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ABSTRACT

The new generation of giant ground-based telescopes will see their first light this

decade. These state-of-the-art facilities will significantly surpass the resolving power

of modern space-based observatories such as the James Webb telescope, thanks to

their enormous aperture size and adaptive optics (AO) facilities. Without AO, at-

mospheric turbulence would degrade the image quality of these enormous telescopes

to that of a 50 cm amateur one. These extremely large telescopes (ELTs) will fur-

ther benefit from a particular branch of AO called multi-conjugate adaptive optics

(MCAO), which provides an extremely high resolving power over a much wider field

of view as compared to classical AO systems. The design and fabrication of such sys-

tems, as well as their optimal use for science operation, pose a great challenge as they

are an order of magnitude more complicated than current AO systems. To face such a
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challenge, the combined knowledge of MCAO system design and fabrication, working

in tandem with scientific insights into new astronomy science cases, is an extremely

valuable and essential pairing. This thesis is an effort to not only contribute to the

design and fabrication of ELT MCAO facilities, but also provide guidance on the op-

timal method to utilize these giant telescopes to achieve unprecedented astrometric

measurements.

On the instrumentation side, in partnership with the National Research Council

of Canada’s - Herzberg Astronomy and Astrophysics Institute as well as W.M. Keck

Observatory in Hawaii, I was involved in the design and fabrication of a cutting edge

new wavefront sensor, which is the eye of an AO system. I performed opto-mechanical

design and verification studies for components of the Keck infrared pyramid wave-

front sensor (IR-PWFS) as well as the Keck Planet Imager and characterizer (KPIC)

instrument, which have both been commissioned and are in science operation. Fur-

thermore, I designed the alignment plan and participated in the modification and

alignment operation of a few components on the Keck II adaptive optics bench on

the summit of Mauna Kea.

To pave the way for the design verification of future MCAO systems for ELTs, I

proposed a new method for an old challenge in the path of AO system design and

verification: a flexible method for precise intensity pattern injection into laboratory

AO benches. AO benches are the backbone of instrument design and modeling. One

of the challenges especially important for the future generation of MCAO systems

for ELTs is the verification of the effect of shadowed regions on the primary mir-

ror. During my PhD, I successfully demonstrated the feasibility of a new proposed

method to accurately model the telescope pupil. This work was done in partnership

with the Laboratoire d’Astrophysique de Marseille (LAM) in France. The method I

developed at LAM will be implemented in the AO Lab at NRC Herzberg Astronomy

and Astrophysics.

As an observational astronomer, I focused on developing methods for making

optimal astrometric measurements with MCAO-enabled telescopes. The expected

unparalleled astrometric precision of ELTs comes with many unprecedented challenges

that if left unresolved, would jeopardize the success of these facilities as they would

not be able to reach their science goals. I used observations with the only available

MCAO system in science operation, the Gemini MCAO system on the 8-meter Gemini

South telescope in Chile, to develop and verify a pipeline specifically designed for very

high-precision astrometric studies with MCAO-fed imagers. I successfully used the
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pipeline to provide the precise on-sky differential distortion of the Gemini South

telescope and its MCAO facilities by looking deep into the core of globular cluster

NGC 6723. Using this pipeline, I produced high quality proper motions with an

uncertainty floor of � 45�as yr�1 as well as measured the proper motion dispersion

profile of NGC 6723 from a radius of � 10 arcseconds out to � 1 arcminute, based on

� 12000 stars. I also produced a high-quality optical-near-infrared color magnitude

diagram which clearly shows the extreme horizontal branch and main-sequence knee

of this cluster.
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Chapter 1

Introduction

1.1 Astronomy and Scienti�c Methodology

The scientific methodology is undoubtedly one of the greatest inventions of hu-

mankind. The path that systematically empowers humans to learn the laws of nature

and use them for their benefit. From the emergence of inductive experimental meth-

ods in Ibn al-Haytham’s (Alhazen) Book of Optics (1021 AD) [91, 2] to the current

modern age, our understanding of the workings of nature are obtained based on three

main stages of scientific methodology: Observation, Modeling, and Experimentation.

The basic definition of a scientist is one who observes the behaviour of a natural

phenomena, provides a model for his or her observation, and experiments to find the

goodness of fit for the model while endlessly endeavouring to perfect it. Astronomy

and astronomers follow the same path. However, observations in astronomy may be

deemed somewhat different to other branches of science. With rare exceptions, in

astronomy the scientist cannot touch any of the bodies and phenomena of interest

as they are typically ”astronomically” long distances away. In particular, this limits

the meaning of “observation” to “detecting electromagnetic waves” for the majority

of branches of astronomy. A few examples of exceptions are the samples Apollo 13

brought from the moon, the study of meteorites, and direct experimentation on a few

solar system bodies using robotic probes. For the remaining (and absolute majority)

branches of astronomy, the main messenger are waves, mainly1 electromagnetic waves.

Since the beginning of modern astronomy and the very first telescopes, astronomers

1There are also other kind of messengers like neutrinos or gravitational waves that provide ob-
servations from the universe, but the portion of our knowledge acquired by them is still minimal
compared to looking at photons across the electromagnetic spectrum



2

look at incoming electromagnetic waves in the form of visible light to satisfy pieces

of our curiosity and reach beyond the borders of our knowledge.

1.2 Electromagnetic Spectrum and Atmosphere

Astronomers look at the sky not only through the visible spectrum, but through

the full electromagnetic spectrum: from very high-frequency, high-energy Gamma-

ray photons, to kilometers-long wavelength photons in the radio astronomy domain.

Each band of the electromagnetic spectrum carries information about a variety of

physical phenomena of the universe. However, our atmosphere, which makes life on

Earth possible, poses a challenge to receiving some parts of this spectrum causing

the loss of portions of this precious data. Figure 1.1 represents the schematic of

transparency of the atmosphere for different regions of the electromagnetic spectrum.

Figure 1.1: A schematic showing different domains of the electromagnetic spectrum
and the relative transparency of Earth’s atmosphere [57].

In theory, observing from high altitudes or space is ideal. However, it is neither
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essential nor practical to place all observatories in space. In some frequency domains,

as in radio astronomy, observatories do not have problems with transparency or other

effects of the Earth’s atmosphere. In other domains, as in the visible spectrum, the

transparency of the atmosphere does not pose much of a problem, but the turbulent

nature of the atmosphere degrades the image quality of ground-based observatories.

Considering the order of magnitude higher cost of space observatories, and also current

technical limitations of space missions (i.e. weight and dimensions of the telescope),

astronomers have always endeavoured to improve the observing quality of ground-

based observatories. They do this by attempting to overcome the challenges posed

by the Earth’s atmosphere. These efforts are mainly concentrated in the visible and

near-infrared (Vis/NIR) domains, were transparency is not the main limitation, but

rather the atmospheric optical effects are.

To understand the optical effect of the atmosphere, two phenomena should be

considered:

• Our atmosphere is a fluid, whose motion can be best described as turbulent. In

contrast with the laminar motion of a fluid, the motion of each particle in the

turbulent regime of a fluid is not coherent, but rather is chaotic and consists of

many eddies.

• The refractive index of the air that makes up our atmosphere is a function of

pressure and temperature.

The non-laminar flow, in addition to the natural thermal gradient of the atmo-

sphere, means turbulent vertical temperature gradients and non-uniform structures

with temperature differences exist within the atmosphere. Combining this knowledge

with the dependency of the refractive index on temperature, one can expect that the

atmosphere acts as a chaotic layer of matter which is optically active and is changing

the path of light that passes through it. This is what actually happens in ground-

based systems, yielding a significant limitation on the resolving power of telescopes.

To visualize such an effect, one can think of light from a star coming from outer space

towards the atmosphere. The wavefront of such a light is similar to a flat sheet of

paper in shape after passing a very long distance (see Fig 1.2). The wavefront is the

shape of a surface which describes points in an incoming electromagnetic wave, which

all have an equal phase. This wavefront initially propagates as a sphere, however

when it arrives at Earth, it is well approximated as flattened (see Fig 1.3).
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Figure 1.2: A schematic showing the flattening of spherical wavefront propagated
over very long distances [103].

Passing through different layers of turbulence, the atmosphere causes the flat

wavefront to wrinkle. These wrinkles cause a significant loss in performance, partic-

ularly in the Vis/NIR domain of the electromagnetic spectrum.
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Figure 1.3: A schematic showing the disrupting effect of the atmosphere on the
wavefront flatness [103].

1.3 The Resolving Power of Optical Systems

The point-spread function (PSF) of an optical system is defined by the shape of the

intensity pattern the optical system provides from a unresolvable object. The smaller

the PSF of an optical system, the higher the resolving power of that system. The

ideal point-spread function of an optical system is the square modulus of the Fourier

transform of the electromagnetic wave coming through its aperture. The shape of a

theoretically ideal PSF for an optical system with a circular aperture in the presence

of a flat wavefront can be described by an “Airy” disk which typically is referred

to as “di�raction-limited”. The width of a PSF of a optical system, no matter the

detail of the design, cannot be smaller than the diffraction-limited PSF. Any non-flat

features in the shape of the wavefront translate to a broadened PSF, which degrades

the performance of the optical system. Therefore, there are only two ways to increase

the theoretical limit of the resolving power of an optical system working at a given

wavelength:

• Increase the size of the aperture.

• Flatten the input wavefront as much as possible.
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The goal of increasing the aperture size of both ground and space-based telescopes

has always been a part of astronomical instrumentation. Both the James Webb Space

Telescope and the coming generation of giant ground-based telescopes, including the

Extremely Large Telescope (ELT) and the Thirty Meter Telescope (TMT), are in line

with this endeavour.

To flatten the wavefront, there are only two main practical approaches: build or

position the observatory in a place with minimal atmospheric turbulence or compen-

sate for the optical effects of the atmosphere. A good example of the first approach is

to place the telescope in space or at the top of a high mountain such as Mauna Kea

(home to Gemini, Keck and many other observatories) in Hawaii or Cerro Pachón

in Chile (Gemini South and Rubin observatories). In the case of ground-based ob-

servatories, correcting the wavefront for the significant atmospheric effects is the

responsibility of adaptive optics.

1.4 Adaptive Optics: The Art of Wavefront Flat-

tening

Uncompensated atmospheric turbulence limits the resolving power of ground-based

astronomy. One can send a telescope and its instrument suite to space to avoid this

limitation, but this solution is many orders of magnitude more costly than ground-

based observatories. More importantly, current space launch technologies limit the

aperture size of the largest space telescope to be smaller than the aperture of the

future generation of extremely large ground-based telescopes by a factor of � 5 [16].

If atmospheric turbulence can be well-corrected, ground-based observatories could

achieve a factor of 5 times increase in resolving power and a factor of 25 times increase

in light-gathering power. Astronomical adaptive optics (AO) systems are therefore an

essential technology for ground-based telescopes. Without AO, the resolving power of

the largest ground-based telescope would be no better than a 50 cm amateur telescope

at a good site.

The advantage of building larger telescopes are two fold: larger light gathering

area and increased resolving power, meaning the gathered light will focus in a smaller

area. The light gathering power is proportional to D2, and the two-dimensional

size of the PSF is proportional to D�2, where D is the diameter of the telescope

aperture. Considering both effects simultaneously, the advantage of increasing the
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size of a telescope is proportional to D4 in the background-limited regime for point

sources [42]. However, in the presence of atmospheric turbulence, the D�2 relation

holds only down to a certain limit which is known as ”astronomical seeing”. Seeing is

the smallest possible PSF size that the atmosphere will allow a large enough telescope

to see from a point source. This means that, without AO, increasing the size of the

telescope above a certain diameter only brings a D2 advantage instead of a D4, which

is the main reason why AO is essential in the design of extremely large telescopes.2

Figure 1.4: A schematic of an AO system (Credit: Lessard [54]).

1.4.1 Main architecture of AO systems

A typical AO system consists of three main subsystems: the wavefront sensor (WFS)

measures the wavefront, the deformable mirror (DM) can change shape to compensate

for the atmospheric turbulence, and the real-time computer (RTC) which connects

the two optical devices by reading in the WFS measurements, then determining and

2The limiting size is related to the wavelength of observation and the amount of turbulence in
the atmosphere characterised by the Fried parameter [42]. Even for the best sites for observatories
in the Vis/NIR domain, this limiting size is well below 1 meter.
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applying the appropriate commands for the DM (see Fig 1.4).

Wavefront sensors

The wavefront sensor is the eye of an AO system, responsible for measuring the wave-

front shape. The most common types of wavefront sensors in astronomical adaptive

optics are Shack-Hartmann [87, 40] and Pyramid [74]. There are other architectures

such as the curvature [78] WFS, however they are not as common.

The first and relatively simpler WFS architecture is the Shack-Hartmann sensor.

A SHWFS divides the aperture of the telescope into many sub-apertures and measures

the angle of incidence of the wavefront for each sub-aperture. This can be done by

focusing the light using a lenslet array and tracking the position of each spot formed

in the focal plane of the lenslet array. This measurement provides the average slope

of the wavefront for each sub-aperture. Integrating slopes over the whole aperture

and X,Y axis reconstructs the shape of the incoming wavefront. A schematic of such

a WFS system can be seen in Figure 1.5.
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Figure 1.5: This simple schematic is showing the principles of SHWFS. By measuring
the displacement of each spot relative to the reference wavefront, it is possible to
measure the average gradient vector of the wavefront. (Photo credit: Tokovinin [100])

Pyramid WFS (PWFS) are a more recently developed and more complicated type

of wavefront sensor [74]. In this architecture, a pyramid-shaped piece of glass is placed

in the focal plane of the telescope, such that the PSF is imaged onto the tip of the

pyramid. Re-imaging the pupil plane after passing through the pyramid provides four

separate images of the pupil on the WFS detector as shown in Figure 1.6.
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Figure 1.6: Schematic showing the principles of PWFS. (Photo credit: Shatokhina et
al. [88])

The pyramid signal, corresponding to the wavefront slopes, can be derived from

the intensity of these patterns utilising Equation 1.1.

Sx(n;m) = I1(n;m)+I3(n;m)�I2(n;m)�I4(n;m)
1
N

∑
n;m I1(n;m)+I2(n;m)+I3(n;m)+I4(n;m)

Sy(n;m) = I1(n;m)+I2(n;m)�I3(n;m)�I4(n;m)
1
N

∑
n;m I1(n;m)+I2(n;m)+I3(n;m)+I4(n;m)

(1.1)

Ii(n;m) refers to the intensity in each pupil image at the equivalent pixel location

specified by (n;m) and N is the total number of illuminated pixels in an individual

image [13]. PWFS converts the phase variation to intensity modulation. Although

the pyramid signal resulting from Equation 1.1 is not exactly equal to the slope of

the wavefront, it is directly correlated with it. The four-pupil images on the PWFS

detector of the Keck II telescope can be seen in Figure 1.7.




