
Scalable APRIORI-Based Frequent Pattern Discovery

by

Sean Chester

B.Sc. University of Victoria 2007

A Dissertation Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the Department of Computer Science

c© Sean Chester, 2009

University of Victoria

All rights reserved. This dissertation may not be reproduced in whole or in part by
photocopy or other means, without the permission of the author.

ii

Scalable APRIORI-Based Frequent Pattern Discovery

by

Sean Chester

B.Sc., University of Victoria, 2007

Supervisory Committee

Dr. A. Thomo, Supervisor (Department of Computer Science)

Dr. V. Srinivasan, Member (Department of Computer Science)

Dr. M. Serra, Member (Department of Computer Science)

iii

Supervisory Committee

Dr. A. Thomo, Supervisor (Department of Computer Science)

Dr. V. Srinivasan, Member (Department of Computer Science)

Dr. M. Serra, Member (Department of Computer Science)

Abstract

Frequent itemset mining, the task of finding sets of items that frequently occur to-

gether in a dataset, has been at the core of the field of data mining for the past

sixteen years. In that time, the size of datasets has grown much faster than has the

ability of existing algorithms to handle those datasets. Consequentely, improvements

are needed.

In this thesis, we take the classic algorithm for the problem, A Priori, and improve

it quite significantly by introducing what we call a vertical sort. We then use the

benchmark large dataset, webdocs, from the FIMI 2004 conference to contrast our

performance against several state-of-the-art implementations and demonstrate not

only equal efficiency with lower memory usage at all support thresholds, but also the

ability to mine support thresholds as yet unattempted in literature. We also indicate

how we believe this work can be extended to achieve yet more impressive results.

iv

Table of Contents

Supervisory Committee ii

Abstract iii

Table of Contents iv

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 Frequent Itemset Mining . 1

1.2 Organization . 2

2 Background 4

2.1 Problem Definition . 4

2.2 The A Priori Algorithm . 6

2.3 Recent Advances . 13

3 Vertically Sorted A Priori 24

3.1 Overview of Improvements . 24

v

3.2 Candidate Generation . 25

3.3 Candidate Pruning . 35

3.4 Support Counting . 39

3.5 On Locality and Data Independence 42

3.6 Full View of Vertically-Sorted A Priori 43

4 Experimental Results 46

5 Conclusion and Scope of Work 54

vi

List of Tables

2.1 Example of a dataset in which {a, c} is frequent, designed to illustrate

the frequent itemset mining problem 4

2.2 Some 3-itemsets . 9

2.3 Frequencies of Itemsets for an FPGrowth Example 18

3.1 Example Set of Frequent 4-Itemsets 27

3.2 Sample Index for Candidate 5-Itemsets 32

3.3 Frequencies of Selected Itemsets in a Beer-Diapers Example 37

vii

List of Figures

2.1 Candidate Generation and Pruning in A Priori 8

2.2 Example of Candidates Stored in a Trie Structure 15

2.3 Example Trie Structure of FPGrowth Algorithm 19

4.1 Number of Itemsets in Webdocs at Various Support Thresholds . . . 48

4.2 Size of webdocs dataset with noise (infrequent 1-itemsets) removed,

graphed against the number of frequent itemsets 49

4.3 Relative Performance of Implementations on Webdocs Dataset 51

4.4 Memory Usage of Bodon and Chester implementations on webdocs as

Measured by Unix top command during late stages of execution . . . 52

Chapter 1

Introduction

1.1 Frequent Itemset Mining

The world around us is full of information and contemporary computer systems are

allowing us to gather and store that information at an astounding rate. However, our

ability to process that information lags far beyond our abilities as gatherers. Most

of the truly amazing problems of our time are rooted in extracting the meaningful

patterns from datasets so large as to have previously been unfathomable. The human

genome has been sequenced but it is still uncertain which parts of it cause us to

express particular phenotypes. Hundreds of weather stations around the world have

been collecting information about local climate for decades, but it is still difficult to

predict the effects of human activities. The universe beyond our stratosphere and the

Internet within it are mysterious places, although we have terabytes of data collected

from each.

This thesis is about data mining: the process of extracting the meaningful in-

formation from these massive datasets. Even quite defining what is a meaningful

2

relationship among data is non-trivial; but, that said, determining sets of items that

co-occur frequently throughout the data is a very good start. This task, frequent

itemset mining, is a problem that was suggested sixteen years ago and is still at the

heart of the field.

In particular, we have started with the classic algorithm for this problem and

introduced a conceptually simple idea—sorting—the consequences of which have per-

mitted us to outperform all of the available state-of-the-art implementations.

The A Priori algorithm naturally lends itself to sorting because, without any

loss in efficiency, every step of it can be designed to either create or preserve sort

order. We have exploited this by introducing a sort at the beginning and using it

quite thoroughly throughout. This allows us to improve every step of the original

algorithm.

1.2 Organization

We begin in Chapter 2 by defining the frequent itemset mining problem formally and

giving background on the progress that has been made on it. Included in that is a

full introduction to the algorithm that we upgrade, A Priori, and a review of other

relevant work that has strived toward solving this problem on large datasets.

Then, in Chapter 3 we detail quite thoroughly how we modify the original algo-

rithm in order to achieve the efficiency that we have. In so doing, we contrast to

the ideas of other researchers when appropriate. The chapter is broken into several

sections, one for each phase of the algorithm, and an additional section about general

improvements.

3

These changes we implement and in Chapter 4 we detail the results of our exper-

iments on a well-known benchmark test dataset. We compare against four state-of-

the-art implementations that were all designed with the same dataset in mind.

Finally, in Chapter 5 we offer our conclusions and indicate in what manner we

believe this research can be extended.

Chapter 2

Background

2.1 Problem Definition

Before explaining the implications of our sorting, let us first review the problem

definition and the previous attempts at addressing the problem—especially including

the basic flow of the A Priori algorithm.

The task of frequent itemset mining was first introduced in (AIS93). Informally

speaking, the objective of it is to detect those items in a dataset that commonly

co-occur, preferably indicating with what frequency. To achieve this, one fixes a

threshold, s, and then strives to output all those sets of items that co-occur at least

s times. Consider the rows of Table 2.1. If one sets the threshold to be s = 2, then

Table 2.1: Example of a dataset in which {a, c} is frequent, designed to illustrate the
frequent itemset mining problem

Transaction 0 a b c

Transaction 1 a d
Transaction 2 a c e f

5

the sets {{}, {a}, {c}, {a, c}} are frequent because the sets can be found in at least

two rows of the table.

To make this more precise, we consider a universe, U (which is {a, b, c, d, e, f}

in Table 2.1). Then, a dataset, D, is defined to be a multiset of transactions and a

transaction, t, is defined to be a subset of U .1 (In the example, Transaction 1 = {a, d}

is one such transaction and Transaction 0, Transaction 1, and Transaction 2 make

up the dataset.) An itemset is likewise defined to be a subset of U . The support of

an itemset i is

supp(i) = |{t ∈ D : i ⊆ t}|.

With these definitions, the objective of frequent itemset mining is to determine,

given a dataset D and a fixed support threshold, 0 < s ≤ |D|, the set of frequent

itemsets: {i : supp(i) ≥ s}.

These frequent itemsets potentially imply new knowledge about the dataset. The

task, although simple to describe, is quite difficult for two primary reasons: |D| is

typically massive and the set of possible itemsets, |P(U)|, is exponential in size, so

the problem search space is likewise exponential. In fact, given a fixed size k, even

determining if there exists a set of k items that co-occur in the dataset s times is

difficult: it was demonstrated in (PGG04) to be NP-complete. Here, we are trying

to discover all frequent sets, regardless of size, which is clearly at least as difficult

(otherwise we could use the output to determine if a frequent set of size k exists). So,

1In the original definition of the problem, a transaction is defined to be a 2-tuple, (tid, set), but
we do not use the tids in this paper and so drop them from the definition to simplify the ensuing
discussion.

6

all algorithms for this problem need to emphasise an effective search space pruning

strategy or other heuristics to address the NP-completeness of the problem.

Since the introduction of the frequent itemset mining task, numerous algorithms

have been proposed for it. Among those, two stand out in literature because of their

positive experimental results. A Priori(AS94) is the oldest well-adopted algorithm,

but has fallen out of favour for the newer, more popular, and more complex FPGrowth

algorithm of (HPY00).

2.2 The A Priori Algorithm

Shortly after the problem was introduced, Agrawal et al. proposed the A Priori

algorithm(AS94) to more efficiently solve it. The cleverness of their algorithm comes

from an aggressive search space pruning strategy. The property that permits this has

been coined the A Priori Principle and still forms the basis of many of the algorithms

that have been published.

If some set t contains some subset s, then it also contains all subsets of s. Con-

sidering this on a grander scale, if s is known to occur in, say, p transactions, then

all subsets of s occur in at least p transactions, since they must occur in those trans-

actions in which s occurs, even if no others. Stating this alternatively gives the A

Priori Principle:

supp(si) ≥ supp(si ∪ sj), for all sets si, sj

The algorithm proceeds in a step-wise fashion, considering first all itemsets with

7

one item, then all itemsets with two items, and so on. On the (k + 1)th step, three

things happen. First, frequent itemsets of size k are merged together to produce

candidates of size k + 1. Second, the A Priori Principle is then applied to the

candidates to determine which of them are quite obviously infrequent. Finally, the

candidates which could not be pruned are compared against D to explicitly ascertain

their support count. The process is then repeated for step k + 1. The algorithm

terminates as soon as all candidates of a particular size are pruned.

It is commonplace to refer to these three happenings as Candidate Generation,

Candidate Pruning, and Support Counting, respectively. Because they occur in series,

they are often considered in literature independently of each other. The classical

approach to each of these is detailed next.

First however, it is nice to visualise the execution of the algorithm. Frequent

itemset mining originated in the analysis of supermarkets, where the surprisingly

frequent co-occurrence of beer and diapers was discovered. We adopt this domain for

our toy example that we illustrate in Figure 2.1.

To begin, the sets {beer, chocolate}, {beer, milk}, {chocolate, diapers}, {chocolate, milk}

are all frequent. Then, since {beer, chocolate} and {beer, milk} share their first ele-

ment, they are merged into a new candidate: {beer, chocolate, milk}.

Similarly, {chocolate, diapers} and {chocolate, milk} create {chocolate, diapers, milk}.

Finally, we can prune {chocolate, diapers, milk} because we see that one of its

subsets, namely {diapers, milk}, is infrequent. So, we need only count the support

of {beer, chocolate, milk}.

8

Figure 2.1: Candidate Generation and Pruning in A Priori

9

The (k − 1)× (k − 1) Candidate Generation Method

How does one construct candidates of a particular size from a set of frequent itemsets?

Just taking the union of arbitrary sets is not going to produce new sets with exactly

k +1 elements. Although there are a number of ways to choose sets to join, only one

is used prominently and with much success: the (k − 1) × (k − 1) method that we

adopt. Consider two itemsets of size k. Their union will contain precisely k+1 items

exactly when they share

k + k − (k + 1) = k − 1

items. So, all candidates that are generated are done so from frequent itemsets of

size k that share in common k − 1 items. But consider the itemsets of Table 2.2.

Table 2.2: Some 3-itemsets

f0 a b c
f1 a b d
f2 b c d

As we desire, f0 will be joined to f1 to form a candidate, {a, b, c, d} because they

share in common the items ’a’ and ’b’. But, so will be f2 because it shares in common

with f0 the items ’b’ and ’d’. Also, f1 will be joined to f2. So, the candidate will be

produced three times. To remedy this, we can sort all the itemsets lexicographically

and impose the condition that some fi and a corresponding fj must match on the

first k − 1 elements, rather than any k − 1 elements.

In so doing, one guarantees that a candidate will be generated only once.

10

Pruning the Search Space

By only generating candidates from frequent (k − 1)-itemsets as above, one makes

use of the A Priori Principle. Candidates can only be generated if two particular

subsets are frequent. If either happens to be infrequent, then the support of their

union is necessarily infrequent, too—and as such the candidate is not generated.

However, this is a weak application of the A Priori Principle, because it only

necessitates that two particular subsets are frequent, when in fact all subsets must be.

So the next step is to apply the principle more rigorously by verifying the frequency

of all size k subsets. If they are all frequent, then (again using the same principle) all

their subsets are frequent and consequently every subset of the candidate is frequent.

On the other hand, if any size k subset is infrequent, then the candidate is necessarily

infrequent, too, and can be pruned from the search space.

This pruning phase is typically implemented quite naively, probably because no

better approach has been proposed.

Support Counting

Finally, one must count the support of those candidate (k+1)-itemsets that survived

the pruning phase in order to determine whether they truly are frequent. Agrawal

et al. accomplished this with a hashing scheme. They construct an array in which

to store the counts for each candidate and a hash function that maps the candidates

onto the array. They then scan the entire dataset and, for each transaction t in it,

extract every size k + 1 subset of t and apply the hash function to the subsets. If

a subset of t hashes to a candidate, they increment that candidate’s support count.

11

After proceeding through the entire dataset, they make one pass through the array

and collect those candidates with support counts above the threshold. These are the

frequent (k + 1)-itemsets. It is important to note that the purpose of the hashing is

for indexing, not for compression. Each candidate still retains its own support count.

Now, the entire procedure starting with the generation of candidate (k + 2)-

itemsets will be repeated using the new set of frequent itemsets. Algorithm 1 outlines

these steps taken together.

12

Algorithm 1 The classic A Priori algorithm

INPUT: A dataset D and a support threshold s
OUTPUT: All sets that appear in at least s transactions of D

F is set of frequent itemsets
C is set of candidates
C ← U
while |C| > 0 do

{Count support}
for all t ∈ D do

for all u ∈ P(t) do

Hash u and increment support count if u ∈ C
end for

end for

for all c ∈ C do

Hash c and add c to F if supp(c) > s
end for

Output F
Clear C

{Generate candidates}
Use (k − 1)× (k − 1) method to produce C from F

{Candidate pruning}
for all c ∈ C do

for all i ∈ c do

if c \ {i} 6∈ F then

Remove c from C
break

end if

end for

end for

Clear F
Reset hash

end while

13

2.3 Recent Advances

Since the publication of A Priori, many subsequent ideas have been proposed. How-

ever, the majority of these interest us very little because they do not address the real

trouble of frequent itemset mining: scalability. There are lots of cute ideas that use

various novel data structures or some tricks to try to reduce the scope of the problem,

but if they merely improve the execution time on a dataset that already fits in mem-

ory, their value is questionable. Frequent itemset mining is not a real-time system, so

the precise speed of execution is not especially important. What is important is the

ability to process datasets that are otherwise simply too large from which to extract

meaningful patterns. As such, we focus our discussion on those proposals that are

designed to address the issue of scalability.

Tries

The first of these advances on which we focus is the idea, as introduced in (BMUT97),

of storing candidates in a trie. A trie (alternatively known as a prefix tree) is a data

structure developed by Fredkin(Fre60) which takes advantage of redundancies in the

keys that are placed in the tree. It is easiest to illustrate the data structure with an ex-

ample. Consider the candidates {{beer, chocolate, diapers}, {beer, chocolate, milk},

{chocolate, diapers, milk}}. These are, respectively, three different keys that should

be inserted into the trie. Because each has three items, they will each contribute

to a path of length three. Each item of a candidate corresponds to one node along

that path. Then to retrieve a candidate from the structure, one reads the sequence

14

of items encountered while traversing to the leaf.

The compression achieved by the structure occurs when two keys share a common

prefix (such as {beer, chocolate, diapers} and {beer, chocolate, milk}). In this case,

the keys can share a common sequence of ancestors the same length as the key (namely

nodes corresponding to beer and chocolate). So, rather than needing six nodes to store

two paths of length three, one needs only four nodes. The structure built off these

three candidates is shown in Figure 2.2. Today still, this trie idea is a ubiquitous ap-

proach and adopted in the state-of-the art A Priori implementations(Bor04, Bod03).

As Brin et al. suggest in their paper, the primary bottleneck of the classical A

Priori algorithm is in incrementing counters for those candidates that are active in a

particular transaction. The trie structure helps immensely in this regard because the

process of matching a candidate to a transaction simultaneously accomplishes that

of loading the appropriate counter because it is stored in the leaf of the trie.

But even this approach is not fast enough, we believe. When comparing nearly

1.7 million transactions to 30 million candidates as is done on the webdocs data

set, the cost of everything is significantly magnified. Every node in the trie requires

two pointer dereferences and a candidate may require a traversal of as many nodes

as items it contains. Having a data structure that permits faster access would be

invaluable.

15

{}

beer

chocolate

chocolate

diapers

diapers milk milk

Figure 2.2: Example of Candidates Stored in a Trie Structure

16

This approach also has the potential to break down on large datasets if the data

structure no longer fits in main memory. The depth of the trie is equal to the length

of those candidates. To fit all nodes into main memory requires those candidate

to overlap quite substantially. When they do not, the effect of the trie’s heavily

pointer-based makeup is very poor localisation and cache utilisation. Consequentely,

traversing it causes one to thrash on disk and the efficiency of the structure is quickly

consumed by I/O costs.

Maximal Pruning

As such, it became apparent that to make this trie idea scalable, one would need

to reduce the number of candidates created. Precisely this was achieved in (Cal02),

where Calders demonstrates the sub-optimality of the A Priori Principle. He shows

that a more rigorous study of the frequent itemsets can produce pruning that is

superior to that based strictly on the A Priori Principle. However, perhaps because

it is more costly or perhaps rather just because of the timing of his publication, the

idea has not really taken off. So, it is still generally accepted that the A Priori

algorithm produces quite excessively many candidates and the algorithm has mostly

fallen out of the forefront of literature in favour for FPGrowth.

FPGrowth

In (HPY00), Han et al. introduce a quite novel algorithm to solve the frequent

itemset mining problem. They adapt the idea of a trie to the set of transactions

rather than candidates. In so doing, they effectively compress the dataset D with the

hope that it will fit entirely in main memory. Each transaction is inserted into the

17

trie in its most-frequent-first order and at each node of the trie is stored a support

counter. When a new transaction t is inserted, a path of size |t| is traced; the count

at each node along this path is incremented. Thus, inserting the transaction involves

updating |t| support counts. Additionally, a linked list is maintained between all

nodes sharing the same label. In this way, one can quickly find all paths that involve

the same item. Taking the example of Table 2.3, the trie constructed in the FPGrowth

algorithm would appear as in Figure 2.3.

Next, the trie is mined recursively to extract the frequent itemsets. By following

the linked-list of nodes labelled by the least-frequent item, one retrieves all paths

involving that item. Then a new conditional prefix tree can be built by copying and

then modifying the original tree. All paths whose leaves are not labelled with the

least-frequent item are removed, this least-frequent item is itself removed, duplicate

paths are merged, and the trie is resorted based on the new conditional frequencies.

This creates a trie with the same structure as the original tree, but conditioned on the

presence of the least frequent item. So, the procedure can be repeatedly recursively

from here until the trie consists of nothing but a root node denoting the empty set.

This yields all frequent itemsets involving the least-frequent item.

The procedure is then repeated for the second-least-frequent item, third-least-

frequent item, and so on to extract from the trie all frequent itemsets.

18

Table 2.3: Frequencies of Itemsets for an FPGrowth Example

Itemset
Transformed Itemset Frequency
LFF -Sorted Itemset
{beer, chocolate, diapers, milk} 5
{beer, chocolate, diapers} 2
{beer, chocolate, milk} 2
{chocolate, diapers, milk} 1
{beer, diapers} 1
{chocolate, milk} 2
{chocolate} 6
{beer} 1
{milk} 10

19

diapers: 5

beer: 7 diapers: 1

chocolate: 10

diapers: 2

beer: 2

chocolate: 8

diapers: 1

beer: 2

chocolate: 18

beer: 11

diapers: 9

HEADER

milk: 20

{}: 30

milk: 20

Figure 2.3: Example Trie Structure of FPGrowth Algorithm

20

The data structure is quite cute and appears to eliminate the construction of

candidates entirely. Indeed, experimental results have demonstrated consistently that

it significantly outperforms A Priori. However, the story changes when the dataset

is quite large because it suffers the same consequences as did the trie of candidates.

Even building the trie becomes extremely costly, to the point that in (BPG06) it is

remarked that the dominant percentage of execution time is that of constructing the

trie. Consequently, on truly large datasets, the FPGrowth algorithm fails even to

initialise.

However, when first introduced, it was remarked that the algorithm scales quite

elegantly. Indeed, if one has already constructed a trie, then the cost of mining it

is roughly the same independent of the support threshold (except that the recursion

produces more intermediate trees). However, FPGrowth has a preprocessing step

that prunes out all infrequent 1-itemsets prior to building the trie. Consequently, it

does not scale quite in the same way as described in literature because as the support

threshold is dropped, the number of items pruned from the dataset is decreased—

and each of these newly unpruned items needs appear in the trie. So the trie needs

be reconstructed and the size of it inflates. By what factor is dependent on the

distribution of the dataset and the amount by which the support threshold is reduced.

But since the algorithm has performed so admirably when it fits in main mem-

ory, it has been adopted for widespread study. The result is that the algorithm has

become highly optimised, with recent advances that include 64-bit processing and

reconstructions of the data structure to improve its locality on disk(BPG06); cache-

21

consciousness(GBP+05); and auxilliary data structures to speed-up the bottleneck

of the algorithm(GZ03). As such, FPGrowth runs quite well on some benchmarks

datasets, but the potential for improvement is likely somewhat limited. Also, the

heavy reliance on the trie’s underlying pointers limits how efficient the I/O can be-

come.

Furthermore, despite the claim that FPGrowth does not produce any candidates,

Goethals demonstrates in (Goe02) that it can, in fact, be considered a candidate-

based algorithm and Dexters et al. later show that the probability of any particular

candidate being generated is actually higher in FPGrowth than in the classical A

Priori algorithm(DPVG06).

Another general problem with the FPGrowth algorithm is that it lacks the in-

cremental behaviour of A Priori, something that builds fault tolerance into the al-

gorithm. Should A Priori crash after producing, say, its frequent 5-itemsets, the

algorithm can be easily restarted from that point by beginning with the construction

of candidate 6-itemsets, rather than starting from the beginning. However, because

FPGrowth operates by means of recursion, there are very few points at which the

program can save state in anticipation of failure.

Should one wish to begin analysis of the frequent itemsets as they are produced, it

would be much more difficult with the FPGrowth algorithm because the preliminary

results are all focussed on just the few particular items that happen to be least

frequent in the dataset. Contrasted with the preliminary results of A Priori, frequent

itemsets up to a particular size but involving all items, this offers one little analytical

22

power until the algorithm has entirely completed.

Consequently, despite its profound success on smaller benchmark datasets, we call

into question the scalability and use on larger datasets of the FPGrowth algorithm.

Attempts at Scaling A Priori

In 1995, Savasere et al.(SON95) introduced a variant that partitions the dataset into

components that can be mined within main memory. The idea is that if one partitions

the dataset into m parts and an itemset appears in p% of all the transactions, then it

must appear in at least (p/m)% of the transactions of at least one of the partitions.

So, mining each partition of the dataset with a threshold of p/m will produce all the

frequent itemsets. However, this approach incurs the cost of falsely proclaiming some

infrequent itemsets as frequent.

Savasere et al. resolve this by, as a post-processing step, verifying all the frequent

itemsets that they have produced. However, Buehrer et al. did a case study in

(BPG06) that demonstrated the number of these falsely proclaimed frequent itemsets

grows exponentially as the support threshold is decreased. Consequently, for large

datasets this is not an effective approach.

Another widely adopted approach is to mine a subset of the frequent itemsets

from which the entire set can be derived. The most notable of these subsets is

the set of closed frequent itemsets(PBTL99, Zak00a). However, no implementation

has demonstrated a scope-reduced approach to be especially effective on really large

datasets. Therefore, we retain the original problem definition.

The majority of algorithms and implementations that do not use the above ideas—

23

including the demonstrably most efficient implementations yet developed—attempt

to scale by extending their data structures into virtual memory. However, there are

drawbacks to this. In executing the implementations that rely on this strategy one

sees that the processor remains largely idle as it waits for the data structure to be

swapped in and out of main memory. As such, it does not matter much how efficient

the algorithm is because the execution time is dominated by the cost of this swapping.

In addition, the virtual memory strategy is not very robust in the scenario that

there is another (user or operating system) process running because they then need

compete for memory resources. As the competing processes require more resources,

less is left available for the frequent itemset mining implementation and its perfor-

mance is further degraded.

Thus, we instead use explicit filehandling to manage our memory resources in our

adaption of the A Priori algorithm.

24

Chapter 3

Vertically Sorted A Priori

3.1 Overview of Improvements

The skeleton of our method is the classical A Priori algorithm. Our contributions

are in providing novel scalable approaches for each building block.

We start by counting the support of every item in the dataset and sort them

in decreasing order of their frequence. Next, we sort each transaction with respect

to the frequency order of the their items.1 We call this a horizontal sort. We also

keep the generated candidate itemsets in horizontal sort. Furthermore, we are careful

to generate the candidate itemsets in sorted order with respect to each other. We

call this a vertical sort. When itemsets are both horizontally and vertically sorted,

we call them fully sorted. As we show, generating sorted candidate itemsets (for

any size k), both horizontally and vertically, is computationally free and maintaining

that sort order for all subsequent candidate and frequent itemsets requires careful

1Strictly speaking, an ordered collection is not a set, so we are slightly abusing the set notation.
When we indicate the union operation, for example, we mean the union of the ordered collections
such that the result maintains the ordering.

25

implementation, but no cost in execution time. This conceptually simple sorting idea

has implications for every subsequent part of the algorithm.

In particular, as we show, having transactions, candidates, and frequent itemsets

all adhering to the same sort order has the following advantages:

• Generating candidates can be done very efficiently

• Indices on lists of candidates can be efficiently generated at the same time as

are the candidates

• Groups of similar candidates can be compressed together and counted simulta-

neously

• Candidates can be compared to transactions in linear time

• Better locality of data and cache-consciousness is achieved

In addition to that, our particular choice of sort order (that is, sorting the items

least frequent first) allows us to with minimal cost entirely skip the candidate pruning

phase.

Each of these advantages is detailed more thoroughly in the next sections.

3.2 Candidate Generation

Candidate generation is the important first step in each iteration of A Priori. Typ-

ically it has not been considered a bottleneck in the algorithm and so most of the

literature focusses on the support counting. However, it is worth pausing on that for a

moment. Modern processors usually manage about thirty million elementary instruc-

26

tions per second. In the example of the webdocs dataset on a 10% support threshold,

comparing each frequent 6-itemset to each other involves 6*(55881*55880)/2 compar-

isons. Even if each comparison can be done with just two elementary operations, one

still requires about 10.5 minutes to generate these candidates prior even to pruning.

In comparison, we count the support of these candidates in roughly 36 minutes. So,

we devote considerable attention to improving the efficiency of candidate generation,

too. Here we explain how.

Efficiently generating candidates

Let us consider generating candidates of an arbitrarily chosen size, k + 1. We will

assume that the frequent k-itemsets are sorted both horizontally and vertically. A

small example if k were four is given in Table 3.1.

As described in Section 2.2, the (k − 1)× (k − 1) technique generates candidate

(k+1)-itemsets by taking the union of frequent k-itemsets. If the first k−1 elements

are identical for two distinct frequent k-itemsets, fi and fj , we call them near-equal

and denote their near-equality by fi
.
= fj. Then, classically, every frequent itemset

fi is compared to every fj and the candidate fi ∪ fj is generated whenever fi
.
= fj.

However, even in our small example, we must verify this relationship for

(

7

2

)

= 7 ∗ 8/2 = 28

pairs of frequent k-itemsets. Given the size of datasets that we are interested in

mining, this step is too slow because the number of frequent k-itemsets is so large.

27

Table 3.1: Example Set of Frequent 4-Itemsets

f0 6 5 3 2
f1 6 5 3 1
f2 6 5 3 0
f3 6 5 2 0
f4 6 5 1 0
f5 5 4 3 2
f6 5 4 3 0

28

However, our method needs only ever compare one frequent itemset, fi, to the

one immediately following it, fi+1. In the example of Table 3.1, we improve from

comparing twenty-eight itemsets for near-equality to only comparing seven. The

ability to do this is entirely dependent on having the frequent itemsets vertically

sorted.

A crucial observation is that near-equality is transitive because the equality of

individual items is transitive. So, if fi
.
= fi+1, . . . , fi+m−2

.
= fi+m−1 then we know

that (∀j, k) < m, fi+j
.
= fi+k.

Recall also that the frequent k-itemsets are fully sorted (that is, both horizontally

and vertically), so all those that are near-equal appear contiguously. This sorting

taken together with the transitivity of near-equality is what our method exploits.

Consider the given example.

To begin, we set a pointer to the first frequent itemset, f0 = {6, 5, 3, 2}. Then

we check if f0

.
= f1, f1

.
= f2, f2

.
= f3 and so on until the near-equality is no longer

satisfied. This occurs between f2 and f3 because they differ on their 3rd items. Let m

denote the number of itemsets we determined to be near-equal, 3 in this case. Then,

because near-equality is transitive, we can take the union of every possible pair of

the m = 3 itemsets to produce our candidates. In this case, we create the three

candidates {{6, 5, 3, 2, 1}, {6, 5, 3, 2, 0}, {6, 5, 3, 1, 0}} and in general
(

m

2

)

candidates

will be produced.

Then, to continue, we set the pointer to f3 and proceed as before. We see that f3

is not near-equal to f4, so we have no pairs to merge. The pointer is next set to f4 for

29

which the same can be said. We then set the pointer to f5 and verify that f5

.
= f6.

Since there are no more frequent itemsets, we pair f5 and f6 and the candidate

generation is complete. The full set of candidates that we generated is {{6, 5, 3, 2, 1},

{6, 5, 3, 2, 0}, {6, 5, 3, 1, 0}, {5, 4, 3, 2, 0}}.

In this way, we successfully generate all the candidates with a single pass over the

list of frequent k-itemsets as opposed to the classical nested-loop approach. Strictly

speaking, it might seem that our processing of
(

m

2

)

candidates effectively causes extra

passes, but it can be shown using the A Priori Principle that m is typically much less

than the number of frequent itemsets. At any rate, we circumvent this as described

in the next section.

But first, it remains to be shown that our one pass does not miss any potential

candidates. Consider some candidate c = {i1, . . . , ik}. If it is a valid candidate,

then by the A Priori Principle, fi = {i1, . . . , ik−2, ik−1} and fj = {i1, . . . , ik−2, ik} are

frequent. Then, because of the sort order that is required as a precondition, the only

frequent itemsets that would appear between fi and fj are those that share the same

(k − 2)-prefix as they do. The method described above merges together all pairs of

frequent itemsets that appear contiguously with the same (k − 2)-prefix. Since this

includes both fi and fj , c = fi ∪ fj must have been discovered.

Candidate compression

Let us return to the concern of generating
(

m

2

)

candidates from each group of m

near-equal frequent k-itemsets. Since each group of
(

m

2

)

candidates share in common

their first k−1 items, we need not repeat the information. As such, we can compress

30

the candidates into a super-candidate.

We illustrate this by reusing the example of Table 3.1 on page 27. Of those

frequent 4-itemsets, we discover that f0, f1, and f2 are near-equal. From them, c0 =

{6, 5, 3, 2, 1}, c1 = {6, 5, 3, 2, 0}, c2 = {6, 5, 3, 1, 0} would be generated as candidates.

But instead consider c = f0 ∪ f1 ∪ f2.

Then, the 2-tuple (k + m− 1, c) = (6, {6, 5, 3, 2, 1, 0}) encodes all the information

we need to know about all the candidates generated from f0, f1, and f2. The first

k − 1 items in the set c are common to all
(

m

2

)

candidates. We call this 2-tuple a

super-candidate.

This new super-candidate still represents all
(

m

2

)

candidates, but takes up much

less space in memory and on disk. More importantly, however, we can now count

these candidates simultaneously. This is covered in detail in section 3.4.

Suppose we wanted to extract the individual candidates from a super-candidate.

Ideally this will not be done at all, but it is necessary after support counting if at

least one of the candidates is frequent because the frequent candidates need to form

a list of uncompressed frequent itemsets. Fortunately, this can be done quite easily.

The candidates in a super-candidate c = (cw, cs) all share the same prefix: the

first k − 1 items of cs. They all have a suffix of size

(k + 1)− (k − 1) = 2

By iterating in a nested loop over the last cw − k + 1 items of cs, we produce all

possible suffices in sorted order. These, each appended to the prefix, form the
(

cw−k+1

2

)

31

candidates in c.

Indexing

There is another nice consequence of generating sorted candidates in a single pass: we

can efficiently build an index for retrieving them. In our implementation and in the

following example, we build this index on the least frequent item of each candidate

(k + 1)-itemset.

The structure is a simple two-dimensional array. Candidates of a particular size

k+1 are stored in a sequential file, and this array provides information about offsetting

that file. Because of the sort on the candidates, all those that begin with each item i

appear contiguously. The exact location in the file of the first such candidate is given

by the ith element in the first row of the array. The ith element in the second row

of the array indicates how many bytes are consumed by all (k + 1)-candidates that

begin with item i.

Consider again the example of Table 3.1. The candidates we generated, when

stored sequentially as super candidates, appear as below:

6653210565310554320

32

Table 3.2: Sample Index for Candidate 5-Itemsets

Item Offset NumBytes

6 0 52
5 52 24
4 -1 -1
3 -1 -1
2 -1 -1
1 -1 -1
0 -1 -1

33

The first two super candidates have 6 as their first item and the third, 5. This

creates a boundary between the second 0 and the 5 that succeeds it. The purpose of

the indexing structure is to keep track of where in the file that boundary is and offer

information that is useful for block-reading along this boundary. Table 3.2 indicates

how the structure would look if each of these numbers consumed four bytes. (We use

−1 in an ith position as a sentinel to indicate that no candidates begin with item i.

Note that one could certainly index using the j least frequent items of each candi-

date, for any fixed j < k+1. As j is chosen larger, the index structure is more precise

(returns fewer candidates that could not match the transaction) but consumes more

memory.

We note here that the idea of building an index on the candidates is not novel. In

fact, this is quite apparent in (SA96, BMUT97, BK02). However, the nature of our

indexing structure is very different. In (SA96, BMUT97, BK02), the candidates are

compressed into a prefix tree in exactly the same way as transactions are compressed

into an FPTree in FPGrowth. Consequently, this indexing structure can suffer the

same fate as does an FPTree when the number of candidates causes the index to

grow beyond the limits of memory.

Our structure does not suffer from the troubles of (SA96, BMUT97, BK02), as is

evident in three immediate ways. First, it is more likely to fit into memory, because

it only requires storing three numbers for each item, not the entire set of candidates.

Second, it partitions nicely along the same boundaries as the candidates are sorted; so,

if the structure is too large to fit in memory, it can be easily divided into components

34

that do. Third, it is incredibly quick to build.

On the precondition of sorting

Most of our method is dependent on maintaining the precondition that lists of fre-

quent itemsets and lists of candidates remain sorted, both vertically and horizontally.

This is a very feasible requirement.

The first candidates that are produced contain only two items. If one considers

the list of frequent items, call it F1, then the candidate 2-itemsets are the entire

cross-product F1 × F1. If we sort F1 first, then a standard nested loop will induce

the order we want. That is to say, we can join the first item to the second, then the

third, then the fourth, and so on until the end of the list. Then, we can join the

second item to the third, the fourth, and so on as well. Continuing this pattern, one

will produce the entire cross-product in fully sorted order. This initial sort is a cost

we readily incur for the improvements it permits.

After this stage, there are only two things we ever do: generate candidates and

detect frequent itemsets by counting the support of the candidates. Because in the

latter we only ever delete—never add nor change—itemsets from the sorted list of

candidates, the list of frequent itemsets will retain the original sort order. Regarding

the former, there is a nice consequence of generating candidates in our linear one-

pass fashion: the set of candidates is itself sorted in the same order as the frequent

itemsets from which they were derived.

Recall that candidates are generated in groups of near-equal frequent k-itemsets.

Because the frequent k-itemsets are already sorted, these groups, relative to each

35

other, are too. As such, if the candidates are generated from a sequential scan of the

frequent itemsets, they will inherit the sort order with respect to at least the first

k−1 items. Then, only the ordering on the kth and (k +1)th items (those not shared

among the members of the group) need be ensured.

That two itemsets are near-equal can be equivalently stated as that the itemsets

differ on only the kth item. So, by ignoring the shared items we can consider a group

of near-equal itemsets as just a list of single items. Since the itemsets were sorted

and this new list is made of only those items which differentiated the itemsets, the

new list inherits the sort order. Thus, we use exactly the same method as with F1 to

ensure that each group of candidates is sorted on the last two items. Consequently,

the entire list of candidate (k + 1)-itemsets is fully sorted.

3.3 Candidate Pruning

When A Priori was first proposed in (AS94), its performance was explained by its

effective candidate generation. What makes the candidate generation so effective is its

aggressive candidate pruning. We believe that this can be omitted entirely while still

producing nearly the same set of candidates. Stated alternatively, after our particular

method of candidate generation, there is little value in running a candidate pruning

step.

In (DPVG06), the probability that a candidate is generated is shown to be largely

dependent on its best testset — that is, the least frequent of its subsets. Classical

A Priori has a very effective candidate generation technique because if any itemset

c \ {ci} for 0 ≤ i ≤ k is infrequent the candidate c = {c0, . . . , ck} is pruned from the

36

search space. By the A Priori Principle, the best testset is guaranteed to be included

among these. However, if one routinely picks the best testset when first generating

the candidate, then the pruning phase is redundant.

In our method, on the other hand, we generate a candidate from two particular

subsets, fk = c \ {ck} and fk−1 = c \ {ck−1}.

If either of these happen to be the best testset, then there is little added value in

a candidate pruning phase that checks the other k− 2 size k subsets of c. Because of

our least-frequent-first sort order, f0 and f1 correspond exactly to the subsets missing

the most frequent items of all those in c. We observed that usually either f0 or f1 is

the best testset.

Let us consider a classic ”beer and diapers” example to illustrate why. Let there

be one hundred transactions, ninety of which contain milk and seventy of which

contain chocolate. Let the support threshold be 30 transactions and let there also be

the frequencies of Table 3.3

Of course, {beer, chocolate, diapers, milk} should not be generated as a candidate

because one of its subsets, namely {beer, chocolate, diapers}, is infrequent. Also,

note that {beer, chocolate, diapers} is the best testset. Classic A Priori uses a

lexicographical ordering, so generates this candidate from an (effectively) arbitrary

choice of subsets. So, the best testset could not really be expected with a better than

2/(k + 1) chance.

37

Table 3.3: Frequencies of Selected Itemsets in a Beer-Diapers Example

Itemset
Transformed Itemset Frequency
LFF -Sorted Itemset
{beer, diapers}
{beer, diapers} 35
{diapers, beer}
{beer, diapers, milk}
{apples, beer, diapers} 34
{diapers, beer, milk}
{beer, chocolate, diapers}
{beer, chocolate, diapers} 25
{diapers, beer, chocolate}
{beer, chocolate, milk}
{apples, beer, chocolate} 50
{beer, chocolate, milk}
{chocolate, diapers, milk}
{apples, chocolate, diapers} 40
{diapers, chocolate, milk}

38

In the above example using a lexicographical ordering, the candidate would be

generated from {beer, chocolate, diapers} and {beer, chocolate, milk} using the (k−

1) × (k − 1) method, which uses the best testset. However, if we change the label

of ”milk” to ”apples” and resort, a change that should not really be reflected in the

efficacy of the algorithm, then the candidate {apples, beer, chocolate, diapers} will

be generated from {apples, beer, diapers} and {apples, beer, chocolate}—no longer

using the best testset. So, now, candidate pruning is absolutely necessary.

But using an LFF sort, we have some predictability about the testsets that we use.

We always try to extend the set with the most frequent items, rather than with an

arbitrary choice. As such, we do not take some set of independently frequent items,

like {chocolate, milk}, and append to them just about everything. Instead, we start

with more interesting groups, like {beer, diapers}, and extend them with those more

frequent items which have occurred in conjunction with the group. This is naturally

going to be more successful, because we have already ascertained the presence of the

least likely elements. So, rather than going about an expensive candidate pruning

procedure in which we examine every possible testset in order to guarantee we find

the best one, we instead accept that there are a few (although not especially many)

extra candidates and move right along.

We are also not especially concerned about generating a few extra candidates,

because they will be indexed and compressed and counted simultaneously with others,

so if we do not retain a considerable number of prunable candidates by not pruning,

then we do not do especially much extra work in counting them, anyway.

39

3.4 Support Counting

It was recognised quite early that A Priori would suffer a bottleneck in comparing the

entire set of transactions to the entire set of candidates for every iteration of the algo-

rithm. Consequently, most A Priori -based research has focussed on trying to address

this bottleneck. Certainly, we need to address this bottleneck as well. The standard

approach is to build a prefix trie on all the candidates and then, for each transaction,

check the trie for each of the k-itemsets present in the transaction. But this suffers

two traumatic consequences on large datasets. First, if the set of candidates is large

and not heavily overlapping, the trie will not fit in memory and then the algorithm

will thrash about exactly as do the other tree-based algorithms. Second, generating

every possible itemset of size k from a transaction t = {t0, . . . , tw−1} produces
(

w

k

)

possibilities. On the webdocs dataset, the transactions sometimes contain over 70000

items. Even after pruning infrequent items with a support threshold of 10%, w still

ranges so high as 262. Taken at k = 4, this produces

(

262

4

)

= 191868495

itemsets. And there are nearly 1.7 million transactions.

So, we abandon the trie.

Index-Based Support Counting

Instead, we again exploit the vertical sort of our candidates using the index we built

when we generated them. To process that same transaction t above, we consider each

40

of the w − k first items in t. For each such item ti we use the index to retrieve the

contiguous block of candidates whose first element is ti. Then, we compare the suffix

of t that is {ti, ti+1, . . . , tw−1} to each of those candidates.

Returning to the example of Table 3.1 on page 27, we had concluded that three

super-candidates would be generated: {c0 = (6, {6, 5, 3, 2, 1, 0}), c1 = (5, {6, 5, 3, 1, 0}),

c2 = (5, {5, 4, 3, 2, 0})}. To compare to a transaction, say t = {t0 = 6, t1 = 4, t2 =

3, t3 = 2, t4 = 1, t5 = 0} we first look up t0 in the index and retrieve the first two

super-candidates, c0 and c1. We then compare them each to t and update the support

counts if they are contained in t. (In this case, they are not.)

Next, we proceed to t1, looking it up in the index. We discover that there are no

candidates that begin with 4, so move along to t2. However, since

w − i = 6− 2 = 4 < k

we know that there cannot possibly be any more candidates contained in t, so we are

done.

Counting with Compressed Candidates

Recall from section 3.2 that candidates can be compressed. This affords appreciable

performance gains. All the candidates compressed into a super-candidate c = (cw, cs)

share their first k−1 elements. So, for a transaction t, if the first k−1 items of cs are

not strictly a subset of t, then we can immediately jump over
(

cw−k+1

2

)

candidates.

None could possibly be contained in t.

41

Suppose instead that the first k−1 items of cs are strictly a subset of a transaction

t. How do we increment the support counts of exactly those candidates in c which

are contained in t (no more, no fewer)? We illustrate this by example. Let t =

{6, 5, 4, 3, 2, 0} be the transaction and, as before, c = (cw, cs) = (6, {6, 5, 3, 2, 1, 0}) be

the super-candidate and k + 1 = 5 be the size of the candidates. We lay out a linear

array, A, of
(

cw − k + 1

2

)

=

(

3

2

)

= 3

integers in which we keep track of each candidate’s support count.

Some items of cs are also in t. Each has an index in cs and we keep all such indices

above k− 1. This gives us c′ = {3, 5} (corresponding to the items 3 and 0). We then

subtract these indices from cw = 6, producing c′′ = {3, 1}.

Finally, we increment the support counts for each of the
(

|c′′|
2

)

candidates contained

in t.

To do so for elements i and j in c′′ (with i > j), we increment

A

[(

cw − k + 1

2

)

− 1− x

]

where x =
(

i

2

)

+ j − i.

In our example, the only choices for i and j are i = 3 and j = 1, so

x =

(

3

2

)

+ 1− 3 = 1

42

and we only increment

A

[(

3

2

)

− 1− x

]

= A[3− 1− 1] = A[1].

Reflecting on our super-candidate, it represented the candidates c0 = {6, 5, 3, 2, 1},

c1 = {6, 5, 3, 2, 0}, c2 = {6, 5, 3, 1, 0}. Of these three, only c1 is contained in t. The

only integer we incremented was A[1]. Our mapping would increment A[0] for c0 and

A[2] for c2.

This is how we consistently index our arrays, but certainly any mapping from

{(i, j) : 0 < j < i ≤ cw − k + 1}

onto the interval
[

0,
(

cw−k+1

2

))

if applied consistently will work. In fact, one need not

even map to such a tight interval if space is not a concern. We chose our mapping

(

cw − k + 1

2

)

− 1−

((

i

2

)

+ j − i

)

because it has the nice property that order is maintained.

3.5 On Locality and Data Independence

It is fair to assume that any efficient and complete solution to the frequent itemset

mining problem on a general, very large dataset is going to require data structures

that do not fit entirely in memory. Recent work in (BPG06) on FP-Growth accepts

this inevitability for very large datasets and focusses on restructuring the trie and

43

reordering the input such that it anticipates relying heavily on a virtual memory-

based solution. In particular, they aim to reuse a block of data so much as possible

before swapping it out again. Our method naturally does this because it operates

in a sequential manner on prefaces of sorted lists. Work that is to be done on a

particular contiguous block of the data structure is entirely done before the next

block is used, because the algorithm proceeds in sorted order and the blocks are

sorted. Consequently, we fully process blocks of data before we swap them out. Our

method probably also performs decently well in terms of cache utilisation because

contiguous blocks of itemsets will be highly similar given that they are fully sorted.

Perhaps of even more importance is the independence of itemsets. The candidates

of a particular size, so long as their order is ultimately maintained in the output to

the next iteration, can be processed together in blocks in whatever order desired.

The lists of frequent itemsets can be similarly grouped into blocks, so long as care is

taken to ensure that a block boundary occurs between two itemsets fi and fi+1 only

when they are not near-equal. The indices can also be grouped into blocks with the

additional advantage that this can be done in a manner corresponding exactly to how

the candidates were grouped. As such, all of the data structures can be partitioned

quite easily, which lends itself quite nicely to the prospects of parallelisation and fault

tolerance.

3.6 Full View of Vertically-Sorted A Priori

The changes that have come out of this sorting are far-reaching and have impacted

every phase of the algorithm. So, the revisions proposed in this chapter have been

44

summarised in Algorithm 2. It is perhaps useful to compare this to Algorithm 1,

classic A Priori, on page 12 to illustrate from a high-level the changes that have been

proposed in this research.

45

Algorithm 2 The revised Vertically-Sorted A Priori algorithm

INPUT: A dataset D and a support threshold s
OUTPUT: All sets that appear in at least s transactions of D

F is set of frequent itemsets
C is set of candidates
C ← U
Scan database to count support of each item in C
Add frequent items to F
Sort F least-frequent-first (LFF) by support (using quicksort)
Output F
for all f ∈ F, sorted LFF do

for all g ∈ F, supp(g) ≥ supp(f), sorted LFF do

Add {f, g} to C
end for

Update index for item f
end for

while |C| > 0 do

{Count support}
for all t ∈ D do

for all i ∈ t do

RelevantCans ← using index, compressed cans from file that start with i
for all CompressedCans ∈ RelevantCans do

if First k − 2 elements of CompressedCans are in t then

Use compressed candidate support counting technique to update ap-
propriate support counts

end if

end for

end for

end for

Add frequent candidates to F
Output F
Clear C

{Generate candidates}
Start ← 0
for 1 ≤ i ≤ |F | do

if i == |F | OR fi is not near-equal to fi−1 then

Create super candidate from fstart to fi−1 and update index as necessary
Start ← i

end if

end for

{Candidate pruning—not needed!}
Clear F
Reset hash

end while

46

Chapter 4

Experimental Results

To test the ideas put forth here, we created an implementation in C.1 What is in-

teresting in this study is really only the performance on large datasets because the

size of the dataset is what makes this an interesting problem. The 1.5GB of webdocs

data(LOPS04) fits nicely into this category, being the largest dataset commonly used

throughout publications on this problem. All other benchmark datasets are quite a

lot smaller and not relevant here. We could generate our own large dataset against

which to also run tests, but the value of doing so is minimal. The data in the webdocs

set comes from a real domain and so is meaningful. Constructing a random dataset

will not necessarily portray the true performance characteristics of the algorithms.

At any rate, the other implementations were designed with knowledge of webdocs,

so it is a fairer comparison. For these reasons, we used other datasets only for the

purpose of verifying the correctness of our output.

On this dataset, we compare the performance of this implementation against a

1A repository has been setup as of May 2009 both at http://webhome.csc.uvic.ca/∼schester and
at http://webhome.cs.uvic.ca/∼thomo in which the implementation can be found.

47

wide selection of the best available implementations of various frequent itemset min-

ing algorithms. Those of Bodon(Bod03) and of Borgelt(Bor04) are state-of-the-art

implementations of the A Priori algorithm which use a trie structure to store candi-

dates. Lucchese et al.(LOP04) implement an alternative algorithm which exhibited

the best performance on this benchmark dataset at the renowned FIMI conference

of 2004.(JGZ04) That of Zhu and Grahne(GZ03) is the best available FPGrowth im-

plementation. All of these implementations against which we compare are written in

C++ by experienced coders. In order to maximally remove uncontrolled variability

in the comparisons the choice of programming language is important. We chose C

as a balance between programming experience and the similarlity of the language

to C++. All of the implementations were compiled on the same machine with the

same class of gnu compilers (gcc 4.1.2 and g++ 4.1.2) set at the highest level of

optimisation.

The correctness of our implementation’s output is compared to the output of

these other algorithms. Since they were all developed for the FIMI workshop and all

agree on their output, it seems a fair assumptiont that they can serve correctly as

an ”answer key”. But, nonetheless, boundary condition checking was a prominent

component during development.

48

Figure 4.1: Number of Itemsets in Webdocs at Various Support Thresholds

49

Figure 4.2: Size of webdocs dataset with noise (infrequent 1-itemsets) removed, graphed
against the number of frequent itemsets

50

We test each implementation on webdocs with support thresholds of 20%, 15%,

10%, 7.5%, and 5%. Reducing the support threshold in this manner increases the size

of the problem as observed in Figure 4.1 and Figure 4.2. (The number of candidate

itemsets is implementation-dependent and in general will be less than the number in

the figure. That value corresponds to the number of candidates that we generated.)

All tests were run on a Dual-Core Intel Xeon Processor 5140, 2.33 GHz/1333 MHz,

4MB L2 machine.

As can be seen in Figure 4.3, our implementation matches (to within about 10%)

or outperforms all of the aforementioned state-of-the-art implementations at all su-

port thresholds. Furthermore, no other implementation was able to process as low

a support threshold as was ours. The implementations of Zhu and of Lucchese were

unable to complete within a reasonable period of time at 10%. Those of Bodon and

Borgelt could not compute the frequent itemsets at 5%. Our implementation has

finished k = 8 at 5% and continues as well as ever.

To explain the difference, Figure 4.4 displays the memory usage of our implemen-

tation and of Bodon’s implementation as measured by the Unix top command. As

the size of the dataset grows (or, equivalently, the support threshold decreases), so

too does the size of the memory structures required. However, because our imple-

mentation uses explicit filehandling instead of relying on virtual memory, the memory

requirements are effectively constant. However, those of all the other algorithms grow

beyond the limits of memory and consequently cannot initialise. Without the data

structures, the programmes must obviously abort.

51

Figure 4.3: Relative Performance of Implementations on Webdocs Dataset

52

Figure 4.4: Memory Usage of Bodon and Chester implementations on webdocs as Mea-
sured by Unix top command during late stages of execution

53

It should be noted that in (BPG06) the authors test their FPGrowth implemen-

tation on the same benchmark webdocs dataset as do we and they report impressive

running times. Unfortunately, the implementation is now unavailable. The details in

the accompanying paper are not sufficiently precise that we could implement their

modifications to the FPGrowth algorithm. As such, no fair comparison can truly

be made. Yet still, they only publish results up to 10% which is insufficient as we

demonstrated in Figure 4.2. It is a fair hypothesis that, were their implementation

available, if would suffer the same consequences as do the other trie-based implemen-

tations when the support threshold is dropped further.

So, through these experiments, we have demonstrated that our implementation

produces the same results with the same performance as the best of the state-of-the-

art implementations. But, whereas they blow their memory in order to decrease the

support threshold, the memory utilisation of our implementation remains relatively

constant. As such, our performance continues to follow a predictable trend and our

programme can successfully mine suppport thresholds that are impossibly low for the

other implementations.

54

Chapter 5

Conclusion and Scope of Work

Frequent itemset mining is an important problem within the field of data mining,

but sixteen years of algorithmic development has yet to produce an implementation

that can mine sufficiently low support thresholds on even a modest-sized benchmark

dataset—never mind the gigabytes of data in many real-world applications. By in-

troducing a vertical sort at the onset of the classic A Priori algorithm, significant

improvements can be made. Besides simply having better localised data storage, the

candidate generation can be done more efficiently and an indexing structure can be

built on the candidates at the same time. Candidates can be compressed to improve

comparison times as well as data structure size, and support counting is thus speeded

up. The cumulative effect of these improvements is observable in the implementation

that we created.

Furthermore, whereas other algorithms in the literature are being fully optimised

already, we believe that this work opens up many avenues for yet more pronounced

improvement. Given the locality and independence of the data structures used, they

55

can be partitioned quite easily. We intend to do precisely that in parallelising the

algorithm. Extending the index to more than one item to improve its precision on

larger sets of candidates will likely also yield significant improvement. And, of course,

all the optimisation tricks used in other implementations can be incorporated here.

The result of this research is that the frequent itemset mining problem can now

be extended to much lower support thresholds (or, equivalently, larger effective file

sizes) than have even yet been considered. These improvements came at no cost to

performance, as evidenced by the fact that our implementation matched the state-

of-the-art competitors while consuming much less memory. Prior to this work, it has

been assumed that the performance of A Priori is inhibitively slow. But, in fact, this

work reestablishes it as the frontier algorithm.

56

Bibliography

[AIS93] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining asso-

ciation rules between sets of items in large databases. In Peter Buneman

and Sushil Jajodia, editors, Proceedings of the 1993 ACM SIGMOD In-

ternational Conference on Management of Data, Washington, D.C., May

26-28, 1993, pages 207–216. ACM Press, 1993.

[AS94] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining

association rules. In Proc. of VLDB Conference, pages 487–499, 1994.

[BK02] Christian Borgelt and Rudolf Kruse. Induction of association rules: Apri-

ori implementation. In Proceedings of the fifteenth conference on compu-

tational statistics, pages 395–400, 2002.

[BMUT97] Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur. Dy-

namic itemset counting and implication rules for market basket data.

SIGMOD Rec., 26(2):255–264, 1997.

[Bod03] Ferenc Bodon. A fast apriori implementation. In Bart Goethals and

Mohammed J. Zaki, editors, Proceedings of the IEEE ICDM Workshop

on Frequent Itemset Mining Implementations (FIMI’03), volume 90 of

57

CEUR Workshop Proceedings, Melbourne, Florida, USA, 19. November

2003.

[Bor04] Christian Borgelt. Recursion pruning for the apriori algorithm. In Jr.

et al. (JGZ04).

[BPG06] Gregory Buehrer, Srinivasan Parthasarathy, and Amol Ghoting. Out-of-

core frequent pattern mining on a commodity pc. In KDD ’06: Proceed-

ings of the 12th ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 86–95, New York, NY, USA, 2006.

ACM.

[Cal02] Toon Calders. Deducing bounds on the frequency of itemsets. In EDBT

Workshop DTDM Database Techniques in Data Mining, 2002.

[DPVG06] Nele Dexters, Paul W. Purdom, and Dirk Van Gucht. A probability

analysis for candidate-based frequent itemset algorithms. In SAC ’06:

Proceedings of the 2006 ACM symposium on Applied computing, pages

541–545, New York, NY, USA, 2006. ACM.

[Fre60] Edward Fredkin. Trie memory. Commun. ACM, 3(9):490–499, 1960.

[GBP+05] Amol Ghoting, Gregory Buehrer, Srinivasan Parthasarathy, Daehyun

Kim, Anthony Nguyen, Yen-Kuang Chen, and Pradeep Dubey. Cache-

conscious frequent pattern mining on a modern processor. In Klemens

Böhm, Christian S. Jensen, Laura M. Haas, Martin L. Kersten, Per-Åke

Larson, and Beng Chin Ooi, editors, VLDB, pages 577–588. ACM, 2005.

58

[Goe02] B. Goethals. Efficient Frequent Pattern Mining. PhD thesis, transna-

tionale Universiteit Limburg, 2002.

[GZ03] Gösta Grahne and Jianfei Zhu. Efficiently using prefix-trees in mining

frequent itemsets. In Jr. et al. (JGZ04).

[HPY00] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns with-

out candidate generation. In Weidong Chen, Jeffrey F. Naughton, and

Philip A. Bernstein, editors, SIGMOD Conference, pages 1–12. ACM,

2000.

[JGZ04] Roberto J. Bayardo Jr., Bart Goethals, and Mohammed Javeed Zaki, ed-

itors. FIMI ’04, Proceedings of the IEEE ICDM Workshop on Frequent

Itemset Mining Implementations, Brighton, UK, November 1, 2004, vol-

ume 126 of CEUR Workshop Proceedings. CEUR-WS.org, 2004.

[LOP04] Claudio Lucchese, Salvatore Orlando, and Raffaele Perego. kdci: on using

direct count up to the third iteration. In Jr. et al. (JGZ04).

[LOPS04] Claudio Lucchese, Salvatore Orlando, Raffaele Perego, and Fabrizio Sil-

vestri. Webdocs: a real-life huge transactional dataset. In Jr. et al.

(JGZ04).

[PBTL99] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Discov-

ering frequent closed itemsets for association rules. In ICDT ’99: Pro-

ceedings of the 7th International Conference on Database Theory, pages

398–416, London, UK, 1999. Springer-Verlag.

59

[PGG04] Paul W. Purdom, Dirk Van Gucht, and Dennis P. Groth. Average-

case performance of the apriori algorithm. SIAM Journal on Computing,

33(5):1223–1260, 2004.

[SA96] Ramakrishnan Srikant and Rakesh Agrawal. Mining sequential patterns:

Generalizations and performance improvements. In Proc. 5th Int. Conf.

Extending Database Technology (EDBT96), pages 3–17, 1996.

[SON95] Ashok Savasere, Edward Omiecinski, and Shamkant Navathe. An efficient

algorithm for mining association rules in large databases. In Proceedings

of the 21st VLDB Conference, 1995.

[Zak00a] Mohammed J. Zaki. Generating non-redundant association rules. In KDD

’00: Proceedings of the sixth ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 34–43, New York, NY, USA,

2000. ACM.

[Zak00b] Mohammed J. Zaki. Scalable algorithms for association mining. IEEE

Trans. on Knowl. and Data Eng., 12(3):372–390, 2000.

