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On  the  Rate of Growth of Condition  Numbers for 
Convolution.  Matrices 

FAUSTO  MILINAZZO,  CEDRIC  ZALA, AND IAN BARRODALE 

Abstract-When analyzing  linear  systems of equations,  the most im- 
portant  indicator of potential  instability  is  the  condition  number of the 
matrix.  For  a  convolution  matrix W formed  from  a  series w (where Wij 
- wi-, + ,, 1 5 i - j + 1 5 k ,  W,j = 0 otherwise),  this  condition  number 
defines  the  stabirity of the  deconvolution  process.  For  the  larger con- 
volution  matrices  commonly  encountered  in  practice,  direct  computa- 
tion of the  condition  number (e.g.,  by singular  value  decomposition) 
would be extremely  time  consuming.  However,  for  convolution  mat- 
rices, an  upper  bound  for  the  condition  number  is defined by the  ratio 
of the  maximum  to  the  minimum  values of the  amplitude  spectrum of 
w. This  bound  is  infinite  for  any  series w with  a  zero  value  in  its  am- 
plitude  spectrum;  although  for  certain  such  series,  the  actual  condition 
number  for W may  in  fact  be  relatively  small.  In  this  paper we give a 
new simple  derivation of the  upper  bound  and  present  a  means of de- 
fining  the rate of growth of the  condition  number of W for  a  band- 
limited  series by means of the  higher  order  derivatives of the  amplitude 
spectrum of w at  its  zeros.  The  rate of growth  is  shown  to be propor- 
tional  to m p ,  where m is  the  column  dimension of Wand p is  the  order 
of the  zero of the  amplitude  spectrum. 

- 

INTRODUCTION 

C ONVOLUTION  is  a  central process in scientific 
modeling and analysis,  and so the inverse problem of 

deconvolution is frequently encountered in practice. In the 
discrete  case,  the convolution of a series w of length k 
elements with a  series s of length m elements to form a 
series t of length n ( = k + m - 1) 'elements may be 
expressed in matrix notation as 

ws = t ,  

where the elements of the n X m convolution matrix W 
are defined by W, = w ~ - ~ + ~ ,  for 1 5 i - j + 1 5 k and 
W, = 0 otherwise;  hence, 
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A general problem in many processing applications is 
to deconvolve the  series t ,  given the  series w, to yield an 
estimate s ' of the  series s. In  this  problem,  the numerical 
condition of the matrix W is of gre,at importance,  as it 
determines the stability of the  estimate s '. The condition 
number K (  W )  may be used to define an  upper  limit on 
the relative change in the deconvolved series s which may 
result from a relative change in the convolved series t ,  and 
small perturbations in W as. follows: 

where )I - 11 here denotes  the Z2 (Euclidean)  norm; K (  W )  
is then also defined using this norm. Thus,  for  a  particular 
choice of w,  it is desirable  to  obtain  an  estimate of K( W ) .  

One  procedure  for computing K (  W )  is through eigen- 
vector-eigenvalue decomposition (EVD) of the correla- 
tion matrix WTW. Then K (  W )  = -, where X,,, 
and Xmin are,  respectively,'the  largest and smallest eigen- 
values of W ~ W .  
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Alternatively, K (  W )  may be obtained through singular 
value decomposition (SVD) of W to yield W = USVT, 
where U is an n X n orthogonal matrix, S is an n X m 
diagonal matrix with diagonal elements ai termed singular 
values, and Vis an m X m orthogonal matrix. Then K (  W )  
- - amax/amin, i.e., the ratio of the largest to  the smallest 
singular values. Note that the singular values a,,, and amin 
are  the nonnegative square roots of the eigenvalues X,,, 
and hmin of WTW, and that K(  W )  = M. 

However, in many applications, W is very large ( n ,  m 
= 1000) and almost square so that estimation of K (  W )  
by either EVD or SVD is prohibitive. In such cases, it is 
useful to define an  upper bound on K (  W ), which is ap- 
proached as the column dimension m of W becomes large. 
Ekstrom [ 11, using the results of Grenader and Szego [2] 
for Toeplitz matrices, has shown that this upper bound in 
the Z2 norm is given by the ratio of the maximum to the 
minimum values of the  amplitude spectrum of w. In re- 
lated work, Cybenko [3] and Koltracht and Lancaster [4] 
derive  other expressions for this bound in the I ,  norm, in 
terms of the partial correlation coefficients arising in the 
Levinson-Durbin algorithm. 

In an independent analysis of this problem,  we  have 
discovered a  new,  simple,  and self-contained derivation 
of Ekstrom's result. Our analysis uses a  simple relation 
between WTW and a diagonal matrix with elements equal 
to the squared amplitude spectrum of w. An application 
of the  kayleigh quotient yields the desired result. For 
completeness, the details of the derivation are given in the 
Appendix. 

This bound explains the well-known and often-observed 
fact that deconvolution may  be an ill-conditioned process 
when w is band-limited. Another interesting implication 
of the result is that K (  W )  does not depend on the phase 
spectrum of w. Thus,  the numerical stability of a decon- 
voiution calculation is independent of the phase of the se- 
ries w. 

When the amplitude spectrum of w is zero at one or 
more frequencies,  however,  the bound becomes infinite 
and cannot be used to estimate K (  W ). In this case,  a pro- 
cedure for estimating the rate of increase of K (  w )  with 
m is desirable; if the growth of K (  W )  were slow enough 
for  a  particular w, deconvolution might be a well-condi- 
tioned process even though the  upper bound for K (  W )  
was infinite. We demonstrate below that the rate of growth 
of K (  W )  can be related to the derivatives of the  ampli- 
tude spectrum of w at its zero values. 

DEFINITION OF THE RATE OF GROWTH OF K (  W )  
We use a result of Parter [5] extended by Kesten [6] on 

Toeplitz matrices to determine how K (  W )  increases with 
m when the amplitude spectrum of w contains one or more 
zeros. 

Consider 
m 

g ( e )  = , cje , 

a real valued Lebesgue integrable function on 0 E [ --a, 
n],  and  the associated m X m Toeplitz matrix 

i j 8  

I =  - m  

C1 

For  the purpose of this study, T,( g )  = WTW for 

g ( e )  = Wz(ei8)  WZ(e+') = C wje I k  i ( j -  I )8  
j =  1 1, 

where 

W,(Z) = w1 + w2z + * * - + wkZk-' 

is  the z transform of the wavelet w. 
Parter [5] proves the following theorem. . 

fieorem: Let g ( e )  satisfy the following conditions: 
i) g ( 0 )  is real,  continuous,  and periodic with period 

ii) g (e,) = X, X is  the minimum value of g on [ -n, 
-a], and Bo is the only value of 8 where this minimum is 
attained; 

iii) g ( e )  has 2p continuous derivatives in a neighbor- 
hood  of 8 = do, with g ' k ' ( e o )  = 0, 1 I k < 2p, g '2p ' (Bo)  
= p2 > 0; that is, the first 2p - 1 derivatives of g ( e )  at 
8 = Bo are  zero. 

Then Amin, the smallest eigenvalue of Tm( g), has the 
asymptotic expansion 

2-a; 

' Amin = X + - O 2  AmpzP + o(m-2p) 
PP)! 

as m goes to infinity, where A is a constant dependent only 
on g and p .  

Since W Z ( e i e )  is symmetric about (3 = 0, a minimum 
taken at 8 = Bo will also be taken at 0 = -0,. Conse- 
quently,  the theorem as stated above does not strictly ap- 
ply. Kesten [6] extends Parter's results, showing the same 
asymptotic dependence of Xmin on m when there are mul- 
tiple points on [ - -a, -a] where g ( 8  ) takes on its minimum 
value. 

From the  above expression it can be seen that when the 
amplitude spectrum has a  zero of order p ,  or equivalently 
when the z transform of w has a zero on the unit circle 
(Le., X = 0), an estimate for  the growth of K (  W T W )  
with m is given by m21'; consequently,  the growth of 
K (  W )  with m will be proportional to mp. 

DISCUSSION 

The result above shows that if the amplitude spectrum 
at a frequency 0, is  zero,  the rate of increase of K (  W )  
with m, the column dimension of W, depends on the 
higher order  derivatives of the amplitude spectrum at 8,. 
Thus,  for w of appropriate spectral characteristics,  the 
computed value for K (  W )  may be finite and relatively 
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TABLE I 
DESCRIPTION OF WAVELETS  USED IN CONDITION NUMBER STUDIES 

Condition 

Wavelet Spectral Properties Elements Description Bound" 
Number Number of 

A Broad-band 3 (1.0, 3.0, 1.0) 5 .OO 
B Broad-band 6 (-0.4, -0.6, 0.2,  1.0,  0.5,  0.2)  9.53 
C Broad-band except for ' 3  (1.0, -1.0, 1.0) 0.846 * 10' 

single zero at eo = x / 3; 
Nonzero second derivative 

at Bo 

single zero at eo = x /3 ;  
Zero second derivative at 8, 

D ( = C * C ) Broad-band except for  5 (1.0, -2.0, 3.0, -2.0, 1.0) 0.716 . lo6 

E Band-limited 43  cos (2x(O.l)x) exp ( - 0 . 0 2 5 ~ ~ ) :  -21 5 x 5 21 0.265 . lo9 
F Band-limited 95 Inverse Fourier transform of amplitude spectrum defined by: 0.252 * lo9 

191 = 1.0 - cos ( ~ ( 0 . 2 5  - f)/0.25), 0 5 f 5 0.25 

0, 0.25 5 f 5 0.5 

All calculations were erfomed in double precision. Sufficient numbers of elements for wavelets E and F were included to ensure that all values of the 
wavelet within 10- of the maximum were retained. 

"Computed for a 1024-point Fourier transform. The  true bounds for wavelets C and D are infinite, but the zero at 7r/3 does not correspond here to a 
Fourier frequency. 

P 

low for a particular  large W even though the bound for 
K (  W )  is infinite. For  example, if the second derivative 
of the  amplitude spectrum at Oo is  nonzero, K(  W )  may 
be expected to  increase linearly with m; if the first and 
second (but not the third) derivatives at 80 are  zero, K (  W )  
may grow as m2. At the  opposite  extreme,  for band-lim- 
ited wavelets where a substantial region of the amplitude 
spectrum is near zero,  the higher order derivatives are also 
near zero,  and K (  W )  will grow as a higher power of m, 
or even exponentially. 

We  have performed numerical studies for various model 
wavelets in which the upper bound for K (  W> was cal- 
culated from  the  amplitude spectrum (1024-point Fourier 
transform) and  the rate of increase of K( W )  was deter- 
mined by applying SVD to  the matrix W. The wavelets 
are described in  Table I and the results of the experiments 
are illustrated in Fig. 1. 

For  the broad-band wavelets A and B ,  the bounds for 
K (  W ) are small and are rapidly approached for W of low 
column dimension m. The wavelet C has an amplitude 
spectrum with a single  zero at Oo = P / 3 ,  and thus,  the 
true bound for K (  W )  is infinite. However,  the second 
derivative is nonzero and,  as expected from the  above 
anaIysis, K (  W )  is comparatively small even for large m, 
and increases linearly with m. The wavelet D was ob- 
tained by convolving the wavelet C with itself, so that  its 
amplitude spectrum is the square of that of the wavelet C;  
consequently, both the first and second derivatives  of  the 

Wavelet Amplitude Spectrum Condition Number 

C 

I 
0 * 0 50 100 

. .. 

at ' 0  are zero' predicted, K (  ) Fig. 1. Wavelets-their amplitude spectra and rate of growth of condition 
was found to increase  as m2 for  this wavelet. number. The wavelets A to F described in Table I are shown on the left 

The wavelets E and F were designed to have substantial column and  their corresponding normalized amplitude spectra appear in 
the center column. The condition numbers K( W )  for  the convolution 

second and higher order  derivatives would also be near value decomposition for Wof various column dimension m, and are plot- 
zero  in  these regions. The computed bounds for K (  w)  ted as  a function of m in the column of graphs on the right. The dashed 

for ""e wave'ets were '** large ( ' I u s  1 but for the condition number. Note that while the scales for the wavelets and 
lines in these graphs for wavelets A and B indicate the computed bounds 

not infinite,  because of the necessity of tmncating  the the spectra are the same within each column, both the horizontal and 
wavelets in the  time domain. Fig. 1 shows  that for both vertical scales for  the condition number plots may  be  very different. 

near-zero regions in. their amp1itude  'pectra so that the matrices W corresponding to each wavelet were computed by singular 
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wavelets, K (  W )  increases rapidly with rn, reaching a 
value of more than lo4 for  a 10-column matrix. A log- 
linear plot of the data confirmed that the rate of increase 
was exponential,  as would be expected for the case where 
the derivatives of all  orders  are  zero.  These matrices are 
thus exceptionally ill conditioned. 

These experiments provide numerical confirmation for 
the above analysis and illustrate the relationship between 
the amplitude spectrum of a wavelet and the condition 
number K (  W ) .  While it has been demonstrated that cer- 
tain series w may  be defined for which W is well condi- 
tioned even though the bound for K (  W )  is infinite, for 
many important applications the amplitude spectrum of w 
is constant at zero through a substantial region; here 
K (  W )  will increase exponentially with m and W may  be 
pathologically ill conditioned even for very small m. 
Thus,  for such deconvolution problems, even those of 
small size, it is essential to employ algorithms which have 
been specially designed to address the problem of insta- 
bility. Such algorithms (for  example,  see 171 for review) 
typically incorporate sufficient additional assumptions or 
constraints so as to result in a solution which is unique 
and  physicaIIy realistic. 

APPENDIX 
DERIVATION OF AN UPPER BOUND FOR K (  W )  

Theorem: Let W be an n X m convolution matrix as 
previously defined, and let the discrete  Fourier transform 
of w over n elements at frequency v be 

k 

G~ = C wjexp ( - ihv ( j  - 1 ) )  

f o r h = 2 i . r / n a n d y = 0 , 1 , 2 ; . . , n - l . T h e n K ( W ) ,  
the condition number of W,' is bounded by 

j = l  

max 1 I 

8,- 1 1 
and 

1 a2  cy4 . .  . .  . .  
1 &n-1) . . . a ( f i - l ) ( n - l )  

Since F i s  unitary (i.e., F*F = I ) ,  it  is evident that G ,  
a matrix consisting of the first m columns of F, satisfies 
the relation 

G*G = I (1 )  

where G* is the conjugate transpose of G. Also, we ob- 
serve that 

WTW = WTF*FW 

= (FW)* (m) 
= ( D G ) "   ( D G )  

= G*D*DG. (2) 

At this stage, we note that K (  W )  = d m i  is de- 
pendent on the amplitude, but not the phase spectrum of 
W, since  the diagonal elements of D*B jnvolve only the 
amplitude spectrum. 

Equations (1) and (2) may  now be used together with 
the Rayleigh quotient to estimate the eigenvalues of WTW. 
Let X,,, and Xmin be the largest and smallest eigenvalues 
of WTW. Then 

i.e., by the ratio of the maximum to the minimum value x* WTWx x*G*D*DGx 
of the amplitude. spectrum of w. X,,, = max = max 

X # O  x*x X # O  x*x 
y*D*@ Y *D*Dy 

= max ___ 5 max-. 
y=Gx, Y*Y Y + O  Y*Y 

Proof: Let F be an n X n matrix defined as follows: 

1 1 . .  

l l  X # O  

where cy = exp ( - ih ). Then 

FW = DG, 

where D is an n X n matrix and G is an H X m matrix 
defined, respectively,  as 

The inequality arises when we take the maximum over 
a larger vector space by dropping the constraint y = Gx. 
Since D*D is simply a diagonal matrix with elements 
equal to the squared amplitude spectrum I Gu 1 2 ,  we there- 
fore have 

X,,, 5 max . 2 

V 

In a  similar  way, we obtain the relation 

Y *D*Q Xmin 2 min ___ 
Y t o  Y*Y 
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Since the condition number of WTW equals Xmax/Xmin,, 
we have 

max 1 t i tu I 2 

K ( W T W )  = 5 ’ 2 
hmin min [ titu I 

V 

so that 

Using the Rayleigh quotient, it may be seen that while 
the condition number of the  matrix WTW increases with 
order m, the  bound  for K( WTW ) is  independent of m. 

This is also apparent if we note that tit, is simply the 
value of W, ( z  ) ,.the z transform of the wavelet, at z = exp 
( ihu) ,  so that 

The  latter quantity is clearly independent of both m and 
n .  
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