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ABSTRACT

Deterministic models for disease transmission often take the form of a system of non-
linear, ordinary, differential equations. However, these become more complicated
when time delays are used to model mechanisms in the dynamics of epidemics.
Some models including delays are surveyed, with latent period, temporary immu-
nity and length of infection as examples of such mechanisms. Threshold parameters
are identified, and in some cases periodic solutions are found to arise by Hopf bifur-
cation. Current investigations include a model for bovine tuberculosis in a constant
population cattle herd, and a variable population SIS model.

1. Introduction

The goal here is to survey some deterministic epidemiological models with delays, giving a flavor
of the modeling process, the mathematical tools used and the results obtained. The informal style
reflects the lecture that is the basis for this writeup. It is a somewhat personal survey, influenced by
models studied by the author and co-workers. Other important models and authors are unavoidably
omitted. Some references are added as a result of conversations with conference participants after
the lecture.

Infectious diseases considered are caused by viruses or bacteria, and are spread by direct
individual-to-individual contact in a population. Diseases caused by viruses include childhood dis-
eases (e.g., measles, chickenpox, rubella) as well as influenza, hepatitis A, and HIV/AIDS. Bacteria
are the infectious agents for other diseases, including gonorrhea, pneumonia and tuberculosis; see
Hethcote!®, Table 1.

The models discussed are all deterministic and spatially homogeneous. Emphasis is on human
diseases, except in Section 5 where a model for bovine tuberculosis is considered. Infection is assumed
to be passed only by horizontal transmission (z.e., susceptible individuals contract the disease by
contact with infectious individuals), except in Section 7 where vertical transmission from infected
parent to offspring is also included.

Time delays are used to model mechanisms in the disease dynamics. Examples of such mecha-
nisms are temporary immunity (Sections 3, 4, 7), latent period (Sections 5, 7) and length of infection
(Sections 6, 8). Inclusion of time delay means that the models can be formulated as functional dif-
ferential and/or integral equations. One important aim is to investigate the consequences of time
delays. In particular, parameters relevant for disease control are identified, and the possibility of
periodic solutions is investigated. Periodic behavior has been observed in the incidence of many

infectious diseases, including biennial oscillations in measles!, yearly outbreaks of chickenpox!® and

1



influenza?®. Known ways in which periodic solutions can arise in epidemiological models were sur-
veyed in 1981 by Hethcote et al.?, and in 1989 by Hethcote and Levin'®. Mechanisms that can
lead to periodic solutions inciude periodic coefficients, temporary immunity, noniinear incidence and
variable population size.

In the following models, class S(t) denotes the number of individuals in the population that is
susceptible (not yet infected) at time ¢, E(t) the number that is latent (i.e., infected but not yet
infectious), I(£) the number that is infectious (transmitting the disease), and R(t) the number that
is removed (by immunity or death). In all models, except that for bovine tuberculosis in Section 5,
and a model with vertical transmission in Section 7, the latent period is assumed to be negligible,
thus infected individuals are also infectious, and E(t) is ignored. Models are labelled according
to the flow between classes, and are conveniently depicted by transfer diagrams. In Sections 2,
3 and 4, cyclic SIRS models with constant total population number N(t) are considered. Thus
N(t) = S(t) + I(t) + R(t) is constant, and is normalized to 1 so that S(t), I(t), R(t) may be
considered as fractions of the population that are susceptible, infectious, removed, respectively. In
Sections 6, 7 and 8, the population size varies, thus there is an interplay between the demographic
and disease dynamics.

To introduce further concepts and notation, a basic STRS model (without time delay) is first
briefly presented in Section 2.

2. SIRS ode Model

A qualitative STRS model for spread of an infectious disease in which recovery gives temporary
immunity was formulated and analyzed by Hethcote®. This may be appropriate for the spread of
influenza. The model assumptions and the results are now briefly stated. The total population is
assumed constant, thus births and natural deaths occur with equal rate constant b, and all newborns
are susceptible. When b > 0, the mean lifetime is %; when b = 0, vital dynamics are ignored. The
contact rate constant A > 0 is the average number of adequate contacts per infective per day. Thus
the average number of susceptibles infected per day is AI(t)S(t). For fractions, this is bilinear
incidence (mass action), and gives the rate at which the susceptible fraction becomes infectious.
(Note that this incidence corresponds to the standard incidence for numbers.) Infectious individuals
recover with a recovery rate constant v > 0. The waiting time in the infectious class is exponentially
distributed with mean waiting time 2, thus the death adjusted mean period of infectivity is m
Individuals are assumed to recover with temporary immunity, the probability of remaining recovered
t units after becoming recovered is exp(—6t), with death adjusted mean period of immunity given by
(61Tb)' As temporary immunity fades, individuals re-enter the susceptible class. The transfer diagram

for this cyclic STRS model (with S as the susceptible class) can be represented as:
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The initial value problem for this STRS model is formuated as the 2-d ordinary differential equation

(ode) system:
S'=b—AIS+6(1-1-5)—-bS,

(2.1)
I'=XIS—(y+0b)I,
with $(0), I(0) > 0, and R=1—1 — S. Here S = 5(t) and §' = %3. Define region
D={(S,I): §>0, I>0, S+I<1},
and parameter
o= A/(’)"‘f‘b) (22)

Then o is the contact (basic reproduction) number, which is the number of adequate contacts of
an infectious individual during the death adjusted infective period. This parameter gives a sharp
threshold for the model, as shown by the following result' which is proved by planar ode techniques
(including Lyapunov functions and Poincaré-Bendixson).

Result 2.1. Consider the model (2.1). If o < 1, then D is the asymptotically stable region
for the disease free equilibrium (S,I) = (1,0). If ¢ > 1, then D — {(S,0) : 0 < § < 1} is the
asymptotically stable region for the endemic equilibrium (S*,I*) with S* = %, I* = %.

Solutions always approach an equilibrium, the disease dying out if ¢ < 1, but approaching an
endemic value if & > 1; no periodic solutions occur. The contact number o (often written Ry when
it is called the basic reproduction number) for each disease determines the fraction that must be
vaccinated to eradicate the disease. Note that this basic model includes important, simpler models
as special cases. For § — oo, it becomes an SIS model, appropriate for diseases that confer no
immunity, e.g. gonorrthea. When § = 0, and R is interpreted as the permanently recovered class,
then it becomes an SIR model, appropriate for some childhood diseases.

3. SIRS Model with Delay in R

A general probability of still being in the I (or R) class t units after entering it, corresponds to
a distributed delay in the I (or R) class. For example, a step function probability corresponds to
a constant period of infection (or immunity). Busenberg and Cooke’ pointed out the importance
of proper integral conditions in such delay differential equation models. Cooke and Yorke'! and
Greenberg and Hoppensteadt!? considered SIS models with distributed delays in I, and found that all
solutions approach constants. However, Hethcote et al.'® found the possibility of periodic solutions
in an STRS model with constant period of immunity with no vital dynamics. This STRS model is
now formulated with P(t) denoting the probability of remaining recovered t units after becoming
recovered. It is assumed that P(t) > 0 is nonincreasing, piecewise continuous and satisfies

P(0*)=1,  P(o0)=0, /oo P(u) du = w.

Here w is the average period of immunity. (Note that the ode model in Section 2 is the special case

with P(t) = exp (—6t), § = L.) For this more general STRS model, the transfer diagram is:
P w g g
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AIS I P(1)
oI l bR

The equations governing this constant population SITRS model are
I'(t) = AI() S(t) — (v +8) 1(2),
RU%:RMU+7/¢KMem%%@—m»PU—zﬁh, 3.1)
with S(t) =1-1I(t) — Ro(t), S(0) >0, I(0)>0.

S

— W
—

Here Ry(t) is the fraction of the initial recovered population still recovered at time t, with Ro(2)
continuous, nonnegative and lim; o, Ro(t) = 0.
Assume that P(t) is a step function, namely

1, 0<t<uw,
where w is now the constant period of immunity. The model can be reduced to the following
integro-differential equation for I(¢) when t > w

I'(t)=—(v + ) I(t) + A I(¢)

0

. [1 —It)—~ / I(t + u) exp(bu) du] .
—-w

Defining the contact number as in (2.2), namely o = (77%\!-727’ the following result is shown in van den

Driessche®, see also Hethcote et al.1® when vital dynamics are ignored.

Result 3.1. Consider the model (3.1) with step function P(t) given by (3.2). If o < 1, then all
solutions approach the disease free equilibrium (S,I) = (1,0) ast — oo. If o > 1, then the endemic
equilibrium (S*,I*) with S* = % s locally asymptotically stable for some parameter values. For
other parameter values (increasing wy) Hopf bifurcation gives rise to periodic solutions around this
equilibrium.

The presence of periodic solutions thus depends on P(t), there are none when P(t) is a negative
exponential (Section 2), but they are possible when P(t) is a step function (3.2). Thus the inclusion
of a time delay has changed the qualitative behavior of the STRS model. This model is a special
case of a more general STRS model, which we now proceed to give in more detail.

4. SIRS Model with Delay and Nonlinear Incidence

In Section 2, it was assumed that the incidence rate is bilinear, i.e., linear in each of the variables

I and S. Deviations from this bilinear incidence rate (due, for example, to saturation or multiple

1PIC
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exposures) lead to nonlinear incidence rates. Liu et al?®?® considered ode SEIRS models with
nonlinear incidence AI?S9, and found that the dynamical behavior is not qualitatively changed
by taking ¢ # 1, but is significantly changed by taking p # 1. Specifically, for p > 1, multiple
equilibra and periodic solutions arising from Hopf bifurcation can occur for some parameter values.
Hethcote et all7? also found these phenomena in an SIRS model with nonlinear incidence AI? S and
a time delay in the removed class with vital dynamics ignored. This was extended?? to more general
nonlinear incidence Ag(I)S with vital dynamics. This is the model now summarized (see details in
Hethcote and van den Driessche??), and depicted in the following transfer diagram:

Ag(I)S yI P(t)

b b e

The force of infection is Ag(I), where g(I) satisfies

g(0t) =0, g(I)>0forI€(0,1], ge€C3O0,1].

Note that the classical bilinear incidence has g(I) = I (see Sections 2, 3), and A is then the contact
rate constant. The probability P(t) is assumed to be the step function (3.2), thus w is the constant
period of temporary immunity. For ¢ > w, the governing equations become

I'(t) = g (I(9) 5(2) — (v + b I(2),

R(t) =7 /t iw I(z) exp(=b(t — z)) de, (4.1)

with S(¢) + I(t) + R(t) = 1. This model is well posed, always has the disease free equilibrium with
S=1,I=R=0, and (possible) endemic equilibria (S*,I*, R*) with I = I"* satisfying

y+b_1_g() [1_1] = (D)
A o I H
with (4.2)
}1{— =1+ % (1 — exp(—bw)).

The number of such equilibria depends on the incidence function g(I), in particular on f(I) defined
above; see Lin et al.?6. The following result is from?? with the global stability proved by Lin and
van den Driessche??.

Result 4.1 Consider the model (4.1) under the above assumptions. Then the disease free equi-
librium is locally asymptotically stable iff o < 7%(3. If it is the only equilibrium, then the disease free
equilibrium is the global atiractor when o < —f-(lﬁ—)-‘ Assume that f(0) =0, f(I) < 0 on (0, H], and
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f(I) has a unique interior mazimum at I = I,. If 0 > 0¥ = .f(Ilm)] then there are two noniriial

equitlibria I, Iy with 0 < 1 < I, < L < H< 1.

Local stability of a nontrivial equilibrium I* is governed by the characteristic equation

(1 — exp(=(z + wb)))
z+wb
with e=wy—wlg'(I")S* +wrg(l*), and c=w?ryg(I*)>0.

z4+wb+a+c

=0, (4.3)

The quasipolynomial (4.3) was investigated by Hao and Brauer!® and by Hethcote and van den
Driessche??. Typically the birth rate constant b is small, and in the limiting case with b = 0, then
o =A/y,1/H = 14+~yw from (4.2), and equation (4.3) reduces to the characteristic equation analyzed
by Hethcote et al.1”1° where vital dynamics are ignored.

Result 4.2. Consider the model as in Result 4.1, with b = 0. Then if ¢ > o*, the smaller en-
demic equilibrium I is an unstable saddle, and at the larger endemic equilibrium Iy Hopf bifurcation
can occur giving rise to stable periodic solutions for some parameter values.

The Hopf bifurcation theorem for functional differential equations®!

is used to prove the existence
of a Hopf bifurcation; and numerical calculations are also given'” to demonstrate limit cycle solutions.
For g(I) = AI? with p > 1, the disease free equilibrium is always stable, and so the threshold
condition (see Section 2) is lost. The disease dies out for o < ¢* and also for some initial conditions

when o > o*.

5. Model for Bovine Tuberculosis

This section is based on some work in preparation (Rich and van den Driessche®®) on a model of
bovine tuberculosis (Mycobacterium bovis) in a cattle herd. In approximately the last 15 years, this
disease has resurged, while at the same time the incidence of tuberculosis in humans has been rising.
Thus current interest is in understanding the dynamics of this disease, with the aim of managing
herds to control spread of the disease.

M. bouis is spread from one animal in the herd to another mainly through direct aerosol contact®?.
There is evidence that possums in New Zealand®3%:3* and badgers in the U.K.222 are a reservoir
host for M. bowis, and play a significant tole in the transmission of cattle infection; but the model
considered here deals only with the cattle population. Since cattle rarely die from the disease, and
births and purchases approximately balance sales and slaughter, the herd population is assumed to
be constant. For an animal to be infectious, the disease must progress to the formation of tubercules
that can rupture and release bacilli. This may occur between 4-14 months after exposure, a constant
time (9 months) is assumed for this model. A latent class is thus introduced, with E(t) equal to the
fraction exposed to infection but not yet infectious. Once bacilli are released, lesions may temporarily
heal and remove the animal from the infectious class. Depending on individual health, an animal
can revert to the infectious state with rate constant . For this model, R(t) denotes the fraction
previously infectious but temporarily reverted to the noninfectious state, thus R acts like a second
exposed class. The disease transmission diagram is taken as:
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S P(t)
S : E I — R
I

’ e o [n

Here the input b is from births and purchases, and the output (S + E + I+ R) = b is from sales and

—

(e
slaughter. The function P(t) is taken as a step function, as in Section 3, except that [ P(u)du =T,
0

the latent period. For ¢t > 7, the model equations are

S'(t)=b—AI(t)S(t)—bS(2),
E'(t) = AI(t) S(t) — A exp(=br) I(t — 1) S(t — 7) — bE(t),

I'(t) = X exp(=br) I(t — 7) S(t — 7) + aR(t) — (v + b) I(t), (6.1)
with R(t) =1-5(t) — E(t) — I(t).
For this model, define
o = A exp(—br) E('—y(—%. (5.2)

Then o is the contact number, which is the product of the contact rate A, with the fraction surviving
the latent class (exp(—b7)) and the death adjusted mean time in I (namely, (o +b)/b(y + a +b)).
Here o gives a sharp threshold, as shown by the following.

Result 5.1. Consider the model given by (5.1)with o as in (5.2). If o < 1, then the disease
free equilibrium (S = 1) is the only equilibrium and it is locally asymptotically stable. If o > 1, then
there is a unique endemic equilibrium (S*, E*,I*, R*) with $* = %, and it is locally asympiotically
stable.

Local asymptotic stability of the endemic state is proved by linearization giving rise to a charac-
teristic equation similar to but not identical with (4.3). No periodic solutions are found, but global
stability is an open problem.

From preliminary data, b << a = 7, thus the contact number is approximated by o = i—e—x%%——l"l,
with values ranging from approximately 5 x 10~1 to 2.5 x 10. Note that the threshold value (o = 1)
lies in this interval. Thus more exact parameter values are needed to determine the course of the
disease.

Hethcote and Tudor?! considered a constant population SEIR model for a disease with per-
manent immunity with distributed delays in E and I. Asymptotic behavior is the same as in the
ode model, distributed delays again do not lead to periodic solutions. Also constant population size
SEIS models with delays have asymptotically stable endemic equilibria”1®.



6. Fatal Disease Model

In previous sections the total population remains constant, now it is assumed that this population
varies. Thus S(t), I(t) are numbers of susceptibles, infectives, respectively. In this section an SIR
model of a fatal disease is presented, thus R is the dead class, and N(¢) = S(t) + I(t). A simple
SIR model was presented by Brauer* and this is briefly summarized here. The author has recently
extended this model in several ways®®.
The transfer diagram is

lG(S(t))
C(N)SI/N ; P(1)

—_— ]

00
with P(t) taken as a step function so that [ P(u)du = 7, the constant infective period. For this
0

model, G(5(t)) is the rate of change of population size in the absence of disease; for example, G(S)
is proportional to S(1—S/K) with carrying capacity K > 0. The infectious class does not contribute
to the birth (or recruitment) rate and has no natural deaths. The function C(N) gives the number
of contacts per infective per unit time, and is assumed to satisfy for N > 0

C(N)>0, C'(N)>0, (C(N)/N) <0.

These assumptions on C(N) may be appropriate for sexually transmitted diseases (see Castillo-
Chavez et al.}?) as well as virally transmitted diseases. For example, C(N) = AN gives the mass
action (bilinear) incidence, whereas C(N) = X gives the standard incidence for numbers. Equations
can be set up for this model, there is a contact number C(K)7, and the following is contained in

Brauer?.

Result 6.1. Consider the model described above. If C(K)t < 1, then the disease free equilibrium
(S,I) = (K,0) is locally asympiotically stable. If C(K)T > 1, then the disease free equilibrium 1s
unstable, and there is an endemic equilibrivm (S*, TG(S*)) with §* given by

7SC(S + 7G(S)) = S+ 7 G(3).

This equilibrium is locally asymptotically stable if C(K)r is close to 1. However, with C(N) = AN,
if C(K)r is sufficiently large, then there is a bifurcation to a periodic solution.

For this model, C(K )t acts as a threshold parameter and periodic solutions are possible when
this parameter is large; the analysis involves the characteristic equation as for Result 4.2. By
contrast, for P(t) = exp(—t/7), the resulting ode model has the endemic equilibrium remaining
locally stable for all values of C(K)r, see Brauer? and Pugliese?”. In this model, the inclusion of
time delay qualitatively changes the dynamics. Thus for fatal diseases, the possibility of instability
depends on the distribution of infective period. Brauer® extended the model by allowing natural
deaths in the infective class. The qualitative behavior is unaltered when the death rate is a constant.
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When vertical transmission is included®, the contact number is then the sum of the term due to
direct contact (namely, C(K)7) and a term due to vertical transmission.

7. SI Model with Vertical Transmission

In the models of previous sections the passage of infection is by horizontal transmission only.
In many diseases (e.g., rubella, AIDS, Chagas’ disease) vertical transmission of disease from an
infective parent to offspring also occurs. The recent book by Busenberg and Cooke® provides an
excellent survey of modeling on vertically transmitted diseases; Chapter 4 contains delay differential
equation models. One of these models is now summarized. This is originally due to Busenberg et
al.® see also Busenberg and Cooke®, Section 4.3.

For this epidemiological model, S(t), I(t) denote the numbers of susceptibles, infectives with b,
¥, and d, d’ denoting the birth rate, and death rate constants for susceptibles, infectives, respectively.
The population of offspring of infectives that are susceptible after a period of temporary immunity
To is denoted by p, with ¢ = 1 — p giving the proportion of offspring of infectives that are infective
after a latent period Ti. Thus two delays are incorporated into the model, and for simplicity these
are assumed equal, namely Ty = T} = T. Also for ease of notation ' = % exp(—d'T’). This special
case can be represented by the simple transfer diagram:

lZ’I
le A’”"I(’/T) lgb’I(t—T)
< S .
lds ld’[

Note that the total population S(t) + I(t) varies, and mass action incidence is assumed. The delay
differential equations describing the disease progression are
S'(t) = (b—d) S(t) + pb' I(t — T) — AI(t) S(t), 1)
I'(t) = —d' I(t) + ¢ ' I(t — T) + N I(t) S(¢), '
with initial conditions '
S(0)>0, It)y=1I(t)>0for —T<t<0.
An endemic equilibrium (S*, I*) with I* = (%H% S* exists provided b > d and &’ > b'. When these
inequalities are satisfied, Busenberg et al.®, Theorem 2.3, Busenberg and Cooke®, Theorem 4.2, give
the following.

Result 7.1. Consider model (7.1) with T >0,p>0,b>d andd > ¥. If0 < ¢ < ¢*(d',b) and
0< (%%% < &(d',Y,q), then there ezists a T* such that for T > T* but close to T*, the endemic
equilibrium (S*,I*) is unstable and the system has a periodic solution near (S*,I*).

The functions ¢* and ¢ are given explicitly in the above references, and the proof involves analysis
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of a characteristic equation (cf. (4.3)). The result shows that it is possible for vertical transmission
to lead to periodic solutions in an ST model. Analysis of the general case in which the temporary
immunity and latent period are not equal (T # 71) remains open.

8. SIS Model with Variable Population Size

This personal survey ends with a brief description of a model currently under investigation with
H.W. Hethcote?®; it was inspired by a conversation on using proportional variables that I had with
Stavros Busenberg. This model is for a disease that confers no immunity but may cause death. Here
S(t), I(t) denote the numbers of susceptibles, infectives, respectively, with birth rate constant b and
natural death rate constant d the same in each class. There is excess death due to disease in the
infective class, € > 0 is the disease related death rate constant. The probability that an individual

[o.o]

remains in the infective class for at least ¢ units is given by P(t) with [ P(u)du = w equal to
0
the mean infective period. All newborns are assumed susceptible (thus vertical transmission is not

included). Standard incidence is assumed, thus the number of new cases per unit time is AT S/N,
where N(t) = S(t) + I(t). The following transfer diagram shows the disease progression.

N
ASIN P(3)
S —— _
l ds l (d+e)I

The integral equation for the infective number after a time large enough so that initial perturbations
have died out is

I(t) = /0 A %P(t —u) exp {—(d+€)(t — u)} du.

The total population satisfies the differential equation

N'(t) = (b—d) N(t) — eI(t).
Defining proportions of susceptibles and infectives in the population by s(t) = S(t)/N(t), i(t) =
I(t)/N(t), the equation for the infective fraction becomes

it) = /0  Ni(w)s(w) P(t — u) exp {—(b+c)(t Cu)te / i(p) dp} du, (8.1)

with s(t) + i(t) = 1. It can be shown that there exists a unique, continuous solution that exists for
all larger time.

t

When P(t) = exp(—t/w), the waiting time in the infective class is exponential, then the equation
for i(t) corresponds to a logistic equation. However, when P(t) is the step function in (3.2), with
w the constant period of infection, then the infective fraction satisfies the following delay-integro-
differential equation for ¢ > w

(1) = AL —i@)]i(t) — M1 — it — w)]i(t —w)

- exp {~(b +e)w +e€ /t i(p) clp} — (b + €)i(t) + e®(2).

Jt—w

(8.2)
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A modified contact number § appropriate here is the product of A and the expected time in the
1 class, namely

0 =X(1—exp{—(b+e€ew})/(b+¢). (8.3)

Note that the birth rate b occurs here, ¢f. o in (2.2); parameter 6 is important here as the following
result shows.

Result 8.1. Consider the model equation (8.2). The disease free equilibrium in proportional
variables (s,i) = (1,0) always ezists. If 0 < 1, then it is the only equilibrium and it is locally
asympiotically stable. If§ > 1, then it is unstable and there is a unique endemic equilibrium (s*,i*)
with 0 < i < 1.

Stability of this endemic equilibrium is under investigation. Linear stability is governed by a
characteristic equation (more complicated than (4.3)) containing s* which is known only implicitly.
In the special case of no disease related deaths (e = 0), then s* =1/, with 8 = A(1 — exp(—bw)) /b
from (8.3), and for # > 1, this unique endemic equilibrium is locally asymptotically stable. Thus, in
this special case, the threshold is sharp. However, for € >> b, periodic solutions around the endemic
equilibrium are possible. Although these occur for somewhat unrealistic parameter values, this gives
another example of time delay leading to periodic solutions in a relatively simple epidemiological
model. More complicated models using proportional variables are also under investigation, and pose
challenging mathematical problems.
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