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Abstract

The classical mover's problem is the following: can a rigid object in 3-dimensional space be
moved from one given position to another while avoiding obstacles? It is known that a more general
version of this problem involving objects with movable joints is PSPACE-complete, even for a simple
tree-like structure. In this paper, we investigate a 2-dimensional mover's problem in which the
object being moved is a robot arm with an arbitrary number of joints. We reduce the mover's prob-
lem for arms constrained to move within bounded regions whose boundaries are made up of straight
lines to the mover's problem for a more complex linkage that is not constrained. We prove that the
latter problem is PSPACE-hard even in 2-dimensional space and then turn to special cases of the
mover's problem for arms. In particular, we give a polynomial time algorithm for moving an arm
confined within a circle from one given configuration to another. We also give a polynomial time
algorithm for moving the arm from its initial position to a position in which the end of the arm
reaches a given point within the circle.
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1. Introduction

With current 1nterests 1n 1lndustrlal autouma-

tion and robotics, 1t 18 becoming 1increasingly
important to deslgn efiiCleuL algoritnus IOr moOV-
ing 2- and 3-dimensional objects subject to cer-
tain geometric
will be concerned with the mover's problem, whicn

an 1nitial

COnSTralncs, In tnis paper, we

18 to determine, giveu an object X,
position Pl. a rinal position P: ana a constrain-
ing region R, wnetner X can be movea rroum position
P1 to position PI wniie Kkeeping X witnin Che
region R, Here, X coula represeuL au object being
moved by some SOrt OI manipuiator, Oor 1t could
represeuL the manipulator 1tseli; The COusLralnLs
determining region R coula arise eitner rrom the
presence Or oLner objects 1n the WwWOrk space Or
Irom tne bounaary walls or the space. Recently,
several autnors (Schwarctz ana Sharsir [10,11], Reir
L94,
probiem IOr the S1tuaciou 1n wusch X 18 & rigia 2-

18 a

Lozano-Perez [7]) nave studiea the mover's

or 3-aimensional polynedral object and R
region aescribed DY llnear COuSTrallis.

A more adirricult probiem 18 to assume cthat X
has JOlDLS and heuce 18 Nuuriglu.
to the design and control
planuing
obstacle-avolading patns IOr objects Deling moved.

This problem 1s

airectly related or

rooot arms as welsL as to tne or

Again, one aesires & ras. (polynumial time) aligo-
ritnm ror moving X rrom position P1 to P: wicthin a
region R. Unrorctunately,

probably no. pussible, as Reir L9) nas shown tnac
the proplem OI decldlng wnetner oOr not an arbi-

such an algoritmm 18

trary hinged object can be moved I:0om Oue pusltiou
to another 1in a 3-dimensional, nonconvex region 18
PSPACE-complete.
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The motion or hingea objects cailed linkages.
which are collections of rigid rods arbitrarily
fastened together by pivots at tneir endpoints,
was extensively studied in the 1800's. Of special
interest was tne gynthesis problem, wnich is to
design a mechanism such that the locus of points
reachable by a designated point on tne linkage is
some specified curve. Many solutions were given
for tne case in wnich tne curve is a straight
line, and we will make use of one of them. Also,
we will buiild on work ot Kempe [6J) that showea
that certain simple computations such as multipli-
cation can be pertormed by linkages.

Our first main result is tnat, given a link-
age within a region with straight line boundaries,
we can design a new linkage that has the boun-
daries incorporated into its design in tne sense
tnat tne new linkage has a designated joint for
each joint ot tne original linkage, ana tne locus
for a designated joint ot tne new linkage without
boundaries is exactly the locus of the correspond-
ing joint in tne old linkage 1n the presense ot
boundaries. 1In terms of robotics, the original
linkage might represent a mechanicas
strained to move in an enclosed space.

arm con-

Untortunately, as we will show, 2-dimensional
linkages can simulate arbitrary space-bounded Tur-
ing machines. From tnis result i. foilows tnat
the problem ot deciding whether or not a joint in
a linkage can reach a designated point is PSPACE-
complete gven in a 2-dimensional space with no
constraining boundaries.

Because ot the above

results, it becomes
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important to discover natural restrictions ot the
mover's problem for wnich fast, general aigorithms
can be found. In unrestricted 2- or 3-dimensional
space, it is easy to solve tne mover's problem for
an arms by wnich we mean a sequence Or links
joined consecutively at their endpoints by fully
rotating joints, the first of which is fastened
down. However, the problem of folding such an arm
into a given lemgth turns out to be NP-complete.
Because of this, we can show that it is at least
NP-hard to decide whether or mnot the end of an
arbitrary arm can be moved from one position to
another while staying within a given 2-dimensional
region. The folding problem is still NP-complete
for a sequence of joined links with both ends
free, which we call a carpenter's zuler. (See
Figure 1.1). The problem of folding a carpenter's
ruler arises because a natural strategy for moving
such an object in a confining region is to fold it
up as compactly as possible at the beginning of
the motion.

5

15

A0 -JL
Figure l.l: A Carpenter's Ruler. If
the location of Ao is fixed, the ruler

is called an gmm. (L, still rotates

about A ).
o

1

Since the mover's problem is NP-hard for an
arm moving in an arbitrary 2-dimensional region,
it is natural to restrict the problem to convex
regions. In the case that the region is the
inside of a circle, we will give polynomial time
algorithms for changing configurations and reach-
ing points.,

2. The Reachability Problem for

2-Dimensional Linkages

The arms that we discussed in Section 1 are a
very simple form of linkage -- their links are
joined together consecutively to form a chain.
Historically, a great deal of importance has been
placed on more complex types of linkages whose
links are joined in an arbitrary fashion., Exam-
ples ot 2-dimensional linkages of this type are
straight-line motion devices and pantographs,
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which are mechanisms used to scale drawings. In
this section of the paper, we discuss the reacha-
bility problem for arbitrary 2-dimensional link~
ages. The reachability problem is a simpler ver-
sion of the mover's problem in which only the
desired final position ot one joint is specified,

We begin by showing how to polynomially
reduce the reachabiiity problem for any linkage
constrained by a polygonal region to a reachabii-
ity problem for a more complex linkage cunstrained
only to keep certain joints at fixed locations.
Unfortunately, we are also able to snow tnat tne
reachability problem tor linkages in 2-dimensional
space is PsrACE-hard. The
proofs or tnese results are quice intricate, ana
we will only be able to sketch them here., The
interested reader is reterred to [4] for tne full
proofs.

without boundaries

Replacing Boundaries by Adding Links

We first consider the special case in which
the region R that restrains linkage L is a convex
polygon. In this case, R is the intersection of
half-planes Hl""'nk corresponding to tne sides
of tne polygon. Since R 18 convex, we know tnat
all links of L lie in R whenever all joints lie in
R, i.e., wnenever all joints lie in each H,. We
would like to ensure that a joint J of L does not
leave H:i. by identifying J with a joint ot some
appropriate linkage Li' 0f course Li should not
restrict tne motion or J inside R in any way. (It
does not matter whether Li itself lies in R since
we are looking for a reduction of the original
problem to a new problem without a bounding
region.) If a linkage can be constructed for each
joint and half-plane pair, tnen we cau ignore
region R and study tne motions ot tne original
joints or L with tne new linkages attached.

Y’

Figure 2.1: Peaucelier's Straight Line
Motion Linkage.
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The linkages we need can in fact. be con-
structed by using a device, invented by Peaucelier
[8] in 1864 tnat converts circular motion to
linear motion. (See Figure 2.1.) As point D moves
around the circle C, point B traces out the line
segment XY, This linkage has the additional pro-
perty tnat if the point D is ailowed to move
within the circle C by the creation of a joint at
the midpoint ot link S, then tne region R of
points that B can reach is the intersection of a
circle ana a haif-plane. As tne lengths ot the
links in the linkage are increased, but ratios of
therr lengths kept constant, the size of region R
increases but its shape remains the same. The
description or the new linkages can be computed in
time on the order of a polynomial in the descrip-
tion of the original linkage L. (See [4] for
details.) The formal statement of tne result
whose proof we have just outlined is given by the
next theorem.

Theorem 2.l: Let L be a linkage constrained
to lie within a convex polygonal region R. Then
in time on the order of a polynomial in the length
of the description ot L and R, one can compute the
description of a linkage M that contains L and has
the following property: Given a point p in R, an
initial position P, ot L in R, and a joint J of L,
linkage L can be moved inside R to place J at p
if, and only if, linkage M can be moved (without
regard to R) to place J at p.

Figure 2.2: A Typical Nonconvex Region.

We can extend this result to include the case
in which R is a bounded region, not necessarily
convex, that can be divided into triangular subre-
gions. (See Figure 2.2.)

We have already indicated how to restrict a joint
to a triangular subregion, since its boundary is a
convex polygon. The next step is to design a
linkage that restricts a joint to the union of a
set of such regions. This can be done by using
techniques from Kempe [6]. There is, however, one

more difficulty. Restricting the joints of a
linkage to a nonconvex region does not guarantee
that the 1links themselves will remain in the
region. However, we are able to overcome tnis
difficulty by partitioning the excluded portions
ot tne convex hull ot tne region into triangles
and then constructing mechanisms that exclude each
link from each triangle., Again, tne details
appear in [4].

Untortunately, we can show tnat even tne
reachability problem for linkages not restrained
by regions is PSPACE-hard.

PSPACE-Hardness of the Unconstrained Reachability
Problem for Linkages

Our next result, wnose proof is given in
detail in [4], shows tnat removing boundaries does
not help.

Theorem 2.2: Leu L be a 2~dimensional link-
age fixed to tne plane at one or more joints but
otherwise moving freely. Then tne problem ot
deciding wnether or not a designated joint or L
can reach an arbitrary given point in tne plane 1s
PSPACE-hard.

This result can be compared to Reif [9], wnere it
is snown tnat the reachability problem for even a
simple, tree-like 1linkage constrained by a 3-
dimensional concave region is PSPACE-hard.

Our proof consists of showing tnat tnere are
complex linkages that are capable of simulating
Linear Boundea Automaton (LBA) computations and
that the number of links needed to simulate a LBA
on inputs ot length n is linear in n. The
PSPACE-hardness of the linkage reachabilty problem
then follows from tne faci. tnat tne acceptance
problem for LBAs is PSPACE-complete.

The proof involves constructing linkages tnat
compute the logical functions AND and NOT, and
then from tnese, building up linkages tnat compute
any Boolean function. (See Figure 2.3.) We then
simulate a given LBA by using a linkage tnat acts
as a pair of registers. One register is used to
store an instantaneous description ot tne LBA at
time t, the other to store the description at time
t+l. (See Figure 2.4.) The linkages for Boolean
functions are used to insure that intormation is
correctly transferred from one register to tne
other.
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NOT-Gate made from three straight-line
motion devices. A, B and C are cobnstrained
to segments X, Y and Z respectively.

AND-Gate
B is at 1 when A=0 and C=1
B is at 2 when A=1 and C=1
B is at 3 when A=1 and C=0

Figure 2.3: An AND Linkage and a NOT
Linkage.
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Figure 2.4: A Register Linkage.

In comparing our result to Reif's, a comment
should be made. Reif's result is for 3-
dimensional space, and it requires a constraining
region that is not all of 3-space. However,
Reif's linkage is very simple., In fact, a minor

moaification ot his proot allows the linkage to be
an arm. In contrast to this, our linkage is 2-
dimensional and does not involve a constraining
region, but it 18 much more complex than an arm.

3. Folding a Carpenter's Ruler

In this section, we ask how hard it 1is to
fold a carpenter's ruler consisting of a sequence
of n links Ll' coes Ln that are hinged together at
their endpoints. These 1links are allowed to
rotate freely about their joints and to cross over
one another. (See Figure 1.2.) Throughout, we
assume that the endpoints of the links are con-
secutively labeled A., ¢ee» A , and for 1 < i < n,
wve let li denote the 1length of 1link Ll. We
define the RULER FOLDING problem to be the follow-
ing:

Given: Positive
11. « o o .lnp and k.

integers n,

Question: Can a carpenter's ruler with
lengths ll' cees ln be folded (each
pair ot consecutive links forming either
a 0° or 180° angle at the joint between
them) so that its folded length is at
most k?

Using a reduction from the NP-complete PARTI-
TION problem (see Garey and Johnson [4]), it is
easy to show that the RULER FOLDING problem is
NP-complete.

Iheorem 3.l:
NP-complete.

The RUuLER FOLDING problem is

Given an instance or tne PARTITION

Proof::
n
problem with § = {11. cees ln}. let d = 3 1.

Then the desired "half-sized"™ subset S' -of S
exists 1f and only 1f a ruler with links ot lengtn
2dy ds 1.5 ey ln. d, 2d (in consecutive order)
can be folded into an interval or length at most
2d. To see that this is the case, imagine that
the ruler is being foldea into the real line
interval [0,2d], and notice that both the initial
endpoint of link Ll (tne tnird link in our
ruler) and tne terminal endpoint An of link Ln
(the third from last 1link) must be placed at
integer d. The set S' in tne PARTITION problem
then corresponds to the set or links Li wnose ini-
tial endpoints Ai-l appear to tne lert ot tneir
terminal endpoionts Ai in a successful foiding or
the ruler. [0
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It is also easy to see tnat a ruler can
always be folded into length 2m, where m is the
lengtn ot tne longest link. (In fact, 2m is tne
least upper bound for the minimum folding length.)
Using tnis result, it can be shown tnat the RULER
FOLDING problem, like tne PARTITION problem, is
solvable in pseudo-polynomial time by a dynamic
programming scheme., The time complexity ot tne
RULER FOLDLING problem is bounded by a polynomial

-in the number ot 1links, n, ana the maximum link

lengtn, m. In fact, it is possible to fina tne
minimum foiding length otr a carpenter's ruler in
time O(n*m)., What's more, ir the lengtns or tne
links are polynomially related, tnen tne dynamic
programming scheme is polynomial.

Having listed these basic results about fold-
ing rulers, we return to the original problem ot
moving arms.

4. Movipg an Amm an a 2-Dimensional Region
The remainder ot our paper is concerned with
moving arms, which can be thought of as rulers
tnat have one enapoint, AO' pinned down.
tinue to use the notation ot Seciion 3,
allow the lengths li to be non-integral.

We con-
but we

Unrestracted Movement

The next theorem, whose simple proof we omit,
shows that it 1s easy to find the points that can
be reached by the free end of an arm placed in the
plane.

Iheorem 4.l: Let Ll’ cers Ln be an arm posi-
tioned in 2-dimensional space, ana let r be tne
sum of the lengths of the links. Then the set of
points that An can reach is a disc ot radius r
centered at A  -- unless some 1i is greater than
the sum ot the other lengths. In that case, the
set of points An can reach is an annulus with
center Ao. outer radius r, and inner radius
li - 'E_ 1..

j*i

Restricted Movement

If an arm is constrained to avoid certain
specified objects boundaries during its
motions, then determining whether An can reach
some given point p can be difficult. In the fol-
lowing example, we use a polynomial reduction from
the RULER FOLDING problem to show that even for
"yalls" consisting of a few straight line seg-
ments, this problem can be NP-hard.

or
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Example of a hard reachability problem for an
arm: We want to know whether the arm shown in
Figure 4.1 can be moved so that An reaches the
given point p. The arm consists of a ruler with
links ot integral lengths attached to a chain of
very short 1links, The chain links are short
enough to turn freely inside the tunnel, which is
sufficiently narrow that links of the ruler can
rotate very little once they are inside. Since
the ruler cannot change its shape very much while
moving through the tunnel, it must be folded into
length at most k in order to move through the gap
of width k. Thus, point p can be reached 1f, ana

only if, the ruler can be folded into length at
most K.
gap of
P width k

o _—%-.
YT o dode A

° il o= = 0
An"' hd M —__i ]
k____, ruler
l(— long, .ﬂ
very narrow
chain of

tunnel
short links

Figure 4.l: A Point That is Hard to

Reach.

2. Moving an Amm Inside a Circle

In tnis section, we consider motion problems
for an arm confined to move on or 1inside a circle
C. We have algorithms with time complexity on the
order or a polynomial in n, the number or links,
that solve tne following problems for a given ini-
tial configuration ot tne arm with Ao fixed inside
or on C:

l. Decide wnether tne arm can be movea to a
given final configuration, ana if so, how;

2., Given a point p on or inside C, decide
whether the arm can be moved so that tne free
end An reaches p, ana if so, how;

3. Describe, for each j, 0 £ j < n, tne set S

of a1l points inside or on C tnat Aj
reach.

can

After discussing problems 2 ana 3 brietly, we will
return to problem 1, which we will examine at
greater length. Detailed accounts or tne solu-
tions to all tnese problems can be founda in [3)
and [5].
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A result tnat is important in tne solutions
of both problems 2 and 3 is that the set R. of
points on C that joint A, can reach consists o% at
most two arcs of C, Furthermore, these arcs can
be found quickly, as can a reachable configuration
for links L s...sL. that places A. at any given
point in R.,. This fact can be used to reduce
problem 2 to problem 1 as follows. Except for a
special case tnat can be handled separately, it
turns out that 1f there are reachable configura-
tions ot tne arm that place An at p, then in some
such configuration, there is a joint A. on C con-
nected to An by a line of links containing at most
one non-straight joint. To check wnether tnis
happens, compute the R.'s, look for an appropriate
straight line or "elbow" reaching from p back to a
non-empty R., and if this is successful, then com-
pute a reac'{xable configuration from Ao to A. tnat
places A. at the appropriate point in R.. In this
way, a reachable configuration that places An at p
can be computed 1f such a configuration exists, so
problem 2 reduces to problem 1,

The heart of the solution to problem 3 is to
show tnat there is a constant number ot circles
(independent of n) whose union covers the boundary
ot S.. Some or tne circles in tne covering col-
lection correspond to natural bounds on minimum
and maximum distances that A. can move from Ao and

from the center ot C, Each of the remaining cir-
cles is centered at the endpoint of some Ri and
has radius equal to the length ot a line ot links
from Ai to Aj that is either straight or has one
folded joint, Here again, computing the Ri's

plays a role.

We now sketch a solution to the problem of
moving an arm from one given configuration to
another inside a circular region. Simply deter-
mining whether this can be done turns out to be a
matter or checking that links whose "orientations"
differ in the configurations can be
reoriented. This checking can be done in time
proportional to the number of links. Assuming
that it is feasible to change configurations, the
arm can be moved to its desired final position by
first moving it to a certain "normal form" and
then putting each link into place, correcting its
orientation if necessary. Correcting orientation
involves destroying and then restoring the posi-
tions of previous links. Our algorithm consists
of a sequence of "simple motions™, ana the length
of this sequence is on the order of the cube of
the number ot links.

two
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While there are many ways to derine a basic
unit of motion, it is obviously desirable to use a
definition that neither limits the configurations
that can be reached nor complicates the algorithms
and proots. Witn this in mina, we have chosen to
define a gimple motion of an arm to be a gontinu-
ous motion duxing which at meost four joint angles
change; gchanging angles must be connected Dy
stxaight lines of links and can only increase or
decrease during the motion. (The angle at Aj
between Lo and a reference line is considered to
be a joint angle.)

The orientation of a link L. is defined as
follows. If the arc of C that lies to the lefft of
the straight line through Li' viewed from Ai-l
toward A., is shorter than the arc on the right,
then Li is said to have left orientation. Right
orientation is defined in a similar manner, and a
link lying on the diagonal is said to have both
left and right orientation. (Look ahead to Figure
5.3.)

An obvious necessary condition for being able
to move the arm from one given configuration to
another is that it be possible to reorient each
link whose orientation differs in the two confi-
gurations, Since a link must be moved to the
diagonal in order to be reoriented, it is neces-
sary that its endpoints be able to move far enough
off C to allow this to happen.
compute ¢ ana di'
tance tnat Ai can ‘be movea orf C by arbicrary
motions of the arm. Distance will be measured
along a radius or C, s0o 0 < c; S di < d/2, where d
is tne diameter ot C. The following pormal form
lemma, which we state but do not prove, shows that
1t 1s easy to compute the ci's. We w11l aiso use
tnis lemma again wnen we give our algoritmm for
changing contigurations,

Hence we need to
the minimum and maximum dis-

a Lemma 2.1:
izlli 2 o = do
configuration to a pormal form in wnich links
Ll""'L' extend along a radius ot C, ana joint
A'+l and all icts successors lie on C, wnere A. is
the last joint whose preceeding links have lengths
summing to less tnan do' Furthermore, tnis normal
form can be reached by a sequence ot 0(n) simple
motions that can be computed in 0(n) time. (See

Figure 5.1.)

Any arm for wnich

can be movea from i.s iniiial
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Figure 5.1:
Form.
form, with L
radius tnrough Ao

A Simple Move Toward Normal
Figure la shows an arm in normal
and L2 extended along the
while A3. tne first
joint tnat can reach C, and ail 1.8 suc-
cessors lie on C., Figure lb snows a
typical simple move used in reachmg
normal form. The locations ot Al - @

its predecessors and tnhe locations or A.
and its successors are held fixed. On1§1v
the angles at A 20 A i-1° A. j-1° anda A
are changing while L. is rotated about
A., moving A, toward C but gwyay from

j-1

1_2 (so A:. -2 does not foid).
ends when Ai-l straightens

The move
or Aj-l
reaches C,

The normal form lemma shows tnat each succes-

sive A:. can get closer to tne circle by an amount
li until the circle 1is reached, 8o ¢, =
max{ci_l-li. 0}. Computing the di's is slightly

more complicated and involves computing tne max-
imum distance t, that each Ai can move off C if it
is constrained only by the tail of the arm (i.e.,
it Li""'Li are removed). It is straightforward
to compute each d., from t‘i and d:. -1° Figure 5.2
indicates that t, = d/2 unless there is a long
link after Ai' It also illustrates a simple but
crucial algorithm for moving the tail with a small
number ot simple motions so that the distance
between Ai and C increases or decreases in a mono-
Now we are ready to show how to
reorient links, which we do in the next lemma.

tone fashion.

Lempa 5.2: A link L, can be reoriented it,
and only if, at least one of tne following ine-
qualities holds:

i) d-1,sd, ,+d;3
ii) di 2 1i MR
iii) di-l 2 li'
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Furthermore, it Li can be reoriented, then this
can be done with 0(n“) simple motions that can be
quickly computed.

Proof: Since Li must lie on a diagonal at
some time during reorientation, the above condi-
tion is obviously necessary:

i) holds when Li is on a diagonal and the center
of the circle is between Ai-l and Ai. i1) holds
when Li lies on a radius with Ai closer to the
center than Ai-l’ ana iii) holds when L1 lies on
a radius wich Ai-l closer to the center than A:.'

To prove that the condition is also suffi-
cient and that reorientation can be done quickly,
start by moving the arm to normal form. Then if
inequality i) holds, move A to a position dis-
tance d from C, keeplng the tail m normal
form. It is possible to do this in O(n ) addi-
tional simple motions. If 1inequalicy iii) holds,
move A, , to a position distance d, , from C,
again using 0(n”) simple motions and keeping the
tail in normal form.
hold A,

After this has been done,

i-1 to bring
Li to the radius through Ai-l' This takes at most
n-i simple motions ot the type iilustrated in Fig-
ure 5.2.

fixed, and rotate L. about Ai-

If inequality ii) holds, then
cl_lsd/Z-liSdi_l. Move 4. , dzst.;snce a/2 - 1,
from C, and then rotate Li to the diagonal. [

An / X Ak

Figure 5.2:
2a,

Moving the Tail. In Figure
tne tail is kept in normal form
while A; is moved away from (or toward)
C by simple motions. A. .....A
along the radius while A’ .....A move
around C. Only the angles at A. and
A. are changing. Note that if tl:'lxe tail
were reattached, the simultaneous combi-
nation or tnis motion with a rotation or
I..i about Al would still be a simple
motion. In Figure 2b, Ai will reach
distance t. from C when _, folds,
preventing further travel toward the
center ot C.

move
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We need to make one more observation about
reorienting links before we can give the algorithm
for changing configurations. Suppose Li is a linx
that can be reoriented. Then starting from any
initial configuration or tne arm, we can reorient
Ll. ana with 0(n“) addicionai motions, return
Al""'Ai-l to tneir starting positions wun?ut
changing the new orientation or L.. To see tnis,
bring Li to a diagonal with 0(n“) simple motionms,
and tnen "undo"™ these motions but with tne orien-
tation ot Li reversed. That is, keep tne augle at
A -1 adjusted so tnat at corresponding moments
before and after Li reaches the diagonal through
Ai’ Li forms the same angle with this diagonal but
lies on the opposite side of it. This keeps Ai
the same distance from the circle at corresponding
times. (See Figure 5.3.)

To check that the tail can be moved in a compati-
ble fashion, note that reversing tne changes in
the size ot tne angles in the tail inaeea keeps Ai
the same distance from tne circle at corresponding
times. Altnough tne tail does not return to i.s
original pogirion, 1t does return to its original

Figure 5.3:
Figure 3a, I.i is being moved toward the
diagonal through Ai' Li has left orien-
tation ana forms an angle 6 with tne
diagonal. Ai is distance x from C. 1In

Changing Orientation. In

Figure 3b, .Li is shown at tne
corresponding moment arter it has passed
the diagonal. Again L. forms an angle ©
with the diagonal, and Ai is distance x
from C, but now, Li has right orienta-
tion.

If each link that must be reoriented satis-
fies the necessary and sufficient condition given
in Lemma 5.2, then the following algorithm can be
used to move the arm to its desired final confi-
guration with 0(n”) simple motions that can be
computed in 0(n”) time.

Algorithm for Changing Configurations:

Step i) Move the arm to normal form (0(n)
simple motions);

Step ii) Once the predecessors of Ai are in
their final positions, reorient Li if necessary,
restoring the predecessors of Ai to their final
positions (0(n“) motions). Then rotate Li about
Ai—l to put Ai. in final position (n-i simple

motions). Increment i, and repeat Step ii) until
i >n,.

Notice that since the ci's and di's depend
only on the li's. the very existence of the
desired final configuration insures that the dis-
tance from Ai to C will stay between ¢ and di
while I‘i. is being rotated about Ai-l' This is
because the distance between Ai and C changes in a
monotone fashion during this rotation.

Notice also that tne guegstion of whether the
desired final configuration can be attained can be
answered in linear time on a machine tnat does
real arithmetic (+, -, *, /2, min(,)) since it is
necessary only to compute the c.'s, di's. and
ti's. determine which 1links must be reoriented,
and check that the reorientability condition is
satisfied.

6. Conclusions

In this paper we have investigated several
restrictions of the mover's problem involving the
movement of linkages and arms in 2-dimensional
regions. In summary, we have shown tnat:

i) The problem of moving an arm in a 2-
dimensional region can be polynomiatly
reduced to the problem of moving a more com-
Plex linkage tnat is not constrained by a
region. Untortunately, tne latter problem is
PSPACE-complete;

ii) Deciding whether or not an arm can be foldeu
to have lengtn k is NP-complete;

iii) The problem of (i1) is solvable in pseudo-
polynomial time. That is, ir a1l ot tne
links or tne arm are known to be snorter tnan
some given lengtn, then tnere 1s a polynomial
time (linear) aigorithm;

iv) Because ot (i1), the reachability problem is
at least NP-hard for an arm in a 2-
dimensional, nonconvex region;
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v) We have a polynomial time algorithm for
deciding how to move an arm in a circular
region.

Clearly, one ot tne major open problems

relating to tnis work is to give a polynomial time
algorithm for deciding how to move arms in arbi-
trary convex regions. We conjecture tnat tnis can
be done and betieve tnat tne ideas or Rerf [9] ana
Schwartz and Sharir [10,11] together with those
presented in our paper for moving arms within a
circular region provide for
approaching this problem.

usetul techniques
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