
IEEE Pacific Rim Conference on Communications, Computers and Signal Processing 
June 1st - 2nd, 1989 

MAXIMUM ENTROPY IMAGE PROCESSING USING TRANSFORM DOMAIN CONSTRAINTS 

Cedric A. Zala, Ian Barrodale, and Carmen E. Lucas 

Barrodale Computing Services Ltd., 
Suite 200, 1677 Poplar Ave., 

Victoria, B. C.. Canada V8P 4K5 

Robert F. MacKinnon 

Defence Research Establishment Pacific, 
FMO, Victoria, B. C., Canada VOS 1BO. 

Abstract 

The maximum entropy (ME) method is currently of consider- 
able interest in  image processing applications. In this technique, 
the ME model for the image is constructed by maximizing the ell- 
tropy function - x3 ln(zj/p,) subject to constraints provided 
by the data, where z j  are the unknown model pixel amplitudes 
and p, constitute prior knowledge of the pixel amplitudes. We de- 
scribe here a novel formulation of the ME method, where the data 
constraints are expressed in the form of fixed bounds on the ele- 
ments of an orthogonal transform of the model. The bounds are 
set on the basis of both the observed data and an estimate of the 
noise statistics in the transform domain; prior knowledge, if avail- 
able, may also be incorporated. Using a special-purpose conjugate 
gradient, algorithm developed for this problem [a ] ,  we present here 
1-D examples which illustrate substantial SNR enhancement LIS- 
ing the new formulation with both Fourier and Walsh transforms. 
A simple strategy for selecting an initial feasible solution for the 
algorithm is also presented: the transform of the initial feasible 
solution is set as close to the transform of the prior knowledge as 
permitted b y  the constraints. This is shown to be the least squares 
solution to the constrained problem with the objective function: 
C,”=,(x, - ~ j ) ~ ;  it frequently provides a very close approximation 
to the final ME solution. 

INTRODUCTION 

Maximum entropy (ME) methods are currently of great inter- 
est in signal and image reconstruction applications [1]-[Ill. ME 
methods have achieved widespread use due to certain desirable 
properties such as consistency and the ability to incorporate prior 
knowledge effectively. ME provides a unique solution for inverse 
or reconstruction problems which are ill-posed: i.e., many poten- 
tial solutions are consistent with the data. The ME solution is 
appropriate in that it introduces the least bias, or is inaxinially 
non-committal relative to the prior knowledge. Thus it may be 
hoped that artificial structure will be minimized in an ME solu- 
tion. 

In ME methods, the entropy function of the unknown model 
pixel amplitudes xj with prior knowledge pixel amplitudes p J ,  
defined as 

N 

s = S ( X )  = - 2, ln(xjlpJ) (1) 
,=1 

is maximized subject to constraints imposed by the data and posi- 
tivity constraints ou zJ and p,. In the absence of data constraints, 
the maximum of S occurs when each x, = p j / e ;  i.e., the uncon- 
strained output is a scaled version of the prior knowledge. When 
in addition, no prior knowledge exists (all pj are constant), the 
output xj are all equal and the image is uniform. At the other 
extreme, as the constraints imposed by the data are tightened, 
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the ME output converges to the data, no matter what the prior 
knowledge. With data constraints of intermediate tightness, the 
ME solution is defined by both the data and the prior knotvledge. 
Thus the form and tightness of the constraints determine the I d  
ance between the measured data and the prior knowledge in the 
output ME image. In practice, the noise statistics of the image 
are used to set the constraints. 

In a current widely used formulation of the data constraints 
[l], the chi-square function 

is constrained to be less than N ,  the number of pixel elements, 
where dJ are the data measurements and uJ are the standard dev-  
ations for the noise on the image. The chi-square may be defined 
in either the spatial or Fourier frequency domains. This formula- 
tion has been successfully applied to image processing problems 
in a wide variety of fields. 

In order to take advantage of signal-to-noise ratio (SNR) en- 
hancement, an alternative formulation which is appropriate for 
band-limited data involves lower and upper bounds constraints in 
the transform domain. The bounds may be set on the basis of the 
transform of the data and an estimate of the noise amplitude spec- 
trum. In this way, transform regions of high SNR are relatively 
tightly constrained while those of low SNR are relatively loosely 
constrained. The ME criterion is then used as a means of ob- 
taining a consistent and unique solution subject to these bounds 
constraints. and incorporating prior knowledge. A preliminary 
report on this formulation ha.s appeared in [lo], where some 2-D 
illustrations of broadband images are provided. 

In this paper, we describe the bounds formulation of the ME 
problem and outline an algorithm [2] for computing its solution. 
The performance of the method for 1-D synthetic examples is 
illustrated using both Fourier and Walsh transforms. The appli- 
cation considered here is that of signal reconstruction with noisy 
data. 

FORMULATION AND SOLUTION OF 
THE ME BOUNDS PROBLEM 

In the bounds formulation of the ME method, the entropy 
function (Eq. 1) is maximized subject to bounds constraints of 
the form 

1, 5 P, 5 U ,  for j = 1,2, .  . . , N ,  (3)  
where the I ,  and U, are fixed lower and upper bounds, respectively, 
and the P, are elements of an orthogonal transform of the model 
zj. It may be shown using convexity arguments that provided the 
constraints are consistent, the ME solution for this formulation is 
unique [lo]. 
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The bounds may be conveniently set on the basis of the esti- 
mated spectra of the npise in the transform domain. Given the 
transform of the data dj and an estimate of the transform spec- 
trum of the noise &,, the bounds may be set as 

l j  = dj - h&j 

" j  = d j  + h&j, (4) 

where h defines the relative tightness of the constraints in terms 
of the noise spectrum. Thus the bounds would be of the order of h 
standard deviation units for the noise, which provides an effective 
way of controlling the tightness of the constraints. 

A special-purpose algorithm was used to compute the ME 90- 

lution to the bounds formulation; a description of this algorithm 
may be found in [2]. Briefly, the algorithm is based on the con- 
jugate gradient method for unconstrained optimization, requiring 
only a few N-vectors of storage, and thus can accommodate the 
large nuniber of pixels in real images. Provided that the vari- 
ables which are constrained by bounds remain at  their bounds, 
the problem may be regarded as an unconstrained optimization 
in the remaining components. During the iterations, the algo- 
rithm uses a composite function as an approximation to the en- 
tropy function to accommodate intermediate values of x3 which 
might be zero or negative. Additions and deletions to the active 
set of constraints are made dynamically until eventually the cor- 
rect active set is determined and the solution is obtained, or the 
constraints are shown to be inconsistent. Experience with the 
algorithm shows that the transform computations (fast Fourier 
and fast Walsh transforms) take about half the time of the entire 
calculation. 

In practice, the number of iterations required by the algorithm 
depends on the tightness of the constraints and on the choice of 
initial feasible solution. The tighter the constraints, the more 
iterations are required in general: with tight constraints the ac- 
tive set of constraints is larger and more likely to change during 
an iteration. When the active set is changed, the algorithm per- 
forms a steepest descent step before a conjugate gradient step is 
possible (in the next iteration). Thus with tight constraints, the 
conjugate gradient method may only come into play during the 
more advanced stages of processing, when the model approaches 
the final ME solution and there are fewer changes in the active 
set. 

In seeking to reduce the number of iterations, it is advanta- 
geous to provide the algorithm with an initial solution which is as 
close to the final ME solution as possible. Such a solution which is 
compatible with the data constraints may be obtained by setting 
the transform of this initial feasible solution as close to the trans- 
form of the prior knowledge as permitted by the constraints. (We 
note that this solution will not necessarily satisfy the ME positiv- 
ity constraints in the spatial domain, but the ME algorithm [2] 
was designed to accommodate intermediate non-positive values 
for the model.) 

Several observations may be made about this choice of initial 
feasible solution. First, it is the solution to a least squares im- 
age processing problem incorporating prior knowledge, namely, to 
minimize 

N 

C(X1 - P l ) 2 ?  (5) 
,=1 

subject to the constraints (3). This may be shown as follows: 
since an orthogonal transform preserves Lz norm, we must have 

Consider the situation when 2 ,  is set as close to $j  as permitted by 
the constraints. There are two possibilities: ij = j j  (constraint 
not active), and i, = 1, or uj (constraint active). Any change 
tn this solution must either violate a constraint or increase the 
norm. Thus the solution must be a least squares solution. As 
discussed below, we have found that this easily computed initial 
solution is often an excellent approximation to the final ME so- 
lution and is a highly suitable choice for the initial estimate for 
the algorithm. Using this initial solution, we have observed that 
the difference between the initial and final entropy objective func- 
tions was usually very small (often less than 1 part in lOOO) ,  and 
that the initial and final images were often almost indistinguish- 
able. It should be noted that this simple strategy is not restricted 
to positive pixel values, and may have more general applications 
than ME in image processing. It provides a fast means of signal 
restoration, with incorporation of prior knowledge, when the data 
d3 and model zJ may be non-positive. 

RESULTS AND DISCUSS ION 
The ME method was examined for the application of signal 

restoration from noisy data. For the synthetic data examples, 1-D 
images containing various features were generated and Gaussian 
noise of specified standard deviation was added. The noisy im- 
age was transformed using Fourier or Walsh transforms (see [12] 
for description of the Walsh transform and a Fortran program for 
fast implernent?tion), and the constraints (3) were set based on 
the transform d j  and the noise standard deviation 5, as in (4). 
Results for two levels of constraint tightness h are presented, cor- 
responding to 1.0 and 2.0 noise standard deviations. The prior 
knowledge in these examples was either uniform (all pj = 1.0) or 
consisted of the original signal (all p j  = rj) .  In some examples, 
both the initial feasible solutions and the final ME output of the 
examples are shown for comparison. 

Fig. 1 shows examples of ME processing using the Fourier and 
Walsh transforms. For these tests, three features, all of maximum 
amplitude 1.0, were added to a background of amplitude 1.0; the 
features were a boxcar, a Gaussian, and a Gaussian-windowed co- 
sine of frequency 0.39 times the Nyquist frequency. These features 
had widely different Fourier spectra, with the first being essen- 
tially broadband, and the second and third being band-limited 
Gaussians centered at  frequencies zero and 0.39. The noise-free 
original image is shown in Fig. l (a) ,  and the noisy image, which 
contains Gaussian noise of standard deviation 0.2, in Fig. l(b). 
The noisy image was processed by the ME algorithm, using one of 
two levels of tightness constraints ( h  = 1.0 and 2.0) and two types 
of prior knowledge (uniform and original signal). For the Fourier 
transform, both the initial feasible solutions (first column) and 
the final ME solutions (second column) are shown; only the final 
ME solutions are shown for the Walsh transform (third column). 

Several characteristics of ME processing using the bounds con- 
straints are apparent from Fig. 1. First, the initial feasible solu- 
tions were almost indistinguishable from the final ME outputs. 
This was observed in a wide variety of tests in addition to the 
examples shown here. In general, a substantial reduction in the 
noise levels was achieved by the processing, using either Fourier or 
Walsh transforms. As the constraints were relaxed, the output im- 
ages progressively approached the prior knowledge. As expected, 
signal restoration was far better when appropriate prior knowl- 
edge (i.e. the original noise-free data) was provided than when 
the prior knowledge was uniform. 

Both low and high frequency features were reasonably well 
preserved in the output of ME processing, since this processing 
depends on SNR in the transform domain and involves no a pr i -  
ori band-pass filtering. For the case of uniform prior knowledge, 

88 

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on July 15, 2009 at 18:30 from IEEE Xplore.  Restrictions apply.



Original Data Noisy Data 
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Figure 1. ME processillg of a Iloisy data set with various features. iising Fourier a i d  Walsll 
trailsforins as indicated. Both the least squares initial feasible solution a.11~1 the final ME output are 
shown for the results using the Fourier transform (two left columns); 0 1 1 1 ~  the RIE output is show11 
for the W-alsh transform (right column). In the top row (a.) sllows the origillal noise-free data and 
(b) shows the noisy data. The results of processing a.re shown in rows A to D: ( A )  uniform Prior 
knowledge, tightness constraint h = 1: (B)  uniforln prior knowledge, h=2: ( C )  original data prior 
knowledge, h = 1; (D)  original data prior knowledge, h = 2. 
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t b l  

Figure 2.Comparison of initial and final stages of processing 
iiii iniage with large dynamic range, with constraint tightness pa- 
raincter /L = l: (a) noisy data; (b) initial feasible solution; (c) 
Glial X4E solution. 

the recovery of the Gaussian-windowed cosine was better for the 
Fourier transform than for the Walsh transform. Conversely, the 
recovery of the boxcar wits somewhat better for the Walsh trans- 
form. This may be understood in terms of the representation of 
the signal by the transform. For the ME bounds constraints pro- 
cessing, best results will be achieved when the SNR of the data 
in the transform domain is as high as possible, i.e. when the data 
are highly band-limited with respect to that transform. Since the 
Fourier transform of the Gaussian-windowed cosine is more band- 
limited than its Walsh transform, recovery is better when the 
Fourier transform is chosen. The Walsh transform usually pro- 
vides a more band-limited representation of blocky features, and 
would be expected to provide better recovery of these features. 
In general, the more band-limited the signal in the transform do- 
main, the better the signal recovery using ME bounds constraints 
processing. 

I n  the examples above, the initial feasible solution was ob- 
served to be very similar to the final ME solution. This initial 
solution inay be rapidly computed, ill contrast to the final ME so- 
lution, whicli may involve large numbers of iterations, especially 
for tightly constrained problems. In view of its potential as an ”1)- 
proximation of the true ME solution, experinlents were performed 
which were directed at identifying situations where the initial and 
final ME solutions were significantly different. It was found that 
the similarity between the initial and final ME solutions depended 
on the dynamic range of the data: the smaller the dynamic range, 
the better the approximation of the initial solution. To illustrate 
such a difference, an example with large dynamic range is shown 
in Fig. 2. Here the original signal consisted of a step function 
of height 1.0 on a base of 0.1, to which noise of standard devia- 
tion 0.1 was added (yielding some negative data values). In the 
initial feasible solution (Fig 2(b)), the noise levels in the low and 
high parts of the function were comparable, but in the ME solu- 

tion (Fig. 2 ( c ) )  the noise level was clearly less in the low region 
than in the high region. This amplitude-dependent processing is 
a familiar feature of ME [7]. 

CONCLUSIONS 

We conclude that the bounds constraints formulation is a con- 
veillent way of taking advantage in h4E processing of SNR en- 
hancenient in  the transform domain, while permitting the incor- 
poration of prior knowledge. In general, the more band-limited 
the signal in the transform domain, the more appropriate this 
bounds formulation will be. The algorithm [2] provided an effec- 
tive means of coinputing the solution to the ME bounds problem. 
In the case of data which are not of high dynamic range, the final 
ME solution was found to be closely approximated by a simple 
initial least squares estimate obtained by setting the transform as 
close to the transform of the prior knowledge as permitted by the 
bounds constraints. No least squares computations are required 
to generate this initial solution. 
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