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ABSTRACT

The Kuiper Belt Objects (KBOs) are the newly-discovered solar system objects
located beyond the orbit of Neptune. Observations and study of the KBOs are vital
to understanding the origin and evolution of our solar system. The KBO 2002MS4

is a large KBO, dwarf planet, and is my research focus. In order to study the
physical properties, I used archival observations from the 3.6 m Canada-France
Hawaii Telescope on Maunakea in Hawaii, combined with observations from the

New Horizon spacecraft, to derive 2002 MS4’s rotational period and phase function.
I find that this object does not have an obvious opposition surge and that the phase

coefficient / geometric albedo correlation of 2002 MS4 is inconsistent with the
correlation expected for C-type asteroids, casting doubt on the concept that C-type
asteroids originated in the Kuiper belt. Using occultation observations, obtained at
Anarchist Mountain Observatory, I determine an estimate of the minimum size of
2002 MS4 of D > 820± 20km, consistent with other occultation measurements of
D = 800± 20km. This size is smaller than that derived from thermal observations
where 2002 MS4 is modeled as a zero-spin body. The reasonable resolution of this
result is that 2002 MS4 has a thermal inertia that must be included in its thermal

model, which is left for future work.
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Chapter 1

Introduction

The Kuiper Belt, a part of trans-Neptunian region, is a newly explored zone of the
solar system. Trans-Neptunian objects (TNOs) are solar system objects with orbital
semi-major axis beyond the orbit of Neptune, which is approximately 30 AU. The

first Kuiper belt object (KBO) after Pluto was discovered in 1992 [44].
Observational techniques used to examine these objects are still in development but
are largely based on examining solar light reflected as these objects are extremely
faint at thermal wavelengths. In order to explore their properties (such as size,
shape, albedo, multiplicity, etc.), a range of observational techniques are used.

Indirect observations (e.g., reflected light planetary photometry, a stellar occultation
by the KBO, orbital alignment as a signature of gravitational effects, and others) are
the primary means of exploring the trans-Neptunian population. The opportunity
to combine in situ spacecraft observations with Earth localized observing has only
recently emerged. Two TNOs, Pluto and Arrokoth, have been visited by spacecraft
(New Horizons), providing detailed observations of their surfaces (as well as that of

Pluto’s moon Charon) [74, 77]. These combined observations provide an
unparalleled opportunity to understand a subset of the KBO populations fully.

Studying KBOs provides a window into the early phases of planet formation. Their
size distribution, especially in the kilometer-size range, represents a signature of the

initial planetesimal formation process [67]. With the advent of the GAIA
space-based astrometric reference frames and related high-precision astrometry, the

use of occultations to explore the KBOs is rapidly advancing [e.g. 14, 17, 57].
Occultation observations provide a measure of the size of the body and enable the

determination of the object’s albedo. Measurements of albedos for individual
objects can then be used as proxies for the albedos of KBOs from similar classes and

relate the material of the Kuiper belt to other solar system populations.
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Planetary scientists have gradually understood that a subset of the KBOs formed
into so-called dwarf planets. This evolution in understanding has resulted in the
former planet 9 of the solar system, Pluto, being reclassified as a dwarf planet.
Detailed studies of the dwarf planet KBOs inform, in particular, the ‘run-away’

phase of planet formation [94]. At present, the dwarf population in the Kuiper Belt
includes the well-known objects Pluto, Eris, Makemake, and Haumea.

Due to the great distance to the KBOs and their dark surfaces, studying these
objects is technically challenging. Recently, the availability of large (diameter> 3 m)
optical telescopes (e.g., Canada-France-Hawaii Telescope, Gemini, Keck) and large
space-based telescopes operating at thermal wavelengths (e.g., ALMA, Spitzer, and

Herschel) are transforming our understanding of the dwarf planets of the Kuiper
belt.

1.1 Classification of KBOs

1.1.1 Orbital properties

KBOs are divided into several dynamic classes. In the nomenclature defined by [30]
we have:

• Scattering: Objects whose semi-major axis are changing by more than 0.1 au
on timescales of less than 10 Myr, generally with pericentre near 35 au.

• Resonant: Objects whose orbits are in resonances with Neptune, the mostly
populated resonance being the 3:2 mean motion resonance.

• Classical: Non-scattering, Non-Resonant objects. This category is often further
sub-divided into inner (a< 39.7 au), main (39.7 au < a < 47.2 au) and outer

with (a > 47.2 au).

Among the main classical belt objects, there exists further dynamical sub-divisions,
the major on being between those with low (i < 5o) and high (i > 5o) orbital

inclination, often called the ‘cold’ and ‘hot’ components.

1.2 Surface colour properties

The colour of a KBO indicates its surface material. Specifically, an object will have
a gray colour if its surface material absorbs nearly equal wavelengths of optical
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light. In contrast, an object will have a red colour if its surface is more prone to
absorbing shorter rather than longer wavelengths of optical light. Complex organic
molecules are known to absorb shorter wavelengths efficiently. Thus, optical colours
of KBOs can be used to characterize the importance of complex organic molecules

on their surfaces.
The colour of the surface of a Kuiper belt object is correlated with its orbital

classifications and appears to be related to its formation conditions. These models
predict a uni-modal distribution of KBO colours with some observation of colour
variability during object rotation. However, it has been found that such a model

does not explain the observed colour bi-modality [83, 84]. A survey by Tegler et al.
[80] revealed two distinct colour groups and concluded that the colour bi-modality is

most likely related to the primordial formation conditions [81].
With larger samples and multiple surface colour index values one can arrange KBOs
in series of taxinomic classes, as has been done for the asteroid belt. Barucci [3, 4]

define four taxonomic groups BB, BR, IR and RR for the population based on
high-quality colour indices of B-V, V-R, V-I and V-J. Specifically, the group BB

contains objects with neutral colour and RR those with very red colour, while the
others have intermediate behavior. Work from Fraser [25, 26] has further explored

the nature of the bi-modality and surface taxonomy finding only two distinct surface
types with the intermediate classes being composed of a mixture of two end point

compositions. Recently, Peixinho[59] have shown that different dynamical classes of
KBOs and different sizes of KBOs have different colours. Both the four and two

taxonomic class approaches, however, provide further evidence of distinct
colour/dynamics relationships. The surface properties of KBOs appear to relate to

their formation, rather than evolutionary, conditions.
The migration of outer planets is thought to have disrupted the primordial disk of

icy planetesimals [50]. During such a disruption objects from different regions would
have been scattered into dynamically hot orbits. On the other hand, dynamically
cold KBOs were farther away from the migrating outer planets so that they were

not scattered onto dynamically hot KBOs orbits. Objects in the hot and cold
dynamical classes appear to also split between two colour classes, suggesting a link

between this formation scenario and the observed colour distributions.
In this thesis, I will conduct a detailed examination of the dwarf planet 2002 MS4.
2002 MS4 is the largest unnamed object in the Kuiper belt, specifically, it is in the

top 15 largest object from roughly 4000 KBOs. Discovered in 2002 [87] this object is
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on stable (not scattering) ‘hot’ KBO orbit (i ≈ 17.7o) and in the main Kuiper belt
(a ≈ 41.9 au). The goal of this examination is to explore the current nature of 2002
MS4 and attempt to link this object’s orbital and physical properties to its possible

formation location. This examination will include ‘mining’ archival data from
different observatories, predicted occultations, and in-situ spacecraft observations.

Specifically, this dissertation will investigate 2002 MS4 (MS4 hereafter) in the
following ways:

• Photometric properties (e.g., colour, low-phase angle scattering, and rotational
light-curve) using archival Canada-France-Hawaii Telescope (CFHT) MegaCam
observations.

• Size as determined from stellar occultations observed with a small (∼ 30 cm)
telescope at Anarchist Mountain Observatory.

• Surface texture by combining ground-based photometry and occultation-based
sizes with in situ observations obtained with NASA’s New Horizons spacecraft.

• Discussion of thermal properties of MS4 as determined from the above infor-
mation and reported thermal flux measurements from the Spitzer and Herschel
space observatories.

I will combine these observations into a portrait of the physical nature of this
distant world.

The dissertation is organized as follows.
Chapter 2 provides detailed descriptions of the various observational and analysis

methods and terminologies used in the thesis. In Section 2.1 optical telescopes and
CCD detectors are introduced. In Section 2.4 I describe celestial coordinate systems

and reference frames to which observations are calibrated and the data reduction
processes. The fundamentals of photometric observations will be explained in

Section 2.6. In this section I introduce important concepts for this thesis, such as
magnitudes, filters, and photometric systems. Photometry for planetary bodies has
a different origin and nomenclature compared to stellar photometry and some terms
specific to planetary photometry will be introduced. In particular, the various types
of albedos, such as geometric albedo, Bond albedo, single-scattering albedo, etc, are

explained. I describe my analysis techniques for measuring and calibrating the
reflected light flux from the MS4. In Section 2.8.1 I describe light curves (time
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variable flux measurements) and how the body’s rotation period can be obtained;
three often used methods will be introduced. And in Section 2.8.2 various models to
describe and derive the phase curve (viewing geometry variations in measured flux)

are detailed. Section 2.9 provides some background on stellar occultation by a
KBO. Key factors for occultation reduction are explained together with detailed

formulae. Finally, I derive a statistical approach for estimating an occulter’s
diameter based on independent single-chord observations.

Chapters 3 and 4 provide the main results of this thesis. In Chapter 3, the
photometry of MS4 is described in detail. Detailed procedures and high-precision

measurements of the rotation period and phase curve of 2002 MS4 are given. I
derive a rotational period for MS4 (T=14.251 h), furthermore, obtain MS4’s low
solar phase function after correction for rotational light-curve effects. Combining

these data with observations of MS4 from the New Horizons spacecraft, a complete
phase function of MS4 is delivered.

In Chapter 4, I present detailed information on two single chord observations of the
occultation by 2002 MS4. The probable radius of MS4 is derived and compared to
existing literature values. The geometric albedo and phase integral are determined.
In Chapter 5, I summarize my results on the measurement of 2002 MS4 determined

from the observations presented. I conclude with suggestions for future work.
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Chapter 2

Observational Methods

2.1 Telescopes

A telescope enables one to observe dim objects, often at large distances. The first
person to apply for a patent for a telescope was Dutch eyeglass maker Hans

Lippershey (or Lipperhey) ([46]). In 1608, Lippershey claimed a device that could
magnify objects thrice. His telescope had a concave eyepiece aligned with a convex

objective lens. One story goes that he got the idea for his design after observing two
children in his shop holding up two lenses that made a distant weather vane appear

close. Others claim he stole the design from another eyeglass maker, Zacharias
Jansen. Afterward, other scientists, including Galileo Galilei and Isaac Newton,
made changes to the initial model for better accessibility and quality of images.

Early telescope design was concerned with using combinations of lenses to provide a
magnified view of distant objects.

The two primary types of telescope are reflecting and refracting telescopes.
Refracting telescopes use only lenses in the optical system, while reflectors use a
curved mirror to redirect light to a focal point and may use lenses or additional

mirrors to focus the light coming from the main/primary mirror onto an imager or
spectrograph. Refracting telescopes are limited in their size due to the complexity of
manufacturing physically large lenses. Reflecting mirrors as large as 8.4 m diameter

have been manufactured and used in astronomical telescopes [41]. Even larger
reflecting telescopes have been built from a mosaic of individual mirrors tuned to

focus the light on a common element. The use of large primary optics enables
gathering a large area of light and then focussing that light onto a single image.
The availability of ever-larger telescopes enables the exploration of ever-fainter

astronomical sources.
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Two properties characterize a telescope: the diameter of the objective lens or
primary mirror (D) and the effective focal length (efl). The larger D, the more
light-gathering power. The large efl, the larger the magnification. The f/#, or

focal ratio, is the ratio of the focal length (efl) and the diameter, D, of the primary
mirror or objective lens

f/# =
efl

D
.

With the same size primary, the larger the focal ratio, the longer distance from the
primary to the focus. The larger the focal length, the more magnified an image will

be at the focus. With the same focal ratio, the larger the mirror, the more
concentrated the light.

The Field Of View (FOV) of the instrument corresponds to the angular extent of
the sky that the instrument can ’see’ and is determined by the size of the camera

(w) and efl. An illustrative diagram of FOV is shown in figure 2.1. From the

Figure 2.1: Field of view. From [68]

geometry, it is easy to find that

FOV = 2 tan−1(
w/2

efl
),
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where w is the sensor width. In the case when efl � w,

FOV ≈ w

efl
.

A telescope’s plate or pixel scale is the image plane field of view per unit length.
The scale is often given in arcseconds per pixel or radians per mm. For a single

pixel in the FOV expressed above, one finds that the plate scale is given by

plate scale =
206265

D × f/#
arcseconds/mm

when D is expressed in mm. The pixel scale determines the sampling of the image
at the detector. The pixel scale should match the angular size of interest.

Full-width at half maximum (FWHM) of the point spread function (PSF) of an
image (also called seeing) is often used to express the resolution of a telescope. The
PSF is the image shape made by a point source of light after passing through any

atmospheric turbulence (for Earth-based telescopes) and the telescope’s optical
system. Adaptive optics counteract the atmospheric turbulence [63, 68] and provide
the opportunity for higher resolutions. The FWHM has a theoretical smallest size θ

determined by D and the wave nature of light. The limiting angular resolution θ of
a telescope is approximately

θ = 1.22
λ

D
,

when D � λ, and λ is the wavelength of observation. A pixel-based imager can
resolve angular scales that fall across two or more pixels (Nyquist sampling theory).

The optimally designed imager for a given telescope will thus have 2 pixels per
FWHM of the PSF.

For a telescope with D = 4.0 m the theoretical limit of resolution is
θ = 1.22 λ

D
∼ 0.03” for λ = 500 nm (optical light). However, on Earth, the natural

resolution is at best ∼ 0.4 arcseconds due to turbulent motion in the atmosphere
distorting the path of the light. For the case of optical imaging, natural seeing

requires a pixel scale of ∼ 0.2 arcseconds/pixel. Modern CCD detectors have a pitch
of around 10 um per pixel, and thus the plate scale at the detector should be

0.2 arcseconds/10 um (0.0969 rad/m), which for a D = 4 m meter implies a desired
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focal ratio of

f/# =
1

0.0969 radians/m × 4m
∼ 2.5

.
For example, the Canada France Hawaii Telescope has a mirror with a usable

diameter of 3.58 m and its wide-field-corrector imaging focus focal ratio of
f/# = 4.18 providing a plate scale of 0.1373 arcseconds per 10 um pixel.

2.2 The Charge-Coupled Device (CCD)

The charge-coupled device (CCD) has been widely used in astronomy since the
1980s. CCDs often have quantum efficiency (QE, fraction of photons impinging on

the detector that are detected) of 80%-95% at optical wavelengths, while a
photographic plate has a “QE” of much less than 10%. The nearly ten times higher
QE of CCDs provides an enormous advantage. A second important benefit of CCD
detectors is the very good linearity (a linear conversion between photons impinging
on the detector and the electronic signal produced). The linearity of CCDs allows
one to make high-precision comparisons between the intensities of different stars.

Thirdly, a CCD camera is very convenient for obtaining a digital astronomical image
without any operations such as developing, fixing, and digitizing a photographic
plate. And storage in digital form makes it possible to engage in reproducible
computation-based analysis rather than visual image inspection. Due to these
various advantages, CCDs have now replaced traditional photographic plates.
One disadvantage, however, is the small physical scale of the CCD chip. For

example, 1K × 1K, or 2K × 2K size chips, which are easily found in the market,
cover only ∼ 10 mm of the focal plane, while rectangular photographic plates of
∼ 300 mm size were regularly in use. Larger CCDs, 4K × 4K, are rather difficult

and costly to manufacture. Much greater sizes, such as 10K × 10K, have been
produced but are rare. A large field of view with critical sampling in astronomy is

achieved by combining some smaller size CCD chips into a CCD mosaic.
An example of a CCD mosaic is the camera used by the Gaia space observatory of
the European Space Agency. The Gaia camera has a 106 CCD mosaic focal plane

(Figure 2.2). The Gaia observatory provides high-precision astrometric observations
of bright stars, which are used to compute a precise astrometric reference frame to

calibrate other images. These precise calibrations enable more accurate
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determinations of positions of objects like TNOs and have been critically important
to enable predicted occultations of stars by these objects.

Figure 2.2: Gaia focal plane. From https://gea.esac.esa.int/

2.3 Telescopes and detectors used in this work

In this thesis, I present the analysis of imaging data taken by three different
telescope/camera systems. In Section 3.1 I present photometric observations of MS4

obtained using the MegaCam CCD mosaic imager [12, 20] mounted at the F/4
prime-focus of the Canada-France-Hawaii Telescope (CFHT, see Figure 2.3). The
CFHT is a 3.6 m telescope located on Maunakea, a 13,800 feet elevation dormant

volcanic mountain on the “Big Island” of Hawaii. In Section 3.3 I present
observations obtained using the Long Range Reconnaissance Imager (LORRI, [19])

on NASA’s New Horizon spacecraft. New Horizons explored the Pluto/Charon
system [74] as well as the small Kuiper belt object Arrokoth [77]. LORRI is an

f/12.6 Ritchey-Chretien telescope and camera system with an aperture of 20.8 cm
diameter and a FOV of about 0.29 degrees. LORRI’s CCD imager is 1024 × 1024
pixels [19]. LORRI has no filters, and the CCD is photon sensitive from 350 nm to

850 nm with a central wavelength of about 600 nm. The LORRI pixel scale is about
1 arcsecond per pixel. LORRI is being used to obtain white-light measurements of
the photometric properties of some distant KBOs, including the TNO 2002 MS4.
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Figure 2.3: MegaCam/CFHT. Download from https://www.cfht.hawaii.edu/

In Chapter 4 I present the measurements of occultations (see 2.9) of two separate
stars by 2002 MS4. The observations were obtained using a 300mm aperture

telescope with a f/4.9 imager focused onto a QHY-174M-GPS camera. The CCD
has 5.86 um pixels providing a pixels scale of 0.8”/pixel. The telescope is located at

the Anarchist Mountain Observatory (119.36W, 49.00N, 1086m) near Osoyoos,
British Columbia, Canada.

2.4 Coordinate Systems and Frames

A coordinate reference system is a set of rules that defines the origin and orientation
of a set of coordinate axes. A coordinate reference frame generally includes a set of

distant objects whose coordinates, expressed in a particular system, provides a
physical realization of that reference system. The International Celestial Reference
System (ICRS) defines that all reference frames are to be ‘space coordinate grids

with origins at the solar system barycentre or at the centre of mass of the Earth and
show no global rotation with respect to a set of distant extra-galactic objects’ [7].

The International Celestial Reference Frame (ICRF) contains more than 200
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primary and 3000 secondary sources whose coordinates have been well determined
(some using Very Long Baseline Array observations). This work will express all

coordinates in ICRF Equatorial Coordinates.
Similar to the Earth’s latitude, we use declination (DEC δ) to count the position of

an object relative to the north and south poles of the ICRS. DEC is zero at the
equator and rises uniformly to +90o at the north pole and decreases uniformly to
−90o at the south pole. Right ascension (RA α) is used to measure the eastward
angular position, similar to but reversed from longitude on Earth. The starting
point i.e., zero degrees for RA is, colloquially, the vernal equinox, where the Sun

crosses the celestial equator and moves to the north but in ICRS the axis is defined
relative to the position of QUASAR 3C 273B as reported in [39]. Similarly the pole
of the ICRS is fixed using the observations of QUASARS and remains fixed to +/-
20mas. Prior to the adoption of ICRS, astronomers provided coordinates relative to

the location of the Sun at the vernal equinox, a position that changes due to the
precession of the Earth’s spin axis and other periodic variations in the Earth’s

orientation relative to the Sun. Due to this motion such coordinates are expressed
with an epoch, examples include B1950 and J2000 which are relative to the pole on

1 January 1950 and 1 January 2000. ICRS was defined to match the J2000
coordinates, but, in fact, is slightly (a few 10s of mas) misaligned [24]

Equatorial and Ecliptic coordinate frames (see figure 2.4) are commonly used in
planetary science. The origins of both systems can be either the Sun or the Earth
and they are called heliocentric or geocentric coordinate systems. The equatorial
system is commonly used for telescopic observations while the ecliptic system is

more convenient when considering descriptions of the structure of the solar system.
Observations of a source within the solar system can only be fully characterized
when the distance to the source is also specified. Once the distance and ecliptic
coordinates are known, the full geometry of the observation (see Figure 2.5), in

particular the phase angle of the observation, can be determined.
Knowing a set of object coordinates in a particular reference frame enables us to

determine the a relation between the image pixels values and the coordinate frame
values. These relationships are known as the World Coordinate System (WCS)

transforms. With the WCS transform one can determine the coordinates of other
objects within those images. This work uses the Gaia DR2 catalog [15] as set of

secondary ICRF reference coordinates. Gaia DR2 positions, derived from the
primary IRCF values, are precise to better than 10 µ′′ and provide a high enough
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sky density of sources that they can be used to calibrate individual CCD frames.
Note, when using secondary stellar reference stars from Gaia I also account for the

star’s proper motion but these motions are quite minor compared to the centroiding
precision of our target sources.

Figure 2.4: The equatorial and ecliptic coordinate systems with the Earth as the
origin. Coordinates can be represented in either the right ascension and declination
(RA/DEC) or ecliptic longitude/latitude.

2.5 Observing Circumstances

For a solar system object, it is convenient to express its position with respect to the
Earth and Sun. Figure (2.5) shows the relationship between a solar system body

and the Earth-Sun system in a relative coordinate perspective. The related concepts
are listed as follows,
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Figure 2.5: Relative coordinates for a solar system object. Credit: Michael K. Shepard
[68]

• Opposition: When an outer planet is directly opposite the Sun from the Earth,
it is located at the opposition point. Opposition is the convenient time to make
observations of a source as the visible surface is fully illuminated.

• Conjunction: When an outer planet moves to the opposite side of the Sun from
the Earth, it is at conjunction. On the other hand, for interior planets, when
it is aligned with the Earth and Sun, it is also at conjunction. More exactly, it
is referred to be at inferior conjunction when the planet is between the Earth
and Sun and at the superior conjunction when on the opposite side of the Sun
(see Figure 2.5)

• Elongation: The angle between the line from the Earth to the Sun and the line
from the Earth to a planet is called solar elongation.
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• Phase angle: The angle between the line from a planet to the Earth and the
line from the planet to the Sun is called the phase angle. It is straightforward
to see that the location of zero phase angle for an outer planet will happen at
two locations. One is when the planet goes through opposition, and the other is
when the planet goes through conjunction. When an outer planet goes through
opposition, a 0-degree phase angle requires the planet to be 180 degrees away
from the Sun in right ascension and fall on the ecliptic plane.

In this thesis I will present analysis of observations of 2002 MS4 taken near
opposition, to determine its light curve variation, and data taken off opposition to

determine the phase variation in that light curve.

2.6 Magnitudes and Photometric Systems

The irradiance, E, is the radiated power over all wavelengths, incident on a unit
area of a receiver. It’s often used to measure the luminous intensity of the Sun. A
related term, spectral irradiance F , is defined if we want to describe the flux for a

particular special wavelength range:

F =
dE

dλ
.

The radiant intensity, I, is often used to measure the light power for an unresolved
source. It is the power measured in a unit solid angle of the receiver.

I =
dp

dΩ
.

In this section I will describe the set terms commonly used in planetary science to
describe the various measurements of the observed and absolute irradiance of

planetary bodies, the wavelength ranges over which those irradiance values are
measured and the reference systems used to express those measurements .

2.6.1 Magnitude

Magnitude is used to quantify the brightness of an object by comparing the
irradiance of one celestial body to that of a standard celestial body (or system). In
modern usage, the magnitude of source is negative 2.5 times log (based 10) of the
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flux plus some arbitrary scale offset. Historically, people compare the received
irradiance from Vega (α Lyra) to the irradiance from the object of interest:

mV ega −mobject = −2.5log(
EV ega

Eobject

) (2.1)

Nominally the magnitude of a source is reported for a specific wavelength range.
The range of wavelength of a particular measurement is determined by the use of an
interference filter. To correctly report the flux of source across a specific wavelength

range in a coherent way requires the adoption of a set of reference fluxes. In this
thesis I report the measured magnitude of 2002 MS4 in the CFHT MegaCam

system and then transform it to that in the SDSS filter system calibrated to the AB
(absolute) magnitude system.

Instrumental Magnitude

Instrumental magnitude is the ‘raw’ magnitude measured directly from CCD image.

mins = −2.5log10(ne) = −2.5log10(ADU × gain),

where ADU is the number of analog units recorded by the detector electronics and
the gain is the ratio factor to transform the number of ADU to the number of

electrons ne that were recorded.

Apparent Magnitude

The apparent magnitude of a celestial body is its magnitude as seen by the observer,
the instrumental magnitude, expressed in some standard magnitude system. A
standard magnitude system is an agreed on calibration between the magnitude
values and some reference source or sources. An object’s magnitude given in a

standard magnitude can be directly compared to a magnitude in a catalog, e.g., an
object magnitude in Johnson V or SDSS r. One obtains the apparent standard

magnitude by comparing the irradiance of a target with that of a standard source
(i.e. a star with an irradiance that is known apriori) observed with the same facility

and at the same angle through the atmosphere under similar conditions, i.e.,

mapp = mstandard − 2.5log10(
Etarget

Estandard

)
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The apparent magnitude of a body is not constant but depends on the intrinsic
properties of the object at the time observation and the observing geometry.
Variations in reflectivity, shape, orientation, rotation axis, viewing angle, and

distance from the observer or illuminator can all change the apparent magnitude of
a planetary body. In planetary science the apparent magnitude is normally

referenced as mapp(d,∆, α) with d the distance to the Sun, ∆ the distance to the
observer, and α the phase angle of the observation.

Reduced Magnitude

The reduced magnitude, m(1, 1, α), also called unity distance magnitude, removes
the effect of both observer and illuminator distances while leaving the effect of

phase of the observation. The reduced magnitude can be determined as

m(1, α) = mapp − 5log10(d)− 5log10∆. (2.2)

Reduced visual magnitude represents the reduced magnitude in the standard V
band, denoted by V (1, α). V (1, α) measures are used to determine the phase curve,

which is the planetary body’s reduced visual magnitude variation with phase.

Absolute Magnitude

Absolute magnitude is conceptual, representing the apparent magnitude at ∆=1
AU, d= 1 AU, and α = 0o. In reality, no observer can satisfy this geometry. The

absolute magnitude is estimated using a measure of the phase curve and
observations of the source at known distances. The absolute magnitude is normally
given in the visual band, unless an alternate band is specified, and written as V (0)

or H and H(0). For asteroids that rotate, the mean brightness of the light curve is
used when computing the absolute magnitude [68]. We shall note that in stellar

astronomy the absolute magnitude is the magnitude of a given source if that source
were viewed at a distance of 10 parsec.

2.6.2 Photometric Systems

A photometric system is a combination of telescope, sensor and filter used, these are
commonly referred to as a telescopic systems. A standard photometric AB
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magnitude system is well calibrated telescopic system where the zero point has been
calibrated to an absolute flux references.

Interference filters restrict the range of photon wavelengths that are able to enter
the detector. The UBV filter system, developed since the early 1950’s [10] and the

Sloan Digital Sky Survey (SSDS) ugriz filter set [27] are the two multi-filter
magnitude system used most widely in astronomy. In any multi-filter system, a

color index is defined as the difference of magnitudes measured through two
different filters. For example, by subtracting the B magnitude from U in UBV

system, we get the color index U −B. The work in this thesis makes use of
measurements obtained using filters designed to match the SDSS ugriz system.

Johnson-Cousin UBV RI System

The star Vega (α Lyra) defines the zero magnitude (zero point) of the UBV RI

system [68] By definition, VV ega is zero and the colour indices are also zero.
Subsequent to the definition of the UBRV I filter band passes, observations by

Hayes and Latham [38] shifted the zero point to be a flux of 3500 Jy at wavelength
555.6 nm so that VV ega=0.03 while its colour index values remain zero. In practise,
people frequently use the Landolt stars [49] as a list of reference stars to compare to

the target instrumental magnitude and thus obtain the target magnitude in
UBV RI system. Observations with a particular telescope/instrument combination
are calibrated to the Landolt standards via series of photometric transforms that

connect that telescope’s instrument system to the UBV RI system.

Oke AB System

The AB system is divorced from the practise of using a particular star as zero point
and AB stands for absolute. Oke defined the AB system zero point to be a flux

density fνo = 3.63× 10−20ergs s−1cm−2Hz−1 in all band passe [54]. This number is
decided such that MAB around 548 nm corresponds nearly to visual magnitude V

for all stars. Therefore, the AB magnitude of a target will be

MAB = −2.5log10fν − 48.60,

where fν is the flux density of any particular band pass.
The Oke AB system consists of a series of narrow bandpass filters, each only 4 nm
wide. There are 68 bands between wavelengths of 308 nm and 1200 nm [10]. Oke’s
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zero point is derived from spectral observations of 38 white dwarf stars compared
with theoretical models to derive absolute fluxes and temperatures. Using filters

tied to the AB system enables the determination of the absolute irradiance from a
source, rather than the irradiance relative to some arbitrary reference point.

Sloan Digital Sky Survey ugriz System

The Sloan Digital Sky Survey (SDSS) system consists of five broad band filters
(u′g′r′i′z′) that cover the wavelength range of 300 nm (atmospheric UV cutoff) to
1100 nm (silicon sensitivity limit). Table 2.1 includes the details on filter central

wavelength λc and the band width ∆λ in nm.

Table 2.1: The centering wavelengths and pass bands in nm for SDSS [27].

filter center λc(nm) ∆λ(nm)
u′ 350 60
g′ 480 140
r′ 625 140
i′ 770 150
z′ 910 120

Figure 2.6: The response curves for the SDSS filters.

SDSS aims to tie the natural photometric system to the absolute flux by using the
AB system zero point[29]. A hypothetical object with flat spectral distribution with
flux density fνo has AB magnitude MAB = 0 over all frequency bands [28]. This AB
mag zero point system can be extended to any filter system, given that the photon
counts representing the zero point flux (fνo = 3.63× 10−20ergs s−1cm−2Hz−1) are

measured through the new set of filters [28]. Four metal-poor subdwarf stars
BD+17°4708, BD+26°2606, HD 19445 and HD 84937 are used as zero point

reference stars as described in the AB system by Oke and Gunn [55]. It is worth
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noting that even though inteneded to define the zero-point with absolute flux, the
SDSS actual photometric zero-point has been found to have small offset from the
AB system. The u′ band zero point is in error by 0.04 mag, z′ band by 0.02 mag
and other bands g′r′i′ by around one percent, approximately 0.01 mag. Figure 2.6
shows the response curves for the SDSS filters. Irradiance values reported as SDSS
AB magnitudes are given the designations ugriz (i.e. the prime of the SDSS filter

system is removed).
Observation obtained at various telescopes (whose optics, detector and filter system
will, necessarily, differ somewhat from the SDSS or Johnson systems) must first be
tied to a standard photometric system before they can be used in a comparative

analysis. This procedure is conventionally called photometric calibration and can be
achieved by a variant of the Fundamental Reduction Formula:

M = [m− k′
fX − k′′

fXCI] + Tf (CI) + ZPf (2.3)

[92]. Where, M is the resulting standard magnitude of the target, m is its
instrumental magnitude, kf is the first order airmass1 coefficient, kf is the second

order airmass coefficient, X is the airmass, CI is the colour index of the object, Tf

is the transformation for filter f from observational instrument to the standard
magnitude instrument, and ZPf is the nightly zero point for filter f .

2.7 Albedos

A distant solar system object, either a disk-resolved object or a disk-integrated one,
is detected via the solar light it reflects. The fraction of light reflected from the

surface is defined as the geometric albedo of the source.
In quantifying the light scattering properties of a planetary surface or laboratory

sample a number of different albedos are defined. For some albedo values a perfect
Lambertian is the reference while for others the total incident energy is the refernce.
Sometimes, in order to explain the intrinsic reflectivity for a specific area of a target

planet, the detailed radiance for an area at specific illumination and reflection
angles at a variety of wavelengths are needed, this is the wavelength dependent
phase curve of the surface material. The various albedos are defined to enable

convenient and accurate discussion a target object and I give here definitions of the
1the fractional amount of atmosphere one is looking through where 1 indicates the mean amount

of atmosphere at sea level



21

albedo concepts used in this thesis.
Geometric Albedo

The geometric albedo, also named physical albedo, p, is the ratio of the radiant
intensity (over all wavelengths), I(0), of a planetary body to the radiant intensity of
a Lambertian disk, ILam of the same cross-sectional size. Both the planetary body

and the Lambertian disk are in the opposition configuration relative to the Sun and
located at the same distance from the Sun. The geometric albedo is defined as

p =
I(0)

ILam

This parameter indicates the ‘rate of reflectivity’ of the target compared with a
standard Lambertian model. An important point to notice is that the radiant

intensity ratio is between the planetary surface and a Lambertian DISK of the same
cross-sectional area, NOT a Lambertian sphere. Lambertian is used as comparison
as it assumes that an object reflects light uniformly in all directions, regardless of
the incident angle of the light. This simplification makes calculations and analysis

more tractable. In practice, the geometric albedo usually refers to a specific
wavelength range (e.g., the visual albedo at 500-600 nm) instead of over all

wavelengths. The geometric albedo is then determined as,

pV = 100.4(msun−H)(
πr2au
a

), (2.4)

where msun is the apparent magnitude of the Sun and H is the absolute magnitude
of the planetary body, rau is the distance of one astronomical unit and a is the

projected area (πD2

4
) of the planetary body [42]. If the geometric albedo is known

then Equation 2.4 and be rearranged to provide the size of the object (taking
mSun = −26.76 [9]),

D = 100.2(msun−H)rau(
4

pv
)

1
2

=
1330
√
pV

10−0.2HV (2.5)

Geometric albedo is particularly useful for comparing the reflectivity of different
objects and for understanding the intrinsic properties of an asteroid’s surface. It
provides information about the object’s overall brightness at a particular phase

angle.
Bond Albedo The Bond albedo is the ratio of reflected light over the total amount
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of light incident on the planetary surface. The total amount of incident light has
only the scattered (or reflected) component and the absorbed components assuming

the planet have no source or producing no energy inside.
If the geometric albedo is known, we can derive Bond albedo (A) by

A = pq, (2.6)

where q is the phase integral. The phase integral is the weighted average of
scattering over all phase angle defined by

q =

∫ π

0

Φ(α) sin(α)dα,

where, Φ(α) is the integral phase function, which varies depending on the type of
surface model we decide to apply. In other words, it quantifies how the reflectivity

of the object changes as it is observed from different angles relative to the Sun.
Often the visual band geometric albedo is used in Equation 2.6 as the substantive

majority of the solar flux is in the optical bands. Bond albedo is useful for
understanding the energy balance of an object in the solar system. It takes into

account how much energy the object absorbs and re-emits, which is important for
studying the object’s temperature and climate. It is especially valuable for

comparing the energy budgets of different celestial bodies.
Single-Scattering Albedo The single-scattering albedo (also called volumetric

single-scattering albedo [33]) (w or ω) in the general photometric scattering model
has a similar meaning as the Bond albedo but on a micro-scale. Assuming the

incident photon can only be reflected once or absorbed, w is defined as the ratio of
scattering cross-section and the sum of scattered and absorbed cross-sections. A
surface made from transparent material scatters more, and its w approaches 1,

whereas highly absorbing material has w approaching 0.
Visible Albedo Radiance factor rf also called apparent albedo or visible albedo is
the ratio of the radiance of a sample at some incident, emission and viewing angle

to the radiance of a Lambertian sample viewing from overhead.

rf =
L(i, e, α)

LLam(0, 0, 0)

Apparent albedo can be bigger than 1 at some illumination and viewing
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configurations, but summed over all areas on the planetary surface the total energy
is conserved.

2.8 Disk integrated photometry

For a disk-integrated photometry of airless bodies, such as asteroids and KBOs, we
required accurate measurement of the magnitude and its variations with respect to

time and phase angle. The goal of these measurements is to characterize the
physical properties of the object including rotation period and surface composition

by measuring the light reflected off the surface at different phases of the objects
rotation and at different phase angles of observation.

Here I discuss three methods to solve for a rotational light curve. Using this
information I then show how the absolute magnitude of the source can be

determined. The absolute magnitude of the source as a function of phase angle of
observations can then be used to fit various standard phase function models. I
describe some phase effects and models designed to parameterize these effects.

For photometric observations (usually reported as reduced magnitudes) of a solar
system object, the phase curve and light curves naturally entangle to form its

apparent magnitude, changing with time and solar phase angle also. However, these
two source of brightness variation occurs on different time scales. Phase curve

variations occur over weeks and months as the phase angle change is related to the
relative geometry between the Earth, Sun and target object. Rotational lightcurve
variations occur on shorter time scales, normally over a few hours for solar system
bodies [68]. Therefore, we first determine the period (for periods) of light curves
taken over several days successive observations using the techniques in the next

section. After removing the periodical changes from light curves, a phase dependent
measurement of H(α) can be derived.

2.8.1 Lightcurves

A rotation lightcurve captures the brightness change of an asteroid with time due to
its irregular shape or varying albedo or both. As long as the asteroids is large

enough, it can be assumed to reach its hydrostatic equilibrium. Then the variation
due to its shape will be minimized. Generally, for small bodies, the albedo is treated
as uniform over the body, which is consistent with the majority of spectroscopic and

colour-photometric observations. For a period light curve of an asteroid, its
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brightness f at time t can be expressed using a Fourer series as follows,

f(t) = a0 +
∞∑
n=1

[
an cos(

2πnt

T
) + bn sin(

2πnt

T
)

]
, (2.7)

where, T is the rotation period, an and bn are amplitude coefficients corresponding
to the sine and cosine functions The constant a0 gives us the mean brightness. The

number of terms, n, is the harmonic order of the series.
Although Fourier series expansion is a well-known method to derive a period of a
sampling sequence, unequal sampling is often encountered. A few techniques have
been developed for the period determination from an unequal sampling sequence.
Here, three approaches are introduced. Phase dispersion minimization [73] and

‘Lomb-Scargle‘ least-squares frequency analysis [52, 66]. The ‘Lomb-Scargle‘
method allows unevenly sampled input data by breaking the time series into a linear
combination of sin and cos functions [58]. Harris [35] combines multiple lightcurve
segments to perform Fourier analysis and uses a linear least square fit to determine

the period taking photometric uncertainty into account.

Phase Dispersion Minimization (PDM)

Following Stellingwerf [73], suppose that we have a set of discrete observations
(xi, ti), (i = 1, N), where xi is the observed magnitude, and ti is the corresponding

time. Let σ2 be the variance of all xi,

σ2 =

N∑
i=1

(xi − x)

N − 1
, (2.8)

where, x is the mean of all observations,

x =

N∑
i=1

xi

N
.

Now, divide the observations into a few (M) subsets. In each subset, the sample
variance s2j (j = 1,M) is computed (as in Equation 2.8). For each s2j , nj data points
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are included. Then the overall variance for all M samples becomes,

s2 =

M∑
j=1

(nj − 1)s2j

M∑
j=1

nj −M

. (2.9)

In order to minimize the variance of the data against the mean light curve, let T be
a trial period, and compute a phase series like

φi =
ti
T

− [
ti
T
].

Here, brackets mean the integer part. The data are grouped such that all members
of j have similar φi, i.e. the phase interval (0,1) is usually divided into M subsets,

nominally bins of fixed φi width. If a suitable or correct period is found, the
variance of s2j of the measures in a bin will be smaller than the global variance. If T
is not a suitable value then the members of each of the M bins will be from different
phases of the true light curve and s2 ≈ σ2. The overall variance can be considered

as a function of φ and the statistic,

Θ =
s2

σ2
(2.10)

, is used to determine the correct period. If T is the correct period then Θ will
approach a minimum. As this technique minimizes the dispersion of the data in
each phase bin the approach is termed ”phase dispersion minimization” (PDM).

Lomb-Scargle

Another technique to find a period for an unequally sampled data is the
Lomb-Scargle algorithm. First proposed by Lomb [53] in 1976 and refined by

Scargle [66] in 1982.
Suppose we have a discrete set of observations (xi, ti), (i = 1, N) similar to the

condition of the technique of PDM. Here, xi is the observed magnitude at time ti,
we can estimate their mean x and the variance σ2. Then we define a normalized
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periodogram for an angular frequency ω = 2πf > 0 as follows,

P (ω) =
1

2σ2
{
[
N∑
i=1

(xi − x) cosω(ti − τ)]2

N∑
i=1

cos2 ω(ti − τ)

+

[
N∑
i=1

(xi − x) sinω(ti − τ)]2

N∑
i=1

sin2 ω(ti − τ)

}, (2.11)

where the parameter τ is determined by the following equation,

tan(2ωτ) =

N∑
i=1

sin(2ωti)

N∑
i=1

cos(2ωti)

. (2.12)

Here, the parameter τ is the base time, phase 0, such that the result from equation
(2.11) is equivalent to that from a least square fit for a given angle frequency ω.

Harris

Harris et al. [35] use the following equation to described the lightcurve variation of
an asteroid,

H(α, t) = H(α) +
m∑
l=1

{Al sin

[
2πl

P
(t− t0)

]
+Bl cos

[
2πl

P
(t− t0)

]
}, (2.13)

where H(α, t) is the computed reduced magnitude at phase angle α and time t,
H(α) is the mean absolute magnitude at phase angle α, Al and Bl are Fourier

coefficients, P is the rotation period, and t0 is a zero-point time, chosen near the
middle of the time span of the observations. In order to solve these parameters, we

write the residual of the ith observation, Vi(αj), from the above model,

δi
εi

=
Vi(αj)−H(αj, ti)

εi
, (2.14)

where αj is the reference phase angle on the jth night and ti is the time of the ith
observation. εi is a prior error estimate of the ith observation.

A least square fit to equation (2.14) is found by finding the minimum of the bias
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corrected variance:

s2 =
1

n− k

n∑
i=1

(
δi
εi

)2

, (2.15)

Where n is the total number of observations, k = 2m+ p+ 1 is the total number of
free parameters of the solution, m is the degree of the Fourier series, and p is the
total number of days of data, and the last ”+1” is for the rotation period, also a

solution parameter.
In comparison with the first two methods, Harris method can derive Fourier

coefficients defining the shape of the composite light curve to any degree specified.
In addition, a major advantage of the method is that it produces formal error

estimates for all the quantities computed.

2.8.2 Planetary Phase Function

For airless bodies the light reflected from the surface interacts with a variety of
surface structures composed of variety of particulates, large or small, transparent or

opaque, and so on. Using measurements of the reflect solar light we attempt to
measure the surface’s compositions and physical properties. When our observations
are taken in a series of phase angles from small to large ones, we can derive the ratio
of its reflection or scattering to its illumination as a function of phase. The nature
of this phase variation has been shown to probe both the nature of particles on the

surface and the bulk structure of the surface [34].
Scattering models tend to link the surface property like roughness, material

composition, and albedo with the scattering function, which describes the angular
distribution of the reflected light. By analyzing the laboratory results of scattering

of specific material we can draw a link between specific observations of the
scattering function of an airless body and that body’s surface composition. A phase
function is a model that links the observations to the composition or a funcational
parameterization that enables comparison of the surface compositions of groups of

objects.
The phase function can consists of multiple parts. One part is the single-particle

scattering phase function, and then two multiple scattering functions that describe
the Shadow Hiding Opposition Effect (SHOE) and the Coherent Back-scattering

Opposition Effect (CBOE). The SHOE and CBOE are physical explanations of the
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opposition surge effect where, for some materials, the brightness increases
dramatically around zero phase angle.

In this work I will not be concerned with determining the precise physical
parameters of 2002 MS4 phase function, but rather comparing the parameters with

other airless bodies (asteroids and KBOs).

HG phase curves

HG system is a two parameter phase curve estimation adopted by the International
Astronomical Union (IAU) to provide better estimations of magnitudes at different

phase angles, especially at opposition as other models do not work well for
predicting the opposition surge. The HG model is often used as a tool to estimate

the absolute magnitude of a solar system object.

V (1, 1, α) = H − 2.5 log10[(1−G)Φ1(α) +GΦ2(α)], (2.16)

where, H is the mean absolute magnitude, which is the mean brightness for one
revolution if an asteroid has a lightcurve. V (1, 1, α) is the reduced visual magnitude

at phase angle α. Here,

Φ(α) = (1−G)Φ1(α) +GΦ2(α)

is the integrated phase function if we assume a Lumme-Bowell scattering model. Φ1

and Φ2 are the single and multiple scattering phase function, respectively. G is the
slope parameter and a smaller G means a darker surface and a larger G means a

brighter surface. For asteroids, G is usually between zero and 0.5 [13]. When
estimating H if no other evidence is known, G = 0.15 is usually assigned because it

is the most likely G value for small bodies[68].
Bowell, Harris, and Lumme (1989) 2 came up with empirical forms of Φ1 and Φ2 for
the integral phase functions. Their approximations (see equation (2.17) and (2.18))
are adopted by the IAU, valid for 0° ≤ α ≤ 120° and 0 ≤ G ≤ 1. Both of them are

normalized such that Φ1(0) = Φ2(0) = 1.

Φ1 = exp[−3.33 tan0.63(
α

2
)] (2.17)

2a manuscript that are often referred but unfortunately never published according to [68]
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Φ2 = exp[−1.87 tan1.22(
α

2
)] (2.18)

2.8.3 The AB Phase function model

As we will find in the analysis of 2002 MS4’s phase curve, the HG model, although
the IAU adopted standard approach to representation of phase curves, does provide
an acceptable parameterization. Shevchenko [70] proposes an alternative approach

focuses on use of a simplified (fewer parameter) functional form that can accurately
reproduce a large variety of phase curves:

V (1, α) = V (1, 0)− A/(1 + α) +Bα (2.19)

Where V (1, 0) is the projected absolute magnitude, and A and B are constants fit
to the phase curve observations. A characterizes the amplitude of the surge, and B

characterizes the linear slope the large angle phase curve.
The Shevchenko model enables comparison of the surface properties of a variety of
airless bodies using the minimal number of free parameters but does not provide

any particular physical insight into physical properties of the surface. In this work I
will determine the Shevchenko parameterization of 2002 MS4’s phase curve to
enable comparison of its surface composition to that of range of other bodies.

2.8.4 Phase Integral and Bond Albedo

The phase integral, q, is the weighted average of scattering over all phase angles. q

is defined as

q = 2

∫ π

0

Φ(α) sin(α)dα,

where Φ(α) is the disk integrated reflectance normalized to unity at α = 0. We can
approximate q provided by Verbiscer & Veverka (1988) [89]

q ≈ 0.135 + 2.671Φ(70°),

where, Φ(70°) is the normalized reflectance at α = 70°. The normalized reflectance
is also referred to as the integral phase function. For an airless body this provides
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the brightness (radiant intensity) of the entire disk seen at some phase angle, α,
divided by the brightness of its disk at α = 0°. That is,

Φ(α) =
I(α)

I(0)

Using the phase integral and the measured geometric albedo one can determine the
Bond albedo:

Ab = pvq =
total radiated flux
total incident flux

.

Here, pv is the geometric albedo and q is the phase integral. Brighter objects have
larger Bond albedo and dimmer objects have smaller Bond albedo. The Bond

albedo can be used to determine the temperature of the body and, form thermal
flux observations, the size of the body can be determined.

2.8.5 The Hapke Model

The Hapke phase model attempts to describe the phase dependent scattering of
light from physical principals[34]. Although not used in this thesis, a description of
the Hapke model components provides some insight into the relation between phase

curve observations and determination of the physical structure of a surface.

Single Particle Scattering Phase Function

The single particle scattering phase function describe the phase dependent
relationship between incident wave and scattering wave for spherical particles with
homogeneous refractive index. It is an imaginary model for perfect conditions but
helpful as the first step on approaching more complex system. Hapke et al. [34]

defines the particle phase function

Pi(α) =
4πI(Ω)

Jω
,

where Ω is the scattering outgoing solid angle, α is the phase angle, J is the
incoming irradiance and ω is the particle single-scattering albedo, which is defined

as the ratio of total power scattered to the total power removed from the wave. This
particle phase function describes the angular scattering pattern of incoming power.
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Multiple Scattering Phase Function

If a collimated light source is incident upon a medium of isotropic scattering, it is
shown by Hapke [34] that the bidirectional reflectance is given by

r =
w

4π

µ0

µ+ µ0

H(µ)H(µ0) (2.20)

where H(x) is given by

H(µ) = 1 +
w

2
µH(µ)

1∫
0

H(x)

µ+ x
dx,

where H(µ) is recursive, so the exact solutions require numerical methods.

Opposition Surge

The opposition surge describes the effect of a large increment in the reflected light
when observing an airless body near opposition (α approaches 0). Figure 2.7
demonstrates this phenomenon, in the figure we see a clear halo around the

astronaut as he is pointing the camera to the Moon while the Sun is directly behind
him. Theorists model the effect as combination of coherent back scattering effects

(CBOE) and shadow hiding effects (SHOE).
Shadow-Hiding Opposition Effect The shadow-hiding effect happens when

shadows are eliminated when both the incident angle and emission angle are around
zero and therefore both the illumination shadows and the viewing shadows are

minimized. The SHOE is a single-scattering phenomenon (valid when ω is small)
and depends on the contrast of shadows with a media. However, if the surface is
brighter (ω is large), then multiple scattering will tend to wash out shadows and

reduce the magnitude of the effect.
Coherent Back Scattering Opposition Effects Coherent back-scattering

opposition effect (CBOE) is the prominent contribution to the opposition surge
when the planetary body has a high albedo and the multiply scattered light self

interferes. In multiple scattering, the second scattered ray can travel the same path
as the incoming ray but at a shifted phase. If the two rays constructively interfere

the observed light intensity will increase. Figure 2.9 illustrates the light ray
geometry causing the CBOE.
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Figure 2.7: Opposition effect on moon. It is clear that we can see a bright halo around
the photographer’s head, where the phase angle is near zero.[51]

The phase difference ∆φ between two rays is proportional to phase angle

∆φ ≈ 2πXαcosβ/λ,

where α is the phase angle (see Figure 2.9). When the phase angle is small, two
light rays are more likely to coherently interfere and therefore the light intensity is

quadrupled

|E0 + E0|2 = 4E2
0 .

When the phase angle is large, the phase difference between two rays are more
random and therefore the combined effect is the sum of two intensities,

|E0|2 + |E0|2 = 2|E0|2.

Hapke’s model parameters
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Figure 2.8: Shadow hiding opposition surge. Credit: Michael K. Shepard [68]

Hapke’s photometric model is a complete description of scattering for unresolved
planetary surface. The model provides us with a detailed expression about the

composition particle character like the roughness. This completeness is achieved
using 8 photometric parameters making Hapke’s model most useful when there are
a large number of observations over wide range of phase angels. The model itself is

very complex so here we are only going to talk about the parameters referred in
literature. Detailed model is included in the book by Hapke in 2012 [34].

• The single scattering albedo ω is the ratio of particle scattering efficiency and
particle extinction efficiency. On the physical level, it relates to particle size,
composition and micro-structure.

• Macroscopic roughness θ̄ represent the mean topological slope angle at resolu-
tion below pixel scale.

• Parameter b is from single particle phase function (SPPF) HG model. When
b > 0.5, the compositing particles are regular and smooth; when b < 0.5, the
particles are irregular and rough.

• Parameter c is from HG model as well. When c < 0, the compositing particles
are more transparent; when c > 0, the compositing particles are more opaque.
Both b and c are determined by the small and large phase angle data.

• hs is the angular width of the inter-particle shadow hiding effect (SHOE). It
represents the surface particle porosity and size distribution.
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Figure 2.9: Light rays travel the same path but in reversed direction and construc-
tively interfere. The interference decrease when the phase angle increase. Credit:
B.Hapke [34]

• Bos is the amplitude of the SHOE and infers the particle transparency. When
Bos = 1 the material is opaque.

• hc is the angular width of coherent back scattering effect (CBOE). It is smaller
than one rad. It depends on the the density and size of small scatters, which is
related to the mean optical path length of photon.

• Boc is the amplitude of CBOE and it is also smaller than unity. It is related to
medium transparency.

Due to the sparseness of data available I do not attempt to model my phase
observations using a Hapke model.
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2.9 Stellar occultation

Using stellar occultation to determine the sizes of KBOs is relatively recent. The
first stellar occultation by a KBO that was not Pluto was detected about 10 years

ago [22]. Size and shape are basic physical parameters that must be accurately
known if we want to fully characterize a target, and are the first step toward

deriving other parameters. Stellar occultations provide a highly accurate probe of
the size of these bodies and can even detect the presence of thin atmospheres. In

combination with accurate brightness measurements, we can derive the body’s
geometric albedo which is indicative of the surface composition of the body. As

mentioned in 2.7, the geometric albedo is also fundamental to analyzing the
temperature and thermal behavior of the KBO. Although measurements of the

thermal output of a solar system object can be used to obtain size and albedo, their
accuracy will be much lower as they rely on assumptions about the emissivity and

radiation beaming. A single chord observation across a body can be used to
determine an estimate of the size of that body. If multiple occultation chords of the
same event are observed then these can be used to derive an accurate size and shape

of the object causing the occultation.
Stellar occultation is also powerful means to explore the presence of atmospheres

when one observes a non-abrupt transition in the stellar brightness during the
events of ingress and egress body or through the study of central flashes [56]. If the
body causing the occultation is part of a binary system, then a total mass estimate
is available and, when combined with the occultation-based size estimate, the bulk
density of the KBO can be estimated. Lastly, the occultation technique can detect

narrow and dense dust structures, such as rings around the KBO, through the
dimming of stellar light[14, 57]. Figure 2.10 shows us the principle of stellar

occultation.
The technique of the stellar occultation by KBOs provides a rich ensemble of data

about the object but predicting the possibility of the even requires significant effort.
First of all, the accurate prediction of an occultation event requires highly accurate
positions for the occultated star and a very precise ephemeris of the KBO. Even the
largest known dwarf planets, Eris and Pluto, subtends an angular diameter of only
0.03 arcseconds [72]. In other words, we require accurate positions as good as 0.03
arcseconds for both the occultated star and KBO. Historically, it is very difficult to
obtain accuracy at this level. The situation has becomes more tractable thanks to
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Figure 2.10: Illustration of a stellar occultation geometry. The light from a star is
fully blocked in the shadow region on earth. Original source: IOTA, editted by G.
Benedetti-Rossi.

the Gaia star catalogue (for example Gaia DR2 [15]). However, for a KBO, one
must determine the orbit to high accuracy in order to achieve a position uncertainty

of better than 0.03 arcseconds.
An alternative approach is to organize a large number of observers, including

professional and amateur astronomers along a line that is perpendicular to the
shadows path across the Earth, this is referred to as an occultation fence. Usually,

the shadow path is in the East-West direction rather than in the North-South
direction since the apparent sky motion of a KBO is dominated by the Earth’s
orbital motion. According to the statistics by Ortiz et al.[56], on average, the

success rate in their occultation program is typically 1 every ∼ 6 attempts when the
occultation fence has a density of a few stations per expected size of the object and
extends to cover the uncertainty in the shadow position. Here, a successful detection
means a detection of the occultation from at least on site. Moreover, the number of
participating stations is critical. Large campaigns involving at least 15-20 observing

sites are typically needed to achieve multi chord observations.
In order to model the occultation event, a number of factors must be considered. I

will give detailed expressions in the next section.
Using occultation chords we can estimate the size of the occulting body and

determine a number of parameters, which can be combined with other observations,
such as photometry at multiple phases, to obtain parameters that describe the

physical surface of the KBO and place the object in the context of other small body
populations of the solar system.
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2.9.1 Geometric Occultation Light Curves

Following the practice of Elliot [22], we consider a square-well model of an
occultation by a KBO without atmosphere. This model includes only the finite

integration time of the data recording system and is based on geometric optics, so
that the body’s limb produces an abrupt cut off of the starlight. We define tm as the
occultation mid-time, Td as the occultation duration, and ∆t as the integration time
of the data recording system. When the star is not occulted, the recorded full signal
is sf ,and when it is fully occulted, the recorded signal is sb. If tm is the mid-time of
the ith integration bin, then the recorded signal for that bin is s(ti). We can write
equations for s(ti) for following five cases: (i) the integration bin lies completely

outside the occultation, (ii) the integration bin lies completely within the
occultation, (iii) the integration bin includes immersion, (iv) the integration bin

includes emersion, and (v) the occultation lies completely within a single integration
bin.

Specifically, if ti < (tm −∆t/2)− Td/2 or ti > (tm −∆t/2) + Td/2, then the
integration bin lies completely outside of the occultation,

s(ti) = sf

If ti > (tm +∆t/2)− Td/2 and ti < (tm −∆t/2) + Td/2, then the integration bin lies
completely inside of the occultation, then

s(ti) = sb

if ti > (tm −∆t/2)− Td/2 and ti < (tm +∆t/2)− Td/2, then the integration bin
straddles immersion, then according to liner interpolation

s(ti) = sf

[
(tm − Td/2)− (ti −∆t/2)

∆t

]
+ sb

[
(ti +∆t/2)− (tm − Td/2)

∆t

]
If ti > (tm −∆t/2) + Td/2 and ti < (tm +∆t/2) + Td/2, then the integration bin

straddles emersion, then according to liner interpolation

s(ti) = sb

[
(tm + Td/2)− (ti −∆t/2)

∆t

]
+ sf

[
(ti +∆t/2)− (tm + Td/2)

∆t

]
if ti > (tm −∆t/2) + Td/2 and ti < (tm +∆t/2)− Td/2, then the integration bin
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contains the full occultation event, then

s(ti) = sb

[
∆t− Td

∆t

]
+ sf

[
Td

∆t

]
The duration of the event can then be determined via minimization of the χ2

between the piece wise light curve described above and the observed flux from the
stellar source. Once the duration of the event has been determined the size of the
object can be estimated using the sky-position ephemeris to determine the velocity

across the line of sight and the duration of the event. The diffraction fringes will not
be discussed in this thesis as the object scale is large enough and SNR of the time
series is low such that the diffraction pattern power is indistinguishable from the

background noise[65].
Size Estimation

For objects larger than about D > 500 km we can anticipate that an icey body will
take on a shaped that is in hydro-static equilibrium. Nominally, two classed of
shapes are considered, A Jacobi-ellipsoid (a > b > c) and a MacLaurin-ellipsoid

(a = b > c) [21]. For my observations however I have only two chords and a sensible
assumption for 2002MS4, which is expected to have D > 500 km, is that the object
is spherical (a=b=c). A more complete analysis considering a MacLaurin surface is

left to a future work.
With the spherical shape assumption, the occultation shadow cast on the Earth is
circular and the chord duration provides an estimate of the diameter of the body.

My goals is to determine the most likely diameter of a spherical object from a set of
uncorrelated observed chords. Each chord is a random draw across the circular

shadow cast by the object. Figure 2.11 illustrate the circle with radius r and chord
length D. D can be anywhere in the circle and we can use angle θ and radius r to

represent D.
To find the average length of the chord Davg, we can write equation

Davg =
1

π

∫ π

0

2 r sin(θ) dθ

and get

Davg =
4r

π
(2.21)
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Figure 2.11: Illustration of an occultation chord (D) crossing at an arbitrary location
across a circular shadow of radius r.

rearranging the equation gives,

ravg =
Davgπ

4
(2.22)

In other words, if we find the average chord length Davg, we can find the most likely
radius of the circle ravg and therefore the most likely radius of the KBO assuming it

is spherical.



40

Chapter 3

The Phase Curve

The Kuiper belt object 2002 MS4 (also MS4 ) has Keplarian heliocentric orbital
elements a=47.17 au; e =0.14; i=17.7o (see Figure 3.1) and is classified as a member
of the ‘hot component’ of the classical Kuiper belt. Objects in this zone of the solar

system are thought to have formed closer to the Sun, perhaps in the 15-20
Astronomical Unit (au) zone, and been scattered to their current locations via

dynamical interactions with the giant planets. This is in contrast to those Kuiper
belt objects on lower-inclination nearly circular orbits that appear to have formed in

situ. The interior formation zone contained sufficient material to allow the
formation of the dwarf planet population of the Kuiper belt prior to their transport

into this zone; there are no ‘large’ Kuiper belt objects within the low-inclination
population. I report detailed on the photometry of MS4 based on observations from

the Canada-France-Hawaii Telescope (CFHT) MegaCam, and the New Horizons
LORRI, cameras.

Precise photometry for KBOs is performed using a large (> 2 m) aperture telescope
due to the faintness of the objects. These photometric measurements are most often

reported in the Johnson-Cousin UBV RI standard photometric system [e.g.
80, 69, 85]. Those authors have used strict procedures to derive precise photometry.
For example, a few standard stars in Landolt 1992 [49] are observed each night to

calibrate and an optimal aperture is adopted to make photometry. The requirement
of large apertures, strict observing procedures, and photometric observing

conditions have limited the availability of phase curve observations.
Our photometry for MS4 via the archival observations of the CFHT/Megacam is

very different. And its data reduction is also different. It is impossible for us to go
back in time and use the telescope to observe some standard stars in the Landolt
system on the same night as our archive data. Our archive data can, however, be
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Figure 3.1: The orbit of 2002 MS4 (white curve) compared to Jupiter (innermost
ring), Saturn, Uranus, and Neptune.
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calibrated using stars in the image that have calibrated fluxes provided by the
PanSTARRS projects. We use the in-place calibrated stars to compute a zero-point
for the natural CFHT/Megacam photometric system to measure the photometry of

MS4 . We then use well-known calibration curves. provided by the Canadian
Astronomy Data Centre’s MegaPipe service [32], to convert from the

CFHT/MegaCam system to the SDSS photometry system.
I also report observations obtained with the LORRI camera onboard the New

Horizon spacecraft (see 2.1 for details). The LORRI photometric observations were
obtained at large solar phase angles (only possible because the spacecraft is

observing the Kuiper belt from within the Kuiper belt). Using the LORRI data we
obtain phase angle coverage for the MS4 that can not be obtained by

Earth-localized observation. Note that all observation on MS4 are non-resolved.
The next section will detail the photometry of MS4 obtained using

CFHT/Megacam from their original images to the final standard magnitude. In
section 3, the photometry of MS4 from the New Horizon Spacecraft is reported.

The final section provides a parametric representation of the observed phase curve.

3.1 CFHT Photometry

3.1.1 Data Discovery

Owing to the brightness of the target MS4 has been observed frequently and the
heliocentric orbit is well determined. I utilized the Canadian Astronomy Data

Center (CADC) Solar System Object Image Search tool (SSOIS)1 [33] to locate
archived observations of the target.

SSOIS provides a user-friendly way to search for images of objects whose celestial
coordinates change with time Images of moving objects in the archives can be
obtained by searching by object name and SSOIS then uses one of the Lowell

Observatory or Minor Planet Centre or Jet Propulsion Laboratory (JPL) ephemeris
services to cross-match the ephemeris of the target with a catalog of imaging data. I

limited my search to CFHT’s MegaCam (see Figure 2.3) observations
instrumentally detrended and calibrated data are available for that facility. The

CFHT images have been processed through the CFHT Elixir2 system to remove the
signal pattern of the telescope/detector system (bias subtracted and flat-fielded)
1https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/ssois/
2https://www.cfht.hawaii.edu/Instruments/Elixir
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and basic robust photometric and astrometric calibration has been performed with
the relevant information present in the FITS image header. The CFHT data found

by my SSOIS search and used in the subsequent analysis are listed in Table 3.1.

Table 3.1: Raw CCD frames of MS4 from CFHT/MegaCam.

image_ID Date/time Filter Exp time(s)
1635849p00.fits 2013-07-04 11:12:50 r 45
1635850p09.fits 2013-07-04 11:14:33 r 45
1635851p00.fits 2013-07-04 11:16:10 r 45
1635852p00.fits 2013-07-04 11:18:06 r 45
1635853p00.fits 2013-07-04 11:20:23 r 45
1635854p00.fits 2013-07-04 11:21:56 r 45
1635856p00.fits 2013-07-04 11:25:15 r 45
1635857p01.fits 2013-07-04 11:26:59 r 45
1636059p00.fits 2013-07-05 10:00:03 r 45
1636072p00.fits 2013-07-05 11:47:10 r 45
1636073p01.fits 2013-07-05 11:48:43 r 45
1636074p10.fits 2013-07-05 11:50:16 r 45
1636075p13.fits 2013-07-05 11:51:50 r 45
1636076p13.fits 2013-07-05 11:53:23 r 45
1636077p12.fits 2013-07-05 11:54:56 r 45
1636078p12.fits 2013-07-05 11:56:29 r 45
1636079p13.fits 2013-07-05 11:58:03 r 45
1636080p13.fits 2013-07-05 11:59:36 r 45
1636081p16.fits 2013-07-05 12:01:10 r 45
1636082p17.fits 2013-07-05 12:02:59 r 45
1636083p13.fits 2013-07-05 12:10:52 r 45
1636084p13.fits 2013-07-05 12:12:25 r 45
1636185p16.fits 2013-07-06 10:49:49 r 45
1636187p17.fits 2013-07-06 10:53:17 r 45
1636188p17.fits 2013-07-06 10:54:50 r 45
1645301p22.fits 2013-08-03 10:10:15 r 45
1645516p22.fits 2013-08-04 08:59:22 r 45
1645517p22.fits 2013-08-04 09:00:55 r 45
1645518p22.fits 2013-08-04 09:02:29 r 45
1645519p22.fits 2013-08-04 09:04:20 r 45
1645520p22.fits 2013-08-04 09:05:53 r 45
1645522p22.fits 2013-08-04 09:09:00 r 45
1645846p22.fits 2013-08-06 09:24:50 r 45
1645847p22.fits 2013-08-06 09:26:23 r 45
1645848p22.fits 2013-08-06 09:27:56 r 45
1646190p22.fits 2013-08-08 08:06:14 r 45
1646191p22.fits 2013-08-08 08:07:54 r 45
1646192p22.fits 2013-08-08 08:09:27 r 45
1646378p22.fits 2013-08-09 08:08:24 r 45
1646379p22.fits 2013-08-09 08:10:04 r 45
1646380p22.fits 2013-08-09 08:11:37 r 45



44

3.1.2 Astrometric Calibration

A Flexible Image Transformation System (FITS) file is an array of data and each
array element is called a pixel, referring to the physical CCD pixel of the detector.

Each pixel has its own unique integral position (x, y) in the array and each element’s
value is proportional to the number of photons detected at that image location.

Usually, the size of an image is the field of view, such as 1024 × 1024. FITS is the
standard format for the storage and exchange of CCD images [31]. The mapping of
pixel array locations in a FITS image to the celestial sky coordinate is referred to as
the World Coordinate System (WCS) of the image. For our MS4 image, I performed

astrometric calibrations to precisely map each pixel position to a sky location.
I used the program SExtractor [8] to detect and obtain the pixel position of the

stellar sources in the image. I then selected sources between 16 and 21 magnitudes
(based on the Elixir zero-point in the header) as reference stars. Stars in this

magnitude range were selected as that is the range available from our astrometric
reference catalog. SExtractor provided the centroid, magnitude, and magnitude

error for each source to be used as input into my astrometric calibration.
I used the stars selected from Gaia DR2 [15] as the reference for stellar positions
(RA, DEC). The selected Gaia star and SExtractor positions were input into the
MegaPipe dofit astrometric program [33]. dofit converts the source (x, y) pixel
position into (RA, DEC) using Elixir World Coordinate System (WCS) and then

conducts a course matching between the Gaia and Elixir catalogs. (In some cases, I
consulted a sky-map using the Aladin tool [11] and manually selected a new initial
WCS dofit program to start with as the Elixir software did not always provide a
useful starting point.) Using the matched list dofit then computes a new WCS of

increasing complexity (order) until a convergent WCS is obtained. The WCS is
represented as a linear component (CRVAL, CRPIX, CD) that describes the tilt,

rotation, and offset of each CCD compared with the sky plane; and a set of
polynomial terms (PV) that describe distortions in the projection of the curve sky

onto the flat CCD imager. In most cases, dofit successfully matched 300-500
sources and return a WCS with an uncertainty of < 0.005 arcseconds.

dofit provides the WCS polynomials in PV format [see 33] which I converted to
the SIP standard [71] such that the WCS can be interpreted correctly by astropy
package. Once the WCS is corrected, I determined the (RA, DEC) of MS4 at the

time when the image was taken (using the JPL ephemeris service) and visually
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identify MS4 on the image. I then extracted a 500× 500 sub-image centered on the
location of 2002 MS4 . When MS4 was less than 250 pixels from the edge of the

image array, I shifted the sub-image centre such the sub-image would still be
500× 500.

I also selected a set of images of the region of the sky where MS4 had been imaged
but at a time when MS4 was not present. These ‘blank’ images were processed

similarly to the MS4 -containing images. The blank images are used to supplement
the data available for image differencing.

3.1.3 Difference Image

The observer’s line of sight to 2002 MS4 is transiting the galactic plane, and the
field is significantly crowded with stars. See figure 3.2 for a sample image

demonstrating the crowded nature of the images. We apply a difference-imaging
technique prior to photometric measurement to remove the background variations

caused by the stellar crowding. For my analysis, difference-image comes in handy as
all the background objects are stationary while the KBO is moving. After

performing the difference-imaging, only the KBO will remain while all background
stars are subtracted. I utilized the ISIS [1, 2] difference image package for this

analysis. The ISIS software package minimizes the difference between a convoluted
reference image and the target image by optimizing a convolution kernel, a linear

combination of basis functions. The resulting difference image (target image -
convoluted reference image) is an impressively clean subtraction of background

stars, leaving just the moving target object.

3.1.4 Aperture Photometry

Aperture photometry assumes that all point source profiles in a given image are the
same. For a well-designed optical reflecting telescope, the point source function’s

(PSF’s) core is well represented by a Gaussian, while the extended zone is consistent
with a Moffat function, this form is known as a King profile [47]. Specifically, the

general star profile can be represented by the following equation

S(r;Ri, A,B,C,D) = B ·M(r;A)+(1−B)[C ·G(r;Ri)+(1−C) ·H(r;D ·Ri)], (3.1)
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Figure 3.2: 2002 MS4 in a crowded stellar field, obtained with CFHT MegaCam.

where

G(r;Ri) =
1

2πR2
i

exp
−r2

2R2
i

,

and

M(r;A) =
A− 1

π
(1 + r2)−A,

and

H(r;D ·Ri) =
1

2π(D ·Ri)2
exp

−r

D ·Ri

,

where G is a Gaussian profile represent the core, M is a Moffat profile represent the
aureole and H is the exponential function connecting two profiles smoothly.

Unfortunately, this function has many free parameters, and fitting this function to
the light profile from a faint source profile will result in a highly uncertain

determination of the parameters. We can, however, take advantage of the fact that
all point sources have the same profile and determine the value of the shape from

bright sources and only use the faint source to determine the normalization.
I follow the growth curve aperture photometry method described by [78]. This

method measures the total flux of a source while achieving a maximal
signal-to-noise ratio (SNR) when measuring faint sources. The flux of a number of

bright stellar sources is measured through a series of k concentric apertures, and the
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Figure 3.3: Illustration of how ISIS package removes all stars other than MS4 in the
image.

magnitude difference, δmk, between each consecutive aperture is computed. If we
plot the δmk of all the apertures as a function of aperture radius, we get the ‘growth

curve’ of the source. Figure 3.4 is a sample of a single growth curve. The growth
curve is a representation of the stellar PSF sampled by the different sources. I then

find, via least-squares fitting, the best match between the growth curve and the
ratios of King profiles integrated to the same series of the apertures as in the growth

curve, i.e., the measured δmk is approximated with the profile

∆mk = −2.5 log[

∫ rk
0

S(r;Ri, A,B,C,D)(2πr)dr∫ rk−1

0
S(r;Ri, A,B,C,D)(2πr)dr

]

and the best fit values of the parameters Ri, A,B,C,D are determined. The King’s
profile parameters are fit, via least-squares, to a collection of growth curves of 10-15
bright stars per CCD frame. The bright stars are chosen such that they don’t have
bright neighbours, and their dim neighbours are removed by repeatedly building a
PSF of stars of the frame and subtracting those sources, using the IRAF\verbPSF
and SUBSTARroutines, until the sky is smooth around the chosen bright stars. The
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Figure 3.4: A sample curve of growth. Magnitude at 5 FWHM is given by magnitude
at 1.1 FWHM plus the Aperture Correction Value. And the Aperture Correction
Value equals to the sum of delta(k) for k range from 1.1 to 5 FWHM

procedure mentioned above will reduce the influence of the neighbour stars on the
sky value, reducing the uncertainty in the measured flux. Then with the best-fit

king’s profile parameter, we can construct a best-fit curve of growth and sum up the
∆mk from an aperture that is 1.1 times the FWHM to 5 times FWHM. This

summed flux between a large and small aperture,

ApCorr =
5×FWHM∑

k=1.1FWHM

∆mk

is the aperture correction value. The final magnitude of the source will be the
magnitude at 1.1 times the FWHM plus the aperture correction value. The

uncertainty in the final flux is taken as the quadrature sum of the uncertainty in the
small aperture magnitude and the uncertainty from the aperture correction value

(as determined via the least-squares fit).
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3.1.5 Photometry from CFHT/Megacam

The Canada-France-Hawaii Telescope Megacam (CFHT/Megacam) in R.MP9601

pass-band observations (hereafter referred to as r) is closely matched to the SDSS r′

and was used to obtain the photometry of MS4 reported here. I make my flux
measurements in the natural photometry system of CFHT/Megacam using

well-measures stars within the image to determine the zero point. The
CFHT/Megacam (g, r) magnitudes differ slightly from the SDSS scale [33].

However, to enable comparison between objects, the photometry of a source, like a
KBO, must be reported in some standard photometry system, such as UBVRI or
SDSS ugriz (see Chapter 2). Here, I calibrated the CFHT/MegaCam measured
magnitudes to the SDSS ugriz system due to the CFHT/Megacam photometry

system’s similarity to the standard SDSS photometry system.
The images containing 2002 MS4 do not contain any reference stars for the SDSS
ugriz system and no contemporaneous standard star observations were available in
the CFHT MegaCam archive. Thus direct calibration was not possible. In addition,

the SDSS survey had not observed the field where 2002 MS4 was standard,
excluding the possible use of SDSS-calibrated observations. However, the fields
containing 2002 MS4 are located in an area that the PanSTARRS project had

observed. Using the PanSTARRS flux catalogue [23] I tied our CFHT MegaCam
observations to the PanSTARRS system. Those PanSTARRS catalogue r

magnitudes were transferred to the CFHT MegaCam system using the calibration
curves published on the CADC website 3

rMegacam = rPS + 0.002− 0.017× (g − r)PS

(ignoring higher-order terms). Where rMwegacam is the magnitude of a source
measured in the MegaCam system and rPS and (g − r)PS are the magnitude and

colour index in the PanSTARRS system
In summary, the PanSTARRS source magnitudes are converted CFHT MegaCam,

and those CFHT MegaCam magnitudes are used to calibrate my images. The
magnitude of 2002 MS4 is then computed using aperture-corrected photometry and
calibrated to the CFHT MegaCam system using per frame zero points determined

using the PanSTARRS reference stars. The 2002 MS4 CFHT MegaCam magnitude
is then transformed to the SDSS standard photometry system using the

3http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/megapipe/docs/filt.htm
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transformation equations published on the CADC web site:

rSDSS = rMegacam + 0.024× (g − r)SDSS.

To use this transform requires knowledge of the color of MS4 in the SDSS system.
The Johnson-Cousin (JC) colour index of 2002 MS4 is (R− V ) = 0.38± 0.02 and
(B − V ) = 0.690± 0.020 [79] and (g − r) = (1.646× (V −R)− 0.139)± 0.005 [45]
such that (g − r)MS4 = 0.49± 0.02. Combining the measured colour of MS4 with

the MegaCam to SDSS transform above gives

rSDSS = rMegacam + 0.024× 0.48 = rMegacam + 0.01± 0.02.

For targets with the colour 2002 MS4 , the two filter systems are very well matched.
Table 3.2 lists the apparent magnitudes of MS4 from CFHT/MegaCam calibrated
to the SDSS system. In the table σ is the estimated standard deviation based on

the propagation of the measurement uncertainty and does not include the
systematic uncertainty in the system transformation (±0.02 mag), MJD0 is the

beginning time for each CCD frame exposure, r is the distance from our target to
the Sun and ∆ is the distance to the Earth, both in units of AU, phase is the solar

phase angle in degrees, and zpt is the photometric zero point.

3.2 Rotational Light Curve

In order to solve a possible rotation light Curve, there are three major steps we
follow. First, we remove the phase coefficient effect. Second, we solve for a possible
period of the light curve. Third, we construct a phase function from the fluxes with

light curve variation removed and redetermine the phase coefficient. Finally we
redetermine the rotational light curve period.

3.2.1 Remove Phase Coefficient Effect

It is well known that the opposition effect usually exists for a KBO in observations
taken at a small phase angle (α < 2 °). Following [e.g. 62, 40] we first estimate the

phase effect to find the phase-corrected magnitude of the source and then determine
a rotation period of our target. Specifically, we first determine the raw reduced

magnitude by removing the variation due to changes in the distance of MS4 and the
zpt in Table 3.2 based on the measured apparent magnitude.
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Table 3.2: Apparent magnitude mag from CFHT/MegaCam of MS4 in the SDSS
system.

MJD0 rSDSS σ ∆au rau phasedeg zpt instr.
(AU) (AU) (deg)

56477.4669852 19.186 0.018 46.024 46.996 0.367 -0.933 MegaCam
56477.4681877 19.210 0.016 46.024 46.996 0.367 -0.933 MegaCam
56477.4693028 19.183 0.018 46.024 46.996 0.367 -0.933 MegaCam
56477.4706523 19.220 0.021 46.024 46.996 0.367 -0.933 MegaCam
56477.4722338 19.188 0.017 46.024 46.996 0.367 -0.933 MegaCam
56477.4733095 19.176 0.018 46.024 46.996 0.367 -0.933 MegaCam
56477.4756161 19.172 0.017 46.024 46.996 0.367 -0.933 MegaCam
56477.4768169 19.176 0.017 46.024 46.996 0.367 -0.933 MegaCam
56478.4919056 19.178 0.016 46.026 46.996 0.376 -1.009 MegaCam
56478.4929841 19.177 0.017 46.026 46.996 0.376 -1.009 MegaCam
56478.4940691 19.200 0.017 46.026 46.996 0.376 -1.009 MegaCam
56478.4951483 19.193 0.019 46.026 46.996 0.376 -1.009 MegaCam
56478.4962281 19.187 0.018 46.026 46.996 0.376 -1.009 MegaCam
56478.4973079 19.241 0.017 46.026 46.996 0.376 -1.009 MegaCam
56478.4983929 19.204 0.017 46.026 46.996 0.376 -1.009 MegaCam
56478.4994692 19.204 0.017 46.026 46.996 0.376 -1.009 MegaCam
56478.5005531 19.152 0.018 46.026 46.996 0.376 -1.009 MegaCam
56478.5018152 19.187 0.017 46.026 46.996 0.376 -1.009 MegaCam
56478.5072935 19.206 0.017 46.026 46.996 0.376 -1.009 MegaCam
56478.5083721 19.236 0.018 46.026 46.996 0.376 -1.009 MegaCam
56479.4510102 19.205 0.019 46.028 46.996 0.385 -0.983 MegaCam
56479.4520882 19.202 0.018 46.028 46.996 0.385 -0.983 MegaCam
56479.4534087 19.190 0.018 46.028 46.996 0.385 -0.983 MegaCam
56479.4544851 19.193 0.018 46.028 46.996 0.385 -0.983 MegaCam
56512.3374019 19.364 0.025 46.249 46.990 0.851 -0.986 MegaCam
56512.3385587 19.312 0.032 46.249 46.990 0.851 -0.986 MegaCam
56512.3396390 19.284 0.026 46.249 46.990 0.851 -0.986 MegaCam
56535.3443763 19.360 0.016 46.544 46.986 1.111 -0.993 MegaCam
56535.3454544 19.312 0.017 46.544 46.986 1.111 -0.993 MegaCam
56535.3561390 19.399 0.013 46.544 46.986 1.111 -0.993 MegaCam
56535.3572188 19.390 0.016 46.544 46.986 1.111 -0.993 MegaCam
56602.1936835 19.320 0.060 47.570 46.975 0.960 -0.991 MegaCam
56602.1947633 19.269 0.056 47.570 46.976 0.960 -0.991 MegaCam
56919.2215853 20.205 0.016 46.751 46.920 1.211 -0.122 MegaCam
56919.2232999 20.163 0.015 46.751 46.920 1.211 -0.122 MegaCam
56922.2194877 19.342 0.018 46.800 46.919 1.218 -0.956 MegaCam
56922.2212075 19.324 0.016 46.800 46.919 1.218 -0.956 MegaCam

Figure 3.5 shows the raw reduced magnitude against the solar phase angle. A
straight line with slope β is used to approximate the relationship between the
reduced magnitude and solar phase angle. We then remove the effect of phase
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coefficient β by the following equation,

m(1, α) = m(r,∆, α)− 5× log10(r ×∆)− zpt− β × α (3.2)

where m(r,∆, α) is the mag in Table 3.2, r is the distance from the Sun to MS4

and ∆ is the distance from the observer to MS4 in unit of au, and α is the solar
phase angle in degrees. Using the uncertainty-weighted linear least squares

parameter estimation, βi is 0.16± 0.02 mag/deg and the χ2
dof = 7.22. Although this

χ2 indicates that the linear curve does not represent the observed relation well, this
approach enables a first-pass removal of the phase effect such that the light-curve

can be determined.

Figure 3.5: Phase coefficient is found by fitting the reduced magnitude using a straight
line.

3.2.2 Solve for a Possible Period of Lightcurve

In order to obtain an accurate period of lightcurve of MS4 , I need a precise time
record of light starting from MS4 ; I correct the MJD0 in Table 3.2 to account for
the light-travel time difference due to the different observer/target circumstances in
our archive data. I first compute the mid-exposure time since the beginning of the
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exposure. The exposure time is 45s for all frames and I add half of that to MJD0.
Then I need the light travel time from the MS4 to the observer so that we know the

MS4-centric mid-exposure time to compute the lightcurve period (1 AU ∼
499.0047815 light seconds). After both corrections are made to MJD0, I obtain
MJD, which is the mid-time of light emission in the MS4 reference frame. The
MS4 time-tagged reduced magnitudes can then be used to measure possible

light-curve effects.
Due to a limited number of observations available, it is not convenient to use the

Phase Dispersion Minimization algorithm[73] to compute the period. Instead, I use
the Lomb algorithm modified by Press [61] to solve for periods. I use trial periods
between 4 to 21 hours, the normalised periodogram P(ω) is shown in Figure 3.6.
The three most probable trial periods in Figure 3.6 are T1 = 14.251h, T2 = 8.932h

and T3 = 5.881h. T1 has the largest spectral power and thus is the most probable
rotation period. The Lomb algorithm assigns confidence greater than 99.3% that

this signal is non-random (i.e., periodic).

Figure 3.6: Normalized periodogram of trial periods by Lomb algorithm. Here three
periods are possible: T1=14.251 h, T2=8.932 h and T3=5.881 h.
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Using the most probable period T1 I fit the following equation to the reduced
magnitudes.

m(1, 0) = c+ a sin(ωt) + b cos(ωt), (3.3)

where ω = 2π/T1 and time t is the mid light emission time in the MS4 reference
frame (MJD in Table 3.2). Parameters a, b and c are determined by least square fit,

c = 3.437± 0.004, a = −0.030± 0.005, b = −0.050± 0.004.

Giving χ2 = 56.87 and χ2 per degree of freedom, χ2
dof = 1.67.

3.2.3 Recursively Computing the Rotational Phase Function

I adopted a recursive data rejection process to constrain the rotational light-curve
and phase function better. First, I compute the normalized residuals by dividing the

light-curve fit residual for each point by its estimated uncertainty. From the
normalized residual distribution (see Figure 3.7 left panel) I determine the width of

the residual distribution and identify as outliers and observations more than 3
standard deviations from 0. I remove the outlier point (there was only one) from the
data set and recompute the phase and rotation curves. I find β = 0.17± 0.01 for the
new solar phase coefficient after removing the raw rotational light curve effect (i.e.,
as in equation 3.3) and the outlier point is removed. I then remove the phase curve

and recompute the rotation period. This recursive process result in a new
periodogram. Fortunately, the newly solved most possible rotational period keeps

the same (T1new = 14.251h). I then fit to equation 3.3 again and obtain a new set of
parameter values as follows for the rotational light curve:

c = 3.435± 0.003, a = −0.029± 0.005, b = −0.054± 0.004.

The right panel of Figure 3.7 shows the new residual distribution. The dispersion of
the new reduced magnitude is considerably smaller than their first distribution and

is more consistent with a normal distribution. In addition, the goodness of fit is
substantially improved with χ2

dof = 1.33 compared to 1.67 prior to the iterative
rejection process. The rotational phase function over two periods is presented in

Figure 3.8
The distribution of reduced magnitudes with solar phase is shown in Figure 3.9
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Figure 3.7: Normalized residual distribution for the case T1 = 14.251 hr.

before and after the removal of the rotational light curve. The goodness of phase
effect linear fit before and after rotation curve removed χ2

dof improved significantly
from the originally 7.22 to 1.33 (both have the outlier point removed).

3.3 Photometric Data from New Horizons

3.3.1 New Horizons

Hew Horizons was launched in 2006 with its mission to explore the Pluto system
and the Kuiper Belt. In July 2015, New Horizons explored Pluto’s surface,

atmosphere, and satellites with resolved images [74]. The extended mission phase
began in 2016 with the goal to explore Kuiper Belt Objects [76]. The most

well-known target of the extended mission is the close fly-by of the cold classical
KBO 2014MU69 at the beginning of 2019. The spacecraft gathered measurements of
the physical properties of MU69 including its flattened shape, albedo heterogeneity,

and the presences of discrete geological units [77, 95].
In addition to the close fly-by, the LOng Range Reconnasiance Imager (LORRI) on

the spacecraft (a clear filter imager) observed ∼25 distant KBOs, Centaurs, and
dwarf planets [75]. Specifically, LORRI distant observations had the following goals:

• determine the shape, rotation rates, and pole positions by light curves at mul-
tiple aspect angles;

• search for ring and dust materials with high-phase photometry;
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Figure 3.8: Light-curve of 2002 MS4 folded at 14.251 h and shown for two peri-
ods. The same data is shown twice to better illustrate the rotation curve; typically
presentation for asteroid rotation curves. The dark squares represent the reduced
magnitudes with 1-sigma error bars and the red square is the one rejected measure-
ment. The green line is the final light curve.

• refine KBO’s orbits by performing high-parallax astrometry;

• determine phase functions and regolith microphysical properties by photometry
at moderate and high phase angles;

• search for small satellites and closer binaries.

3.3.2 Photometry of MS4 by New Horizons LORRI

The high phase observation Of MS4 were obtained by New Horizons LORRI
([18, 93] and Section 3.3). The bandpass of this clear imager extends from 350nm to

850nm with a pivot (central) wavelength of 601nm. The reduction technique to
deliver the photometry of LORRI is described in [60] and was carried out by the
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Figure 3.9: Phase curve for the observations of CFHT/MegaCam before and after
MS4’s rotational curve is removed. The open squares represent the reduced magnitude
before the removal and the red point is for the reduced magnitude after the removal
without error bars for clarity. Here, the outlier is not displayed.

LORRI distant TNO team. The clear filter LORRI observations are tied to UV CRI

system using a transformation equation derived by observing a series of Landolt
stars [60]:

V = −2.5 log10(DN/s) + 18.94 + CC (3.4)

where DN/s is the data number per second and CC is a colour correction term. As
reported above, the colour index for MS4 is (V −R = 0.38± 0.02) which is similar
to the solar value over the LORRI bandpass (350 nm to 850 nm) resulting in CC=0

for this source [93]. The high-phase flux measurements from New Horizons
combined with the CFHT MegaCam r observations (prior to light-curve correction)
were presented in [88] and are reproduced in Table 3.3 . As my photometry of MS4
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using CFHT MegaCam is represented in SDSS r AB magnitudes, I first transform
those values to Johnson V magnitude for inclusion with the New Horizoins

high-phase observations. We use the calibration from [27] for this transformation:

r = V − 0.84(V −R) + 0.13

Apply the V −R=0.38 colour of MS4 , giving V = r + 0.189.

Table 3.3: New Horizons LORRI flux measurements of 2002 MS4 .

year mon day hh mm ss.sss ∆ r phase mag err instr.
(AU) (AU) (deg)

2016 07 13 15 02 30.243 15.339 46.799 37.777 19.725 0.199 LORRI
2016 07 14 07 32 30.243 15.336 46.798 37.794 19.369 0.142 LORRI
2017 10 31 00 02 04.720 13.256 46.706 51.392 19.802 0.237 LORRI
2017 11 01 00 02 04.721 13.252 46.706 51.424 19.758 0.331 LORRI
2017 11 02 00 02 05.722 13.249 46.706 51.457 19.532 0.189 LORRI
2019 09 01 20 36 30.385 12.006 46.570 76.207 20.024 0.201 LORRI
2019 09 02 21 52 30.386 12.005 46.569 76.249 19.954 0.186 LORRI
2019 09 04 15 47 30.388 12.005 46.569 76.317 20.027 0.203 LORRI

3.4 Phase curve of MS4

I transformed all observations from CFHT and New Horizons to reduced
magnitudes (i.e. removed the observer and Sun distance components using

Equation 2.2) and those values are presented in Table 3.4. In the table, the light
curve variation has been removed from the CFHT magnitudes however, the New

Horizons values are not corrected for rotation. The observations from New Horizons
are rather dispersed and obtained at large phase angles where the rotation light
curve may be quite different. For all observations reported in Table 3.4 the MJD

values are in the MS4 centric frame.
The reduced magnitudes versus solar phase angle of observations are shown in

Figure 3.10. The magnitude values at low phase angle are from the CFHT
MegaCam data and are the average values at each phase angle (Figure 3.9 presents

the individual measurements), while the high phase angle values are from New
Horizons.
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Table 3.4: Reduced V magnitude of MS4 for all observations.

MJD phase V mag err MJD phase V mag err
(deg) (mag) (mag) (deg) (mag) (mag)

56477.2014332 0.367 3.687 0.018 56479.1878336 0.385 3.680 0.018
56477.2026357 0.367 3.711 0.016 56479.1889100 0.385 3.682 0.018
56477.2037508 0.367 3.684 0.018 56512.0705504 0.851 3.816 0.025
56477.2051003 0.367 3.722 0.021 56512.0717072 0.851 3.765 0.032
56477.2066818 0.367 3.690 0.017 56512.0727875 0.851 3.737 0.026
56477.2077575 0.367 3.679 0.018 56535.0758210 1.111 3.796 0.016
56477.2100641 0.367 3.675 0.017 56535.0875837 1.111 3.831 0.013
56477.2112649 0.367 3.679 0.017 56535.0886635 1.111 3.821 0.016
56478.2263420 0.376 3.664 0.016 56601.9192025 0.960 3.813 0.060
56478.2274205 0.376 3.664 0.017 56601.9202823 0.960 3.762 0.056
56478.2285055 0.376 3.688 0.017 56918.9518345 1.211 3.853 0.016
56478.2295847 0.376 3.681 0.019 56918.9535491 1.211 3.811 0.015
56478.2306645 0.376 3.676 0.018 56921.9494539 1.218 3.833 0.018
56478.2317443 0.376 3.730 0.017 56921.9511737 1.218 3.815 0.016
56478.2328293 0.376 3.694 0.017 57582.5381482 37.777 5.445 0.199
56478.2339056 0.376 3.694 0.017 57583.2256656 37.794 5.089 0.142
56478.2349895 0.376 3.643 0.018 58056.9248832 51.392 5.843 0.237
56478.2362516 0.376 3.679 0.017 58057.9249064 51.424 5.800 0.331
56478.2417299 0.376 3.701 0.017 58058.9249353 51.457 5.574 0.189
56478.2428085 0.376 3.731 0.018 58727.7893441 76.207 6.286 0.201
56479.1854351 0.385 3.696 0.019 58728.8421277 76.249 6.217 0.186
56479.1865131 0.385 3.693 0.018 58730.5886555 76.317 6.290 0.203

3.4.1 HG Model Fit

To compare the MS4 photometry with other KBOs, we model our photometry as a
function of solar phase angle with a least squares fit to the IAU standard

two-parameter system, which is the HG magnitude system [13] (see in Section 2.8.2.

V (1, 1, α) = H − 2.5 log10[(1−G)Φ1(α) +GΦ2(α)] (3.5)

where, H is the mean absolute magnitude, V (1, 1, α) is the reduced visual
magnitude at phase angle α. Φ1 and Φ2 are the single and multiple scattering phase

function, respectively (see Equations 2.17 and Equations 2.18.
Figures 3.10 and 3.11 present the reduced Johnson V magnitude with respect to the
solar phase angle and a least-squares best fit to the HG model. I find that best fit

model curve results in an absolute magnitude of H = 3.614± 0.013 and slope
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Figure 3.10: 2002 MS4 HG phase curve for α < 80o. The blue points are the
reduced magnitudes, where the CFHT values are averages at the given phase angle
and rotation light-curve effects have been removed. The solid line is the best-fit
model.

parameter of G = 0.104± 0.013. Figure 3.11 clearly demonstrates that the standard
IAU approved phase model does not provide an acceptable representation of the

observations.

3.4.2 Shevchenko AB Phase Curve Model

Though we have valuable observations MS4’s reduced magnitude values measured
over a wide range of phase angles is not well matched to the HG model. As

described in Section 2.8.3 the Shevchencko AB model provides an alternative
representation. The three-parameter empirical model propose by Shevchenko [70]
(see Equation 2.19) provides a very good approximation of asteroid phase curves.

Interestingly, this model is found to also provide an acceptable parameterization of
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Figure 3.11: 20002 MS4 HG phase curve from α < 1.5o. (see Figure 3.10
for details)

2002 MS4 ’s phase curve.
Figure 3.12 shows my 2002 MS4 observations compared to the AB phase model. In
the large phase range, the AB model curve is similar to that of the HG model, at
small angles, however, at small phase angle the AB model is significantly better
than HG model. χ2

dof = 1.19 for the AB model, which is satisfactory and much
better than that of HG model. In fact, Belskaya and Shevchenko [5] found that the

HG model is usually not a good model and as it fails to accurately describe the
phase behaviour for asteroids of high and low albedo. My fit parameters by

equation 2.19 are,

V (1, 0) = 3.977± 0.018, A = 0.414± 0.026, B = 0.031± 0.001.
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Figure 3.12: 2002 MS4 AB phase curve. Panel A: 0o < α < 1.5o. Panel B: 0o < α <
80o S. (see Figure 3.10 for details)

The absolute magnitude is then determined using these best-fit parameter values

HV = V (1, 0)− A = 3.56± 0.03

The difference between the absolute magnitudes derived from HG and AB models is
approximately 0.05 magnitude (5%) while the χ2

dof prefers the AB model. I adopt
the AB model derived absolute magnitude HV = 3.56± 0.03 to be the absolute

magnitude of 2002 MS4.

3.4.3 Opposition Surge

I have found no evidence of an opposition surge for MS4. There is a possibility that
for low albedo bodies, a surge may exist at a very narrow phase angle below 0.1 -

0.2 degrees [6] as the observations reported here do not cover these very small phase
angles. Achieving very low-phase observations requires observation when the object
passes through its node (i.e. is aligned with the ecliptic plane). Unfortunately, 2002
MS4 passed through its node in about 1954 and will not do so again until 2103. It

is left to future generations to determine if MS4 exhibits an opposition surge.
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Chapter 4

Occultation Events

4.1 Introduction

As described in Section 2.9, and occultation event can be used to determine the size
of asteroid or KBO. One determines the size by measuring the duration of the

occultation event, time between the ingress (start) and egress (end), combined with
knowledge of the relative motion between the Earth and occultor. The

timing/velocity combination provides the length of a ’chord’ across the remote
object, when we treat the background star as a stationary point source, a reasonable
approximation for the geometries considered here. The length of an individual chord
provides a measure of the minimum size of the object. In this chapter I present the

determination of the chord length across 2002 MS4 for two occultations events
observed from Anarchist Mountain in BC Canada.

4.2 The Events

Two occultation events were observed on two separate nights, 2020-Jul-26 and
2020-Aug-19, both observed from the same location. The observations took place as
part of an observing campaign organized by the Lucky Star project.1 Both nights’

data were acquired at the Anarchist Observatory. The Anarchist Observatory
regularly conducts occultation observations as part of the Research and Education

Collaborative Occultation Network(RECON)2. The obsevatory is located at latitude
+49.008827 degree, longitude -119.362968 degree and 1087 m elevation.

Observations were acquired using a QHY174m-GPS imager. The QHY camera uses
a CMOS detector with 1920 × 1200 pixels and a 1 ms readout time without

1https://lesia.obspm.fr/lucky-star/index.php
2http://tnorecon.net/
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mechanical shutter. The QHY camera has an integrated GPS receiver enabling
accurate (better than 1ms) absolute time resolution. The images were stored

directly as FITS image files and tagged with the GPS time of start of the
integration. Details of the observational system are reported in Table 4.1.

Table 4.1: Anarchist Mountain Observatory

Optical Layout Maksutov-Cassegrain Astrograph Telescope
Mirror-Diameter 30 cm

f/# 4.9
camera QHY174M-GPS

effective scale 0.8 arcseconds/pixel
image size 1920×1200

field of view 26.3×16.5 arcminutes
effective gain 0.067 e−1/ADU
readout noise 2.3 e−1

The line of site to 2002 MS4 currently has the disk of the Milky Way in the
background and the object frequently occults the line of sight to background disk

stars. Two predicted occultation events were observed, one with a predicted central
time of 2020-0726T10:15:12Z and the other at 2020-08-19T07:36:30Z. We obtained

88 usable images spanning the July-26th event and 66 spanning the time of the
August 19th event, with sampling times of 2 s and 4 s.

Similar to the technique we use in Chapter 3 for data from CFHT MegaCam, I
perform image subtractions on the set of images to be at the same photometric zero
points and remove the flux from non-variable sources. For each set of frames, I first
identify the occulted star and extracted a small sub-frame (500× 500 pixels) around

the occulted star. I then stacked the sub-frames using the ISIS simple-stack
procedure (average with 3-sigma pixels values clipped). This stacked template

image was then used to subtract the static sky from the individual exposures with
the resulting images normalized to a uniform flux zero point. I then use the Python

package photutils, a astropy sub-package, to perform aperture photometry on
the occulted star in the static-sky subtracted images. The stellar flux was measured

in a circular aperture with a radius of 1.1 times the FWHM of the seeing, which
achieves a maximum S/N ratio for a Gaussian Point Spread Function (PSF)[37].

After measuring the flux, I constructed a time-series view (a.k.a. light-curve) of the
measured flux against the mid-time of each frame. In this light-curve we see a

noticeable dip (see Figure 4.1) in the flux from the star, at the time of the predicted
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occultation by 2002 MS4.
To determine the duration of the occultation event I fit a square well model to the
time-series observations. To fit to the square well model described in Section 2.9 we

first re-normalize the data so that the average flux level during the occultation is
zero and outside the time of the event the average flux is unity. The square-well

model is a five parameter function that models the occultation event light curve as a
constant flux prior to and after the event with a monotonically decreasing, then flat,

and then increasing flux during the ingress, event, and egress. See equations in
Section 2.9 for a description of the model parameters. I used the curve_fit module
of the scipy Python package which implements a least squares approach to estimate

the best fit parameters for the piece-wise square well model function given our
time-series observations. Table 4.2 summarizes all four parameters as determined by

least squares parameter fitting for the two occultation events while Figure 4.2
displays the flux from the occulted star and the corresponding square well fit.

Table 4.2: Parameters of square well for occultation data

Obs Date Td(s) tm(s) sf sb

2020 July 26 35.054±0.544 94.379±0.259 1.015 0.030
2020 August 19 33.802±1.023 88.036±0.512 1.020 -0.070

Using the two observed chords I provide an estimate of the size of MS4. To derive
the size of of a SSO (Solar System Object) via occultation requires a minimum of

one chord. Multiple chords of the same event can be combined together to provide a
measure of the shape of the occultor as the chord lenghts from different sites

essentially map out the objects shadow on the Earth. With two chords we can
compute an average estimate of the size of the occultor.

My data set contains the measurement of two unique chords observed from the same
site but from two different occultation events. One can not use these two events to

uniquely derive the diameter of MS4 as the ephemeris uncertainty in the sky
location of 2002 MS4 is large and the relative geometry the chords across the

surface can not be determined with sufficient accuracy. Even so, we can compute
two chord lengths for MS4 and compare those two values as independent estimates
of the minimum size of the object. Table 4.3 lists the two chord lengths in terms of
the ephemeris’ speed in the sky-plane. I use an ephemeris retrieved from NASA’s

Jet Propulsion Laboratory’s Horizons3 to compute the sky-plane speed of 2002 MS4.
3http://ssd.jpl.nasa.gov/
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Figure 4.1: A light-curve for the occultation event on July 26, 2019. An obvious dip
appears in the curve since the star is occulted by the MS4.

I find that the inferred sizes for the two events are statistically different, implying,
as epxected, that the two chords have different impact parameters. From the

observed chords, we find the lower limit on the diameter of MS4 is 823 ± 13 km (the
larger of our two chord lengths). Each chord can be used to determine an estimate
of the diameter of the body (see Equation 2.22). Using this approach we determine
a best estimate for the diameter of 2002 MS4 is approximately 1114 km. Thus, our

estimated size of MS4 is 1100 km ≥ d ≥ 820 km.

Table 4.3: Chord lengths for MS4 with its speeds adopted from JPL ephemeris

Obs date Td(s) speed (km/s) chord-length (km)
2020 July 26, 2019 35.054±0.544 23.47 822.72 ±12.77

2020 August 19, 2019 33.802±1.023 17.67 597.28 ±18.08

On 08-Aug-2020 as many as 116 telescopes participated in observations of a
occultation of a star by 2002 MS4. This massive campaign was organized by the

Lucky Star program. Using the combination of data from this event an equivalent
diameter is about (800± 24) km was determined [64], consistent with our minimum

diameter estimation (823± 13) km.
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Figure 4.2: Occultation time series. Left panel: 26-Jul-2020 event. Right panel:
19-Aug-2020 event.

4.3 Geometric Albedo

Now that we have derived the absolute magnitude of MS4 HV and have a robust
estimate of the object size one can determine the geometric albedo. Combining the

geometric albedo with our previous determination of the phase we have already
known its solar phase function (derived from Shevchenko’s model). I estimate its

geometric albedo as follows.
Using the phased curve from Chapter 3, I determine the absolute V magnitude. The

size of an airless body and absolute magnitude are connected via the geometric
albedo and V flux from the Sun via the formulae:

D =
1336
√
pV

10−0.2HV ,

where D is the diameter of our target MS4, and pV is its geometric albedo [e.g. 68].
From my determination of the minimum diameter Dm = 822± 12 km and measure
of the absolute V magnitude HV = 3.56± 0.03 mag I determine the geometric V

albedo to be

pV ≤ 0.099± 0.004,
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Chapter 5

A Portrait of 2002 MS4

Now that I have a measure of the major physical parameters of 2002 MS4 I consider
the implications. First I consider the implications of the measured physical

parameter for the thermal status of the object. Then I place the object’s phase
integral and albedo in the comparison to the asteroids to determine if 2002 MS4 has

surface properties similar to asteroids.

5.1 Thermal Modeling

One can construct a thermal model of an airless body by considering the energy
balance between absorbed and reflected plus emitted radiation. Under the

assumption of a blackbody radiator the temperature can then be converted into a
predict flux and compared to IR flux measurements. The Near Earth Asteroid

Thermal Model (NEATM) [36] provides a simply parameterization of the expected
temperature of an airless body.

Under the NEATM assumptions (very slow rotation, uniform composition and
thermal equilibrium) the temperature on the surface of the body is given by

εσT 4
SS =

(1− A)S

η

Where TSS is the sub-solar temperature of the body, ε is the surface emissivity, σ
the Stefan-Boltzman constant, A is the bond-Albedo, S is the solar constant at the
surface of the object (S = S�

1au
rau

where S� = 1360.8W/m2[48], and η is the so-called
beaming factor. The beaming factor is larger than one for surface that emit most of

their flux in the sun-ward direction and less than one for isotropic emission. The
beaming factor also mimic the behaviour of a thermal inertia and is best thought of
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as a arbitrary normalization of the absorb flux (as opposed to the emitted flux
normalization provided by ε). Clearly, within the thermal equation there is

significant redundancy between A, η and, ε but each parameter is representative of
a different physical effect.

The sub-solar temperature is used to model the surface temperature anywhere on
the body as:

T = Tss cos
1/4(ω)

= (
(1− A)S

ηεσ
)1/4 cos1/4(ω)

(5.1)

where ω is the angle between the sub-solar point and the point on the surface.
Using this thermal profile for the object surface one can compute, under the

assumption of a black-body radiator, the flux at any wavelength:

F (λ) =

∫
B(λ, T )dA · u

Where here dA · u is a projected unit of area on the surface and B is the black-body
equation.

Vilenius et al. [90] used observed 2002 MS4 from the Herschel Space Observatory
and the Spritzer Space Telescope to compute a NEATM derived size estimate based
on the observed thermal flux. They adopt a value of the emissivity of ε = 0.9 based

on laboratory measurements of ice [43] and use chi2 minimization between the
model and observed flux distribution to determine likely values of η, A and Sproj

(the projected surface area). Their thermal-model constrained diameter of 2002
MS4 is D = 934± 47 km with a Bond Albedo of A = 0.025 and η = 1.06± 0.06.

They convert the Bond Albedo to a geometric albedo of pV = 0.05± 0.04 and phase
integral of q = 0.5 via the coupled equations of A = p× q and q = 0.336p+ 0.479

[16].
One can determine an approximate value for the phase integral from the phase

curve [89]:

q ≈ 0.135 + 2.671Φ(70°),

where Φ(α) is the value of the phase integral evaluated at 70o. For the Shevchenko
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phase model (see Equation 2.19) we have:

Φ(α) = 10−0.4( α
1+α

A+α×B)

Thus we can find qV ≈ 0.383± 0.017. The value of the Bond Albedo is A = q × p

and thus, combining these measures we have

AV = pV × qV .

Therefore, AV can be computed to be

AV ≤ 0.038± 0.002.

The thermally fitting derived values of size and albedo are significantly different
from those determined via occultation observation combined phase-curve

measurements. In the thermal modelling the assumption of zero (very slow) rotation
is made, this does not hold for 2002 MS4. The object is slowly rotating but likely

not so slow that the night side will have fully cooled (i.e. there is significant residual
heat from the thermal inertia). Thus, the leading ’dawn’ side of the object will be
warmer than predicted by the Equation 5.1 and the emitted flux per-unit area will

be higher, resulting in the size of the object required to explain the emitted flux
being smaller. The NEATM model attempts to compensate for the lack of a
thermal inertia value by use of the η parameter, however, a more complete

modelling that accounts for the rotation of 2002 MS4 is needed. This modeling is
left to future work.

5.1.1 2002 MS4 versus the asteroids

Currently popular models of the formation of the outer solar system include a phase
of dynamical instability during which the objects that formed in the

Jupiter-Neptune region were scattered into different orbits. The family of such
models are generally called Nice Model scenarios [50]. In some variants of this

scenario objects that formed in the outer solar system end up in the asteroid belt
and make up the C-type asteroids today [91]. If such models are correct then one
might expect to find commonalities between the properties of the scattered (hot)
Kuiper belt objects and the C-type asteroids. 2002 MS4 is currently a member of
the hot component of the Kuiper belt. If the C-type asteroids did originate in the
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same zone as 2002 MS4 then one might expect them to share a phase/albedo
relation.

In Figure 5.1, I show the both occultation/light-curve derived and thermal model
derived geometric albedo of 2002 MS4 as compared to the values for 33

well-measured asterods [5]. Although the thermal model derived albedo is somewhat
discordant with the asteroid relation my occultation determined value is more

consistent with this relationship. There is consistency between the phase/albedo of
2002 MS2 and that of the asteroids, perhaps the share some common surface

properties.

Figure 5.1: Phase coefficient vs. geometric albedo. Values for MS4 determined using
occultation (red) and thermal (blue) based size measurements. Also shown are the
vlues for 33 well-measured asteroids along with a linear fit to those data[5].

Belskaya et al.[5] find that the amplitude of opposition effect (OE) is correlated
with an asteroid’s abledo and type. The OE is largest for modest albedo asteroids,

but decreasing for dark and high albedo asteroids. The OE is quantified as the ratio
of the intensity at 0.3o to that at 5o. Using the derived Shevchenko’s phase model
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(Equation 2.19) we can obtain the value of the OE,

I0.3
I5

= 100.4×((1/1.3−1/6)A+4.7B) ≈ 100.241A+1.88B

For MS4, therefore, based on my best-fit values for the parameters A and B and
their uncertainties, I find:

I0.3
I5

≈ 1.44± 0.02.

Using the data from [5] I compare the OE - geometric albedo relation for 2002 MS4
with that of a variety of asteroids (see Figure!5.2). If the C-type asteroids and 2002

MS4 share a common origin we might expect them to share a grouping in the
OE-albedo space. Figure 5.2 shows that that 2002 MS4 is located between the

C-type asteroids (population posited to share an origin with hot KBOs) and the
M-type asteroids (that is the metallic asteroids) that do not share a formation

origin with the hot KBOs. 2002 MS4’s OE/albedo correlation is more consistent
with M-type than C-type asteroids. Therefore, we can draw the conclusion that

MS4 is not C-type like. I find, based on phase/albedo correlations, that 2002 MS4
and the C-type asteroids have differing surface compositions, suggesting that they

do not share a common formation location. Here we include a reminder table ?? of

Figure 5.2: The type of MS4 from its ratio of intensities of I(0.3 deg)/I(5 deg)
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different type of asteroids.

Table 5.1: Asteroid Types

Asteroid Type Composition
S Silicaceous
C Carbon-rich
M Mostly composed of metal
E Contains enstatite (MgSiO3)
P Unique compositions, possibly organic-rich
G Subcategory of C-type asteroids
F Uncommon type of C-type asteroid

5.2 Summary

This dissertation is aimed to utilize CFHT/MegaCam archival images to perform
precise photometry of the faint and distant but large KBO, (307261) 2002 MS4

(MS4).
Using observations stars occulted by 2002 MS4 I have determined the minimum

physical size of this object. My estimate based on two single chord observations are
fully consistent with the more constrained result found during an observing

campaign that enlisted 130 individual telescopes and observers. The estimated size
derived from occultations is formally inconsistent with that obtained via thermal

model fits, likely indicating that the thermal models are too simplistic and perhaps
more complex models that include rotation effects and thermal inertia are needed.

Using time-series data obtained from the CFHT MegaCam archive I have
constructed a high precision light-curve for 2002 MS4. Using the light-curve data I

determined a rotation period and amplituded for 2002 MS4. The light-curve
amplitude is low, consistent with the nearly spherical shape found during the

occultation campaign while the rotation period is consistent with that found for
similar solar system bodies.

By combining ground-based photometry with the space-based photometry obtained
from New Horizons/LORRI I have constructed a complete phase curve for 2002
MS4. I find that the two-parameter HG phase function does not provide a good

representation of the data while the three-parameter Shevchenko model provides a
reasonable representation of the data. This three parameter model provides the

opportunity to do comparative studies with asteroid families without introducing
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the full complexity of Hapke’s phase model. The large number of parameters would
have provide an over-fit to the spare data set available.

Table 5.2 summarizes the results of my measurements and the derived physical
parameters for 2002 MS4.

Combining the size estimate from occultations with the measured phase curve
enables a comparison between the Opposition Effect, albedo and phase ratio of 2002

MS4 with that of various asteroid families. Based on this comparison I find no
evidence, within this portrait of MS4 surface characteristics, to support the concept

that the majority of the C-type asteroids formed with the hot-component KBOs.

Table 5.2: Parameters of MS4 by our solution and some references

item our solution other solution reference
HV (mag) 3.56± 0.03 3.63 [82]

Phase coefficient 0.17± 0.01
Rotation period 14.25 hr 7.33 hr [86]

Rotation amplitude 0.12± 0.01 mag 0.05 mag [86]
Diameter > 822± 13 km 800± 24 km [64]

Phase integral 0.38± 0.02
Geometric albedo ≤ 0.099± 0.004 0.051 [90]

Bond albedo ≤ 0.038±0.002

5.3 Future work.

The rotation period of 2002 MS4 determined in this analysis should be confirmed.
Such confirmation would require an observing campaign that obtained nearly

continuous data for multiple nights such that aliasing between the possible 14 and
7-hour periods could be removed.

As suggested above, when a more robustly determined rotation period is available, a
more complete thermal model for the surface of 2002 MS4 that considers rotation
and thermal inertia should be constructed such that a thermal diameter consistent
with occultation measures could be determined. Such a model should also take into

account the likely surface material of 2002 MS4, which is expected to be well
determined by very recently obtained JWST IR spectra.

The physical parameters reported of 2002 MS4 reported in this thesis will be
valuable inputs into future modeling work.
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