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ABSTRACT

Some simple ideas are used here to prove a theorem on generating
functions for a certain class of g-polynomials. This general theorem
is then applied to derive a fairly large number of known as well as
new generating functions for the familiar g-analogues of various

polynomial systems including, for example, the cl

e, the assical orthogonal

polynomials of Hermite, Jacobi, and Laguerre. A number of other

interesting consequences of the theorem are also discussed.

1. INTRODUCTION, NOTATIONS, AND THE MAIN RESULT

A great surge of activities in the theory of g-series and gq-polynomials has
been witnessed in recent years. Various g-extensions of well-known hyper-
geometric identities and quadratic transformations have recently been obtained
by several workers. These g-extensions are known to have important applications
in many areas of pure as well as applied mathematics, physics, and engineering.
Workers in the field of gq-series and g-polynomials are realizing the need of
extending all the important results involving special functions to hold for their
q-analogues. With this objective in mind, we prove a general theorem on
generating functions for an important class of gq-polynomials, and then apply
this theorem not only to derive g-extensions of several familiar generating
functions, but also to deduce (for example) Jackson's q-Pfaff transformation [8]
which Andrews [3, p. 527] used to prove gq-analogues of Kummer's summation theorem
and Gauss's second theorem, Hahn's g-analogue [7] of Kummer's first formula, and
Jackson's q-analogue [9] of the celebrated Pfaff-Saalschutz theorem.
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Define, as usual, a generalized basic (or q-) hypergeometric function by (cf. [11,

Chapter 3]; see also [13, p. 347, Equation (272)])
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where, for convergence, lq] <1 and Izl < when T 1s a positive integer,

or lzl <1 when 1 =0, provided that no zeros appear in the denominator.
We shall also need the Gaussian polynomial (or q-binomial coefficient)

defined, for all non-negative integers n and k, by (see, e.g., [4, p. 35])
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For a non-negative integer m, the familiar q-binomial theorem (cf. [4,
p. 17, Theorem 2.1])
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which, in view of (1.2), yields (1.5) when m =0 (or when A 1is replaced by
Aq_m). Making use of (1.6), we shall prove the following
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THEOREM. In terms of a bounded complex sequence {Sn q} generated by
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define a family of basic (or q-) polynomials {fn N(X;Q)}:zo by
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provided that each side exists, |t| <1, and |q| < 1.

2. PROOF OF THE THEOREM

Denote, for convenience, the left-hand side of our assertion (1.9) by Q(t).
Substituting for fn N(x;q) from the definition {1.8) into Q(t), and inverting

the order of summation, we have
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provided that the series involved converge absolutely.
Now sum the inner series by appealing to (1.6) with m = Nk, and we find

for |t| <1 and |q]| <1 that
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Interpreting this last expression by means of the generating relation (1.7),

we are led immediately to the theorem.



REMARK. For substantially more general classes of gq-generating functions,
and for their multivariable extensions, the reader should refer to Section 3 of

a recent paper by Srivastava [12].

3. APPLICATIONS

We begin by applying our theorem to derive generating functions for the
g-analogues of many of the classical orthogonal polynomials. Setting
n(n-1)
Q
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in our theorem, we find from (1.8) that
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where Léd)(x;q) denotes the g-Laguerre polynomial defined by (cf. [6])
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Thus our theorem yields the following generating function for the g-Laguerre

polynomials:
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which provides a g-extension of a well-known generating function for Lagucrre
polynomials [14, p. 132, Equation (5)].

Next we consider the little q-Jacobi polynomials defined by (cf. [o])
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which is a g-extension of a known generating function for Jacobi polynomials
([1, p. 159, Equation (3.5)]; see also [14, p. 170, Problem 19(i)]).
Setting
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we observe from (1.8) that
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in terms of the g-Hahn polynomials defined by
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or, equivalently, by
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Our theorem when applied to the q-Hahn polynomials yields the generating function:
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Similarly, for the gq-Meixner polynomials defined by
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which provides a g-extension of a known generating function for the Meixner
polynomials [5, p. 225, Equation 10.24(13)].

The definitions (3.3) and (3.9) imply the following relationship between
q-Meixner polynomials and the 1ittle g-Jacobi polynomials:
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which can be used to show that the generating functions (3.4) and (5.10), and

indeed also (3.5) and (3.11), are essentially the same.



Now we turn to the gq-Charlier polynomials defined by
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which is a g-extension of a known generating function for Charlier polynomials
(5, p. 226, Equation 10.25(6)].
Setting
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the definition (1.8) assumes the form:
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and our theorem immediately yields the identity:
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On the other hand, in view of Heine's transformation (cf. [4, p. 19, Corollary

2.3]; see also [13, p. 348, Equation (275)1])
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Comparing (3.16) and (3.18), we readily obtain [7, p. 374, Equation (10.2)]
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which is a g-extension of Kummer's first formula for the confluent hypergeometric
function [10, p. 125, Theorem 42}.
The orthogonal g-polynomials @éa)(x;q) studied by Al-Salam and Carlit:z
[2, p. 48, Equation (1.11)] are precisely the polynomials defined by (1.8) with
N =1, and
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Thus our theorem yields the following generating function for ¢£a)(x;q):
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which, for A = 0, reduces to the following result due to Al-Salam and Carlitz

[2, p. 48, Equation (1.13)]:
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Setting « = 0 in (3.20) and then applying (3.19), we have
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where Hn(x;q) denotes the gq-Hermite polynomial defined by (cf. [15]; see also
[4, p. 49])
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Formula (3.22) may be compared with a divergent generating function for the
classical Hermite polynomials (see, e.g., [14, p. 138, Equation (7)]). On the
other hand, a further special case of (3.21) when o = 0 [that is, (3.22) with
A= 0] 1is a well-known result [4, p. 49, Example 3].
Yet another interesting application of our theorem with x = B/a, N =1,

and
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In view of the gq-summation formula [11, p. 97, Equation (3.3.2.6)]:
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or, equivalently, as Jackson's ¢q-Pfaff transformation [8, p. 145, Cquation (4)]
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Formula (3.27) is the main lemma of Andrews [3] which he used to derive
q-analogues of Kummer's summation theorem and Gauss's second theorem.

Finally, we set x = v&§/af, N =1, and
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which incidentally is involved in the equivalence of (3.6) and (3.7), and we thus

find from (3.28) that
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In its special case when vy = B, the right-hand side of (3.30) becomes

identical with the right-hand side of (3.26) with, of course, § replaced by

. . e I . N -
§. Equating the coefficients of t in the first members of (3.26) and (3.30),

in this special case, we obtain the g-summation formula:
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which is Jackson's gq-analogue of the celebrated Pfaff-Saalschutz theorem (cf.
[9, p. 111, Equation (B)]; see also [11, p. 97, Equation (3.3.2.2)]). Conversely,
setting y = 8 in (3.30) and summing the resulting 3®2 series by appealing
to Jackson's result (3.32), we shall arrive at (3.26) or (3.27). Thus our
formula (3.30) may also be looked upon as a generalization of the principal
result employed by Andrews [3, p. 527].

We conclude by remarking that many of the q-generating functions considered
in this section can alternatively be deduced from the following consequence of

our theorem (see also [12, Section 3]):

-n
o) (X;q)n q ) al’ 3 ap’
(3.33) ) m‘j‘— p+1®p q, Xq t
n=0 n 8 g -
1’ > pJ
(rtsQ),, R

_-Tzzajzj'p+l®p+l q, Xtj|, Itl <1, lq{ <1,

At, Bl’ .ens Bp;
which provides a q-analogue of a well-known hypergeometric generating function
(cf., e.g., [14, p. 138, Equation (8)]).. Formula (3.33) can indeed be specialized
also to derive generating functions for a number of g-hypergeometric polynomials

in addition to those that are considered here.
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