A UNIFIED PRESENTATION OF SOME CLASSES OF MEROMORPHICALLY MULTIVALENT FUNCTIONS

H.M. SRIVASTAVA, H.M. HOSSEIN & M.K. AOUF

DMS-828-IR April 1999
A UNIFIED PRESENTATION OF SOME CLASSES OF MEROMORPHICALLY MULTIVALENT FUNCTIONS

H.M. SRIVASTAVA, H.M. HOSSEN AND M.K. AOUPF

Abstract
The authors introduce and investigate various properties of a general class
\[U_k \{p, \alpha, \beta, A, B\} \]
\[(p, k \in \mathbb{N} := \{1, 2, 3, \ldots\}; 0 \leq \alpha < p; \beta \geq 0; \]
\[-1 \leq A < B \leq 1; 0 < B \leq 1), \]
which unifies and extends several (known or new) subclasses of meromorphically multivalent functions. The properties and characteristics of this general class, which are presented here, include growth and distortion theorems; they also involve Hadamard products (or convolution) of functions belonging to the class \(U_k[p, \alpha, \beta, A, B] \).

1. Introduction, Definitions, and Preliminaries
Let \(\sum_{p,k} \) denote the class of functions of the form:
\[f(z) = \frac{1}{z^p} + \sum_{n=k}^{\infty} a_{n+p-1} z^{n+p-1} \quad (p, k \in \mathbb{N} := \{1, 2, 3, \ldots\}), \tag{1.1} \]
which are analytic and \(p \)-valent in the punctured unit disk
\[U^* = \{z : z \in \mathbb{C} \text{ and } 0 < |z| < 1\}. \]

Many interesting families of analytic and multivalent functions were considered by earlier authors in Geometric Function Theory (cf., e.g., [4], [8], and [11]). For a function \(f(z) \) in \(\sum_{p,k} \), and for fixed parameters \(A \) and \(B \), with
\[-1 \leq A < B \leq 1, \quad A + B \geq 0, \text{ and } 0 < B \leq 1, \]
we say that \(f(z) \) is a member of the class \(Q_k[p, \alpha, A, B] \) if and only if it satisfies the inequality:
\[\left| \frac{zf'(z)}{f(z)} + p \right| < 1 \quad (z \in U^*; 0 \leq \alpha < p). \tag{1.2} \]

1991 Mathematics Subject Classification. Primary 30C45; Secondary 26A33, 30C50.
Key words and phrases. Meromorphic functions, \(p \)-valent functions, Hadamard product (or convolution), analytic functions, growth and distortion theorems, Cauchy-Schwarz inequality.
A function \(f(z) \in \sum_{p,k} \) is said to belong to the class \(\mathcal{R}_k[p, \alpha, A, B] \) if and only if
\[
-\frac{zf'(z)}{p} \in \mathcal{Q}_k[p, \alpha, A, B].
\] (1.3)

The classes \(\mathcal{Q}_1[p, \alpha, A, B] \) and \(\mathcal{Q}_1[p, 0, A, B] \) were introduced by Aouf [1] and Mogra [6], respectively. Some subclasses of \(\sum_{p,k} \) when \(k = p = 1 \) were considered by (for example) Miller [5], Pommerenke [9], Clunie [3], and Royster [10]. Furthermore, several subclasses of \(\sum_{p,k} \) when \(k = 1 \) were studied by (amongst others) Mogra ([6], [7]), Aouf ([1], [2]), and Uralegaddi and Ganigi [12].

Motivated essentially by many of these earlier works, we aim at investigating here various properties and characteristics of the above-defined general class
\[
\mathcal{U}_k[p, \alpha, \beta, A, B]
\]

\((p, k \in \mathbb{N}; 0 \leq \alpha < p; \beta \geq 0; -1 \leq A < B \leq 1; 0 < B \leq 1)\)
of meromorphically \(p \)-valent functions in
\[
\mathcal{U} := \mathcal{U}^* \cup \{0\} = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}.
\]
The following result can be proven fairly easily by appealing to the definition of the class \(\mathcal{Q}_k[p, \alpha, A, B] \).

Lemma 1. Let a function \(f(z) \) defined by (1.1) be in the class \(\sum_{p,k} \). If
\[
\sum_{n=k}^{\infty} C(p, \alpha, A, B; n) |a_{n+p-1}| \leq D(p, \alpha, A, B)
\]
(1.4)

\((0 \leq \alpha < p; -1 \leq A < B \leq 1; 0 < B \leq 1)\),

where, for convenience,
\[
C(p, \alpha, A, B; n) = (1 + B)(n - 1) + [2p + 2\alpha B + (B + A)(p - \alpha)] (n \geq k)
\]
(1.5)

and
\[
D(p, \alpha, A, B) = (B - A)(p - \alpha),
\]
(1.6)

then \(f(z) \in \mathcal{Q}_k[p, \alpha, A, B] \).

Next, by observing that
\[
f(z) \in \mathcal{R}_k[p, \alpha, A, B] \iff -\frac{zf'(z)}{p} \in \mathcal{Q}_k[p, \alpha, A, B],
\]
(1.7)

we arrive at

Lemma 2. Let a function \(f(z) \) defined by (1.1) be in the class \(\sum_{p,k} \). If
\[
\sum_{n=k}^{\infty} \left(\frac{n+p-1}{p} \right) C(p, \alpha, A, B; n) |a_{n+p-1}| \leq D(p, \alpha, A, B)
\]
(1.8)

\((0 \leq \alpha < p; -1 \leq A < B \leq 1; 0 < B \leq 1)\),

where \(C(p, \alpha, A, B; n) \) and \(D(p, \alpha, A, B) \) are given by (1.5) and (1.6), respectively, then
\(f(z) \in \mathcal{R}_k[p, \alpha, A, B] \).

In view of Lemma 1 and Lemma 2, we define the subclasses \(\mathcal{Q}^*_k[p, \alpha, A, B] \) of \(\mathcal{Q}_k[p, \alpha, A, B] \) and \(\mathcal{R}^*_k[p, \alpha, A, B] \) of \(\mathcal{R}_k[p, \alpha, A, B] \) consisting of functions which, respectively, satisfy (1.5) and (1.8).
Furthermore, we introduce and investigate the various properties and characteristics of the following general class \(\mathcal{U}_k[p, \alpha, \beta, A, B] \) of functions \(f(z) \in \sum_{p,k} \) which also satisfy the inequality:

\[
\sum_{n=k}^{\infty} C(p, \alpha, A, B; n) \left[1 - \beta + \beta \left(\frac{n + p - 1}{p} \right) \right] |a_{n+p-1}| \leq D(p, \alpha, A, B)
\] (1.9)

\[0 \leq \alpha < p; \beta \geq 0; -1 \leq A < B \leq 1; 0 < B \leq 1\]

where \(C(p, \alpha, A, B; n) \) and \(D(p, \alpha, A, B) \) are given by (1.5) and (1.6), respectively. Clearly, we have

\[
\mathcal{U}_k[p, \alpha, \beta, A, B] = (1 - \beta) \mathcal{Q}_k^*[p, \alpha, A, B] + \beta \mathcal{R}_k^*[p, \alpha, A, B],
\]

so that

\[
\mathcal{U}_k[p, \alpha, 0, A, B] = \mathcal{Q}_k^*[p, \alpha, A, B]
\]

and

\[
\mathcal{U}_k[p, \alpha, 1, A, B] = \mathcal{R}_k^*[p, \alpha, A, B].
\]

2. Growth and Distortion Theorems

Theorem 1. If a function \(f(z) \) defined by (1.1) is in the class \(\mathcal{U}_k[p, \alpha, \beta, A, B] \), then

\[
\frac{1}{|z|^p} - \frac{D(p, \alpha, A, B)}{C(p, \alpha, A, B; k) \left[1 - \beta + \beta \left(\frac{k + p - 1}{p} \right) \right]} |z|^{k+p-1} \leq |f(z)|
\]

\[
\leq \frac{1}{|z|^p} + \frac{D(p, \alpha, A, B)}{C(p, \alpha, A, B; k) \left[1 - \beta + \beta \left(\frac{k + p - 1}{p} \right) \right]} |z|^{k+p-1} \] (2.1)

\[(\beta \geq 0; z \in \mathcal{U}^*)
\]

and

\[
\frac{p}{|z|^{p+1}} - \frac{(k + p - 1)D(p, \alpha, A, B)}{C(p, \alpha, A, B; k) \left[1 - \beta + \beta \left(\frac{k + p - 1}{p} \right) \right]} |z|^{k+p-2} \leq |f'(z)|
\]

\[
\leq \frac{p}{|z|^{p+1}} + \frac{(k + p - 1)D(p, \alpha, A, B)}{C(p, \alpha, A, B; k) \left[1 - \beta + \beta \left(\frac{k + p - 1}{p} \right) \right]} |z|^{k+p-2} \] (2.2)

\[(\beta \geq 0; z \in \mathcal{U}^*)
\]

The bounds in (2.1) and (2.2) are attained for the function \(f(z) \) given by

\[
f(z) = \frac{1}{z^p} + \frac{D(p, \alpha, A, B)}{C(p, \alpha, A, B; k) \left[1 - \beta + \beta \left(\frac{k + p - 1}{p} \right) \right]} z^{k+p-1}.
\]

Proof. Noting that

\[
\sum_{n=k}^{\infty} |a_{n+p-1}| \leq \frac{D(p, \alpha, A, B)}{C(p, \alpha, A, B; k) \left[1 - \beta + \beta \left(\frac{k + p - 1}{p} \right) \right]}
\]

(2.4)
for $f(z) \in \mathcal{U}_k [p, \alpha, \beta, A, B]$, we have

$$|f(z)| \geq \frac{1}{|z|^p} - |z|^{k+p-1} \sum_{n=k}^{\infty} |a_{n+p-1}|$$

$$\geq \frac{1}{|z|^p} - \frac{D(p, \alpha, A, B)}{C(p, \alpha, A, B; k)} \left[1 - \beta + \beta \left(\frac{k+p-1}{p} \right) \right] |z|^{k+p-1}$$

($\beta \geq 0; \ z \in \mathcal{U}^*$) \hspace{4cm} (2.5)

and

$$|f(z)| \leq \frac{1}{|z|^p} + |z|^{k+p-1} \sum_{n=k}^{\infty} |a_{n+p-1}|$$

$$\leq \frac{1}{|z|^p} + \frac{D(p, \alpha, A, B)}{C(p, \alpha, A, B; k)} \left[1 - \beta + \beta \left(\frac{k+p-1}{p} \right) \right] |z|^{k+p-1}$$

($\beta \geq 0; \ z \in \mathcal{U}^*$). \hspace{4cm} (2.6)

We also observe that

$$C(p, \alpha, A, B; k) \left[1 - \beta + \beta \left(\frac{k+p-1}{p} \right) \right] \sum_{n=k}^{\infty} (n+p-1) |a_{n+p-1}|$$

$$\leq \sum_{n=k}^{\infty} C(p, \alpha, A, B; n) \left[1 - \beta + \beta \left(\frac{n+p-1}{p} \right) \right] |a_{n+p-1}| \leq D(p, \alpha, A, B) \ (\beta \geq 0),$$

which readily yields the following distortion inequalities:

$$|f'(z)| \geq \frac{p}{|z|^{p+1}} - |z|^{k+p-2} \sum_{n=k}^{\infty} (n+p-1) |a_{n+p-1}|$$

$$\geq \frac{p}{|z|^{p+1}} - \frac{(k+p-1)D(p, \alpha, A, B)}{C(p, \alpha, A, B; k)} |z|^{k+p-2}$$

($\beta \geq 0; \ z \in \mathcal{U}^*$) \hspace{4cm} (2.8)

and

$$|f'(z)| \leq \frac{p}{|z|^{p+1}} + |z|^{k+p-2} \sum_{n=k}^{\infty} (n+p-1) |a_{n+p-1}|$$

$$\leq \frac{p}{|z|^{p+1}} + \frac{(k+p-1)D(p, \alpha, A, B)}{C(p, \alpha, A, B; k)} |z|^{k+p-2}$$

($\beta \geq 0; \ z \in \mathcal{U}^*$). \hspace{4cm} (2.9)

Now it is easy to see that the bounds in (2.1) and (2.2) are attained for the function $f(z)$ given by (2.3).

Taking $\beta = 0$ in Theorem 1, we have
Corollary 1. If a function $f(z)$ defined by (1.1) is in the class $Q_k^* [p, \alpha, A, B]$, then
\[
\frac{1}{|z|^p} - \frac{D(p, \alpha, A, B)}{C(p, \alpha, A, B; k)} |z|^{k+p-1} \leq |f(z)| \leq \frac{1}{|z|^p} + \frac{D(p, \alpha, A, B)}{C(p, \alpha, A, B; k)} |z|^{k+p-1} (z \in \mathcal{U}^*) \tag{2.10}
\]
and
\[
\frac{p}{|z|^{p+1}} - \frac{(k+p-1)D(p, \alpha, A, B)}{C(p, \alpha, A, B; k)} |z|^{k+p-2} \leq |f'(z)| \leq \frac{p}{|z|^{p+1}} + \frac{(k+p-1)D(p, \alpha, A, B)}{C(p, \alpha, A, B; k)} |z|^{k+p-2} (z \in \mathcal{U}^*) \tag{2.11}
\]
The bounds in (2.10) and (2.11) are attained for the function:
\[
f(z) = \frac{1}{z^p} + \frac{D(p, \alpha, A, B)}{C(p, \alpha, A, B; k)} z^{k+p-1}. \tag{2.12}
\]
Letting $\beta = 1$ in Theorem 1, we have

Corollary 2. If a function $f(z)$ defined by (1.1) is in the class $R_k^* [p, \alpha, A, B]$, then
\[
\frac{1}{|z|^p} - \frac{pD(p, \alpha, A, B)}{(k+p-1)C(p, \alpha, A, B; k)} |z|^{k+p-1} \leq |f(z)| \leq \frac{1}{|z|^p} + \frac{pD(p, \alpha, A, B)}{(k+p-1)C(p, \alpha, A, B; k)} |z|^{k+p-1} (z \in \mathcal{U}^*) \tag{2.13}
\]
and
\[
\frac{p}{|z|^{p+1}} - \frac{pD(p, \alpha, A, B)}{C(p, \alpha, A, B; k)} |z|^{k+p-2} \leq |f'(z)| \leq \frac{p}{|z|^{p+1}} + \frac{pD(p, \alpha, A, B)}{C(p, \alpha, A, B; k)} |z|^{k+p-2} (z \in \mathcal{U}^*) \tag{2.14}
\]
The bounds in (2.13) and (2.14) are attained for the function:
\[
f(z) = \frac{1}{z^p} + \frac{pD(p, \alpha, A, B)}{(k+p-1)C(p, \alpha, A, B; k)} z^{k+p-1}. \tag{2.15}
\]

3. Convolution Properties
For functions
\[
f_j(z) = \frac{1}{z^p} + \sum_{n=k}^{\infty} a_{n+p-1,j} z^{n+p-1} \quad (j = 1, 2) \tag{3.1}
\]
belonging to the class $\sum_{p,k}$, we denote by $(f_1 * f_2)(z)$ the convolution (or Hadamard product) of the functions $f_1(z)$ and $f_2(z)$, that is,
\[
(f_1 * f_2)(z) := \frac{1}{z^p} + \sum_{n=k}^{\infty} a_{n+p-1,1} a_{n+p-1,2} z^{n+p-1}. \tag{3.2}
\]
Theorem 2. Let the functions \(f_j(z) \) \((j = 1, 2)\) defined by (3.1) be in the class \(\mathcal{U}_k[p, \alpha, \beta, A, B] \). Then

\[(f_1 * f_2)(z) \in \mathcal{U}_k[p, \gamma, \beta, A, B], \]

where

\[\gamma = p - \frac{(B - A)(1 + B)(k + 2p - 1)(p - \alpha)^2}{\{C(p, \alpha, A, B; k)\}^2 \left[1 - \beta + \beta \left(\frac{k + p - 1}{p} \right) \right] + \{D(p, \alpha, A, B)\}^2}. \]

(3.3)

The result is sharp for the functions:

\[f_j(z) = \frac{1}{z^p} + \frac{D(p, \alpha, A, B)}{C(p, \alpha, A, B; k)} \left(1 - \beta + \beta \left(\frac{k + p - 1}{p} \right) \right)^{k + p - 1} \quad (j = 1, 2). \]

(3.4)

Proof. In order to prove Theorem 2, we must find the largest \(\gamma \) such that

\[\sum_{n=k}^{\infty} \frac{C(p, \gamma, A, B; n)}{D(p, \gamma, A, B)} \left[1 - \beta + \beta \left(\frac{n + p - 1}{p} \right) \right] |a_{n+p-1,1}| |a_{n+p-1,2}| \leq 1 \]

for \(f_j(z) \in \mathcal{U}_k[p, \gamma, \beta, A, B] \) \((j = 1, 2)\). Since \(f_j(z) \in \mathcal{U}_k[p, \alpha, \beta, A, B] \) \((j = 1, 2)\), we readily see that

\[\sum_{n=k}^{\infty} \frac{C(p, \gamma, A, B; n)}{D(p, \gamma, A, B)} \left[1 - \beta + \beta \left(\frac{n + p - 1}{p} \right) \right] |a_{n+p-1,j}| \leq 1 \quad (j = 1, 2). \]

(3.6)

Therefore, by the Cauchy-Schwarz inequality, we obtain

\[\sum_{n=k}^{\infty} \frac{C(p, \gamma, A, B; n)}{D(p, \gamma, A, B)} \left[1 - \beta + \beta \left(\frac{n + p - 1}{p} \right) \right] \sqrt{|a_{n+p-1,1}| |a_{n+p-1,2}|} \leq 1. \]

(3.7)

This implies that we need only show that

\[\frac{C(p, \gamma, A, B; n)}{p - \gamma} |a_{n+p-1,1}| |a_{n+p-1,2}| \leq \frac{C(p, \alpha, A, B; n)}{p - \alpha} \sqrt{|a_{n+p-1,1}| |a_{n+p-1,2}|} \quad (n \geq k) \]

or, equivalently, that

\[\sqrt{|a_{n+p-1,1}| |a_{n+p-1,2}|} \leq \frac{(p - \gamma)C(p, \alpha, A, B; n)}{(p - \alpha)C(p, \gamma, A, B; n)} \quad (n \geq k). \]

(3.8)

Hence, by the inequality (3.7), it is sufficient to prove that

\[\frac{D(p, \alpha, A, B)}{C(p, \alpha, A, B; n)} \left[1 - \beta + \beta \left(\frac{n + p - 1}{p} \right) \right] \leq \frac{(p - \gamma)C(p, \alpha, A, B; n)}{(p - \alpha)C(p, \gamma, A, B; n)} \quad (n \geq k). \]

(3.10)

It follows from (3.10) that

\[\gamma \leq p - \frac{(B - A)(1 + B)(n + p - 1)(p - \alpha)^2}{\{C(p, \alpha, A, B; n)\}^2 \left[1 - \beta + \beta \left(\frac{n + p - 1}{p} \right) \right] + \{D(p, \alpha, A, B)\}^2} \quad (n \geq k). \]

(3.11)
Now, defining the function $\varphi(n)$ by
\begin{equation}
\varphi(n) := p - \frac{(B - A) (1 + B) (n + 2p - 1)(p - \alpha)^2}{\{C(p, \alpha, A, B; n)\}^2 \left[1 - \beta + \beta \left(\frac{n+p-1}{p}\right)\right] + \{D(p, \alpha, A, B)\}^2} \quad (n \geq k),
\end{equation}
we see that $\varphi(n)$ is an increasing function of n. Therefore, we conclude that
\begin{equation}
\gamma \leq \varphi(k) = p - \frac{(B - A) (1 + B) (k + 2p - 1)(p - \alpha)^2}{\{C(p, \alpha, A, B; k)\}^2 \left[1 - \beta + \beta \left(\frac{k+p-1}{p}\right)\right] + \{D(p, \alpha, A, B)\}^2},
\end{equation}
which evidently completes the proof of Theorem 2.

Letting $\beta = 0$ in Theorem 2, we arrive at

Corollary 3. Let the functions $f_j(z) \,(j = 1, 2)$ defined by (3.1) be in the class $Q_k^*\,[p, \gamma, A, B]$. Then
\begin{equation}
(f_1 \ast f_2) (z) \in Q_k^*\,[p, \gamma, A, B],
\end{equation}
where
\begin{equation}
\gamma = p - \frac{(B - A) (1 + B) (k + 2p - 1)(p - \alpha)^2}{\{C(p, \alpha, A, B; k)\}^2 + \{D(p, \alpha, A, B)\}^2}.
\end{equation}
The result is sharp for the functions:
\begin{equation}
f_j(z) = \frac{1}{z^p} + \frac{D(p, \alpha, A, B)}{C(p, \alpha, A, B; k)} z^{k+p-1} \quad (j = 1, 2).
\end{equation}

Putting $\beta = 1$ in Theorem 2, we have

Corollary 4. Let the functions $f_j(z) \,(j = 1, 2)$ defined by (3.1) be in the class $R_k^*\,[p, \alpha, A, B]$. Then
\begin{equation}
(f_1 \ast f_2) (z) \in R_k^*\,[p, \gamma, A, B],
\end{equation}
where
\begin{equation}
\gamma = p - \frac{p (B - A) (1 + B) (k + 2p - 1)(p - \alpha)^2}{(k + p - 1) \{C(p, \alpha, A, B; k)\}^2 + p \{D(p, \alpha, A, B)\}^2}.
\end{equation}
The result is sharp for the functions:
\begin{equation}
f_j(z) = \frac{1}{z^p} + \frac{pD(p, \alpha, A, B)}{(k + p - 1)C(p, \alpha, A, B; k)} z^{k+p-1} \quad (j = 1, 2).
\end{equation}

Finally, we prove

Theorem 3. Let the functions $f_j(z) \,(j = 1, 2)$ defined by (3.1) be in the class $U_k\,[p, \alpha, \beta, A, B]$. Then the function $h(z)$ defined by
\begin{equation}
h(z) := \frac{1}{z^p} + \sum_{n=k}^{\infty} (a_{n+p-1,1} + a_{n+p-1,2}) z^{n+p-1}
\end{equation}
belongs to the class $\mathcal{U}_k[p, \gamma, \beta, A, B]$, where

$$\gamma = p - \frac{2(B - A) (1 + B) (k + 2p - 1)(p - \alpha)^2}{\{C(p, \alpha, A, B; k)\}^2 \left[1 - \beta + \beta \left(\frac{k+p-1}{p}\right)\right] + 2 \{D(p, \alpha, A, B)\}^2}. \quad (3.19)$$

The result is sharp for the functions $f_j(z)$ ($j = 1, 2$) given by (3.4).

Proof. Noting that

$$\sum_{n=k}^{\infty} \frac{\{C(p, \alpha, A, B; n)\}^2 \left[1 - \beta + \beta \left(\frac{n+p-1}{p}\right)\right]^2}{\{D(p, \alpha, A, B)\}^2} |a_{n+p-1,j}|^2 \leq \left(\sum_{n=k}^{\infty} \frac{C(p, \alpha, A, B; n) \left[1 - \beta + \beta \left(\frac{n+p-1}{p}\right)\right]}{D(p, \alpha, A, B)} |a_{n+p-1,j}|\right)^2 \leq 1 \quad (j = 1, 2) \quad (3.20)$$

for $f_j(z) \in \mathcal{U}_k[p, \alpha, \beta, A, B]$ ($j = 1, 2$), we have

$$\sum_{n=k}^{\infty} \frac{\{C(p, \alpha, A, B; n)\}^2 \left[1 - \beta + \beta \left(\frac{n+p-1}{p}\right)\right]^2}{2 \{D(p, \alpha, A, B)\}^2} |a_{n+p-1,1}^2 + a_{n+p-1,2}^2| \leq 1. \quad (3.21)$$

Therefore, we have to find the largest γ such that

$$\frac{C(p, \gamma, A, B; n)}{p - \gamma} \leq \frac{\{C(p, \alpha, A, B; n)\}^2 \left[1 - \beta + \beta \left(\frac{n+p-1}{p}\right)\right]}{2(B - A) (p - \alpha)^2} \quad (n \geq k), \quad (3.22)$$

that is, that

$$\gamma \leq p - \frac{2(B - A) (1 + B) (n + 2p - 1)(p - \alpha)^2}{\{C(p, \alpha, A, B; n)\}^2 \left[1 - \beta + \beta \left(\frac{n+p-1}{p}\right)\right] + 2 \{D(p, \alpha, A, B)\}^2} \quad (n \geq k). \quad (3.23)$$

Now, defining a function $\psi(n)$ by

$$\psi(n) := p - \frac{2(B - A) (1 + B) (n + 2p - 1)(p - \alpha)^2}{\{C(p, \alpha, A, B; n)\}^2 \left[1 - \beta + \beta \left(\frac{n+p-1}{p}\right)\right] + 2 \{D(p, \alpha, A, B)\}^2} \quad (n \geq k), \quad (3.24)$$

we observe that $\psi(n)$ is an increasing function of n. Thus we conclude that

$$\gamma \leq \psi(k) = p - \frac{2(B - A) (1 + B) (k + 2p - 1)(p - \alpha)^2}{\{C(p, \alpha, A, B; k)\}^2 \left[1 - \beta + \beta \left(\frac{k+p-1}{p}\right)\right] + 2 \{D(p, \alpha, A, B)\}^2}, \quad (3.25)$$

which completes the proof of Theorem 3.

By setting $\beta = 0$, Theorem 3 leads us to

Corollary 5. Let the functions $f_j(z)$ ($j = 1, 2$) defined by (3.1) be in the class $\mathcal{Q}_k^*[p, \alpha, A, B]$. Then the function $h(z)$ defined by (3.18) belongs to the class $\mathcal{Q}_k^*[p, \gamma, A, B]$, where

$$\gamma = p - \frac{2(B - A) (1 + B) (k + 2p - 1)(p - \alpha)^2}{\{C(p, \alpha, A, B; k)\}^2 + 2 \{D(p, \alpha, A, B)\}^2}. \quad (3.26)$$

The result is sharp for the functions $f_j(z)$ ($j = 1, 2$) given by (3.15).
Letting $\beta = 1$ in Theorem 3, we have

Corollary 6. Let the functions $f_j(z)$ ($j = 1, 2$) defined by (3.1) be in the class $\mathcal{R}_K^+[p, \alpha, A, B]$. Then the function $h(z)$ defined by (3.18) belongs to the class $\mathcal{R}_K^+[p, \gamma, A, B]$, where

$$
\gamma = p - \frac{2p(B-A)(1+B)(k+2p-1)(p-\alpha)^2}{(k+p-1)(C(p, \alpha, A, B; k))^2 + 2p(D(p, \alpha, A, B))^2}.
$$

(3.27)

The result is sharp for the functions $f_j(z)$ ($j = 1, 2$) given by (3.17).

Many of our results in this paper (especially Corollaries 1 to 6) would simplify considerably when we set

$$A = -1 \quad \text{and} \quad B = 1.
$$

The details involved in the derivation of these and other special cases of our results may be left as an exercise for the interested reader.

Acknowledgements

The present investigation was supported, in part, by the *Natural Sciences and Engineering Research Council of Canada* under Grant OGP0007353.

REFERENCES

H.M. Srivastava
Department of Mathematics and Statistics
University of Victoria
Victoria, British Columbia V8W 3P4
Canada

E-Mail: HMSRI@UVVM.UVIC.CA

H.M. Hossen and M.K. Aouf
Department of Mathematics
Faculty of Science
University of Mansoura
Mansoura
Egypt

E-Mail: SINFAC@MUM.MANS.EUN.EG