Analyzing the Accuracy of Agent Representations in Crowd Simulations

Liam Shatzel
University of Victoria, Computer Science

Introduction

- A crowd simulation models virtual humans (agents) in order to realistically emulate the behavior of real humans.
- They are used in many different domains from movies to emergency evacuation scenarios (Sagun et al., 2008; Pelechano & McLoone, 2009).
- For example, in emergency evacuation scenarios they attempt to predict the movements of a real crowd if an emergency were to occur (Sagun, 2008).
- Typically, simulations use disks to represent the area of exclusion of an agent.
- The two most common disk representations include:
 - Minimum Disk Representation: A disk that has a diameter equal to an average agent’s shoulder width (50 cm) (van Toll et al., 2021; Wolinski et al., 2016).
 - Maximum Disk Representation: A disk that has a diameter approximately equal to the maximum stride length of the agent (100 cm) (Wolinski, 2016; Weiss et al., 2017).

Materials & Methods

- Analysis was performed on 115 unique characters from the Microsoft Rocketbox Avatar Library (Gonzalez-Franco et al., 2020).
- In order to measure the over- and underestimates, the mesh points making up the agent were projected onto the ground plane (Fig. 3).
- Over- and underestimates were measured by taking the difference between the area of the disc and the area of the convex hull (Fig. 4 and 5).
- Three unique animations including, a slow walk, neutral walk and a run, were analyzed.

Results

- As summarized in Table 2 the greatest underestimate of 25.182cm² was found during the swing phase of the run animation with a disk radius of 25cm.
- The greatest overestimate of 61.328cm² was found during the standing phase of the walk animation with a disk radius 50cm (Table 1).
- The agents with a smaller radius had a higher rate of flow (Fig. 6).

Conclusion & Discussion

- The results confirmed the hypothesis, that disks oversimplify the space that an agent occupies at any given time-step.
- Oversimplification has drawbacks which can affect the results of a realistic simulation resulting in negative consequences.
- For example, in the flow rate analysis, it was shown that disks with a smaller radius have a faster rate of flow which is not reflective of the time it would take for humans to evacuate a building.
- In order to have better representations within simulations, agents should have a tightly bound area of exclusion, preventing them from overlapping with other agents while also allowing for tight packing (Fig. 2).
- While convex hulls present a good representation of the agent, they are costly to compute for each time-step. This prevents the simulation from scaling well.
- Future work includes analyzing other representations of agents in motion including deformable shapes and more efficient convex hulls.

Acknowledgements

This research was supported by the Valerie Kuehne Undergraduate Research Awards, University of Victoria, and Supervised by Dr. Brandon Haworth.

References

Table 1: cm² Difference in Area Between Convex Hull and Max Disk Representation Across Walk Cycles

<table>
<thead>
<tr>
<th>Animation Type</th>
<th>Standing (cm²)</th>
<th>Swing (cm²)</th>
<th>Leg Lift (cm²)</th>
<th>Disk Radius (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow Walk</td>
<td>50.019</td>
<td>51.871</td>
<td>64.492</td>
<td>60.883</td>
</tr>
<tr>
<td>Run</td>
<td>49.227</td>
<td>31.739</td>
<td>44.652</td>
<td>50.883</td>
</tr>
</tbody>
</table>

Table 2: cm² Difference in Area Between Convex Hull and Min Disk Representation Across Walk Cycles

<table>
<thead>
<tr>
<th>Animation Type</th>
<th>Standing (cm²)</th>
<th>Swing (cm²)</th>
<th>Leg Lift (cm²)</th>
<th>Disk Radius (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow Walk</td>
<td>106.985</td>
<td>72.911</td>
<td>48.000</td>
<td>25.000</td>
</tr>
<tr>
<td>Run</td>
<td>9.315</td>
<td>25.182</td>
<td>14.298</td>
<td>25.000</td>
</tr>
</tbody>
</table>

Figure 1: Comparison of Disk Representations

Figure 2: Agent-Agent Mesh Overlap (Min Disk Representation)

Figure 3: Illustration of the Space Coverage of A Character's Mesh by Projecting the Mesh Vertices Onto the Ground Plane to Create the Convex Hull.

Figure 4: cm² Difference in Area Between Convex Hull About Mesh Vertices and Max Disk Representation

<table>
<thead>
<tr>
<th>Animation Type</th>
<th>Standing (cm²)</th>
<th>Swing (cm²)</th>
<th>Leg Lift (cm²)</th>
<th>Disk Radius (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow Walk</td>
<td>50.019</td>
<td>51.871</td>
<td>64.492</td>
<td>60.883</td>
</tr>
<tr>
<td>Run</td>
<td>49.227</td>
<td>31.739</td>
<td>44.652</td>
<td>50.883</td>
</tr>
</tbody>
</table>

Figure 5: cm² Difference in Area Between Convex Hull About Mesh Vertices and Max Disk Representation

<table>
<thead>
<tr>
<th>Animation Type</th>
<th>Standing (cm²)</th>
<th>Swing (cm²)</th>
<th>Leg Lift (cm²)</th>
<th>Disk Radius (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow Walk</td>
<td>106.985</td>
<td>72.911</td>
<td>48.000</td>
<td>25.000</td>
</tr>
<tr>
<td>Run</td>
<td>9.315</td>
<td>25.182</td>
<td>14.298</td>
<td>25.000</td>
</tr>
</tbody>
</table>

Figure 6: Flow Rate with Left: Max and Right: Min Disk Representations

Figure 7: Flow Rate Test Scenario (Top: Min vs. Bottom: Max Disk)

Figure 8: Error Compounds with Non-Standard Meshes