SPECTRAL PROPERTIES OF THE OPERATOR EQUATION $AX + XB = Y$

by

Wolfgang Arendt, Frank Räbiger

and

Ahmed Sourour

DMS-602-IR January 1992
Spectral properties of the operator equation $AX + XB = Y$

by

Wolfgang ARENDT$^{(1)}$
Frank RÄBIGER$^{(2)}$
Ahmed SOUROUR$^{(3)}$

(1) Equipe de Mathématiques - URA CNRS 741 - Université de Franche-Comté - 25030 Besançon Cédex - France
(2) Mathematisches Institut der Universität - 74 Tübingen - FRG
(3) Department of Mathematics - University of Victoria - Victoria B.C. V8W 2Y2 - Canada

This work was partially supported by the CEE-project SCIENCE ("Evolutionary Systems")
Introduction:
Let A be a closed operator on a Banach space E and B a densely defined operator on F. We are interested in the operator equation
\begin{equation}
AX + XB = Y
\end{equation}
where $Y \in \mathcal{L} := \mathcal{L}(F, E)$ is given and $X \in \mathcal{L}$ the solution.

This equation has been studied extensively for bounded operators (see e.g. [Da Kr], [Lu Ro], [Ro], [Pu]). The case where A and B are generators of C_0 semigroups was considered recently by Freeman [F], Lin; Shaw [LS] and Phong [Ph].

The purpose of this paper is to study the operator $\tau_{A,B}$ on \mathcal{L} given by
\begin{equation}
\tau_{A,B}(X) = AX + XB
\end{equation}
with suitable domain. Then existence and uniqueness of the problem (0.1) is equivalent to saying that $\tau_{A,B}$ is invertible. Thus it is natural to investigate the spectrum of this operator.

It turns out that always
\begin{equation}
\sigma(A) + \sigma(B) \subset \sigma(\tau_{A,B})
\end{equation}
(under the assumption $\sigma(A) \neq C$ or $\sigma(B) \neq C$), so that $0 \notin \sigma(A) + \sigma(B)$ is a necessary condition for existence and uniqueness of (0.1).

However, the opposite inclusion of (0.3), which is almost trivial in the bounded case, is false, in general. This had been discovered by Phong [Ph] (even though he does not formulate it that way), see also Section 6 for counterexamples.

We establish the spectral equality
\begin{equation}
\sigma(\tau_{A,B}) = \sigma(A) + \sigma(B)
\end{equation}
in three cases:
1. A and B generate eventually norm continuous C_0-semigroups;
2. one of the operators is bounded;
3. A and B generate C_0-semigroups one of which is holomorphic.

The proof of 2. and 3. is based on a complex formula expressing the solution of (0.1) by a contour integral which is due to Rosenblum [Ro]. This formula has also been used by Phong in a particular case and we generalize his proof.

In fact, a separate appendix (Section 7) is devoted to the study of the sum of commuting operators, one of which generates a holomorphic semigroup. This more general context is of interest in the theory of differential equations in Banach spaces (see Da Prato-Grisvard [Da Gr] for a systematic study).

Acknowledgement: The second named author wishes to thank the “Equipe de Mathématiques de Besançon” for the warm hospitality during his visit to Besançon.
1. Basic properties of the operator $X \mapsto AX + XB$:

Let E, F be Banach spaces and A a closed operator on E and B a densely defined operator on F. We define the operator $\tau_{A,B}$ on $\mathcal{L} := \mathcal{L}(F,E)$ by

$$D(\tau_{A,B}) = \{ X \in \mathcal{L} : XD(B) \subseteq D(A), \exists Y \in \mathcal{L} \text{ s.t. } AXu + XBu = Yu \ \forall u \in D(B) \}$$

$$\tau_{A,B}(X) = Y.$$

Then $\tau_{A,B}$ is a closed operator on \mathcal{L}. For all $\mu, \lambda \in \mathbb{C}$ we have

$$\tau_{A - \lambda, B - \mu} = \tau_{A,B} - \lambda - \mu,$$

in particular

$$\tau_{A - \lambda, B + \lambda} = \tau_{A,B}$$

for all $\lambda \in \mathbb{C}$. However, this is the only case of coincidence of two such operators. In fact, the following holds.

Proposition 1.1: Let A_1, A_2 be closed operators on E and B_1, B_2 densely defined operators on F such that $\tau_{A_1,B_1} = \tau_{A_2,B_2}$. Then there exists $\lambda \in \mathbb{C}$ such that $A_1 = A_2 + \lambda$ and $B_1 = B_2 - \lambda$.

For the proof we need two lemmas. If $\varphi \in F'$ and $x \in E$, then we denote by $\varphi \otimes x \in \mathcal{L}$ the rank-one operator $y \mapsto \langle y, \varphi \rangle x$.

Lemma 1.2: Let $\varphi_1, \varphi_2 \in F'$, $x_1, x_2 \in E$ such that $\varphi_1 \neq 0, x_2 \neq 0$. If $\varphi_1 \otimes x_1 + \varphi_2 \otimes x_2 = 0$, then there exists $\lambda \in \mathbb{C}$ such that $x_1 = \lambda x_2$ and $\varphi_2 = -\lambda \varphi_1$.

This is easy to see.

Lemma 1.3: Let $\varphi \in F' \setminus \{0\}, x \in E \setminus \{0\}$. Then $\varphi \otimes x \in D(\tau_{AB})$ if and only if $\varphi \in D(B')$ and $x \in D(A)$. In that case $\tau_{A,B}(\varphi \otimes x) = \varphi \otimes Ax + B'\varphi \otimes x$.

Proof: Assume that $X := \varphi \otimes x \in D(\tau_{A,B})$. Since $XD(B) \subseteq D(A)$ and since $\varphi \neq 0$ and $D(B)$ is dense in F it follows that $x \in D(A)$. Let $Y = \tau_{A,B}(X)$. Then $\langle u, \varphi \rangle Ax + \langle Bu, \varphi \rangle x = Yu$ for all $u \in D(B)$. Let $\psi \in E'$ such that $\langle x, \psi \rangle = 1$. Then

$$\langle Bu, \varphi \rangle = \langle u, Y'\psi \rangle - \langle u, \varphi \rangle \langle Ax, \psi \rangle$$

for all $u \in D(B)$.

It follows that $\varphi \in D(B')$ and $B'\varphi = Y'\psi - \langle Ax, \psi \rangle \varphi$ (cf. [Na, B-II Lemma 2.9]). The remaining assertions are obvious. ∨

Lemma 1.4: Let $C : D(C) \to G$ be a linear mapping on the vector space G, where $D(C)$ is a subspace of G. Assume that for all $x \in D(C)$ there exists $\lambda(x) \in \mathbb{C}$ such that $Cx = \lambda(x)x$.

Then there exists $\lambda \in \mathbb{C}$ such that $Cx = \lambda x$ for all $x \in D(C)$.

This is easy to see.
Proof of Proposition 1.1: Since for \(0 \neq x \in E, 0 \neq \varphi \in F', \varphi \otimes x \in D(\tau_{A_1,B_1}) \) if and only if \(\varphi \in D(B_2') \) and \(x \in D(A_2) \) it follows that \(D(A_1) = D(A_2) \) and \(D(B_1') = D(B_2') \). Moreover, for \(0 \neq x \in D(A_1), 0 \neq \varphi \in D(B_1') \), \(\varphi \otimes A_1 x + B_1' \varphi \otimes x = \varphi \otimes A_2 x + B_2' \varphi \otimes x \) by Lemma 1.3. Thus \(\varphi \otimes (A_1 x - A_2 x) + (B_1' \varphi - B_2' \varphi) \otimes x = 0 \). It follows from Lemma 1.2 that there exists \(\lambda \in \mathbb{C} \) such that \(A_1 x - A_2 x = \lambda x \) and \(B_1' \varphi - B_2' \varphi = -\lambda \varphi \). Now the conclusion follows from Lemma 1.4. \(\diamond \)

Remark 1.5 (density of the domain of \(\tau_{A,B} \)):

a) It follows from Lemma 1.3 that \(\overline{D(\tau_{A,B})} \) contains the compact operators whenever \(D(A) \) is dense, \(E \) has the approximation property and \(F \) is reflexive. Thus, if \(\mathcal{L}(F,E) = K(F,E) \) (the compact operators), then \(\tau_{A,B} \) is densely defined. For example, this is the case if \(F = \ell^p, E = \ell^q \), \(1 < q < p < \infty \).

b) Assume now that \(E = F \). If \(D(A) = E \) and \(D(B) = E \), then \(D(\tau_{A,B}) = \mathcal{L} \). If \(D(A) \neq E \) and \(D(B) = E \) or \(D(A) = E \) and \(D(B) \neq E \), then it is clear that \(D(\tau_{A,B}) \) does not contain any invertible operator and so \(\tau_{A,B} \) is not densely defined. However, we do not know whether \(D(\tau_{A,B}) \) is dense only if \(D(A) = E \) and \(D(B) = E \).
2. The spectral inclusion:

In this section we assume that A and B are both closed and densely defined operators on E, and F respectively. By $\sigma(A), \sigma_p(A), \sigma_{ap}(A), \rho(A)$ we denote the spectrum, point spectrum, approximate point spectrum and resolvent set, respectively, of A and $R(\lambda, A) = (\lambda - A)^{-1}$ ($\lambda \in \rho(A)$) is the resolvent. Keeping otherwise the notation of Section 1, we prove the following inclusion.

Theorem 2.1: Assume that $\sigma(A) \neq C$ or $\sigma(B) \neq C$. Then $\sigma(A) + \sigma(B) \subset \sigma(\tau_{A,B})$.

At first we prove the following special case.

Lemma 2.2:

a) $\sigma_{ap}(A) + \sigma_{ap}(B') \subset \sigma(\tau_{A,B})$;

b) $\sigma_{ap}(A') + \sigma_{ap}(B) \subset \sigma(\tau_{A,B})$.

For this we use

Lemma 2.3: Let C be a closed operator on a Banach space G. Assume that $\varphi_n \in G'$ satisfying $\|\varphi_n\| = 1 \ (n \in \mathbb{N})$ such that

$$\lim_{n \to \infty} \sup_{x \in D(C), \|x\| \leq 1} |\langle Cx, \varphi_n \rangle| = 0.$$

Then $0 \in \sigma(C)$.

Proof: Assume that $0 \in \rho(C)$ and let $\alpha = \|C^{-1}\|$. Then $B(0, \alpha^{-1}) := \{y \in G : \|y\| \leq \alpha^{-1}\} \subset \{Cx : x \in D(C), \|x\| \leq 1\}$. Hence

$$\alpha^{-1} = \sup_{\|y\| \leq \alpha^{-1}, y \in G} |\langle y, \varphi_n \rangle| \to 0 \quad (n \to \infty),$$

contradiction. \diamond

Proof of Lemma 2.2: a) Let $\lambda \in \sigma_{ap}(A), \mu \in \sigma_{ap}(B')$. There exist $x_n \in D(A)$ such that $\|x_n\| = 1$ and $\|Ax_n - \lambda x_n\| \to 0 \ (n \to \infty)$, $\varphi_n \in D(B'), \|\varphi_n\| = 1$, $\|B'\varphi_n - \mu \varphi_n\| \to 0$ $(n \to \infty)$.

Let $X_n = \varphi_n \otimes x_n$. Then $\|X_n\| = 1$, and by Lemma 1.3, $X_n \in D(\tau_{A,B})$ and $\tau_{A,B}(X_n) = B'\varphi_n \otimes x_n + \varphi_n \otimes Ax_n$. Hence

$$\|\tau_{A,B}(X_n) - (\lambda + \mu)X_n\| = \|(B'\varphi_n - \mu \varphi_n) \otimes x_n + \varphi_n \otimes (Ax_n - \lambda x_n)\|$$

$$\leq \|B'\varphi_n - \mu \varphi_n\| + \|Ax_n - \lambda x_n\| \to 0 \quad (n \to \infty).$$

Consequently, $\lambda + \mu \in \sigma_{ap}(\tau_{A,B})$.

b) Assume that $\lambda \in \sigma_{ap}(A'), \mu \in \sigma_{ap}(B)$. Let $y_n \in D(B), \varphi_n \in D(A')$ such that $\|y_n\| = \|\varphi_n\| = 1$, $\|By_n - \mu y_n\| \to 0$ and $\|A'\varphi_n - \lambda \varphi_n\| \to 0$ ($n \to \infty$). We define $\phi_n \in \mathcal{L}'$ by $\phi_n(T) = \langle Ty_n, \varphi_n \rangle$. Then $\|\Phi_n\| = 1$ (as is easy to see); moreover,

$$\sup_{X \in D(\tau_{A,B}) \atop \|X\| \leq 1} \|\langle \tau_{A,B}(X) - (\lambda + \mu)X, \phi_n \rangle\| \to 0 \quad (n \to \infty).$$

In fact, let $X \in D(\tau_{A,B}), \|X\| \leq 1$. Then

$$\|\langle \tau_{A,B}(X) - (\lambda + \mu)X, \phi_n \rangle\| = \|\langle AXy_n, \varphi_n \rangle + \langle XB y_n, \varphi_n \rangle - (\lambda + \mu)\langle Xy_n, \varphi_n \rangle\|
= \|\langle Xy_n, A'\varphi_n - \lambda \varphi_n \rangle + \langle By_n - \mu y_n, X'\varphi_n \rangle\|
\leq \|A'\varphi_n - \lambda \varphi_n\| + \|By_n - \mu y_n\| \to 0 \quad (n \to \infty)$$

It follows from Lemma 2.3 that $\lambda + \mu \in \sigma(\tau_{A,B})$. ◊

Lemma 2.4: Let M, N be closed subsets of \mathbb{C} such that $M \neq \mathbb{C}$ or $N \neq \mathbb{C}$. Then $M + N \subset (\partial M + N) \cup (M + \partial N)$.

Proof: Let $m \in \text{int } M, n \in \text{int } N$. Let $r, R \in (0, \infty]$ be the largest radii such that $B(m, r) \subset M, B(n, R) \subset N$ (where $B(m, r) = \{z \in \mathbb{C} : |m - z| \leq r\}$).

Assume that $r \leq R$. Since $M \neq \mathbb{C}$ or $N \neq \mathbb{C}$ it follows that $r < \infty$. Then there exists $\alpha \in \partial M$ such that $|m - \alpha| = r$. Since $n + m - \alpha \in B(n, r) \subset B(n, R) \subset N$, it follows that $m + n = \alpha + (n + m - \alpha) \in \partial M + N$. Similarly, one obtains $m + n \in M + \partial N$ in the case $r \geq R$. ◊

Proof of Theorem 2.1: It is well-known that $\partial \sigma(A) \subset \sigma_{ap}(A) \cap \sigma_{ap}(A')$. Consequently by Lemma 2.2 a), $\partial \sigma(A) + \sigma_{ap}(B') \subset \sigma_{ap}(A) + \sigma_{ap}(B') \subset \sigma(\tau_{A,B})$ and by Lemma 2.2 b), $\partial \sigma(A) + \sigma_{ap}(B) \subset \sigma_{ap}(A') + \sigma_{ap}(B) \subset \sigma(\tau_{A,B})$. Since $\sigma(B) \subset \sigma_{ap}(B) \cup \sigma_{ap}(B')$ we have shown that $\partial \sigma(A) + \sigma(B) \subset \sigma(\tau_{A,B})$. One shows similarly that $\sigma(A) + \partial \sigma(B) \subset \sigma(\tau_{A,B})$.

Now it follows from Lemma 2.4 that $\sigma(A) + \sigma(B) \subset \sigma(\tau_{A,B})$. ◊

We do not know whether $\sigma(\tau_{A,B}) = \mathbb{C}$ if $\sigma(A) = \sigma(B) = \mathbb{C}$.
3. Laplace transform methods:

In the present and next two sections we want to show invertibility of $\lambda - \tau_{A,B}$. By Theorem 2.1 a necessary condition is that $\lambda \notin \sigma(A) + \sigma(B)$. But we do not know whether $\sigma(A) + \sigma(B) \neq \mathbb{C}$ implies $\rho(\tau_{A,B}) \neq 0$, in general. However, if A and B are generators of semigroups, then several methods exist to show invertibility for certain λ. In this section we use the Laplace transform. We show that $\tau_{A,B}$ is the generator of a (non-strongly continuous) semigroup whose Laplace transform is the resolvent of $\tau_{A,B}$.

Assume that A generates the C_0-semigroup $T = (T(t))_{t \geq 0}$ on E and B the C_0-semigroup $S = (S(t))_{t \geq 0}$ on F. We define the semigroup $U : [0, \infty) \to \mathcal{L} = \mathcal{L}(F, E)$ by

$$U(t)X = T(t)XS(t) \quad (X \in \mathcal{L}).$$

Then $U(0) = I_{\mathcal{L}}$ (the identity on \mathcal{L}) and $U(t)U(s) = U(t + s) \quad (t, s \geq 0)$. U is not strongly continuous, in general, but for $X \in \mathcal{L}, f \in F, U(.)Xf$ is strongly continuous. For $\lambda \in \mathbb{C}$ we define the operator $\int_0^t e^{-\lambda s}U(s)ds$ on \mathcal{L} by

$$\left(\int_0^t e^{-\lambda s}U(s)ds \right)(X) = \int_0^t e^{-\lambda s}U(s)Xds \quad (X \in \mathcal{L})$$

where the integral on the right hand side converges strongly in E.

Proposition 3.1: Let $\lambda \in \mathbb{C}$.

a) Let $X \in \mathcal{L}$. Then $\int_0^t e^{-\lambda s}U(s)Xds \in D(\tau_{A,B})$ and

$$\left(\tau_{A,B} - \lambda \right)\int_0^t e^{-\lambda s}U(s)Xds = e^{-\lambda t}U(t)X - X \quad (t \geq 0)$$

b) Let $X \in D(\tau_{A,B})$. Then

$$\int_0^t e^{-\lambda s}U(s)(\tau_{A,B}(X) - \lambda)ds = e^{-\lambda t}U(t)X - X \quad (t \geq 0).$$

The proof is based on Lemma 3.3 which has been shown by Phong [Ph]. It can be obtained as a consequence of the following general formulation of differentiation of products whose proof we can omit.

Lemma 3.2: Let K, L be topological vector spaces and let $\beta : K \times L \to \mathbb{C}$ be a sequentially continuous bilinear form. Let $x \in C^1([a, b], K), y \in C^1([a, b], L), f(t) = \beta(x(t), y(t))$. Then $f \in C^1([a, b], \mathbb{C})$ and $\frac{d}{dt}f(t) = \beta \left(\frac{dx}{dt}(t), y(t) \right) + \beta \left(x(t), \frac{dy}{dt}(t) \right) \quad (t \in [a, b]).$

Lemma 3.3: Let $X \in \mathcal{L}(F, E), v \in D(B), u' \in D(A'), f(t) = \langle T(t)XS(t)v, u' \rangle$. Then $f \in C^1([0, \infty), \mathbb{C})$ and $\frac{d}{dt}f(t) = \langle T(t)XS(t)Bv, u' \rangle + \langle T(t)XS(t)Bv, A'u' \rangle$.

Proof: Letting $K = F$, and $L = E'$ with the ω^*-topology, $\beta(y, x') = \langle xy, x' \rangle$, $x(t) = S(t)v$, $y(t) = T(t)'u'$, the assertion follows from Lemma 3.2. \hfill \Diamond

Proof of Proposition 3.1: Replacing A by $A - \lambda$ we can assume $\lambda = 0$. Let $V(t) = \int_0^t U(s)ds$.

a) Let $X \in \mathcal{L}$. Let $v \in D(B)$. It follows from Lemma 3.3 that

\[\langle U(t)Xv, u' \rangle - \langle Xv, u' \rangle = \langle V(t)XBv, u' \rangle + \langle V(t)Xv, A'u' \rangle \]

for $t \geq 0$ and all $u' \in D(A')$. Consequently, by [Na, B-II Lemma 2.9] $V(t)Xv \in D(A)$ and $AV(t)Xv + V(t)XBv = U(t)Xv - Xv$. This implies that $V(t)X \in D(\tau_{A,B})$ and $\tau_{A,B}V(t)X = U(t)X - X$, which is assertion a).

b) Let $X \in D(\tau_{A,B})$, $\tau_{A,B}(X) = Y$. Then by Lemma 3.3, for all $v \in D(B), v' \in D(A')$,

\[
\langle V(t)Yv, u' \rangle = \int_0^t \langle (T(s)XS(s)v, u') \rangle ds = \int_0^t \{ \langle (T(s)XS(s)v, u') \rangle + \langle (T(s)XBs(s)v, u') \rangle \} ds
\]

\[
= \int_0^t \frac{d}{ds} \langle (T(s)XS(s)v, u') \rangle ds = \langle (T(t)XS(t)v, u') \rangle - \langle Xv, u' \rangle = \langle U(t)(X)v, u' \rangle - \langle Xv, u' \rangle.
\]

Hence $V(t)Y = U(t)X - X$. This is assertion b). \hfill \Diamond

We define the growth bound $\omega(\tau_{A,B})$ by

\[\omega(\tau_{A,B}) := \inf \{ \omega \in \mathbb{R} : \sup_{t \geq 0} e^{-\omega t} \|U(t)\| < \infty \} = \lim_{t \to \infty} \frac{\log \|U(t)\|}{t} \]

(cf. [Hi Ph, Theorem 7.6.1]).

Similarly, $\omega(A) = \inf \{ \omega \in \mathbb{R} : \sup_{t \geq 0} e^{-\omega t} \|T(t)\| < \infty \}$.

The following proposition is due to Freemann [F]. For the sake of completeness we include the proof.

Proposition 3.4: $\omega(\tau_{A,B}) = \omega(A) + \omega(B)$.

Proof: Choosing $X = \varphi \otimes u$ with $\varphi \in F'$, $u \in E$, $\|\varphi\| \leq 1$, $\|u\| \leq 1$ one sees that $\|U(t)\| = ||T(t)|| ||S(t)|| (t \geq 0)$. Hence $\omega(\tau_{A,B}) = \lim_{t \to \infty} \frac{1}{t} (\log (||T(t)|| ||S(t)||)) = \lim_{t \to \infty} \frac{1}{t} (\log ||T(t)|| + \log ||S(t)||) = \omega(A) + \omega(B). \hfill \Diamond

By $s(\tau_{A,B}) = \sup \{ \Re \lambda : \lambda \in \sigma(\tau_{A,B}) \}$ we denote the spectral bound of $\tau_{A,B}$.

Proposition 3.5: $s(A) + s(B) \leq s(\tau_{A,B}) \leq \omega(\tau_{A,B})$.

Proof: a) It follows from Theorem 2.1 that $s(A) + s(B) \leq s(\tau_{A,B})$.

b)
b) Let \(\Re \lambda > \omega(\tau_{A,B}) = \omega(A) + \omega(B) \). Then

\[
Q := \lim_{t \to \infty} \int_0^t e^{-\lambda s} U(s)ds \text{ exists and}
\]

\[
\lim_{t \to \infty} (\lambda - \tau_{A,B}) \int_0^t e^{-\lambda s} U(s)Xds = \lim_{t \to \infty} (X - e^{-\lambda t} U(t)X) = X \text{ by Proposition 3.1.a). Since}
\]

\(\lambda - \tau_{A,B} \) is closed it follows that \(QX \in D(\tau_{A,B}) \) and \((\lambda - \tau_{A,B})QX = X \) for all \(X \in \mathcal{L} \), and

by Proposition 3.1.b) \(Q(\lambda - \tau_{A,B})X = (\lambda - \tau_{A,B})QX \) if \(X \in D(\tau_{A,B}) \). Hence \(\lambda \in \rho(\tau_{A,B}) \)

and \(Q = (\lambda - \tau_{A,B})^{-1} \). \(\diamond \)

Remark 3.6: It follows from the proof that for \(\Re \lambda > \omega(\tau_{A,B}) \)

\[
R(\lambda, \tau_{A,B}) = \int_0^\infty e^{-\lambda t} U(t)dt := \lim_{t \to \infty} \int_0^t e^{-\lambda s} U(s)ds
\]

(with convergence in the operator norm).

Denote by \(\text{abs}(\tau_{A,B}) = \inf \{ \Re \lambda : \int_0^\infty e^{-\lambda t} U(t)dt \text{ converges strongly in } \mathcal{L} \} \) the abscissa of the Laplace transform. Then \(\int_0^\infty e^{-\lambda t} U(t)dt \text{ converges (even in operator norm) for } \Re \lambda > \text{abs}(\tau_{A,B}) \) and does not converge (even not strongly) if \(\Re \lambda < \text{abs}(\tau_{A,B}) \) (see [Hi Ph, Sec. 6.2]). Moreover, \(R(\lambda) = \int_0^\infty e^{-\lambda t} U(t)dt \) is holomorphic in \(\{\Re \lambda > \text{abs}(\tau_{A,B})\} \).

Since \(R(\lambda) \) coincides with \((\lambda - \tau_{A,B})^{-1} \) for \(\Re \lambda \) large, one has \(R(\lambda) = (\lambda - \tau_{A,B})^{-1} \) whenever \(\Re \lambda > \text{abs}(\tau_{A,B}) \).

An individual version of the following proposition has been proved by Phóng [Ph ; Theorem 3].

Proposition 3.7: If \(M := \sup_{t \geq 0} \| \int_0^t U(s)ds \| < \infty \), then \(0 \in \rho(\tau_{A,B}) \).

Proof: The hypothesis implies that \(\text{abs}(\tau_{A,B}) \leq 0 \) (see [Hi Ph, Sec. 6.2]). It follows from the hypothesis that for \(\lambda > 0 \),

\[
\| R(\lambda, \tau_{A,B}) \| = \| \int_0^\infty e^{-\lambda t} U(t)dt \|
\]

\[
\| \lambda \int_0^\infty e^{-\lambda t} \int_0^t U(s)dsdt \| \leq M. \text{ Hence}
\]

\[
[\text{dist} (\sigma(\tau_{A,B}), \lambda)]^{-1} = r(R(\lambda, \tau_{A,B})) \leq \| R(\lambda, \tau_{A,B}) \| \leq M
\]

(where \(r(K) \) denotes the spectral radius of a bounded operator \(K \)). Hence \(\text{dist} (\sigma(\tau_{A,B}), 0) > 0 \), i.e. \(0 \notin \sigma(\tau_{A,B}) \). \(\diamond \)

Remark 3.8 (integrated semigroups): a) It is obvious from the preceding that \(V(t) = \int_0^t U(s)ds \) defines a locally Lipschitz continuous once integrated semigroup \((V(t))_{t \geq 0} \) on \(\mathcal{L} \) and \(\tau_{A,B} \) is its generator (see [Ar], [Ne], [Ke Hi] for this notion). This had been pointed out before by Neubrander [Ne, Example 9.3].
b) The argument given in the proof of Proposition 3.7 shows more generally that the generator of a bounded once integrated semigroup is invertible.
4. Eventually norm continuous semigroups:

The spectral equality \(\sigma(\tau_{A,B}) = \sigma(A) + \sigma(B) \) will be established in special cases in the present and next section.

Theorem 4.1: Let \(A \) and \(B \) be generators of eventually norm continuous semigroups on \(E \) and \(F \), respectively. Then

\[
\sigma(\tau_{A,B}) = \sigma(A) + \sigma(B).
\]

A semigroup \(T = (T(t))_{t \geq 0} \) on \(E \) is called **eventually norm continuous** if \(T : [t_0, \infty) \to \mathcal{L}(E) \) is continuous for the operator norm for some \(t_0 > 0 \). Such a semigroup has two remarkable spectral properties:

(4.1) \(\{ \lambda \in \mathbb{C} : \Re \lambda \geq b \} \) is bounded for all \(b \in \mathbb{R} \)

and the spectral mapping theorem holds, i.e.,

(4.2) \(\sigma(T(t)) \setminus \{0\} = e^{t\sigma(A)} \) \((t > 0) \)

(see [Na, A-II Theorem 1.20 and A-III.6.6] for example).

For the proof of Theorem 4.1 we will use the following property which holds without assumptions on the semigroup.

Proposition 4.2: Let \(\lambda \in \sigma(\tau_{A,B}) \). Then \(e^{t\lambda} \in \sigma(U(t)) \) \((t \geq 0) \).

Proof: Let \(t \geq 0, \lambda \in \mathbb{C} \) such that \(e^{\lambda} \in \rho(U(t)) \). Let \(R = \int_0^t e^{-\lambda s}U(s)ds + (I - e^{-\lambda t}U(t))^{-1} \).

It follows from Proposition 3.1 that \(R = (\lambda - \tau_{A,B})^{-1} \).

Proof of Theorem 4.1: a) One has \(\sigma(U(t)) \subset \sigma(T(t)) \cdot \sigma(S(t)) \) \((t \geq 0) \). In fact, let \(L(t)X = T(t)X \) and \(R(t)X = XS(t) \) \((X \in \mathcal{L}) \). Then \(U(t) = L(t)R(t) = R(t)L(t) \). It follows from Gelfand’s theorem that \(\sigma(U(t)) \subset \sigma(R(t)) \cdot \sigma(L(t)) = \sigma(S(t)) \cdot \sigma(T(t)) \).

b) Let \(\lambda \in \sigma(\tau_{A,B}) \). Then \(e^{\lambda} \in \sigma(U(t)) \) by Proposition 4.2. It follows from a) and (4.2) that \(e^{\lambda} \in e^{t(\sigma(A) + \sigma(B))} \) for all \(t \geq 0 \). Thus, for all \(t > 0 \) there exist \(\alpha_t \in \sigma(A), \beta_t \in \sigma(B), k_t \in \mathbb{Z} \) such that \(t(\lambda - \alpha_t - \beta_t) = 2\pi ik_t \). In particular, \(\Re \lambda = \Re \alpha_t + \Re \beta_t \). Since \(\sigma(A) \) and \(\sigma(B) \) are situated in left half-planes, there exists \(b \in \mathbb{R} \) such that \(\Re \alpha_t \geq b \) and \(\Re \beta_t \geq b \) for all \(t > 0 \). It follows from (4.1) that \(\sup_{t > 0} |\alpha_t + \beta_t| < \infty \). Consequently, for \(t > 0 \) sufficiently small one has \(k_t = 0 \), i.e., \(\lambda = \alpha_t + \beta_t \).

Remark: Note that under the hypothesis of Theorem 4.1 \(\sigma(A) + \sigma(B) \) is closed because of (4.1).
5. Holomorphic semigroups:

Throughout this section A is a closed operator on E and B a densely defined operator on F. If one of the operators is bounded, then the spectral equality holds without any further assumptions on the other operator.

Theorem 5.1: Let A be a closed operator on E, and B a densely defined operator on F. If A or B is bounded, then

$$\sigma(\tau_{A,B}) = \sigma(A) + \sigma(B).$$

Theorem 5.2: Assume that there exist $R \geq 0$, $0 < \theta' < \theta < \frac{\pi}{2}$, $M \geq 0$ such that

$$\lambda \in \rho(A) \text{ and } \|\lambda R(\lambda, A)\| \leq M \text{ whenever } |\lambda| \geq R, \ |\text{arg } \lambda| \leq \pi/2 + \theta$$

and

$$\lambda \in \rho(B) \text{ and } \|\lambda R(\lambda, B)\| \leq M \text{ whenever } |\lambda| \geq R, \ |\text{arg } \lambda| \leq \pi/2 - \theta'.$$

Then

$$\sigma(\tau_{A,B}) = \sigma(A) + \sigma(B).$$

Remark: If $D(A)$ is dense, the assumption on A is equivalent to saying that A generates a holomorphic C_0-semigroup (cf. [Na, A-II, Theorem 1.14]).

Remark 5.3: Theorem 5.2 remains true if the hypotheses on A and B are exchanged.

Corollary 5.4: Assume that A and B generate C_0-semigroups. If one of the semigroups is holomorphic, then

$$\sigma(\tau_{A,B}) = \sigma(A) + \sigma(B).$$

For the proofs denote by L_A the operator on $\mathcal{L} = \mathcal{L}(F, E)$ given by

$$L_AX = AX$$

$$D(L_A) = \{ X \in \mathcal{L} : XF \subset D(A) \}$$

and by R_B the operator on \mathcal{L} defined by

$$D(R_B) = \{ X \in \mathcal{L} : \exists Y \in \mathcal{L} \quad XBu = Yu \quad (u \in D(B)) \}$$

$$R_B X = Y.$$

Then L_A and R_B are commuting operators on \mathcal{L}. In fact, $\rho(A) \subset \rho(L_A)$ and $R(\lambda, L_A)X = R(\lambda, A)X$ ($\lambda \in \rho(A)$); similarly, $\rho(B) \subset \rho(R_B)$ and $R(\lambda, R_B)X = XR(\lambda, B)$ for all $\lambda \in \rho(B)$.

It is clear that $\tau_{A,B}$ is an extension on $L_A + R_B$, and that $\tau_{A,B} = L_A + R_B$ whenever one of the operators is bounded.

Now the proofs of Theorem 5.1, 5.2, Remark 5.3 and Corollary 5.4 follow from the results on commuting operators in the Appendix.
Remark 5.5: Assume that $E = F$. Under the hypothesis of Theorem 5.2 $D(\tau_{A,B})$ is not dense in \mathcal{L} unless both operators are bounded. In fact, assume that A is unbounded. It follows from Remark 7.4 that $D(\tau_{A,B}) \subset D(L_A)$. It follows from the definition that $D(L_A)$ does not contain any invertible operator. Hence $D(L_A)$ is not dense in \mathcal{L} and $D(\tau_{A,B})$ is not either. Assume now that A is bounded and B unbounded. Then $D(\tau_{A,B})$ is not dense by Remark 1.5.

It is of interest to know under which condition $\tau_{A,B}$ has compact resolvent. In that case Fredholm's alternative holds for equation (0.1).

The following result is due to Voigt [Vo].

Proposition 5.6: Let G be a Banach space and let $K : [a, b] \to \mathcal{L}(G)$ be strongly continuous and let $K_0 x = \int_a^b K(s)x ds \ (x \in G)$. If $K(s)$ is compact for all $s \in [a, b]$ then K_0 is compact.

Using this, we obtain

Proposition 5.7: Assume that the hypotheses of Theorem 5.2 are satisfied. If A and B have compact resolvent, then $\tau_{A,B}$ has compact resolvent.

Proof: The operator $X \mapsto R(\lambda, A)XR(\lambda, -B) : \mathcal{L} \to \mathcal{L}$ is compact by [Bo Du, §33 Theorem 3]. Assuming $0 \notin \sigma(A) + \sigma(B)$ we have by the proof of Theorem 7.3, $R(0, \tau_{A,B})X = \frac{1}{2\pi i} \int_\Gamma R(\lambda, A)XR(\lambda, -B)d\lambda$. So $R(0, \tau_{A,B})$ is compact by Proposition 5.6.

Remark 5.8: One sees in a similar way that $R(\lambda, \tau_{A,B}) = \int_0^\infty e^{-\lambda t}U(t)dt$ is compact if A and B generate compact C_0-semigroups (i.e. $T(t)$ and $S(t)$ are compact for $t > 0$).
6. Counterexamples:

In the particular cases considered in Sections 4 and 5 $\sigma(A) + \sigma(B)$ was closed. Of course, this is not always the case:

Example 6.1: Let $E = F = \ell^2$ and $Ax = ((-\frac{1}{n} + in)x_n)_{n \in \mathbb{N}}$ with maximal domain. Let $B = -A$. Then $(\sigma(A) + \sigma(B)) \cap i\mathbb{R} = \emptyset$ but $i\mathbb{Z} \subset \sigma(A) + \sigma(B)$. Hence $i\mathbb{Z} \subset \sigma(\tau_{A,B})$.

In the following we show by several examples that in general

$$\sigma(\tau_{A,B}) \notin \sigma(A) + \sigma(B).$$

Example 6.2: Let A be the generator of a C_0-group such that $\sigma(A) = \emptyset$.

Then $\sigma(A) + \sigma(-A) = \emptyset$ but $0 \in \sigma(\tau_{A,-A})$ since $I \in D(\tau_{A,-A})$ and $\tau_{A,-A}(I) = 0$. For a concrete example see [Hi Ph, 23.16, p. 665].

Example 6.3: Let A be the generator of a C_0-semi-group on a Hilbert space H. Then, by a result of Groh and Neubrander [Gr Ne, 4.1 Bem.3], [Na, D-IV Remark 2.1 b]),

$$s(\tau_{A^*,A}) = \omega(\tau_{A^*,A}).$$

Now choose A such that $s(A) < \omega(A)$ (see [Na, A-III Example 1.4]). Since $s(A) = s(A^*)$ and $\omega(A) = \omega(A^*)$, it follows that $s(A) + s(A^*) < \omega(A) + \omega(A^*) = \omega(\tau_{A^*,A}) = s(\tau_{A^*,A})$. This shows that $\sigma(\tau_{A^*,A}) \notin \sigma(A) + \sigma(A^*)$.

Remark 6.4: If A generates a C_0-semigroup on a Hilbert space and $s(\tau_{A^*,A}) < 0$, then the above mentioned result of Groh and Neubrander implies that $\omega(A) = \frac{1}{2}\omega(\tau_{A^*,A}) < 0$.

Example 6.5 (cf. Phong [Ph, Example 10]): Let A be the generator of a contraction semigroup on a Hilbert space H such that $s(A) < \omega(A) = 0$ (see e.g. [Na, A-III Example 1.4]). Moreover, consider the translation group on $F = C_u(\mathbb{R}, H)$, the space of all uniformly continuous bounded H-valued functions on \mathbb{R} with supremum norm, with generator $B = \frac{d}{dt}$. Then $0 \in \sigma(\tau_{A,B})$ (see [Ph, Example 10]). Thus, $s(A) + s(B) < s(\tau_{A,B}) = \omega(\tau_{A,B}) = 0$; i.e., $\sigma(\tau_{A,B}) \notin \sigma(A) + \sigma(B)$.

7. Appendix: The sum of commuting operators:

Let A and B be operators on a Banach space G with non-empty resolvent set.

Proposition 7.1: The following are equivalent.

(i) $R(\lambda, A)R(\mu, B) = R(\mu, B)R(\lambda, A)$ for some (all) $\lambda \in \rho(A), \mu \in \rho(B)$.

(ii) $x \in D(A)$ implies $R(\mu, B)x \in D(A)$ and $AR(\mu, B)x = R(\mu, B)Ax$ for some (all) $\mu \in \rho(B)$.

This is well-known and easy to prove.

We say that A and B commute if the equivalent conditions of Proposition 7.1. are satisfied.

The operator $A+B$ is defined by $(A+B)x = Ax+Bx$ with domain $D(A+B) = D(A) \cap D(B)$.

Theorem 7.2: Assume that A and B commute and that one of the operators is bounded.

Then $\sigma(A+B) \subset \sigma(A) + \sigma(B)$.

Proof: We assume that B is bounded. Let us assume that $0 \notin \sigma(A) + \sigma(B)$; i.e. $\sigma(A) \cap (-\sigma(B)) = \emptyset$. We have to show that $0 \in \rho(A+B)$.

There exists a compact set K with oriented (piecewise C^1-) boundary Γ such that

$$\sigma(-B) \subset \text{int } K \subset K \subset C \setminus \sigma(A)$$

(where int K denotes the interior of K), see e.g. [Bo Du, Chapter I § 6]. Let

$$Q = 1/2\pi i \int_{\Gamma} R(\lambda, A)R(\lambda, -B)d\lambda$$

Then $Q \in \mathcal{L}(G), QG \subset D(A)$. Since A and B commute we have

$$(A + B)R(\lambda, A)R(\lambda, -B) = R(\lambda, A) - R(\lambda, -B)$$

(use $AR(\lambda, A) = \lambda R(\lambda, A) - I, BR(\lambda, -B) = I - \lambda R(\lambda, -B)$).

Since by Cauchy’s theorem, $\int_{\Gamma} R(\lambda, A)d\lambda = 0$, it follows that

$$(A + B)Qx = -1/2\pi i \int_{\Gamma} R(\lambda, -B)x d\lambda = -x \quad (x \in G),$$

by Dunford’s spectral calculus. Since Q commutes with $A + B$, it follows that $Q = -(A + B)^{-1}$. \(\diamondsuit\)

In certain cases, even if both operators are unbounded, formula (7.2) can still be used for suitable contours. However, it will represent the resolvent of a certain extension of $A + B$.

For $\theta \in (0, \pi), R > 0$ we let $\Sigma(\theta, R) = \{z \in \mathbb{C}: |z| \geq R, |\arg z| \leq \theta\}$.

Theorem 7.3: Let A and B be commuting operators on G. Assume that there exist $R > 0$ and $\theta \in (0, \pi/2)$ such that

$$\Sigma(\theta + \pi/2, R) \subset \rho(A) \quad \text{and} \quad \sup_{\lambda \in \Sigma(\theta + \pi/2, R)} \|\lambda R(\lambda, A)\| < \infty$$
and there exists $0 < \theta' < \theta$ such that

$$\Sigma(\pi/2 - \theta', R) \subset \rho(B) \text{ and } \sup_{\lambda \in \Sigma(\pi/2 - \theta', R)} \| \lambda R(\lambda, B) \| < \infty.$$

Then there exists a unique extension $(A + B)^\sim$ of $A + B$ such that $(w, \infty) \subset \rho((A + B)^\sim)$ for some $w \in \mathbb{R}$ and $(A + B)^\sim$ commutes with A.

Moreover

$$(7.3) \quad \sigma((A + B)^\sim) \subset \sigma(A) + \sigma(B).$$

If $D(A)$ is dense, then $(A + B)^\sim$ is the closure of $A + B$.

Remark: During the work on this manuscript the authors learnt that J. Prüss proved the spectral inclusion (7.3) by the same arguments in a different context (see [Pr, Section 8.3]).

The operator $(A + B)^\sim$ will be defined as the closure of $A + B$ for a certain topology.

We define the topology T_A on G induced by the norm $\|x\|_{T_A} := \|R(\lambda, A)x\|$, where $\lambda \in \rho(A)$. It is easy to see that different λ yield equivalent norms. Note that $(G, \|\|_{T_A})$ is not complete, in general.

Let C be an operator on G. We say that C is A-closable if $x_n \to 0$, $x_n \in D(C)$, $C x_n \to y$ for T_A implies $y = 0$. In that case, the A-closure \overline{C}^A of C is the operator on G defined by

$$D(\overline{C}^A) = \{ x \in G : \exists x_n \in D(C), x_n \to x, \exists y \in G \text{ s.t. } C x_n \to y \text{ for } T_A \},$$

$$\overline{C}^A x = y.$$

C is called A-closed if $\overline{C}^A = C$. It is obvious that every A-closed operator is closed. Moreover, if C is A-closable, then C is closable and $\overline{C} \subset \overline{C}^A$.

We will show that under the hypotheses of Theorem 7.3 $A + B$ is A-closable and $\overline{A + B}^A$ is the unique extension commuting with A.

Proof of Theorem 7.3: Let $\mu \in \mathcal{C} \setminus (\sigma(A) + \sigma(B))$. We show that $A + B$ is A-closable and $\mu \in \rho(A + B)^\sim$. Replacing A by $A - \mu$ we can assume that $\mu = 0$. In fact, $A - \mu$ satisfies the same condition as A with θ replaced by any $\theta'' < \theta$. Thus $\sigma(A) \cap \sigma(-B) = \phi$.

Choose a rectifiable path γ_0 lying in $\{ z \in \rho(A) \cap \rho(B) : |z| \leq R \}$ with initial point $Re^{-i(\pi/2+\theta)}$ and end point $Re^{i(\pi/2+\theta)}$. Consider the oriented contour Γ_0 consisting of $\{ r e^{-i(\pi/2+\theta)} : r \geq R \}$, Γ_0 and $\{ r e^{i(\pi/2+\theta)} : r \geq R \}$. Then there exists a partition $C = \Omega_+ \cup \Gamma_0 \cup \Omega_+$ where Ω_+, Ω_- are open such that $\text{int}(\Sigma(\theta + \pi/2, R)) \subset \Omega_+$ and $\{ r e^{i\alpha} : r \geq R, \alpha \in (\theta \pm \pi/2, 3\pi/2 - \theta) \} \subset \Omega_-$. Thus $\{ \lambda \in \sigma(A) : |\lambda| \geq R \} \subset \Omega_+$ and $\{ \lambda \in \sigma(-B) : |\lambda| \geq R \} \subset \Omega_-$.

There exist compact sets K_+, K_- with oriented boundary Γ_+ and Γ_- respectively (piecewise of class C^1), and such that

$$\Omega_- \cap \sigma(-B) \subset \text{int } K_- \subset K_- \subset \Omega_- \setminus \sigma(A)$$

and

$$\Omega_+ \cap \sigma(A) \subset \text{int } K_+ \subset K_+ \subset \Omega_+ \setminus \sigma(-B)$$

(see e.g. [Bo Du, I. § 6]).

Let $\Gamma = \Gamma_0 \cup (-\Gamma_-) \cup \Gamma_+$. Since $\sup_{\lambda \in \Gamma} |\lambda|^2 \| R(\lambda, A) R(\lambda, -B) \| < \infty$,

$$Q := 1/2\pi i \int_{\Gamma} R(\lambda, A) R(\lambda, -B) d\lambda$$

$$Q_t := 1/2\pi i \int_{\Gamma} e^{\lambda t} R(\lambda, A) R(\lambda, -B) d\lambda \quad (t > 0)$$

define bounded operators on G such that $\lim_{t \to 0} Q_t = Q$ strongly. Denote by

$$T(t) = 1/2\pi i \int_{\Gamma} e^{\lambda t} R(\lambda, A) d\lambda$$

the semigroup generated by A. Then

$$(7.4) \quad T_A - \lim_{t \to 0} T(t)x = x$$

for all $x \in G$ (cf. [Si, Prop. 1.1, Prop. 1.2]) and $\lim_{t \to 0} T(t)x = x$ for $x \in \overline{D(A)}$.
Since A and B commute we have $(A + B)R(\lambda, A)R(\lambda, -B) = R(\lambda, A) - R(\lambda, -B)$. Hence $Q_t x \in D(A + B)$ for all $x \in G$ and

$$(A + B)Q_t x = 1/2\pi i \int_{\Gamma} e^{\lambda t} R(\lambda, A) x d\lambda - 1/2\pi i \int_{\Gamma} e^{\lambda t} R(\lambda, -B) x d\lambda.$$

Since $\int_{\Gamma} e^{\lambda t} R(\lambda, -B) d\lambda = 0$ by Cauchy’s theorem, we conclude that

$$(7.5) \quad (A + B)Q_t x = T(t)x \quad (t > 0, x \in G)$$

Moreover, for $x \in D(A + B), Q_t(A + B)x = (A + B)Q_t x$. Letting $t \to 0$, we obtain $Q(\lambda)A x = x$. Since Q commutes with A and B we conclude that

$$(7.6) \quad (A + B)Q x = Q(A + B)x = x \quad (x \in D(A + B))$$

Next we show that Q is injective. In fact, let $Q x = 0$. Then for $\mu \in \rho(A) \cap \rho(B)$, by (7.6), $R(\mu, A)R(\mu, B)x = (A + B)QR(\mu, A)R(\mu, B)x = 0$. Hence $x = 0$.

We show that $A + B$ is A-closable. Let $\lambda \in \rho(A)$. Let $x_n \in D(A + B)$ such that $x_n \to 0$ and $R(\lambda, A)(A + B)x_n \to R(\lambda, A)y$. Then

$$R(\lambda, A)Q y = QR(\lambda, A)y = \lim_{n \to \infty} QR(\lambda, A)(A + B)x_n = \lim_{n \to \infty} R(\lambda, A)x_n = 0.$$

Since Q and $R(\lambda, A)$ are injective it follows that $y = 0$.

Now let $x \in G$. Then $Q_t x \to Q x$ ($t \downarrow 0$), $Q_t x \in D(A + B)$ and $T_A - \lim_{t \to 0} (A + B)Q_t x = T_A - \lim_{t \to 0} T(t)x = x$. Hence $Q x \in D(\overline{A + B})$ and $(\overline{A + B})Q x = x$.

Conversely, let $x \in D(\overline{A + B})$. Let $x_n \in D(A + B)$ such that $x_n \to x$ and $R(\lambda, A)(A + B)x_n \to R(\lambda, A)(\overline{A + B})x$. Then

$$R(\lambda, A)Q(\overline{A + B}) x = \lim_{n \to \infty} QR(\lambda, A)(A + B)x_n = \lim_{n \to \infty} R(\lambda, A)x_n = R(\lambda, A)x.$$

Hence $Q(\overline{A + B}) x = x$. We have shown that $(\overline{A + B})^{-1} = Q$.

If $\overline{D(A)} = X$, then $\lim_{t \to 0} (A + B)Q_t x = \lim_{t \to 0} T(t)x = x$ for $x \in G$. So $Q x \in D(\overline{A + B})$. Hence $\overline{A + B} = (\overline{A + B})A$ in that case.

Finally, we show uniqueness. Let C be an extension of $A + B$ commuting with A such that $(\omega, \infty) \subset \rho(C)$. Replacing A by $A - \mu$ and C by $C - \mu$ we can assume that $0 \in \rho(C)$, $0 \notin \sigma(A) + \sigma(B)$.

Let $x \in G$. Then $CQ_t x = (A + B)Q_t x = T(t)x$. Hence $Q x = C^{-1} T(t)x$ ($t > 0$). Consequently, $Q x = \lim_{t \to 0} Q_t x = \lim_{t \to 0} C^{-1} T(t)x = C^{-1} x$ since $T_A - \lim_{t \to 0} T(t)x = x$ and C commutes with A. Thus $-R(0, \overline{A + B}) = Q = C^{-1}$. Consequently, $C = \overline{A + B}$.

\diamond

Remark 7.4 : It follows from the proof that $D((A + B)^\sim) = \text{range } Q \subset \overline{D(A)} \cap \overline{D(B)}$.

References

[Ar] W. ARENDT :

[Bo Du] F.F. BONSALL, J. DUNCAN :

[Da Kr] Ju. L. DALECKII, M.G. KREIN :
Stability of solutions of differential equations on Banach spaces. Providence, R.I. :

[Da Gr] G. DA PRATO, P. GRISVARD :
pures et Appl. 54 (1974), 305-387.

[F] J.M. FREEMAN :
The tensor product of semigroups and the operator equation $SX - XT = A$. J.

[Gr Ne] U. GROH, F. NEUBRANDER :
Stabilität starkstetiger, positiver Operatorhalbgruppen auf C^*-Algebren. Math.

[Hi Ph] E. HILLE, R.S. PHILLIPS :

[Ke Hi] H. KELLERMANN, M. HIEBER :

[L S] S.C. LIN, S.Y. SHAW :
On the equations $Ax = q$ and $SX - XT = Q$. J. Functional Anal. 77 (1988),
352-363.

[Lu Ro] G. LUMER, M. ROSENBLUM :

[Na] R. NAGEL :
One-parameter semigroups of positive operators. Springer LN 1184, Berlin 1986.

[Ne] F. NEUBRANDER :
Integrated semi-groups and their applications to the abstract Cauchy problem.

[Ph] VŨ QUỐC PHÓNG :
The operator equation $AX - XB = C$ with unbounded operators A and B and

[Pr] J. PRÜSS :
Linear Volterra equations and applications. Book to be published.
[Pu] C.R. PUTNAM:

[Ro] M. ROSENBLUM:

[Si] E. SINESTRARI:

[Vo] J. VOIGT:
On the convex compactness property for the strong operator topology. Preprint.