SPECTRUM PRESERVING MAPS OF FACTORS

By

C. ROBERT MIERS

DM-431-IR

JANUARY 1987
Spectrum Preserving Maps of Factors

C. Robert Miers

In Memory of Henry Dye

ABSTRACT. Let M and N be von Neumann algebras with M a factor, $S(M)$ and $S(N)$ the real linear spaces of self-adjoint operators in M and N respectively, and let $\Phi: S(M) \rightarrow S(N)$ be a spectrum preserving surjective linear map. It is shown that $\Phi(A) = \tilde{\Phi}(A)$ for all $A \in S(M)$ where $\tilde{\Phi}$ is a \ast-isomorphism or a \ast-anti-isomorphism of M onto N.

1. INTRODUCTION. In [4] Jafarian and Sourour characterized spectrum preserving linear maps between the real linear spaces $S(H_1)$ and $S(H_2)$ of self-adjoint operators on the (real or complex) Hilbert spaces H_1 and H_2. They showed that such a map Φ is either of the form $\Phi(A) = UAU^* \text{ or } \Phi(A) = UA^\dagger U^*$ where U is a unitary operator and A^\dagger is the transpose with respect to some fixed orthonormal basis. In the proof of their theorem for complex Hilbert spaces they used the fact that every self-adjoint operator is a real linear combination of a finite number of projections and also a result of Fillmore and Longstaff [3, Theorem 1] characterizing isomorphisms between the lattices of closed subspaces of infinite dimensional complex normed linear spaces. Our proof for von Neumann factors parallels this development with the following orthoisomorphism theorem of Dye [1, Theorem 1, Corollary] taking the place of

1 1980 Mathematics Subject Classification (1985 Revision) Primary 46L10.
2 Key words and phrases. von Neumann algebra, spectrum preserving map, orthomorphism.
3 This research was partially supported by a grant from the NSERC of Canada.
the Fillmore-Longstaff result:

THEOREM. Let M be a W^*-algebra with no direct summands of type I_2. Then any projection orthoisomorphism of M on a W^*-algebra N is implemented by the direct sum of a $*$-isomorphism and a $*$-anti-isomorphism.

2. NOTATION AND TERMINOLOGY.

A **von Neumann algebra** M is a weakly closed, self-adjoint algebra of bounded linear operators on a complex Hilbert space H containing the identity operator I. The set $Z_M = \{ S \in M | ST = TS \text{ for all } T \in M \}$ is called the **center** of M. If $Z_M = \{ \lambda I | \lambda \in \mathbb{C} \}$ then M is called a **factor**. By a **projection** we mean a self-adjoint idempotent. A **projection orthoisomorphism** between von Neumann algebras M and N is a one-one mapping θ of the set of projections in M on that in N which preserves orthogonality in the sense that $PQ = 0$ iff $\theta(P)\theta(Q) = 0$. If T is a bounded linear operator on H we let $\sigma(T)$ be its spectrum. If M and N are von Neumann algebras and $S(M)$, $S(N)$ the real linear spaces of all self-adjoint operators in M and N respectively, we say that a surjective map $\varphi: S(M) \to S(N)$ is **spectrum preserving** if $\sigma(\varphi(A)) = \sigma(A)$ for each $A \in S(M)$.

3. THEOREM.

The first lemma is part of [4, Lemma 1]. The proof is included for completeness.
Lemma 1. Let \(\varphi : S(M) \to S(N) \) be a surjective spectrum preserving map where \(M \) and \(N \) are von Neumann algebras. Then

(i) \(\varphi \) is one-one

(ii) \(\varphi(I) = I \)

(iii) \(\varphi(P) \) is a projection iff \(P \) is a projection

(iv) If \(P \) and \(Q \) are projections in \(M \) then \(PQ = 0 \) iff \(\varphi(P)\varphi(Q) = 0 \).

Proof: (i) If \(\varphi(A) = 0 \) then \(\{0\} = \sigma(\varphi(A)) = \sigma(A) \). Since \(A \) is self-adjoint, \(A = 0 \).

(ii) \(\varphi(I) \) is a self-adjoint operator whose spectrum is \(\sigma(I) = \{1\} \).

(iii) Since \(\varphi \) is one-one it is immediate that \(\varphi^{-1} \) is also spectrum preserving. A self-adjoint operator is a projection iff its spectrum is a subset of \(\{0,1\} \), hence the result.

(iv) If both \(P \) and \(Q \) are projections, then \(P + Q \) is a projection iff \(PQ = 0 \). Since \(\varphi(P+Q) = \varphi(P) + \varphi(Q) \) the result follows from (iii).

Lemma 2. Let \(\varphi \) be as in Lemma 1 and assume that \(M \) has no direct summands of type \(I_2 \). There exists a map \(\tilde{\varphi} \) of \(M \) onto \(N \) which coincides with \(\varphi \) on the projections of \(M \) and which is the direct sum of a \(*\)-isomorphism and a \(*\)-anti-isomorphism.

Proof: This is Dye's theorem applied to the projection orthoisomorphism \(\varphi \).

Theorem. Let \(\varphi : S(M) \to S(N) \) be a surjective spectrum preserving map where \(M \) is a factor. For each \(A \in S(M) \), \(\varphi(A) = \tilde{\varphi}(A) \) where \(\tilde{\varphi} \) is a \(*\)-isomorphism or a \(*\)-anti-isomorphism of \(M \) onto \(N \). In particular, \(N \) is a factor which is \(*\)-isomorphic or \(*\)-anti-isomorphic to \(M \).
Proof: We divide the proof into two cases.

Case 1. \(M \) is a factor of type \(I_2 \). (i.e. \(M \cong M_2(\mathbb{C}) \), the \(2 \times 2 \) matrices over \(\mathbb{C} \)). \(S(M) \) is thus a four-dimensional real space and, therefore, so is \(S(N) \). By the structure theory for von Neumann algebras, \(N \) is either a factor of type \(I_2 \), or \(N \) is the direct sum of four one-dimensional algebras. In the latter case \(N \) would be abelian so that if \(P' \) and \(Q' \) were projections in \(N \) we would have \(\sigma(P'+Q') \subseteq \{0,1,2\} \). But if \(P = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \) and \(Q = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \) in \(M \), then \(\sigma(P+Q) = \sigma(\mathcal{P}(P+Q)) = \sigma(\mathcal{P}(P)+\mathcal{P}(Q)) = \sigma(P'+Q') \notin \{0,1,2\} \). Hence \(N \) is of type \(I_2 \). The result now follows by the Jafarian-Sourour theorem.

Case 2. \(M \) is not a factor of type \(I_2 \). Since \(M \) is a factor there are no central projections, save \(0 \) and \(I \), so that Lemma 2 implies the existence of a map \(\tilde{\mathcal{P}} \) which is either a \(*\)-isomorphism or a \(*\)-anti-isomorphism of \(M \) onto \(N \) and such that \(\mathcal{P}(P) = \tilde{\mathcal{P}}(P) \) on the projections of \(M \). If \(M \) is a factor of type \(I_n \), the finite-dimensional spectral theorem implies that each self-adjoint \(A \in M \) is the real linear combination of projections. This is also true for any properly infinite von Neumann algebra by [5]. It was proved in [2] that any operator in a factor of type \(II_1 \) is a finite linear combination of projections so that any self-adjoint operator in such a factor is a finite real linear combination of projections. Thus, since \(\mathcal{P} \) is real linear, \(\mathcal{P}(A) = \tilde{\mathcal{P}}(A) \) for all \(A \in S(M) \).
Bibliography

