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Introduction. A few years ago, L.G. Brown used K-Theory together with some
clever spectral theory to show that an extension of an AF algebra by an AF
algebra was also an AF algebra. At one point in the proof, he used the
uniform continuity of the square root function on the positive part of the
unit ball in a C¥-algebra. At that time, a colleague was working through
Brown’s theorem and wondered about a proof of this fact. A number of experts
in operator theory were consulted and one came up with a rather unpleasant
computational proof that was far from being sharp. Eventually, of course,
everyone saw the light - it is a trivial consequence of spectral theory (see
proposition 1.1).

However, in considering this problem (i.e., before I saw the light) it
occurred to me to use the operator monotonicity of the square-root function.
This, indeed, provides the very sharp estimate, “A%~B%” < HA—BH% for A and
B positive operators of arbitrary norm. This estimate is the uniform-norm
analogue of the Powers—Stormer inequality [5, lemma 4.1]. 1In fact, this same
idea leads to a whole family of inequalities, one for every operator-monotone

function, f. To wit:

HECA)—F(BYN < £(UA-Bu) — £(0)

if f 1is operator-monotone on [0, ) and A, B are positive operators.
1

In case f(x) = x0 for n > 1 (not necessarily an integer) we have
1 1 1

ua™-"n < na-pu®.
This sharp inequality has interested a number of people, most recently Terry

Loring in his difficult matrix estimates.



In talking to B.M. Baker about this inequality (for n = 2) he felt that
it should be directly related to the Powers—Stormer inequality in the sense
that a Powers—Stormer type proof might be found. In the search for such a
connection, we discovered two things. First, we discovered a whole continuum

of inequalities which contains the Powers—Stormer inequality and the
1 1 1

inequality na"-s™) £ nA-B1"  as special cases. Second, we found out why

Barry Simon calls this sort of thing "the hard analysis of compact operators

on Hilbert space" [6, preface].

To state what we call the generalized Powers—Stormer inequality, let

H-Hp denote the Schatten p-norm for 1 ¢ p < e and let -, denote the

usual operator norm {6]. Let 1

I~

n<pgw where n # o, then the afore-
mentioned inequality states that
1 1
na"-B™1 < na-Bu
p

olo o)~

for A and B positive operators on Hilbert space. In the case that
1 {n <2 we must confess that this inequality is still a conjecture unless

we also have n = p or p = o, Perhaps a diagram would help.



The shaded area and solid lines indicate that the inequality has been proved
for those values of n and p. The blank area with the question marks
indicates values of n and p for which we believe the inequality is true
but for which we have no proof. 1In this blank area we have some numerical
evidence in dimensions 2 and 3 which suggest that the conjecture is true.
Thanks are due to Dale Olesky at the University of Victoria and Jon Borwein
at Dalhousie University for their willingness to perform computer experiments
for us. As further evidence that the inequality is true in the blank area,

we are able to prove the weaker but still homogeneous inequality:

1 1 1 1 1
0A"BT < nanZ® 4+ uEnZ® |naspne®
p  |"p TP IR

n n n

for 1 <n<2 and p > n. Of course, this inequality does show that the
1
map A = A" s continuous from the positive operators in C to the

n

positive operations in Cp, and is in fact a Lipschitz functions of exponent

1 .
5 on any bounded set in CE;
n
After reducing to the case A > B » 0 via a clever lemma of Heydar

Radjavi’s, the main tools we use are the operator monotonicity of the
1
functions f(x) = " for n > 1, a related integral formula for these

functions, and the Spectral theorem.

Acknowledgements. I would like to thank my many colleagues whose interest in

this problem kept me going even when my enthusiasm began to lag. Special



thanks are due to Heydar Radjavi and Peter Fillmore. Besides providing lemma
2.3, Heydar Radjavi was responsible for many stimulating discussions and much
encouragement. These latter comments also apply to Peter Fillmore. Thanks
are also due to Bob Miers at the University of Victoria for his hospitality
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§1. Dniform norm results and operator monotonicity.

We first dispense with an easy but worthwhile observation that takes
care of most continuity questions for the operator norm, H-Hw. Of course,

this result does not provide sharp estimates.

1.1 Proposition: ILet f be a continuocus complex—valued function on the*

compact set X ¢ €. Let H be a Hilbert space and let NX be the set of

normal operators on H with spectrum contained in X. Then f: NX -+ B(H)

is uniformly continuous in the operator norm.

proof: Let e > 0 and let p be a polynomial in two variables so that
’f(z) - p(z,E)l < %- for all =z € X. It is easy to see that there exists
. % b 3 &
& >0 so that if S, T e A/X and Ws-Ti_ < & then up(S,s )-p(T,T )nOo < T -
Thus, llf(S)—f(T)IlOO < e as required. g

We now recall that a continuous function f: [0, ®) 4+ R is called

operator monotone if S ¢ T implies f(S) ¢ f(T) for all positive operators

S and T. As observed in [4, 1.3.7] the functions fa defined by



1

fa(t) = t(lJrcxt)—1 = a{l~(l+at)~l] are operator monotone for o > 0.

Moreover, it is also observed in (4, 1.3.12] that any operator monotone
(e}

function f on [0, «) has a unique representation f(t) = J fa(t)dy(a) + £(0)
0

where u is a positive measure on [0, ).

1.2 Lemma: Let f be operator monotone on [0, ) with f(0) = 0 and let

s, t € [0, ®). Then f(s+t) ¢ f(s) + f(t).

proof: By the preceeding integral formula, it suffices to verify this

inequality for the functions fa' However, this is equivalent to

(1+o<s)"1 + (1+at)—1 < (1+cxs+oc’c)'1 + 1

or

l +at + 1 + as 1+ 1+ as + at
(lt+as) (T+at) = 1 + o8 + at

or

1 +as + at ¢ (l+as) (1+at) 1 +as + at + azst

which is trivially true.

1.3 Lemma: If A and B are commuting positive operators and f ig an

operator monotone function with f(0) = 0 then f(A+B) < F(A) + f(B).

proof: There is a bounded self-adjoint operator, H so that A and B are

both functions of H. That is, if H = JM A dEA is the spectral
m



decomposition of H then there are positive Borel functions g1 and g2

with A = gl(H) = J: gl(A)dEA and B = gz(H) = j: gz(h)dEA. Thus,

f(A+B)

f{JM (gl(h)+g2(A)dEA]
m

t

jM £(g) (M) +g, (1) )dE,
m

I~

JM (f(gl(i\)) + f(gz(/\)))dEA

m

f[JM gl(h)dEA} + f[JM gz(A)dEAJ = £(A) + £(B). -
m m

1.4 Remark: If A and B do not commute, this inequality can fail. 1In

H

particular, if f(t) = t% and A = 10 B = A Then
- : 0 o1’ + 4 1
A
3 1 3 17°
f(A) + f(B) = A + B = f‘ %4 while f{A+B) = ?. f‘ Since A + B has
2 7 7z 7

. 1 . . .
eigenvalues 1 + —— it cannot dominate it’s square root.

&

i

1. Theorem: Let f be an operator monotone function on [0, ) and let
A, B be positive operators. Then,

uf(A)-f(B)uoo < f(uA~an) - £(0).



proof: Let g = f - f(0) so that g 1is operator monotone and g(0) = 0.

Let 1IA-BIl = e so that A ¢ B + eI. Then, by lemma 1.3 g(A) < g(B+teI) ¢

g(B) + g(e)I and so g(A) - g(B) ¢ g(e¢)I. By symmetry, we have g(B) — g(4a)
< g(e)I and so -g(e)I ¢ g(A) — g(B) < g(e)I. Since g(e) > 0 we have
ug(A)——g(B)noo < g(e). Finally, uf(A)—f(B)uoo = ug(A)—g(B)uw < gle) = fle) —

f(0) = f(HA—BHw) ~ £(0) as required.

1.6 Corollary: Let A and B be
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positive real number. Then,

=
S
g =i

HA Bl < HA-BIl
o 2

1
proof: f(t) = t" is operator monotone by [4, 1.3.8].

1.7 Remark: Another approach to theorem 1.5 is to show that the inequality
holds for the functions fa and then obtain the general case directly from
the integral formula used above. However, the easiest way to show that the
inequality holds for the functions ﬁx seems to use monotonicity. As mono-
tonicity is easy to prove for the functions ﬁa’ there is little reason to

search for a direct proof of the inequality for these functions.

82. Inequalities for the Schatten p-norms.

3
If T 1is a bounded operator on a Hilbert space H, IT{ = (T*T)f, and
1
1 ¢ p < ®» then we define HTIIp = (Trace |T|p)p. The Schatten p-class, Cp’



is the ideal of all operators, T on H for which HTHp { w, Thig, in
fact, defines a complete norm on Cp. If HTHP (o then |T| (and hence T)
is compact and nTWF = E <[T‘pf.|f.> = } <A1.)f.|f.> = z)\p where {f,} is an

p pil’i itilti i i

orthonormal basis consisting of eigenvectors for |Tl with corresponding
eigenvalues {Ai}. We use [6] as a convenient reference for the basic

roperties of (C_,0-H_).
prop (p, p)

We record the following useful fact as a lemma. Its proof is a simple

application of the Spectral theorem combined with HSlder’s inequality: see

for example [86, p. 21].

2.1 Lemma: Let A be a positive operator, f a unit vector, and p > 1 a

real number. Then

APE|f> » <ar|pP.

2.2 Corollary: If A Y B > 0 are operators and p > 0 is a real number,

then Trace AP > Trace BF.

proof: If A is not compact, the left side of the inequality is infinite

and we’'re done. So we may assume A (and hence B) is compact. If p > 1,

let {fi} be an orthonormal basis of eigenvectors for B. Then, Trace AP =

Ay . < . n < n b ) —

) <APF [£.> > ) AL fET Z <Bf.|f.>F = 2 B"f.|f.> = Trace B*. If p < 1,
il i il i il7i il™i

we diagonalize A and do a similar computation where we apply the lemma to

the operator BP with %.2 1. That is,
1 l'p
Bf, [£OF = <BP)PE |£.5F 5 BPr £ 5P = Py >,
itTi il’1 ili itti
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Of course, this fact has other proofs involving the comparison of the
eigenvalues of A and B using the min-max property of the n—th eigenvalues
(2, lemma 1.1]. However, our proof is somewhat more elementary and
introduces the idea of diagonalizing relative to a specific operator in order
to facilitate the computation. We will use this idea again in the proof of

the main result.

Now, if T is a self-adjoint operator, then we let T and T _  denote

+
the positive and negative parts of T That is, T = T+ - T  and T+ > 0,

T 20 and T, T =0=TT_. In this case, |[T| = T, +T_ and

uTn*E = uT+ng + nT_ui. Now, if T =8, - S, where S, >0 for each i
then S1 > T and so P+SlP+ > P+TP+ = T+ where P+ is the range projection
of T,. Thus, by 2.2, nslug > ||P+slp+u§ > nT+ul;. Similarly "52"§ > nT_ug,

so that nTni < HSlug + HSzug in this case. This crucial observation allows
us to prove the following lemma which reduces us to the setting of two
comparable positive operators. This observation and therefore the following
lemma are due to Heydar Radjavi. This lemma, which we call the "Radjavi
reduction” replaces a weaker argument which forced us to be content with a
factor of 2 in our general inequality. We have rewritten the proof of this
lemma so that it more closely resembles our original lemma. This is purely a

matter of taste; the idea is still Heydar Radjavi’s.

2.3 Lemma: Suppose p > n > 1 are positive real numbers and that
1 1 1
n . .n n . L, .
"Al Bl”p < HAl Bl"p whenever Al and B1 are positive operators with
n



Al < Bl or Al > Bl.

of positive operators, A, B.

11.

Then, this same inequality holds for arbitrary pairs

‘ 1 1 1 1 _ }
proof: Let C = 5(A+B) + o|a~B|. Then, C ~ A = (B-A) + 3|B-A| = (B-A), =

(A-B)_ . In particular C ) A. Similarly, C - B = (A—B)+ so that C > B.
1 1 1 1 1 1 1 1 1 1
Thus, C° > A" and ¢" 3 B", so that A" - B" = (¢®B") - (¢™4") and
1 1 1 1 1 1
therefore HA"-B"0P ¢ nc™-™yP 4+ nePpayP
P - P P
P P
< uc-Bi" + nc-an®
b P
I n
b b
n n
= W(A-B) 1N + H{(A-B) #
(A=) 7+ 0 (a-B) )
n n
b
= na-Bi" .
I
n
Taking p-th roots completes the proof.

We now proceed to the proof of the main theorem. Although the form of

this proof resembles the Powers-Stormer argument our proof depends on some

lemmas which are proven later. We do things in this order to make these

lemmas seem more natural: of course, these lemmas do not logically depend on

the theorem.
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2.4 Theorem: Suppose 2 ¢ n ¢ p <o are real numbers and A, B are
positive operators. Then
1 1
HAn—BnHP < NA-BII

ojro =i

proof: By the Radjavi reduction, we can assume A 2 B. We also assume

1
HA~BH§.< ® otherwise there is nothing to prove. In particular, A - B is
n
1
compact and so #(A) = w(B) where 7 is the Calkin map. Thus ﬁ(An) =
IR Lo 1o
ﬂ(A)n = ﬂ(B)n = ﬁ(Bn) and so A" - B is compact. Let z = A" - B" » ¢

=

and let y = B'. Then (y+z)”" = A3 B = y*. We let

{fi} be an orthonormal

basis of eigenvectors for 2z and calculate:

oo

HA-BH = Trace[(y+z)n~yn]

STESANTES

P
n_n.n
D <)y
P
z <((y+2)n~yn)fi|fi>n by lemma 2.1,

(A

L)

P

1

n

A n
PR ATA
1 1
} P, |5
1 i
1 1 1
Trace (A"-B™)P = yal-p™y

by lemma 2.8,

1
n

P
p  E
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2.5 Lemma: Let k be a nonnegative real number, y and 2z positive
operators and f a unit vector for which zf = Af for some nonnegative

number A. Then, <(y+z)kyf|f> > 0 and <y(y+z)kf]f> > 0.

proof: We first assume 0 ¢ k ¢ 1. By (4, p. 8] we have the formula:
4¢3
xk = Ck J aﬁk x(1+ax)~1 doa for x € R+
0

where the Riemann sums converge uniformly to xk for x in a bounded

interval. Hence
<0 -
(2" = o [ oMy (va(yra)) !
0
and the integral converges in the norm. Thus
k . * -1
Aytz) yf|f> = Ck o T (y+z) (1+a(y+z)) yf|£>da.
0

So, it suffices to see that <(y+z)(1+a(y+z))-lyf|f> is nonnegative for all

a > 0. Since this quantity equals <(y(l+a(y+z))—lyflf> +

A<(1+a(y+z))_lyf]f>, it suffices to see that <(1+a(y+z))“lyf|f> > 0. Now,

replacing ay with y and oz with 2z we see that it suffices to see that
<(1+y+z)”1yf|f> > 0.

~

-~ . ~ ~ —d
To see this, let =z = (1+z) * so0 that zf = Af where 7 = (1+A) ?. Then,
-1 R o e~ +.-1 R T L
{1+y+z) yf|f> = ([ (1+2)? (1+zyz) (1+2) %] yE|f> = <{z(l+zyz) zyf | £> =
<(l+§y§)—1§yf|2f> = <(1+Ey§)_lgyf|Xf> = <(l+§y§)-12yzf!f> > 0 as required.
Now, suppose we know <(y+z)kyf|f> 2 0 for all k with 0 ¢k ¢ n

where n is a positive integer. 1In particular, we have just shown that this
is true for n = 1. Now, let 0 ¢ k < n+l. If 0 <k {n we’re done, so

suppose n < k < n+tl. Then,

<(y+z)kyf[f> = <(y+z)(y+z)k—1yf'f> = <y(y+z)k~lyf[f> + A((y+z)k~1yf{f>
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which is nonnegative since 0 ¢ k-1 ¢ n. Therefore, by induction,
<(y+z)kyflf> >0 for all k > 0. Since, <(y+z)kyf|f> is real, we also
have <y(y+z) f|£> = ((3+2)Xyf|f> 3 0 for all k 3 0. =
2.6 Lemma: Let 2 <¢n<3, let y and 2z be positive operators and let
f be a unit eigenvector for z. Then, <(y+z)nflf> > <ynf|f> + <znf|f>.
proof: ILet n = 2 + k with 0 ¢

[ 41 ST
LLITL}

1~
et

1-
"

Uyra)" £ = (y+z) (v+2) N(yezy £ |5

1

<y(y+z)kyf|f> + <z(y+z)sz[f> + <y(y+z)sz[f> + <z(y+z)kyf|f>

1 -
<yydyf|f> + <zzhzf|f> + A[(y(y+z)kf|f> + <(y+z)kyf|f>]

N

[

<ynf|f> + <znf|f> by lemma 2.5. g

2.7 Remarks: The conclusion of lemma 2.6 can fail for 1 < n < 2. For
example, let y = [l 1], z =

0 o n 3
1 1 [0 3], f = [0] and n = R Then,
g. 1.2828 2.3140} 3 3

(y+z)° = so that <(y+z>2%|f> = 1.2828 while <y2flf> = JZ
2.3140  B.2247

and <z?f|f> = 0. However, in order to extend Theorem 2.4 to the case

1 ¢ n <2 we need only prove lemma 2.6 for these values of n under the

n

extra hypothesis: (y+z)n 2y . We firmly believe that this is true, but we

have been unable to prove it.
We now extend lemma 2.6 to include all n » 2. However, we need the

n—-2

extra hypothesis (y+z)n~2 >y which is automatically satisfied if n < 3

or if (y+z)n > yn as is the case in theorem 2.4.
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2.8 Lemma: Let n ) 2 be a positive real number, let y and =z be

positive operators with (y+z)n—2 > yn"Z, and let f be a unit eigenvector

for =z. Then

Cyrz)EE 2 U + .

proof: We first assume 3 ( n ¢ 4. The case 2 < n < 3 follows from 2.6
where the extra hypothesis is not needed. Then, n =3 + k with 0 <k ¢ 1.

L g Al il ilas e,

<hwwnﬂf>:<(Wﬂﬂym)“ka@fH>

H

<y(y+2)l+kyflf> + <Z(y+2)l+sz|f>

+ A[<y(y+2)l+kf|f> vy E

<yyl+kyf]f> + (Z(y+z)k(y+z)zf!f>

yf|f>]

v

H

G|+ A%y e e+ a5y e

G|+ A% = P + R

v

To prove the lemma for n > 4 we use induction. ILet k > 2 be a
positive integer and let Pk be the statement of this lemma with the added
hypothesis n ¢ k. We have already shown that P3 and P4 are true. Thus,
let k > 5 and assume PJ is true for all integers j with 2 < j ¢ k-1.

Now, suppose 2 ¢ n ¢ k. If, in fact, n ¢ k-1, then since Pk“1 is

true, we are done. 8o, suppose k-1 < n ¢ k. Then (n-2) > (k-3) > 2 and

n—2 v m i A
by monotonicity, (y+z) “ >y ° implies (y+z)" >y for all m with

0 ¢m ¢ n-2. In particular, the hypothesis of P
n—2

k-2 hold and so

Ay+z) £l <yn~2f[f> + <zn_2f|f>. Finally, we calculate:
Cy2)E|6> = (y+a) (y+2) " A (yre) £ 6>

= <y(y+z)n—zyf]f> + <z(y+z)n_zzf|f>
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+ h[<y(y+z)n~2f|f> + <(y+z)n—2yf|f>]
n-2

> <yy TyE|f> + A2<(y+z)n~2flf>
> <E|E + AL R+ MR
> e + AP = GRE|E + <PE |,

as required. hence, Pk is true. Thus, Pk is true for all positive

integers k > 3 and so the lemma is proved.

o Y R - . I S
““““ e theorem even for n  im the interval

I
t
3
b
®
¥
oy
Jas]

b
=
<
<
o
t
e

D

2.9 Theorem: Suppose 1 ¢ n ¢ 2 is a real number and A, B are positive
operators. Then

1

nA"-B I < NA-BI

=

.

=]
=1 R

proof: As in the proof of 2.4, we assume A > B > 0. Let z=A -B > 0
1
and y = g™ > 0. Then, (y+z)n - yn > 0 and we want to show that

Trace z" < Trace[(y+z)n—yn]. et n =1+ k and assume that all the
operators are finite rank. Then

Trace(y+z)" = TraCE(Y+Z)(Y+Z)k

Trace y(y+z)k + Trace z(y+z)k

H

Yook ook
Trace y*(y+z) y+ + Trace z®(y+z) =z

FRETNY FRRTO
Trace yzykyz + Trace zzzkz2

v

n n
Trace y + Trace z .

i

Since all quantities are finite, this does it.



Now, in the general case A > B

projection, so that PAP > PBP > 0.

17.

> 0, we let P be a finite rank

Thus, by the result just proved

1 1 1 1
H(PAP)n—(PBP)nun < HPAP—PBPH? < nA—Bn?. Now, by an argument similar to that
101
of proposition 1.1 we see that (PAP)n + A" in the strong operator topology
1 1 11
as P increases to I. Thus, [(PAP) ~(PBP) ] [An—Bn]n in the strong
11
operator topology and one easily concludes that ina"-B™n <
11
supl (PAP) —(PBP) n . This concludes the proof. .
P

However, if 1 (n ¢ 2 and p ) n, we are only able to prove the much
weaker inequality below.
2.10 Proposition: Suppose 1 (n <2 and p > n are real numbers and A,
1 1 1 1 1
B are positive operators. Then, nAn~B“uP < (uAnEﬁluBu§E§nA—Bu§“ .
n n n
proof: We calculate:
1 1 1 l
© pa-g" np = u(A ) —(B )
1 1 1 1 1 1
7 7 el
< HAZEkA?E. QESMP - (Al ZnypZn
1 1 1 1 1 1
< IIA?HI IIAT Eh—II + HAT 2.—!! HB?—I_{II
= 2 2p Zp 2p
by Holder’s inequality since %E-+ %E.: é- [6, theorem 2.8]. Now,
Zp > 2n y 2 and so Theorem 2.4 applies. Thus,
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1 1 1 1 1
aOn 7 e
nA"-s"n < (1a%hy, ipeny, YnA-Bn="
P 2p 2p P
n
1 1 1
= (nAnzﬁ;uBHEEBHA—BMEE
b b P
n n n

as claimed. B

2.11 Remark: The inequality in 2.10 is always weaker than the desired

2.4 as the fellowin

1equ v, he 1g calculation shows
1 pl 1
na-gn® = (nA—Bun)gﬁhA~BMZE-
P P P
n n It
p pl 1
< (MAME+HBH;)2§hA~BH§H. by remarks before 2.3
n n b2l
1 1 1
< (HAHEB;HBHEESHA—BHZE‘ by lemma 1.2.
P P P
n n n

2.12 Remark: If n > 2 and A, B are positive operators with A - B in
C for some p > n, then A - B 1is in Cpl for any p*' > p. Thus,

n

Sl o

1
A" - B" is in CPI for all p* > p. If we let p =+ ® in theorem 2.4 then
1 1

we obtain 1A™-B"n_ ¢ na-Bu

8§ o

Now, if A and B are arbitrary positive

operators and P is a finite rank projection, then we obtain
1 1 1
n o n

IH(PAP) - (PBP) i, < WPAP-FBPH_ < WA-BII

8 Bl

Now, by an argument similar to that of proposition 1.1 we see that
1 1

(PAP)n - A" in the strong operator topology as P increases to I. Thus,
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1 1 1 1
n n n n . )
(PAP) - (PBP) - A - B in the strong operator topology, and so
11 1 1

=]
8 m+

HA ~Bﬁﬁw < ITEN(PAP)E;(PBP)Ehm < WA-BII
which is the conclusion of 1.6 (at least for n > 2). Thus, we are forced to
admit that Mitch Baker was right (although we hate to admit it): one can
indeed obtain the uniform norm estimate (1.8) from Powers—Stormer—type

estimates (2.4). However, given the difficulty of proving 2.4 and the ease

of proving 1.6, it is pretty s

Finally, as a simple application of 2.4 we show the continuity of the
absolute value function on Cp for p > 2. We note that for p = 2, the
stronger estimate H|A|—IB|H2 < JEHA*BHZ was obtained by H. Araki and
S. Yamagami [1]}: see also [3] for a much simpler proof. Their arguments do
not seem to generalize to the case p # 2, however. We suspect that a much

better estimate than ours holds in general.

2.13 Proposition: If 2 ¢ p ¢ ®» is a positive number and A, B are
operators in CP, then

i re
WIA|=|Bu_ < (HAN_+uBuH_)*iA-BI?
P p P P

o2 ¥ 4 %k 19
proof: H|A|—|B|H; = (A A)*-(B B)zup

< 1a¥A-2*B1_ by theorem 2.4

1A
L)

X ¥ %
HA (A—B)up + (A -B )BnP
Z Z



i~

i1

||A*l| HA-Bu_ + ||A*—B*ll B by Holder’s inequality
P p P P

HAH -+HUBI YHA-BI .
( p p) p- H
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