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Abstract

The classical ~'4 problem is the following: can a rigid object in 3-dimensional space be
moved from one given position to another wh1le avoiding obstacles? It is known that a more general
version of this problem involving objects with movable~ is PSPACE-complete. even for a simple
tree-like structure. In this paper. we investigate a 2-dimensional mover's problem in which the
object being moved is a robot arm with an arbitrary number of joints. We reduce the mover's prob­
lem for arms constrained to move within bounded regions whose boundar1es are made up of stra1ght
lines to the mover's problem for a more complex linkage that is not constrained. We prove that the
lat ter problem is PSPACE-hard even in 2-dimensional space and then turn to special cases of the
mover's problem for arms. In particular. we give a polynomial time algorithm for moving an arm
confined· within a circle from one given configuration to another. We also give a polynomial time
algorithm for moving the arm from its initial position to a position in which the end of the arm
reaches a given point within the circle.
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1. Introduct1on

W1th current. 1ncereSt.s 1n 1nClust.r1a.L autuma­
C10n ana rOOot.1CS, 1C 1S becom1ng 1ncreas1ngly
1mporcant. t.o aes1gn efLLC1ellL algor~cnmS ror mov­
1ng 2- ana 3-a1mens10nal oojects suoject. to cer­
ca~n geomet.r1c COnscra1nt.S. In tnLs papeL, we
W1.L.L De concernea w1cn t.be ~14 prOblem, wn1cn
1S to aeterm.l.ne, g1ven an oDJect X, an 1n1t1c:l.L
pos1c10n P

1
, a I1na.L POS1t.10n Pr ana a constra1n­

1ng reg10n R, wnecner X can De movea Irum poslt.10n
P1 to pot:i1C10n PI wnJ.le iteep1ng X wlCnLn cn~

reg10n R. Her~, X cOula repr~8ellL all ObJect De1ng
movea Dy some sorc OI man1pUlacor, or 1t coula
represellL t.ne man1pulacor 1tsel.L: cn~ COutH.ra~nLt:i

aecerm1n1ng reg10n R coU.La arlse e1cner Irom t.be
presence OI OLn~L" ODJects 1n tn~ work space Or
Iram cne Dounaary wallS OI tbe space. Recent.Ly,
several autnors (Scnwart.z ana SnaLLL" (10,11], Re11.
19J, Lozano-Perez [7]) nave st.ualea t.ne mover's
prODJ.em Ior cne s1tuaL10u 1n WnLCn X 1S a rJ.g1a 2­
or 3-a1menslonal pOlynearal oDJecc ana R lS a
reg10n aescr10ea Dy 11near couSCralnLti.

A more a1II1CU.LC. prODlem lS to assume cnat X

nas~ ana neuce lS nuurLglu. Tnls proDlem lS
a1reccly re.Lacea co cne aes1gn ana contrOl oI
rODot armS as we.L J. as CU t.n~ p.Lan1l1ng OI
oDstacle-avo1a1ng pat.ns Ior oOJects De1ng movea.
Aga1n. one aes1res a IaSL (po.LynomJ.al tlme) a.Lgo­
r1t.Dm Ior mov1ng X Irom pOS1L10n P to P w1t.n~n a

1 I:
reg10D R. Unrorcunately, sucn an algor1t.Dm lS
proDaDly no L POtit:ilDle, as Re1.L 19J ntiS SbOwn Cnc:lL
cne prOD.Lem or aec1alng wnecner or not. an arDl­
trary n1ngea oDJect can De movea ILom One put:i1t1011
CO anotner 1n a 3-almenSl0nal, nODconvex reg10n 1.
PSPACE-complece.
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The mot10n OI hingea oDjecLs called linkages,
which are collections of rigid rods arbitrarily
fastened together by P1vOts at tnelr endp01nts,
was extensively studied in the 1800's. Of special
interest was tne synthesis problem. wllich is to
design a mechanism such that the locus of points
reacbable by a designated p01nt on tne 11nkage is
some specified curve. Many solutions were given
for tne case in wnich tne curve is a straight
line, and we will make use of one of them. Also,
we w1.l.l build on work ot Kempe [6J that Sbowea
that certain s~ple computations such as multipli­
cation can be performed by l1nkages.

Our first ma1n result is tnat, given a l.l.nk­
age wlthin a region w1th straight l1ne boundaries,
we can design a new l1nKage tnat has the boun­
daries incorporated into it.s des1gn in tne sense
that tne new 11nkage has a des1gnated jo~nt for
each jOlnt ot tne original 11nKage. ana tne locus
for a des1gnated j01nt ot tne new 11nkage w1thout
boundaries is exactly the locus of the correspond­
ing j01nt in tne old 11nKage 1n tne presense ot
boundaries. In terms of robotics. the original
11nkage might represent a m~chan1caJ. arm con­
strained to move in an enclosed space.

Untortunately, as we wl1l Sbow, 2-dimensional
11nkages can s1mulate arbit.rary space-boundea Tur­
ing machines. From tnis result iL fo.Llows tnat
tne problem ot deciding Whether or not a jOlnt in
a l1nKage can reach a designated point is PS~ACE­

complete .IJUUl in a 2-dimensiona.L space wlth DO
cODstrain1ng boundaries.

Because ot the above results. it becomes
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important to discover natural restrict10ns ot tne
mover's problem for wnich fast, general algorithms
can be found. In unrestricted 2- or 3-dimensional
space, it is easy to solve tne mover's problem for
an Am' by wnich we mean a sequence ot lJ.nlts

joined consecutively at their endpoints by fully
rotat1ng j01nts, the first of which is fastened
down. However. the problem of fQldi.n& such an arm
into a given length turns out to be NP-complete.
Because of this, we can show that it Is at least
NP-hard to decide whether or not the end of an
arbitrary arm can be moved from one position to
another while staying within a given 2-dimensional
region. The folding problem is still NP-complete
for a sequence of joined links with . both ends
free, which we call a carpenter'JL~. (See
Figure 1.1). The problem of folding a carpenter's
ruler arises because a natural strategy for moving
such an object in a confining region is to fold it
up as compactly as possible at the beginning of

the motion.

Which are mechan1sms used to sca.L~ draw1ngs. In
this section of the paper, we discuss the reacha­
h.i.li.U. problmn for arbitrary 2-dimensional link­
ages. The reacbabi.L1ty p~oblew is a s1mpler ver­
sion of the mover's problem in wh1ch only the
desired final posic10n ot one j01nt is specified.

We begin by show1ng how to polynomially
reduce the reacnabiL1ty problem_ for any l1nltage
constrained by a polygonal region to a reachabil­
icy problem for a more complex 11nKage cunstrained
only to keep certain jOJ.nts at fixea locat10ns.
Unfortunately, we are aLso able to snow tnat tne
reachabiJ.1ty problem tor 11nKages in 2-dimens1onaL
space W1Lhout boundaries is P~~ACE-hard. Th~

proofs Ot tnese results are qU1Le intricate, ana
we w1Ll only be able to sltetch tnem here. The

interested reader is referred to [4] for tne full
proofs.

aeplaciDa Boupdar1es k1~~

2,. ~ Reachability Problem f.Q.t.
2,-Dimensional Linkaaes

We first consider the special case in which
the region R that restrains l1nltage L is a convex
polygon. In this case, R is the intersection of
half-planes H1 , ••••11t corresponding to toe s1delt
of tne polygon. Since R 1S convex. we know tnat
all links of L lie in R whenever all Joints lie in
R, i.e •• wnenever aLl JoJ.nts l1e in each H.. We
would like to ensure that a joint J of L dO~S not
leave Hi by ident1fy1ng J w1th a j01nt ot sOlD~

appropriate l1nltage L.. Of course L. should not
.11

restr1ct toe mot10n Ot J 1nside R in any way. (It
does not matter whether Li itseLf lies in R since
we are looking for a reduction of the original
problem to a new problem W1thout a bounding
region.) If a l1nKage can be constructed for each
j01nt and half-plane pa1r, tnen we can ignore
region R and study toe motions ot tne original
j01nts ot L W1th tne new l1nKageH attached.

Figure 2.1: PeauceLJ.er's Straight Line
Motion Linkage.

AS

L T
S 1

5

L3a- ... A2

Figure 1.1: A Carpenter's Ruler. If
the location of Ao is fixed, the 'ruler
is called an 4Dl. (L

1
st1J.l rotates

about Ao).

The~ that we discussed in SeCC10n 1 are a
very simple form of linkage -- the1r links are
j01ned together consecut1veJ.y to. form a chain.
Historically, a great deal of importance bas been
placed on more complex types ot 11nltages whose
links are joined in an arbitrary fashion. Exam­
ples at 2-dimensional 11nKages ot tnis type are
straight-line motion devices and pantographs,

Since the mover's problem is IP-hard for an
arm moving in an arbitrary 2-dimensional region,
it is natural to restrict the problem to convex
regions. In the case that the region is the
inside of a circle, we will give polynomial time
algoritnms for changing configurations and reach­
ing points.
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The l1.nKages we need can in facL be con­
structed by using a device. invented by Peaucelier
[8] in 18b~ tnat converts circular mot1.on to
linear motion. (See Figure 2.1.) As point D moves
arouna the circle C. p01nt B traces out the l1.ne
segment XY. This linkage has the additional pro­
perty tnat if the point D is allowed to move
within the circle C by the creation of a joint at
the midpo1nt ot l1.nk· S. then tne region R ot
points that B can reach is the intersection of a
circle ana a half-plane. As tne lengths ot: the
links in the linkage are increased. but ratios of
the1r lengths kept constant. the size of region R
increases but its shape remains the same. The
descript1.on ot tne new l1.nkages can be computea in
t~e on the order of a polynomial in the descrip­
tion of the original linkage L. (See [4] for
deta1!s.) The fo~al statement of tne result
whose proof we have just outlined is given by the
next theorem.

Theorem 2.i: Let L be a linkage constrained
to lie within a convex polygonal region R. Then
in time on the order of a polynomial in the length
of the description ot Land R. one can compute the
description of a linkage M that contains L and has
the following property: Given a point p in R. an
initial position P. ot L in R. and a joint J of L.1.
l1.nKage L can be movea inside R to place J at p
if. and only if. linkage M can be moved (without
regard to R) to place J at p.

Figure 2.2: A Typical Nonconvex Region.

We can extend this result to include the case
in which R is a bounded region. not necessarily
convex. that can be divided into triangular subre­
gions. (See Figure 2.2.)

We have already indicated how to restrict a joint
to a triangular subregion. since its boundary is a
convex polygon. The next step is to deSign a
11nKage that restricts a j01.nt to the un1.on of a
set of such regions. This can be done by using
techn1ques from Kempe [bJ. There is. however. one
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more difficulty. Restricting the joints of a
l1nltage to a nonconvex region does not guarantee
that the links themselves will remain in the
region. However. we are able to overcome tnis
diff iculty by partitioning the excluded portions
ot: tne convex hull ot: tne region into triangles
and then constructing mechanisms that exclude each
l1nk from each triangle. Aga1.n. tne deta1IS
appear in [4].

Untortunately. we can snow tnat even tne
reachabiI1.ty problem for l1.nKages not restrainea
by regions is PSPACE-hard.

~-Hardness Q[ thA UnCQDscrained ReachabiLity

Problem ~ Linkaaes

Our next result. wnose proof is given in
detail in [4]. snows tnat remov1ng bounaaries does
not help.

Theorem 2.2: LeI. L be a 2-dimensional l1nlt­
age fixed to tne plane at one or more j01.nts but
otherw1.se mov1ng freely. Then tne prOblem ot:
deciding wnether or not a designated j01nt at L
can reaCh an arbitrary given p01nt in tne plane 1S
PSPACE-hard.

Th1S result can be compared to Re1f [9]. wnere it
is snown tnat the reachabiI1ty problem for even a
s1mple. tree-l1.ke l1nltage constrained by a 3­
dimensional concave region is PSPACE-hard.

Our proof consists of ShOW1.ng tnat tnere are
complex linkages that are capable of s1.mulating
Linear Boundea AUt-omaton (LBA) computat1.ons ana
that the number of links needed to s1.mulate a LBA
on inputs ot length n is l1.near in n. The
PSPACE-bardness of the linkage reachab1lty problem
then follows from tne facL tnat tne acceptance
problem for LBAs is PSPACE-complete.

The proof involves construct1.ng l1.nltages tnat
compute the logical funct1.ons AND and NOT. and
then from tnese. bUilding up l1nltages tnat compute
any Boolean function. (See Figure 2.3.) We then
simulate a given LBAby uS1ng a l1nltage tnat acts
as a pair of registers. One register is used to
store an instantaneous descript1.on at: tne LBA at
t1.me t. the other to store the descript1.on at t1me
t+l. (See Figure 2.4.) The l1.nltages for Boolean
funct10ns are used to insure that into~at10n is
correctly transferred from one register to tne
other.
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•0 Z 1 0 Z 1

NOT-Gate made from three straight-line
motion devices. A, B and Care cbnstrained
to segments X, Y and Z respectively.

Figure 2.3: An AND Linkage and a NOT
Linkage.

1. FQldiniA Carpenter'~~

integers~: Positive
11 , ••••In' ana k.

Using a reduction from the NP-complete PARTI­
TION problem (see Garey ana Johnson [4]). it is
easy to show that the RULER FOLDING ·problem is

NP-complete.

Ouestl0n: Can a carpenter's ruler W1th
lengths 11' •••• In be folded (each
pair ot consecut1ve l1nks forming e1ther
a 00 or l8U o angle at the j01nt between
them) so that its folded length is at
most k?

moaificat10n ot his proot allows the l1nkage to be
an arm. In contrast to this. our linkage is 2­
dimensional ana does not involve a constrain1ng
region. but it 1S much more complex than an arm.

In this section. we ask how hard it is to
fold a carpenter's ruler consisting of a sequence
of n links L

I
••••• Ln that are hinged together at

their endpoints. These links are allowed to
rotate freely about their joints and to cross over
one another. (See Figure 1.2.) Throughout. we
assume that the endpoints of the links are con­
secutively labeled AO' •••• An' and for 1 SiS n.
we let Ii denote the length of link L1• We
define the RULER FOLDING problem to be the follow­
ing:

oY

31

X

2
B

AWD-Gate
B is at 1 when A=O and C=l
B is at 2 when A=l and C=l
B is at 3 when A=l and C=O

o

Figure 2.4: A Register Linkage.

In comparing our result to Reif's. a comment
should be made. Reif's result is for 3­
dimensional space. and it requires a constraining
region that is not all of 3-space. However.
Reif's linkage is very simple. In fact. a minor

Theorem 1.1: The RuLER FOLD.L~~ problem is
NP-complete.

~: G1ven an instance or tne PARTITION
n

problem with S = {II' •••• In}' let d = } 1 .•
i=I 1

Then the desired -half-sized" subset S' of S
exists 1f ana only 1f a ruler w1th l1nks ot lengtn
2d. d. II' •••• In' d. 2d (in consecutive order)
can be foldea into an 1nterval or lengtn at most
2d. To see that this is the case. imagine that
tne ruler is be1ng fOldea into tne real l1ne
interval [0.2d]. and notice that both the initial
enapoint Aa ot l1nK LI (tne tnird l1nK in our
ruler) ana tne terminal enap01nt A of l1.nK L

D n
(the third from last link) must be placed at
1nteger d. The set S' in tne PARTITION problem
tnen corresponds to the set or l1DkS L

i
wnose iD1­

t1al endpoints Ai - l appear to tne lert ot tne1r
terminal endpoionts Ai in a successful fOlding ot
tne ruler. 0
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It is alSO easy to see tnat a ruler can
always be folded into length 2m, where m is the
lengtb ot toe longest l1nk. (In face, 2m is toe
least upper bound for the minimum folding length.)
Using tnis result, it can be sbown tnat tne RuLER
FOLD1NG problem, l1ke tne PARTITION problem, is
sOlvable in pseudo-polynomial time by a dynamic
programming scheme. The t1me complexity ot toe
RuLER FOLD1NG problem is bounded by a polynomial

. in tne' nuinbe'r ot l1nKs, n, ana tne maximum l1DK
lengtn, m. In fact, it is possible to fina tne
m;bnipmm fOlding lengtn ot a carpenter's ruler in
t1me o(n*nl) • What's more, iI the lengtns OI toe
l1nKs are 'polynomially related, tnen tne dynamic
programming scheme is polynomial.

Example gf &~ reachability problem~ AD.

.&DL: We want to know whether the arm shown in
Figure 4.1 can be moved so that An reaches the
given point p. The arm consists of a ruler with
l1nKs ot integral lengths attached to a chain ot
very short links. The chain links are short
enough to turn freely inside the tunnel, which is
sufficiently narrow that links of the ruler can
rotate very l1t tIe once tney are inside. Since
the ruler cannot change its shape very much while
moving through the tunnel, it must be folded into
length at most k in order to move through the gap
of w1dtb k. Thus, p01nt p can be reached 1f, and
only if. the ruler can be folded into length at
most k.

F1gure 4.1: A Point That is Hard to
Reach.

gap of
width k

\
__--au... A

O
~]

IE: long, ~
very narro; 1

tunnel

ruler
• •

chain of
short links

p

•

Unrestr1cted MOVement

Hav1ng l1sted these bas1c results about fold­
ing rulers, we return to tbe original problem ot
moving arms.

A. ~ AD. Am. JJl JL Zo-Dimenaion.l I&&iJm.

The rema1naer ot our paper is concerned w1cb
moving .I1lIUl.' which can be thought of as rulers
tnat have one endpoint, AO' pinned down. We con­
t1nue to use tne notat10n ot SeCL10n 3, bue we
allow the lengths Ii to be non-integral.

After discussing problems 2 ana 3 brietly, we wl.ll
return to problem I, wh1ch we will examine at
greater lengtn. Deta1led accounts OI tne solu­
t10ns to all tnese problems can be found in [3J
and [5].

In tnis sectlon, we consider mot10n problems
for an arm confined to move on or lnside a circle
c. We have algorithms with t~e complexity on the
order ot a polynomial in n, tne number OI 11.nKs,
tnat solve tne fOllowl.ng problems for a given in1­
t1aI configurat10n ot tne arm w~tn Ao fl.Xed inslde
or on C:

reach.

The next tbeorem, whose s~ple proof we omit,
snows tnat ic 1S easy to find tne p01nts tnat can
be reached by the free end of an arm placed in the
plane.

Theorem A.l: Let L
1

, •••• Ln be an arm posi­
t10ned in 2-dimensional space, ana let r be tne
sum of the lengths of the links. Then the set of
p01nts tbat An can reach is a disc ot radius r
centered at A

O
-- unless some Ii is greater tnan

tbe sum ot the otber lengths. In tnat case, tbe
set of points An can reach is an annulus with
center A

O
' outer radius r, ana inner radius

1. - } 1 .•
1 j~i J

Reatricted Movement

If an arm is constrained to avoid certain
specified objects or boundaries during its
motions, then determining whether An can reach
some given point p can be difficult. In the fol­
lowing example, we use a polynomial reduction from
the RULER FOLDING problem to show that even for
"walls" consisting of a few straight line seg­
ments, tnis problem can be NP-hard.

1.

2.

3.

Decide wnether tne arm can be movea to a
given final configurat10n, ana if so, how;

Given a p01nt p on or inside C, declde
whether tne arm can be movea so tnat tne free
end An reaches p, ana if so, how;

Describe. for each j, 0 S j S n, tne set S
ot all p01nts inside or on C tuat A. ca~

J
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A result tnat is important 1n tne Solucl0ns
of both problems 2 and 3 is that the set R. of
points on C that Joint A. can reach consists ot at

Jmoat two arcs of C. Furthermore. these arcs can
be found quickly. as can a reacnable configuratlon
for links L1 •••••L. that places A. at any given

• • R " ·Th· J f JpOlnt ln . • lS act can be used to reduce
J

problem 2 to problem 1 as follows. Except for a
special case tnat can be handled separately. i~

turns out that lf there are reachable conf1.gura­
tlons ot tne arm that place An ac p. then in some
such configuration. there is a joint A. on C con­
nected to An by a line of links containing at most
one non-straight jOlnt. To cbeck wnether tnis
happens. compute the R.'s. look for an appropriate
straight llne or "elbo~" reaching from p back to a
non-empty R.• and if this is successful. then"com­
pute a reac~able configuratl0n from A to A. tnat
places A. at the appropriate point in ~.. I~ this
way, a r~achable configuration that pla~es A at p

n
can be computed lf such a configuration exists, so
problem 2 reduces to prOblem 1.

Whl1e tnere are many way. to derine a baS1C
unit of motion, it is obviously desirable to use a
definltl0n that nelther l~its the configurations
that can be reached nor complicates the algorithms
ana proots. Wltn this in mina. we have chosen to
define a AimRl&~ of an arm to be 4 Gontinu-

.QJlI.~ dWa&. II1UJi.b. .&.t. IIQat. LwlI: j.QJJlt, AD&lu.
~; ch.psing AD&1.U. 1IUUt. lu:. connected U.
st:r.1sht 1iDu. gL llDU. AWl. ~ mu.x. insre.se ~

decre.se dJlUDg. .t1la~. (The angle at Ao
between Lo and a reference line is considered to
be a joint angle.)

The orientation of a link L. is defineJ as
1

follows. If the arc of C that lies to the l&lt of
the stra1.ght line through L.. viewed from A. 1

1 1-
toward Ai' is shorter than the arc on the right.
then Li is said to have ~ orientation. ~

orientation is defined in a s~ilar manner, and a
link lying on the diagonal is .said to have both
left and right orientation. (Look ahead to Figure
5.3.)

n
~ 1. ~ c = d can be moveQ from iL.s inlL.lal

i=1 1 0 0

conf iguratl0n to a IlQIlIULl ~ in wnich l1nKs
L

1
•••• ,L . extend along a radius ot C. ana j olnt

A.+l andJa!l ics successors l~e on C. wnere A. is
t6e last joint whose preceeding links have leniths
summing to less tnan d. Furthermore, tnis normal

o
form can be reached by a sequence ot O{n) simple
motl0ns tnat can be computed in O{n) tlme. (See
F1gure 5.1.)

An obvious necessary condition for being able
to move the arm from one given configuration to
another is that it be possible to reorient each
link whose orientation differs in the two cont i­
guratl0ns. Since a llnk must be moved to tne
diagonal in order to be reoriented. it is neces­
sary tbat its endpoints be able to move far enough

off C to allow this to happen. Hence we need to
compute ci ana di • tne minlmum ana maximum dis­
tance that Ai can ·be movea OIf C by arbiLrary
motions of the arm. Distance will be measured
along a radius or C, so 0 ~ c. ~ d. ~ d/2. wnere d

1 1
is tne diameter ot C. The fOllowlng~~

lemma, which we state but do not prove, shows that
lt is easy to compute tne c.'s. We w11l alSO use

• 1
tnls lemma agaln wnen we give our algorithm for
changing coDtiguratlons.

The heart of the solution to problem 3 is to
show tnat tnere is a constant number ot circles
(independent of n) whose union covers the boundary
ot S.. Some or tne circ les in tne covering col-

" J "
lecCl0n correspond to na tural boundS on minlmum
and max~um distances that A. can move from A and

J 0
from the center ot C. Each of the remaining cir-
cles is centered at tne endpoint of some R. and
h · 1as radlus equal to tne lengtn ot a llne ot llnks
from A. to A. that is either straight or has one

1 J
folded jOlnt. Here agaln. computlng tne R.'s
plays a role. 1

We now sketch a solution to the problem of
moving an arm from one given configuration to
another inside a circular region. Si.mply deter­
mining Whether this can be done turns out to be a
matter or checking that llnKs whose "orientatl0ns"
differ in the two configurations can be
reoriented. This checking can be done in time
proportional to the number of links. Assuming
that it is feaslble to change configurations, the
arm can be moved to its desired final position by
flrst moving it to a certain "normal form" and
then putting each link into place. correcting its
orient~tion if necessary. Correcting orientation
involves destroying and then restoring the posi­
tions of previous links. Our algorithm consists
of a sequence of "simple motl0ns". ana tne length
of this sequence is on the order of the cube of
the number ot llnks.
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A
n

Figure 5.1: A S~ple Move Toward NormaL
Form. Figure la snows an arm in normal
form. with L1 and L2 extended along the
radius tnrough A wnile A.... tne first. o-~

J01nt tnat can reach C. ana aLl lLS suc-
cessors l1e on C. Figure lb snows a
typical s1mple move used in reach1ng
normal form. The 10cat10ns ot A. ana1-2
its predecessors and tne locatlons ot A.

d
. Jan lts successors are held fixed. Only

the angles at A. 2' A. l' A. l' ana A
. .1- 1.- J- J

are changlng whll.e L. lS rotated about
A.• moving A. 1 towaid C but AWAV from

J J- ..........
Ai - 2 (so Ai - 2 does not foLd). The move
endS wnen Ai - l s~raightens or A. 1
reaches C. J-

The normal form lemma Shows tnat each succes­
sive A

1
can get closer to tne circle by an amount

1. untll the circle 1s reached. so c. =
1 1

max{ci-I-1i' O}. Comput ing the di' sis slight ly
more compllcated and involves computlng tne max­
imum distance t. that each A. can move off C if it

1 1
is constrained only by the tail of the arm (i.e ••
it Li •••••Li are removed). It is straightforward
to compute each di from t i and di - 1 • Figure 5.2
indicates that t i = d/2 unless there is a long
link after Ai. It also illustrates a simple but
crucial a!goritnm for movlng the tail Wlth a small
number ot simple motions so that the distance
between Ai and C increases or decreases in a mono­
tone fashion. Now we are ready to show how to
reorient links. which we do in the next lemma.

~ ~.~: A link Li can be reoriented if.
ana only if. at least one of tne followlng ine­
qualities holds:

i) d 1- i S d i - 1 + d i ;

i1·) d 1i ~ i + c i - 1 ;
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Furthermore. it L. can be reoriented. then this
can be done with 0(n2) s~plemotions that can be
quickly computed.

~: Since Li must lie on a diagonal at
some time during reorientation. the above condi­
tion is obviously necessary:
i) holds when L. is on a diagonal and the center

1
of the circle is between Ai - 1 anel Ai' i1) holds
when L. 11es on a radius w1th A. closer to the

1 1
center than A. l' ana iii) holds when L 11es on

. 1- 1
a radlus W1ch A. 1 closer to the center than A

1- 1·

To prove that the condition is also suff i­
cient and that reorientation can be done quickly.
start by moving the arm to normal form. Then if
inequality i) holds. move Ai - 1 to a position dis­
tance di -

1
from C. keeping the tail in normal

form. It is possible to do this in 0(n2) add1­
t10naL 81mple motl0ns. If lnequal1~y iii) holds.
move Ai - 1 to a position distance d._1 from C.

- O( 2) . 1aga1n uS1ng n slmple mot10ns ana keeping the
tail in normal form. After this has been done.
hold A. 1 flxed. and rotate L. about A to bring

1- 1 i-I
Li to the radius through Ai-I. This takes at most
n-i simple motl0ns ot the type illustrated 1n Fig­
ure 5.2.

If inequaL1ty ii) holds. then

c1- 1Sd/2-'liSd i_l • Move Ai - 1 distance d/2 - 1.
from C. and then rotate L. to the diagonal. 0 1

1

A.
J

F1gure 5.2: Moving the Tail. In Figure
2a. tne tail is kept in normal form
wh1le Ai is moved away from (or toward)
C by s~ple motions. A.•••••A move
along the radius while A~ •••••A

n
move

J n
around C. O~IY the angles at A.-1 and
Aj are chang1ng. Note that if t~e tail
were reattached. the s~ultaneous combi­
nat10n ot tnis mot10n W1cn a rotat10n ot
Li about A1 would still be a simple
motion. In Figure 2b. A. will reach
d

. 1
lstance t. from C when ~ folds

. 1 -1(-1'
preventlng further travel toward the
center ot C.
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We need to make one more oDservat10n about
reorienting links before we can give the algorithm
for changing configurat1ons. Suppose Li is a l1n&
tnat can be reoriented. Then start1ng from any
in1~1al configurat10n ot tne a~. we can reorient
Lana W1cn 0(n2) addic10nal mot10ns. return
l' .

A .A to tne1r scart1ng POS1t10ns W1ChOUC1···· i-I . .
changing tne new orientat10n ot Li • To see tn1S.
bring L. to a diagonal with 0(n2) s~ple motions.

1 .
and toen "undo" tnese mot1ons but w1th tne or1en-
tat10n ot L. reversed. That is. keep tne angle at

1 •
A. adjusted so that at correspona1ng mom~nts

1-1
before and after L. reaches the diagonal through

1
A.• L. forms the same angle with this diagonal but

1 1 ··d f· Th· k Alies on the Oppos1te S1 e 0 1t. 18 eeps i
the same distance from the circle at corresponding
t1mes. (See Figure 5.3.)

To check that the tail can be moved in a compat1­
ble fashion. note' tnat revers1ng toe changes in
the s1ze ot tne angles 1n the tail inaeea keeps Ai
the same distance from tne circle at corresponding
t1mes. Although tne tail does not return to iLS
original po,i,ion, 1t does return to its original

.a1wla.

Algorithm~ Chlpging Cppfiauratipn.:

Step i) Move the arm to normal form (O(n)
simple motions);

.6.. Conslusions

Step ii) Once the predecessors of Ai are in
their final positions, reorient Li if necessary.
restoring the jredecessors of Ai to their final
positions (O(n ) motions). Then rotate L

i
about

A. 1 to put A. in final position (n-i simple
m~tions). Incr~ent i. and repeat Step ii) until
i > n.

Notice that since the ci ' sand d
i

' s depend
only on the 1.'s. the very existence of the

1
desired final configuration insures that the dis-
tance from A. to C will stay between c. and d.
111

while Li is being rotated about Ai-I. This is
because the distance between Ai and C changes in a
monotone fashion during this rotation.

Not1ce also that toe Qpe.tlpp of wnether toe
desired final configuration can be attained can be
answered in l1near t1me on a machine that does
real arithmetic (+, -, *. /2. min(.»since it is
necessary only to compute the ci's, di's. and
t. 's. determine which links must be reoriented,

1 .. .
and check that the reorientab1l1ty conC11t1on 1S
satisfied.

In this paper we have investigated several
restrict10ns of tne mover's problem involving the
movement of linkages and arms in 2-dimensional
regions. In summary. we have sbOwn tnat:

\
\,
\,
\
\
\
\

',A \

.....~.-¥\x . \
L ,A

i
_

1
i . ,',

\ '

\
\
\
\ I
\ I

\7(Ai I X

\f-B

A. \ Li
~-l/\

" ,I \

Figure 5.3: Changing Or1entat10n. In
Figure 3a. Li is being moved toward the

diagonal through A.• L. has left orien-
1 1

tat10n ana forms an angle e W1th the
diagonal. A. is distance x from C. In

1
Figure 3b•• Li is Shown at tne
corresponding moment axter 1t has passed
the diagonal. Again Li forms an angle' e
with the d1agonal, and Ai is distance x
from C. but now, L. has right orienta-

1
tion.

If each 'link that must be reoriented satis­
fies the necessary and suff1cient condition given
in Lemma 5.2. then the following algorithm can be
used to move the a~ to its desired final confi­
guration with 0(n3 ) simple motions that can be
computed in Oen3) ttme.

i) The problem of moving an arm in a 2­
dimensional region can be polynamiaLly
reduced to the problem of moving a more com­
plex l1nltage tnat is not ,constrained by a
region. Untortunately, tne latter problem is
PSPACE-complete;

ii) Deciding wnether or not an arm can be fOldeu
to have lengtn k is NP-complete;

iii) The problem ot (i1) is solvable in pseudo­
polynomial t1me. That is, i~ allot tne
l1nKs ot tne a~ are known to be snorter toan
some given lengtn, tnen tnere 1S a polynomial
t1me (11near) aLgorithm;

iv) Because ot (i1). the reachabil1ty problem is
at least XP-hard for an' arm in a 2­
dimensional, nonconvex region;
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v) We have a polynomial t~e algorithm for
deciding how to move an arm in a circular
region.

Clearly. one ot tne major open problems
relat1ng to tnis work is to give a polynomial t~e

algor1Cbm for deciding how to move arms in arbi­
trary convex regions. We conjeccure tnat tnis can
be done and be11eve tnat tne ideas ot Re1f [9] and
Schwartz and Shar1r [10.11] together with those
presented in our paper for mov1ng arms w1cnin a
circular region prov1de usetul techn1ques for
approaching tnis prOblem.
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