an example of FVG for the bed sym-
bol of Fig. 4a. Visibility here refers to the existence of at
least one straight line between two points on the primi-
tives such that the line does not touch any other primitive
in the drawing. Perceptual grouping of the primitives can
then be done by applying clique detection to FVG. In
[25], a structural representation of line drawing images is
proposed based on polygonal and quadrilateral approxi-
mations of the symbol contours. After this vectorization
step, a structural graph is constructed based on different
types of interactions between vectors in order to organize
the extracted vectors more appropriately. More specifi-
cally, the graph is an Attributed Relational Graph (ARG)
as it extracts topological and geometric features. Figure 4d

Fig. 4 Graph-based descriptions of a bed symbol. Bed symbol from SESYD (a), vectorized image (b), Fully Visibility Graph (FVG) (c), Attributed
Relational Graph (ARG) (d), intersection types used for ARG (e), and Region Adjacency Graph (RAG) (f)
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shows an example of ARG for the bed symbol considering
the attributes defined in Fig. 4e. In this figure, L, T, and S
show an L junction, a T junction, and two successive lines,
respectively. The relative geometric features considered in
ARG allow for invariance to rotation and scale changes
and also make the graph robust to small variations in the
symbols.
ARGs have also been utilized in hybrid symbol recog-

nition approaches in order to integrate structural and
statistical methods. In [26], a symbol is described by a set
of spatio-structural descriptors (vocabulary) associated
with visual primitives such as corners, circles, thick prim-
itives, and extremities. This description is mainly inspired
from [27, 28], where both complete symbols and symbols
with missing parts are recognized using their vocabulary
and grammar. The ARG-based spatio-structural descrip-
tion in [26] combines both topological and directional
information specific to the symbol. The label assigned
to each ARG vertex is the class of the corresponding
extracted vocabulary, while the edge label is defined based
on the spatial relation between two endpoint primitives.
Two extensions of this method are proposed in [29] and
[30] to include global shape signatures of each vocabulary
class in the constructed ARG. Given the fact that graph
nodes have unique labels and all instances of one spe-
cific vocabulary type are merged into one single node, the
graph matching step for symbol recognition is not NP-
hard. However, the underlying graph matching problem
requires the symbols to have at least two different types of
visual primitives in order to compute the spatial relations.
Thus, the method cannot handle symbols containing only
one primitive type [31].
One of the difficulties when working with graphs is their

sensitivity to the vectorization step. Structural errors in
this step can easily result in spurious nodes and edges,
and in some disconnections between different parts of the
graph, yielding to poor results. To cope with this problem,
a hierarchical graph representation known as Hierarchi-
cal Plausibility Graphs (HPG) is introduced in [32, 33]
to cover different possible vectorizations. HPG is able to
solve three kinds of distortions: split nodes, dispensable
nodes, and gaps. Although HPG can address the distor-
tion issue under these circumstances, heavy distortion is
still a major concern. In addition, building an HPG is
time-consuming and the hierarchical matching algorithm
sometimes fails to find local optima, yielding erroneous
solutions.
Another type of graph representation called Region

Adjacency Graph (RAG) can be created using regions
of the floor plan images (e.g., based on connected com-
ponents) as graph nodes and connecting the adjacent
regions via graph edges (Fig. 4f ). Typically, the character-
istics of the region boundaries and the relational informa-
tion between regions are used to label graph nodes and

edges. Examples include boundary strings [34], Zernike
moments for nodes and relative scale and distance for
edges [35, 36], and histogram of distances between bor-
der points and centroids [37]. The main drawbacks of
RAG is that it only considers closed regions as compo-
nents of symbols and can fail to represent a symbol well
in case of discontinuities in the boundaries. This prob-
lem is especially important when working with real-word
architectural floor plan documents.
To tackle the problem of RAG with closed regions, the

Near Convex Region Adjacency Graph (NCRAG) is pro-
posed in [38], in which regions do not need to be clearly
and continuously bounded. NCRAG rather focuses on the
convexity of the different parts of a symbol, as convexity is
one key symbol property. Even though NCRAG improves
upon RAG, it still has limitations with respect to small
variations of symbol instances in the architectural draw-
ing, which can cause erroneous splits or merges between
neighboring regions.
Since graph matching is a NP-complete problem, [39]

proposed a Bag-of-GraphPaths (BoGP) descriptor that
finds all acyclic paths between any two connected nodes of
a graph representation of symbols and then used Zernike
moments to describe these paths. The BoGP descriptor
inherits the rotation invariance properties of graph paths.
It is also unique in the sense that the descriptor converts
the graph matching step to a statistical problem, which
can be solved via hashing methods.

2.2.2 Other
While graph-based representations are popular for vec-
torial descriptors, other representations have also been
proposed in the literature. One of the earliest meth-
ods for representing models in architectural plans is to
consider a set of constraints between model segments
obtained from a vectorization step (geometrical features)
[40–42]. Taking inspiration from the work in [43, 44],
these constraints are passed to a network of constraints
and symbols are detected by testing constraints on dif-
ferent nodes of the network. In [45], the authors apply
Jacobs’ statistical grouping algorithm [46] to find mean-
ingful (or salient) convex groups of geometric primitives,
as convexity is considered as one of the non-accidental
properties of line segments. Likewise, the approach in [31]
avoids the use of graphs by extracting a meaningful vocab-
ulary of visual primitives such as thick (solid) components,
circles, corners, and extremities. The vocabulary is then
used to build a Bag-of-Relations (BoR) based on pairwise
topological and directional relations between visual prim-
itives. Since the description is built from information on
the spatial relations of symbols, it is robust to scaling and
rotation changes and also to irregularities. In addition, the
use of BoR indexing reduces the computation time dur-
ing the recognition process, which is the main problem of
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graph-based representations. The authors in [47] extract
polylines of closed region contours of each symbol as
primitives, which are then described with Cassinian ovals.
Cassinian ovals were originally introduced in [48] to
model the orbit of the Sun around the Earth. The use of
this descriptor is an attempt to encode the eccentricity and
non-circularity of an object. Using this descriptor, each
polyline is encoded in terms of a tuple (a, b). This few-
digit descriptor is then employed to build a hash table for
indexing the input document. Unfortunately, Cassinian
ovals are not invariant to scaling and rotation changes and
are only suitable for a subset of architectural symbols, i.e.,
those comprised of only closed regions.

3 Symbol spotting: matching/locating phase
Once symbols are described by an appropriate descriptor,
the most difficult challenge of a symbol spotting method
is finding the embedded symbols in the documents in
a way that avoids a segmentation step. To accomplish
this matching step, one has a range of options, from a
trivial brute force method, such as a sliding window, to
more complicated mechanisms like graph matching. The
remainder of this section reviews matching methods for
locating symbols in context, which we have categorized as
follows: sliding windows and correlation matching, geo-
metric hashing, geometric matching, graphmatching, and
graph conversion matching.

3.1 Sliding windows and correlation matching
Searching the entire floor plan image via a sliding window
(with or without overlap) performs an exhaustive search
but is very time-consuming. In addition, depending on
the robustness of the symbol descriptor, it may be nec-
essary to search the image using windows with varying
scales and rotations. Correlation-based methods like [49]
which proposed a variation of the Hit and Miss transform
for template matching, and some descriptors like CBSM
[15] (see Section 2.1) and vectorial signatures [50] use
this method to locate regions of interest (ROIs) in input
images.
One way of avoiding the unreasonable computational

complexity of exhaustive searches is to limit the search
area to the most relevant parts of image. For instance,
[11] applies a text string separation technique and imple-
ments the matching step on connected components. Like
other matching methods relying on some form of pre-
segmentation, such as connected components, or trying
to detect ROIs first, there is an assumption that the sym-
bols can be found as one entity within the components or
ROIs, which is not necessary true.

3.2 Geometric hashing
Indexing methods constitute another popular approach
for spotting symbols within architectural drawings;

indexation usually involves encoding the symbols’ and
input documents’ primitives via hashing functions in the
form of lookup tables. The existing literature on prim-
itive indexing methods usually follows the idea of geo-
metric hashing introduced by [51]. In [52], the contours
of the closed regions composing a symbol are described
by a chain of adjacent polylines, then transformed into
attributed cyclic strings. Two polylines are thus compared
and matched by taking into account the different string
edit operations needed to transform a string into another.
To build an indexing lookup table for locating symbols,
representatives of similar strings are used as indexing
keys. Another example of hashing approaches consists in
choosing a digit descriptor obtained from Cassinian ovals
to describe symbols and building an indexing hash table
[47].
In [53], the authors propose a structural approach for

indexing vectorial drawings. In their method, a proximity
graph, which is built based on extracted primitives from
the image, is used to save not only the spatial relationship
between primitives both also their numerical description
in a 2D hash table. This approach, called relational index-
ation, allows for the consideration of spatial relationships
between primitives in the retrieval process. Consider-
ing spatial relationships makes this approach invariant
to scale and rotation transforms. One downside is that
spatial information is only limited to the proximity (adja-
cency) between primitives, which might yield the same
representations for different symbols.

3.3 Geometric matching
Nayef and Breuel in [54] use a geometric matching tech-
nique [55, 56] known as RAST (Recognition by Adaptive
Subdivision of Transformation space) to search the space
of the transformations for the most likely transforma-
tion parameters, and thus, the location of symbols in the
document. In order to find matches of the features of a
symbol model within a floor plan image, RAST performs
a branch-and-bound search which yields a globally opti-
mal solution. The authors employ either sample points
along all lines in the drawings and symbol images, or
segments and their orientation as feature points. They
improved their geometric matching framework in [57]
so that it is able to deal with vectorial primitives such
as lines and arcs in addition to pixels. As an additional
improvement, non-matched features are also penalized in
order to decrease the number of incorrect matches. This
approach has a relatively low precision when dealing with
noisy or older documents, so a solution is presented in
[58], which adds a post-spotting module in order to refine
results. In this module, candidate regions obtained from
the geometric matching algorithm are classified as true
and false matches using a support vector machine (SVM)
classifier.
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3.4 Graphmatching
As mentioned in Section 2.2, graph-based representations
convert the problem of symbol spotting to a subgraph-
matching problem; however, finding the optimal solution
is not feasible since it is an NP-complete problem. Accord-
ingly, several solutions have been proposed in the litera-
ture to find a reasonable solution. In [59], a new scoring
function is proposed to evaluate the similarity of two dif-
ferent graphs. This scoring function employs a greedy
graph matching algorithm to avoid the implementation of
an exhaustive search.
In [60], an ARG representation is integrated with the

graph matching technique proposed in [61] to build a
complete symbol spotting framework. To decrease the
computational complexity of the spotting step, a set of
hypotheses are considered by the authors for detecting
ROIs in the input architectural drawing images (or equiv-
alently, detecting the parts of the corresponding graph
that may include a symbol). This way, the graph match-
ing only compares the model with ROIs, instead of the
entire document. Although the extraction of ROIs can
considerably decrease the computational complexity, the
final performance of the algorithm is limited by the quality
of this localization step. Indeed, the more comprehensive
the hypotheses are, the better precision and recall can be
expected, so the hypotheses should be properly defined in
a way that no symbol will be missed, while being able to
cope with occlusion and noise.
In [36], the authors propose a substitution-tolerant sub-

graph isomorphism to solve symbol spotting in tech-
nical drawings. Here, substitution tolerance means that
the matching can cope with attribute differences such
as vertex and edge labels, but unfortunately, a one-
to-one mapping has to exist between each vertex and
each edge of the template graph (symbol) and the tar-
get graph (floor plan); thus, structural distortions are
not handled. In their approach, architectural floor plan
images are described with a RAG, and subgraph isomor-
phism is modeled via an integer linear program (ILP)
optimization problem. To generalize this approach for
handling structural distortions, [62] proposes a binary
linear program (BLP) which allows for the deletion of
vertices and/or edges in the template graph. Unfortu-
nately, there is no polynomial-time algorithm for solving
ILP and BLP. The authors utilize Mathematical Pro-
gramming (MP), which provides tools for solving opti-
mization problems. In order to reduce the search space,
these programs use a branch-and-bound algorithm along
with some heuristics. Experimental results show better
matching performance for BLP as well as faster solv-
ing time. The main drawback of these subgraph isomor-
phism approaches is that they remain unsuitable for large
databases, since subgraph matching requires the inves-
tigation of the entire graph corresponding to the floor

plan image for each symbol. Indexation techniques have
thus the advantage over subgraph matching to be able
to describe the input drawing just once in an offline
process, allowing for a faster online querying. Another
disadvantage of subgraph isomorphism approaches is that
solving the optimization problem only yields the opti-
mal solution in each implementation, which means that
only the best match can be found in each iteration.
The entire procedure must therefore be repeated sev-
eral times for each symbol, ignoring the previous optimal
solutions.

3.5 Graph conversion matching
To reduce the computational cost of graph matching, sev-
eral works focus on translating graph characteristics into
a statistical space and then use a statistical method for
locating symbols, as opposed to structural approaches.
We refer to this group of techniques as graph conversion
matching.
Fuzzy Graph Embedding (FGE) is one of the con-

version methods used for symbol spotting in [63, 64].
Graph embedding is a dimensionality reduction method
which aims to exploit significant structural and statisti-
cal details of an attributed graph for embedding it into
a feature vector (point) in a vector space. Feature vec-
tors should reflect the similarity of corresponding graphs,
i.e., the more similar two graphs are, the smaller the dis-
tance between their corresponding feature vectors should
be. Graph embedding has the interesting advantage of
enabling graph-based representations to access the whole
range of statistical classifiers and machine learning tools.
The resulting feature vector in the FGE approach is
termed as Fuzzy Structural Feature Vector (FSFV), con-
taining graph, node, and edge level features. Graph level
features include graph order and size; node level features
include fuzzy histograms of node degrees and of values
taken by node attributes; edge level features include a
fuzzy histogram of values taken by edge attributes. FGE
employs fuzzy overlapping intervals for minimizing the
information loss while mapping from continuous graph
space to discrete vector space. The main drawbacks of this
method are twofold: first, the presence of some imper-
fections in the representation of crossing lines or lines
with angular points and second, a potential unwanted
decomposition of a line into several quadrilaterals. The
interested reader can refer to [23] for more information
about graph embedding approaches.
Another alternative to graph matching is converting

the geometric information carried by a graph to one-
dimensional structures (serialization), which are less com-
putationally expensive [65–67]. In these works, graph
nodes are the critical points detected in the vectorized
graphical documents and the lines joining them are con-
sidered as the edges. Serialization is accomplished by
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factorizing the graph into a set of all the acyclic paths
between each pair of connected nodes. After this fac-
torization, the paths are described by a proper descrip-
tor and symbol spotting can be done through hashing
the shape descriptors of the graph paths. The factoriza-
tion step introduces a lot of extra paths which can help
the algorithm in handling distortion and noise, but on
the other hand, it creates a lot of redundant informa-
tion. In addition, since critical points are highly sensitive
to noise, the serialization process can affect the final
performance.

4 Symbol spotting: performance evaluation
As mentioned in Section 1, the symbol recognition and
spotting contests of the GREC workshops have pro-
vided the research community with standard evaluation
tools including ground truth data, evaluation metrics,
and evaluation protocols for comparing the performance
of different symbol recognition and spotting methods in
architectural floor plan applications. The general frame-
work of these three key tools was published in [68]. Only
two datasets of architectural floor plans are publicly avail-
able: SESYD and FPLAN-POLY. The interested reader can
find a comprehensive list of datasets for document anal-
ysis and recognition in [69]; however, these datasets are
out of the scope of this paper. In FPLAN-POLY [53],
the floor plans are provided as vectorized graphic docu-
ments, which differs from our focus on document images
(although one might argue that they could be raster-
ized). The SESYD dataset1 [3], related to the GREC sym-
bol recognition and spotting contests, remains the most
popular image dataset for evaluating symbol recognition

and spotting algorithms. Figure 5 shows a typical floor
plan, along with all 16 architectural symbol models, from
SESYD. An overview of the use of SESYD can be found
in [70]. As SESYD is a synthetic dataset, its authors pro-
posed a generation tool to build synthetic documents that
sets several constraints to determine various positions
and locations of a given vocabulary in different ways over
the same set of architectural backgrounds (building struc-
ture). Reference [71] proposed different evaluation met-
rics that should also be considered, introduced in terms
of recognition abilities, location accuracy, and scalability,
as well as a tool for manually annotating the location of
symbols and their labels. In [72], a semi-automatic frame-
work was proposed for ground-truthing real-word floor
plan images. A top-down matching algorithm was used
to minimize user interaction for defining the boundary of
ROIs. The output of the tool includes graphics primitives
composing the symbols as well as the location and class
of symbols. Finally, [71, 73] introduced characterization
metrics that take into account not only the retrieval ability
of symbol spotting methods in real images, but also their
localization strength.
Table 3 summarizes the results of symbol spotting algo-

rithms that have been evaluated using architectural floor
plan images from SESYD. In this table, the evaluationmet-
rics are precision (P), recall (R), f-score (F), the average
precision (AveP), and the retrieval time of each symbol in
each document (T). Since spotting methods usually yield
a ranked list of results, the quality of the ranking sys-
tem cannot be assessed through standard precision and
recall values, so AveP is used for this purpose. A detailed
definition of all those parameters can be found in [71].

Fig. 5 Sample SESYD data. Sample synthetic architectural floor plan (a) and all architectural symbol models (b) from the SESYD dataset
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Table 3 Performance evaluation of symbol spotting approaches on SESYD

Method P (%) R (%) F AveP (%) T (s) Subset

Nguyen et al. [22] 70.00 88.00 79.50 – – 6 queries in 15 images from SESYD

Broelemann et al. [33] 75.17 93.17 83.21 – – SESYD (floorplan16-01, floorplan16-05, floorplan16-06)

Le Bodic et al. [36] 90.00 81.00 85.30 – – 16 queries in 200 architectural plans from SESYD

Nayef and Breuel [57] 98.90 98.10 98.50 – – 12 queries in 20 architectural plan from SESYD

Dutta et al. [38] 62.33 95.67 75.50 70.66 0.57 SESYD (floorplans16-01)

Dutta et al. [65] 56.92 83.96 67.85 60.87 0.07 SESYD

Dutta et al. [67] 50.32 83.06 62.67 60.87 0.07 SESYD

It can be seen from Table 3 that, while SESYD is the
most popular performance evaluation dataset for symbol
spotting, only a handful of authors in the literature used
it for evaluation purposes. Moreover, different subsets are
typically used (see last column), which makes it difficult
to provide fair comparisons between the spotting meth-
ods. Also, one can notice that the precision is typically
fairly low. False positives thus remain an open issue. In
the next section, we expand on the remaining problems in
the field.

5 Takeaways from literature review
Our literature review attempts to include the most impor-
tant trends in the field of symbol spotting as they pertain
to the application of architectural floor plan analysis.
Section 1 mentions some of the most important chal-
lenges, such as the lack of a priori information about
the shape of symbol models, the presence of noise, clut-
ter, occlusion, and the variability of notations for a given
class of models. Other problems also arise when working
with real-word images found in industry (i.e., architectural
floor plans that are actually used for building construc-
tion projects). The most popular dataset of document
images for symbol spotting, SESYD, contains a set of syn-
thetic images that are far from reflecting all the difficulties
of real-word images. Thus, issues like occlusion, bound-
ary discontinuities, distortions, and symbol irregularities,
which are linked to real-word images, cannot be fully
tested with SESYD. Since these problems are the main
open challenges in real-word images used in industry, a
considerable number of papers in the literature have tried
to address these problems. For example, graphs are the

main way to address irregularities and distortions of the
images because of their flexibility in reflecting the struc-
tural relation between geometric primitives (although
they are sensitive to noise that can throw off the vector-
ization process), despite a high computational complexity
for the graph matching step. Although some authors have
tested their approaches on their own datasets of real-word
images, there is not a unique framework in the litera-
ture that would allow for fair comparisons of the ability of
different methods to address the real-word architectural
floor plan images problem.
In the definition of a symbol spotting problem, it is

generally assumed that the model image is a piece of
input document which is either cropped by the user
or is already available in a library. Symbol instances,
embedded in a document, do look like the query symbol
from a topological viewpoint. However, when considering
real-world floor plans actually used in industry, we are
confronted with a large variability in the graphical nota-
tion used for a given architectural symbol class, that can
affect even the most basic features of a symbol, such as
its topology. This difficulty of clustering different designs
of architectural symbols was noted in [71] in the context
of ground-truthing graphic documents. As an example, a
kitchen sink can have as many different representations
as there are architectural firms, and even more (Fig. 6).
The variability in graphical notation is an open problem
which is almost impossible to solve with a symbol spotting
method in its regular sense, i.e., without using query sym-
bols for all potential graphical notations. Methods that do
tolerate some inexact matching between a symbol model
and a symbol instance in a floor plan cannot reliably solve

Fig. 6 Graphical notation variability. Examples of graphical notation variability for kitchen sink symbols
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the problem due to potential changes in topology and the
unbound variability. This issue seems more suitable for
training-based methods which, however, bring their own
issues such as a lack of sufficient and reliable training sets
of symbols.
Deep learning techniques have recently enjoyed a spec-

tacular success in detection, recognition, and classifica-
tion tasks related to natural patterns [74, 75], but are
not yet employed for symbol spotting. Such techniques
(e.g., YOLO [76], r-CNNs [77]) are data hungry; thanks
to large training datasets of natural images made pub-
licly available by the computer vision community (e.g.,
ImageNet [78], MS-COCO [79]), these methods perform
well for natural scenes. However, there is no equivalent
of training datasets obtained from real-life architectural
floor plans.Moreover, symbolic images such as floor plans
have a high level of abstraction, conveying information
via combinations of linear and curved segments, and lack
the rich textural and colour appearance of natural images.
Selecting semantically meaningful patches of symbols and
non-symbols for training purposes would be very difficult,
mostly due to clutter and symbol variability.
Finally, the existence of very similar geometric sub-

structures in architectural symbols constitutes another
important issue which can mislead spotting algorithms
and decrease their scalability. This issue makes the differ-
ent classes of symbols less distinguishable and causes low
precision when working on large datasets (see Table 3).
In light of the surveyed literature, and especially of the

performance of existing symbol spotting approaches pre-
sented in Section 4, we propose, in the following section,
an industry-driven simple yet effective approach to archi-
tectural symbol spotting that yields a high precision and
recall and is highly scalable.

6 Proposed symbol spotting approach
Our proposed approach utilizes template matching along
with a novel clutter-tolerant cross-correlation function.
According to the categorization of Fig. 2, the descrip-
tion phase of our approach falls into the pixel-based
descriptors category. The features used are image pix-
els, after some minimal pre-processing (part of the
representation) on the input architectural floor plan
and symbol images. The matching/locating phase relies
on template matching to spot symbol instances in an
architectural floor plan image. In our opinion, this
simple matching technique offers the best trade-off
between the ability to precisely spot any symbol versus
a robustness to clutter. The remainder of this section
presents some theoretical background on templatematch-
ing and cross-correlation, followed by our proposed
clutter-tolerant cross-correlation function and the cor-
responding algorithm, then discusses our experimental
results.

6.1 Theoretical background
The purpose of template matching is to find regions of a
source image that are similar to a template image. In our
case, this translates to finding regions within an architec-
tural floor plan that are similar to an architectural symbol
image. Cross-correlation measures the similarity between
two series of data; it is thus commonly used as a similar-
ity metric to indicate how well the template matches the
source. The cross-correlation between the source image
(f ) and the template image (t) is typically computed from
the following equation, with γ (u, v) a cross-correlation
coefficient at location (u, v):

γ (u, v) =
∑

x,y
f (x, y) − t(x − u, y − v) (1)

where f (x, y) is the pixel intensity value at coordinates
(x, y) of the source image, t(x−u, y−v) is the pixel intensity
value at coordinates (x − u, y − v) of the template image,
and (x, y) are incremented to cover all pixel coordinates of
the region of the source image where the template image
is superimposed.
One advantage of cross-correlation is that it can be com-

puted at once for all locations over the source. However,
it is not rotation—nor scale-invariant, which means that
different angulations or scales of the template image com-
pared to the source image will typically yield different
levels of similarity. An architectural symbol can appear
at various angles and scales on a floor plan. It is there-
fore necessary to compute the cross-correlation between
the template image and the source image several times,
each time with a modified template image (scaled and/or
rotated), to cover all possibilities. Those modifications are
considered as geometric transformations and are simi-
lar to those used in the geometric matching proposed by
Nayef and Breuel [57], with the difference that translation
transformations are not required.
While standard cross-correlation as in (1) allows for

finding locations in a source image where matching with a
template image is maximal, it does not allow for making a
decision as to whether or not an object corresponding to
the template has been located. As we cannot assume that
there will be one and only one instance of the template in
the source image, we cannot simply detect symbols based
on the maximal cross-correlation coefficient. Moreover,
cross-correlation coefficient values can range anywhere
from 0 to an undetermined number, depending on the
contents and the size of the template image. As template
images can vary largely in contents and size, from one
type of architectural symbol to another, standard cross-
correlation with no known maximal coefficient value is
of little use. Normalizing the coefficient values, between
0 and 1, would allow to make a decision based on a set
threshold: for instance, we could consider that all coeffi-
cients that are larger than 0.75 indicate the location of a
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match. If a source image would yield coefficients that are
all below this threshold, then no match would be found.
The normalized cross-correlation normalizes the

images by subtracting the mean pixel value from all
pixel values and by dividing by the standard deviation of
pixel values. This is usually done to remove variations
in brightness. In Lewis’ popular implementation [80], all
correlation coefficients are brought back to the range
[-1,1] as follows:

γ (u, v) =
(∑

x,y

[
f (x, y) − f u,v

][
t(x − u, y − v) − t

])
/

(∑

x,y

[
f (x, y) − f u,v

]2 ∑

x,y

[
t(x − u, y − v) − t

]2
)1/2

(2)

where t is the mean value of the template image, and f u,v is
the mean value of the source image in the region covered
by the template.
One issue that might arise from (2) is that an instance

of an architectural symbol on a floor plan might be con-
nected to other elements of the floor plan, or might be
overlapping other elements of the floor plan. In this sce-
nario, to which we can refer as “real-life clutter,” the extra-
neous items that are part of the region of the source image
(floor plan) that is covered by the template image will
influence the normalization process as they will be taken
into account in the mean values. Therefore, an instance of
a symbol on a floor plan that is isolated will yield a dif-
ferent (higher) coefficient than an instance of the same
symbol that is not isolated. Selecting a proper threshold to
make a decision as to whether or not an instance is con-
sidered as matched might be difficult in this case, as the
more clutter present, the lower the coefficient. Too low a
threshold would allow for the detection of non-isolated or
cluttered instances but would also probably cause many
false detections, while a higher threshold might work bet-
ter in term of not detecting incorrect instances but miss
non-isolated or cluttered correct instances.

6.2 Proposed clutter-tolerant cross-correlation
We propose a novel clutter-tolerant cross-correlation
function to address real-life clutter, in which the corre-
lation coefficients are brought back to the range [0,1] by
dividing them by a normalizing factor wt . We work with
binary source and template images as the originals are
typically binary or can be easily binarized. In the case of
binary images, wt simply corresponds to the number of
“ON” (foreground) pixels in the template image, i.e., pixels
composing the symbol:

γ ′(u, v) =
∑

x,y f (x, y)t(x − u, y − v)
wt

. (3)

With this formulation, only the “ON” pixels of the tem-
plate count towards the computation of the correlation,
which makes it clutter-insensitive. The computational
complexity of (3) is the same as that of the standard cross-
correlation (1). One drawback of this approach is that
“ON” pixels of the template image can match “ON” pixels
of the source image, whatever the shape of the elements
contained on the source image. For instance, if the source
image contains a solid region of “ON” pixels that is larger
than the template—which rarely happens in architectural
floor plans, then the template will yield matches over the
solid region. This drawback can be addressed through
pre-processing if necessary.
Our clutter-tolerant cross-correlation function bears

similarities with the morphological-based Hit-or-Miss
Transform extension proposed in [49] to deal with
overlapping elements, but is faster and simpler in
completely discarding template background informa-
tion. Another important difference is that in [49], the
authors change the threshold value for every single
symbol query, while our method allows us to use the
same correlation threshold value not only for all sym-
bol queries, but also for all images (see Section 6.4 and
Figs. 7 and 8).

6.3 Algorithm
Utilizing the proposed cross-correlation function (3),
architectural symbols can be spotted in digital architec-
tural floor plan images according to Algorithm 1. Steps 1
to 6 can be viewed as a representation/description phase,
steps 7 to 11 as a spotting phase, and steps 12 to 15 as
simple post-processing.

6.4 Experimental results
We evaluated our proposed method, implemented in
MATLAB, on the architectural dataset used in the most
recent edition of the GREC Symbol Recognition and Spot-
ting Contest [5] (see Sections 1 and 4). The rationale for
using the contest dataset as opposed to SESYD as some
other methods do (see Table 3) is that the contest dataset
is finite and well-defined. The test set in the architec-
tural domain is comprised of 20 different synthetic floor
plan images that contain symbol instances from 16 symbol
models. Symbol instances can appear in the floor plans at
any orientation across various scales. Various noise levels
have been added to the 20 images to generate four subsets
of 20 images each with varying degradation (ideal, level 1,
level 2, and level 3).
We present the performance of our approach consid-

ering the correlation threshold TH as its main tunable
parameter. Table 4 shows our results on the GREC con-
test dataset [5] for various TH values for the ideal case and
compares them with Nayef and Breuel’s method [57], the
sole participant in the contest. The rationale for focusing
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Fig. 7 Sample visual results on GREC contest dataset, part 1. Sample visual results of the proposed symbol spotting approach on the GREC contest
dataset [5], ideal case, for a correlation threshold TH = 0.875. Color legend (a) and spotted symbols on images 6 (b) and 20 (c). In both examples, all
symbols were correctly detected with no false positives

here on the ideal case for evaluation purposes is that it
is representative of digitally born architectural floor plan
documents, the industry standard. In Table 4, the preci-
sion (P), computed pixel-wise, represents the proportion
of the detected symbol pixels that are part of actual
symbols. The recall (R), also computed pixel-wise, repre-
sents the proportion of the actual symbol pixels that are
detected as such. The F-score (F) is a combination of the
precision and the recall (harmonic mean) into one single
measure. The recognition rate (RecR), computed symbol-
wise, is the percentage of symbols in the ground truth that
are correctly identified. As per the contest instructions,
a detected symbol is considered as recognized if there is
an overlap of at least 75% between its area and that of
the actual symbol in the ground truth. The average false
positives (AveP), computed symbol-wise, is the average
number of detected symbols with no correspondence in
the ground truth per image over the test set. Figure 9
plots the precision-recall curve, showing the trade-off
between a high recall and a high precision, with the best
combination (highest F-score) highlighted.

From Table 4, we can see that our proposed approach
yields excellent results (high precision, high recall, high
F-score, high recognition rate and low average false
positives) and significantly outperforms the contest
participant [57] in terms of precision, F-score, and
average false positives, by 36 p.p., 22 p.p., and 15 fewer
false positives on average, respectively (with similarly
high recall and recognition rate). Interestingly, as the
correlation threshold TH decreases from 0.95 to 0.85,
the precision monotonically decreases and the recall
monotonically increases, which adequately reflects the
“strictness” of the threshold. Indeed, a higher, stricter
threshold of 0.95 yields fewer albeit better detections,
while a lower, looser threshold of 0.85 allows us to
detect more symbols at the price of more false posi-
tives. The F-score is highest for a correlation threshold
TH of 0.875, as can be seen in Fig. 9. The recogni-
tion rate monotonically increases as the threshold
decreases, reaching the theoretical maximal value of
100% at TH = 0.875, also corresponding to the best
F-score. The average false positives monotonically
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Fig. 8 Sample visual results on GREC contest dataset, part 2. Sample visual results of the proposed symbol spotting approach on the GREC contest
dataset [5], ideal case, for a correlation threshold TH = 0.875. Color legend (a) and spotted symbols on images 1 (b), 8 (c), and 19 (d). In all examples,
all symbols were correctly detected, along with six (b), two (c), and three (d) false positives, shown by dashed gray arrows

increases as the threshold decreases and is minimal (0)
only at TH = 0.950, i.e., for the strictest threshold con-
sidered in the experiments. The monotonic behavior of
the proposed algorithm, with respect to the correlation
threshold value, is a highly desirable feature.
Figures 7 and 8 show sample visual results obtained

using the best correlation threshold TH of 0.875, covering
all five different layouts available in the dataset. Figure 7
illustrates ideal cases in which all symbol instances were
correctly detected with no false positives, while Fig. 8
illustrates less-than-ideal cases where all true symbol
instances are detected along with a few false positives. In
the latter, all false positives (six in Fig. 8b, two in Fig. 8c,
and three in Fig. 8d) reflect the downside of the clutter

tolerance feature. The positioning of the symbols within
the floor plans, as well as the floor plan structures, some-
times create regions that share similar features with a
specific symbol to be spotted. For instance, in Fig. 8d,
a kitchen sink symbol (sink2 or sink3 instances) is next
to a wall, which creates a region that shares similar fea-
tures with a specific window symbol (window1). A simple
post-processing step looking at the proportion of ON pix-
els in the floor plan region covered by spotted symbols,
i.e., its solidity, could be envisioned to discard such false
positives.
Figures 10 and 11 show examples of symbol spotting on

real-life architectural drawings used in industry to illus-
trate the claimed tolerance to clutter of our proposed
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Algorithm 1: Clutter-tolerant symbol spotting
Input : Template (symbol) image t, source (floor plan) image f
Output: Spotted instances sy

1 Binarize and invert t and f ;
// [Note: The original images, once binarized, will typically have their

background as white pixels, which may be interpreted as “ON” pixels, thus
the need for inversion.]

2 Optional: Replace thick lines by their edges in f ;
// [Note: This optional step may be carried out to remove solid regions that

could cause over-detections, such as the presence of thick solid walls
combined with a search for very small symbol instances that could fit within
the walls.]

3 for all scales s tested do
4 Resize t at scale s: ts;
5 for all rotations r tested do
6 Rotate ts: tsr ;
7 Compute correlation coefficients between f and tsr using (3): γ ′;

// [Note: γ ′ is a correlation map about the size of f in which higher
values indicate higher correlation.]

8 Find peaks p in γ ′ > TH;
// [Note: TH is a correlation threshold used to consider a symbol

instance as spotted, and should be [ 0, 1]. For instance, if TH = 1, a
perfect correspondence of “ON” pixels between tsr and f is required.]

9 for each peak pi in p do
10 Extract spotted symbol coordinates within f using location of pi and dimensions of tsr : syi;

// [Note: syi can be viewed as a bounding box containing a spotted
instance.]

11 end
12 If large overlap between 2 spotted symbols in sy, discard syi with lower correlation value;

// [Note: This is to prevent finding the same instance multiple times
with small shifts.]

13 end
14 If large overlap between 2 spotted symbols in sy at different rotations, discard syi with lower correlation value;

// [Note: This is to prevent finding the same instance multiple times with
small differences in rotation.]

15 end
16 If large overlap between 2 spotted symbols in sy at different scales, discard syi with lower correlation value;

// [Note: This is to prevent finding the same instance multiple times with
small differences in scale.]

Table 4 Evaluation of the proposed symbol spotting approach on the GREC contest dataset [5], ideal case (best overall performance
shown in italics)

Method P R F RecR AveP

Proposed TH = 0.950* 0.989 0.947 0.968 97.00% 0.00

TH = 0.925 0.986 0.962 0.974 97.60% 2.40

TH = 0.900 0.985 0.977 0.981 98.30% 2.60

TH= 0.875 0.983 0.992 0.987 100.00% 3.60

TH = 0.850 0.966 0.992 0.979 100.00% 4.30

Nayef and Breuel [57], as reported in [5] 0.620 0.990 0.760 99.31% 18.75

*TH = correlation threshold
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Fig. 9 Precision-recall curve. Precision-recall curve of the proposed symbol spotting approach on the GREC contest dataset [5], ideal case. The best
performance, shown with a red circle, is for a correlation threshold TH = 0.875, with a corresponding F-score of 0.987, a precision of 0.983 and a
recall of 0.992

approach. In Fig. 10, both examples are taken from a
new construction project of a residential dwelling and
contain an “intermediate” level of clutter. In the example
on the left, the refrigerator (a) is correctly identified in
(b) despite the additional layered information related to
measurements and cupboards. In the example on the
right, the two instances of the door symbol (c) are cor-
rectly identified in (d), despite the presence of layered text
over one of the instances. In Fig. 11, both examples are
taken from a renovation project of an old heritage build-
ing. Renovation project drawings typically contain a lot
more layered data than new construction projects, making
them ideal to showcase the clutter tolerance of our algo-
rithm. Those additional data (notes, hatch lines, etc.) are
necessary to indicate to the builder what to do with the
existing conditions of the site. For instance, one pattern of
hatch lines represents flooring infill, which indicates to the

builder to patch/repair/level the floor in this area. Another
pattern of hatch lines represents an area of a dropped ceil-
ing to conceal piping from the unit above. In the example
at the top of Fig. 11, bi-fold closet doors (a) are correctly
identified in (b) in spite of the clutter that includes hatch
lines at the same angle as one side of the closet doors. In
the example at the bottom, two nightstands (lamp on top
of a stand) (c) are correctly detected in (d) even though
many different types of inscriptions and objects are in
partial overlap with symbol instances. All symbol queries
in Figs. 10 and 11 (a, c) are very different in terms of
shape, topology, and symmetry, which also illustrates the
genericness of the proposed method.
The proposed method has a number of advantages in

addition to its monotonic behavior and simplicity. It is
scalable both in terms of the number of symbol mod-
els and the number of symbol instances that it is able to

Fig. 10 Sample visual results on real-life architectural drawings, part 1. Sample visual results of the proposed symbol spotting approach on real-life,
cluttered architectural drawings from a new construction project: refrigerator (a) and door (c) query symbols, and corresponding architectural
drawings with spotted instances (b, d)
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Fig. 11 Sample visual results on real-life architectural drawings, part 2. Sample visual results of the proposed symbol spotting approach on real-life,
cluttered architectural drawings from a renovation project of an old heritage building: bi-fold closet doors (a) and nightstand (c) query symbols, and
corresponding architectural drawings with spotted instances (b, d)

recognize in a single pass. It does not require any off-line
pre-processing of the architectural floor plans as in graph-
based approaches (see Section 2.2.1). It is generic enough
to be applicable to any symbol design and was designed
to cope with clutter, which is a particularly important
issue in real-world architectural floor plan images found
in industry. One can also tune the correlation thresh-
old TH to make the method less strict in its matching
and tolerate some level of noise. Since our method is
not inherently scale- nor rotation-invariant, several geo-
metric transformations are necessary to spot all poten-
tial symbol instances. However, these transformations are

easily integrated into the proposed spotting algorithm (see
Section 6.3).

7 Conclusion
This review paper presents a thorough survey of the liter-
ature on symbol spotting in graphical document images,
with a specific focus on architectural floor plans as
an application domain. Reviewed methods are catego-
rized according to their contributions to each of two
main phases in a symbol spotting framework: (1) sym-
bol and floor plan image description and (2) symbol
matching/locating within a floor plan. We also provide
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a summary of the performance of spotting methods in
the literature that were assessed with SESYD, the only
standard public dataset of synthetic architectural draw-
ing images. A key finding was that most existing methods
perform rather poorly in terms of precision and false
positives.
In light of the literature review and industry-driven

needs, we propose a simple but effective spotting
approach for architectural symbols that is based on tem-
plate matching and a clutter-tolerant cross-correlation
function that achieves state-of-the-art results, with excel-
lent precision, recall, and recognition rate, and low false
positives. Themethod has a desirable monotonic behavior
with respect to the matching parameter value (correlation
threshold), is scalable, and was designed especially to cope
with clutter, a particularly important issue in real-world
architectural floor plan images. Future research directions
with respect to our proposed approach include looking
into possible avenues for automatically determining the
best correlation threshold value to use for a given dataset.
Architectural drawings, especially real-world drawings,

provide the document image analysis and graphics recog-
nition community with an interesting set of challenges
that has yet to be resolved. Future work should definitely
look at providing the community with a public image
dataset and framework for assessing and comparing sym-
bol spotting methods on real-world architectural floor
plans as they are used in industry, with all the difficulties
that they bring that are not replicated in synthetic docu-
ment datasets. Such a real-world drawing dataset could be
laborious to assemble due to potential intellectual prop-
erty issues, but if successful, it would also pave the way
for developing machine learning-based approaches that
could tackle the variability in symbol graphical notation,
an open issue quite problematic for the symbol spotting
paradigm.

Endnotes
1 http://mathieu.delalandre.free.fr/projects/sesyd/
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