
 

 

Multiagent System Simulations of Sealed-Bid, English, and Treasury Auctions 

by 

Alan Mehlenbacher 

B.S., University of Michigan, 1968 

M.Sc., University of British Columbia, 1970  

M.B.A., Simon Fraser University, 1993 

A Dissertation Submitted in Partial Fulfillment of the Requirements for the 

Degree of 

DOCTOR OF PHILOSOPHY 

in the Department of Economics 

 

 

 

 

 

© Alan Mehlenbacher, 2007 

University of Victoria 

All rights reserved. This dissertation may not be reproduced in whole or in part, by 

photocopying or other means, without the permission of the author. 



 

 

ii 

�

Multiagent System Simulations of Sealed-Bid, English, and Treasury Auctions 

by 

Alan Mehlenbacher 

B.S., University of Michigan, 1968 

M.Sc., University of British Columbia, 1970  

M.B.A., Simon Fraser University, 1993 

 

 

 

Supervisory Committee  

 

Dr. David Scoones, Department of Economics 

Supervisor 

 

Dr. Donald Ferguson, Department of Economics 

Departmental Member  

 

Dr. Linda Welling, Department of Economics 

Departmental Member  

Dr. Tony Marley,  Department of Psychology 

Outside Member 

Dr. Jasmina Arifovic, Simon Fraser University, Department of Economics 

External Examiner  



 

 

iii 

ABSTRACT 

 

Supervisory Committee  

 

Dr. David Scoones, Department of Economics 

Supervisor 

 

Dr. Donald Ferguson, Department of Economics 

Departmental Member  

 

Dr. Linda Welling, Department of Economics  

Departmental Member  

Dr. Tony Marley, Department of Psychology 

Outside Member 

Dr. Jasmina Arifovic, Simon Fraser University, Department of Economics 

External Examiner  

 

I have developed a multiagent system platform that provides a valuable 

complement to the alternative research methods.  The platform facilitates the 

development of heterogeneous agents in complex environments.  The first application of 

the multiagent system is to the study of sealed-bid auctions with two-dimensional value 

signals from pure private to pure common value.  I find that several auction outcomes are 

significantly nonlinear across the two-dimensional value signals.  As the common value 

percent increases, profit, revenue, and efficiency all decrease monotonically, but they 

decrease in different ways.  Finally, I find that forcing revelation by the auction winner of 

the true common value may have beneficial revenue effects when the common-value 

percent is high and there is a high degree of uncertainty about the common value.  The 

second application of the multiagent system is to the study of English auctions with two-
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dimensional value signals using agents that learn a signal-averaging factor.  I find that 

signal averaging increases nonlinearly as the common value percent increases, decreases 

with the number of bidders, and decreases at high common value percents when the 

common value signal is more uncertain.  Using signal averaging, agents increase their 

profit when the value is more uncertain.  The most obvious effect of signal averaging is 

on reducing the percentage of auctions won by bidders with the highest common value 

signal.  The third application of the multiagent system is to the study of the optimal 

payment rule in Treasury auctions using Canadian rules.  The model encompasses the 

when-issued, auction, and secondary markets, as well as constraints for primary dealers.  

I find that the Spanish payment rule is revenue inferior to the Discriminatory payment 

rule across all market price spreads, but the Average rule is revenue superior.  For most 

market-price spreads, Uniform payment results in less revenue than Discriminatory, but 

there are many cases in which Vickrey payment produces more revenue. 
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Chapter 1 

Introduction 

 

1.1 Motivation 

Auctions are complex economic mechanisms that are used for transactions worth 

trillions of dollars each year throughout the world.  Beginning 2000 or more years ago 

with Babylonian auctions of wives and Roman auctions of property (Smith, 1968), 

auctions have expanded to include procurement auctions for government goods and 

services; government asset sales of timber licences, oil leases, telecommunication 

licences, and treasury securities; commercial sale and procurement of vehicles, flowers, 

fish, equipment, and wine; and online sales of consumer goods on eBay.   The basic 

concept of an auction is that bidders make decisions about how much they value the 

auctioned object and then bid in a way that will enable them to obtain the object at a 

profit.  Whether the value of the object is private for each bidder, common to all bidders, 

or a mixture of private and common values is critical for bid strategies and auction 

outcomes. 

We study auctions to understand how bidders value objects, why they make the 

bids that they do, how they can improve their bidding, and which auction design results 

in the most benefit for the seller in a sale auction or the buyer in a procurement auction.  

The design of an auction can include decisions about how many objects are for sale and 

whether they are the same or different, how the bids are made (e.g., sealed-bid or open, 

ascending or descending price), how the payment is calculated (pay-your-bid, pay the 
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average bid, pay the bid of the loser, etc.), and so on.  Because of their importance and 

complexity, auctions are very interesting to study.   

1.2 Methods 

Most studies of auctions use mathematical analysis that involves optimization, 

order statistics, and supermodularity, and I have read dozens of very interesting papers 

and books that use these methods (e.g., Krishna, 2002; Milgrom, 2004).  However, in 

order to achieve tractable results in the face of complexity, drastically simplifying 

assumptions must be made.  As freely admitted by the mathematicians themselves 

(Milgrom, 2004, p. 22), these simplifications put into question the conclusions and 

predictions produced by mathematical analysis.  One possible alternative is to collect 

auction data and analyze it statistically.  I collected five years’ worth of highway 

procurement auction data from Texas, Alberta, and Saskatchewan, and analyzed it using 

several advanced econometric methods.  However, I was disappointed by the limited 

conclusions that I could draw because this approach is severely constrained by a lack of 

information about bidders’ values.  I therefore decided to use a computational agent 

model of the bidders (Chapter 2) that allows me to endow them with values known to me 

but not the other bidders, program them with complex auction mechanisms, and run 

simulations.  The agents record data about their bidding decisions, thereby providing me 

with not only the auction results but also the means whereby the results were produced.  

This classic approach to science was articulated by Rosenbelueth and Wiener (1945), 

who made the distinction between formal (mathematical) and material (computational) 

models.  However, while formal mathematical models have a problem with over-

simplification, computational modellers must guard against making their model so 
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complex that it confounds interpretation of the results.  As Rosenblueth and Wiener 

pointed out, “The best material model for a cat is another, or preferably the same, cat.”   

1.3 Learning 

The bidding model is a learning model in which the agents learn by repeated 

experiences with the same auction mechanism.  I experimented with several learning 

methods and then selected Selten’s impulse balance learning method (Ockenfels and 

Selten, 2005) using criteria explained in Chapter 2.  I modified this method to make it 

suitable for agents learning how to bid in sealed-bid auctions (Chapter 3), and I extended 

it to agents learning how to average value signals in English auctions (Chapter 4) and to 

agents learning how to bid for different types of securities in Treasury auctions 

(Chapter 5).   I show in all cases that the learning models result in convergence to steady-

state bid prices and bid quantities.   These are critical results because it is impossible to 

interpret bidder profit and auctioneer revenue when there is no convergence in the 

bidding strategies. 

1.4 Contributions 

The first set of contributions are the development of the multiagent system 

platform and the adaptation of Selten’s impulse balance learning method to 

computational models, described above in Sections 1.2 and 1.3 respectively.  The next 

contribution concerns sealed-bid auctions with bidder values that range from private to 

common.  It is recognized that this is an important issue that can drive the results of an 

auction, and that valuations are usually a mixture of private and common values.  

However, nearly all theoretical studies consider pure private values, and nearly all human 

experiment studies consider pure private or pure common values.  In the agent 
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environment, I can easily give the agents values that have varying mixtures of private and 

common values.  For sealed-bid auctions (Chapter 3), several auction outcomes are 

significantly nonlinear across the two-dimensional value signals.  As the common value 

percent increases, profit, revenue, and efficiency all decrease monotonically, but they 

decrease in different ways.   The discovery of these nonlinear relationships is the major 

contribution of Chapter 3.  

The next contribution concerns English auctions, in which bidders’ bids are open 

for the other bidders to observe.   A single experimental study (Levin et alia, 1996) has 

shown that bidders modify their bids based on the most recent price at which other 

bidders drop out.  My question was whether or not agents could learn to make this 

modification and whether or not this modification varied with the mixture of private and 

common values and/or with the level of uncertainty about the common value.  In Chapter 

4, I show that the agents do indeed learn to modify their bid strategies, that signal 

averaging increases nonlinearly as the common value percent increases, and that as the 

common value signal becomes more uncertain, signal averaging changes. 

The final contribution concerns Treasury auctions.  In my macroeconomic studies, 

I learned that the central banks manage the money supply primarily through auctions of 

bonds and treasury bills.  The value of these auctions amounts to several hundred billion 

dollars in Canada, trillions of dollars in the United States, and trillions of dollars in other 

countries throughout the world.  However, nobody actually knows which payment rule 

produces the most revenue for the central bank!  Moreover, there have been few studies 

on this because of the complexity introduced by trading in the securities both before and 

after the auction.  This means that most auctions cannot be realistically considered in 
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isolation because they are embedded in an ongoing series of markets or industry 

dynamics.  This message is stressed by Milgrom in his chapter “Auctions in Context” 

(Milgrom, 2004).  Using the multiagent system, I incorporated the before-markets and 

after-markets as well as the complexities of the Treasury auction itself (Chapter 5).  The 

results are interesting and important.  I find that the “discriminatory” payment rule (used 

by the Bank of Canada) results in less revenue than an “average” payment rule.  Whether 

or not the “discriminatory” payment rule produces more revenue than the “uniform” 

payment rule (used by the U.S. Treasury) and the “Vickrey” payment rule depends on the 

price spreads in the markets that occur before and after the auction.      

1.5 References    

Krishna, V., 2002, Auction Theory.  Academic Press. 

Levin, D.,  Kagel, J.H., and Richard, J.F., 1996. “Revenue Effects and Information 

Processing in English Common  Value Auctions.” American Economic Review. 

86: 442-460. 

Milgrom, P., 2004, Putting Auction Theory to Work.  Cambridge University Press. 

Ockenfels, A. and Selten, R., 2005. “Impulse Balance Equilibrium and Feedback in First 

Price Auctions.” Games and Economic Behavior. 51: 155-170. 

Rosenblueth, A. and N. Wiener, 1945, “The Role of Models in Science,” Philosophy of 

Science, 12(4): 316-321. 

Smith, V. L., 1968, Review of Auctions and Auctioneering by Ralph Cassady, Jr., The 

American Economic Review, 58 (4): 959-963. 
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Chapter 2 

Multiagent System Platform for Auction Simulations 

 

2.1 Introduction 

Multiagent systems have been applied to problems that are dynamic, complex, 

and distributed, and thus have been used to model the machines in manufacturing and 

process control, work orders in production scheduling, jobs and departments in business 

process optimization, planes in air traffic control, treatments and tests in hospital patient 

scheduling, messages in communication networks, and in many more areas (Weiss, 

1999).  In economics, agents have been used to model the behavior of, and interactions 

between, consumers, workers, families, firms, markets, regulatory agencies, and so on 

(see Tesfatsion, 2003 and 2006), and there have been a few applications of agent systems 

to auctions (Kim, 2007; Byde, 2002; and Hailu and Schilizzi, 2004).  Section 2.2 

discusses alternatives to multiagent systems in the analysis of auctions and why the 

multiagent system method was chosen for the current research. 

An agent is a software entity that is autonomous, communicating, and adaptive.  

Autonomy means that an agent is driven by its own objectives, possesses resources (e.g., 

information) of its own, is capable of recording information about its environment, and 

can choose how to react to the environment.  An agent is also a communicating software 

entity.   Agents communicate directly with other agents by passing messages.  Because 

each agent is autonomous, an agent must send requests to other agents for things to be 

done.  For example, in this system, agents send messages to coordinate auctions, establish 

values, send bids, move to a new auctioneer, and so on.    The agents are developed using 
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object-oriented design.  This means that the system consists of approximately 100 

independent programs that are called “classes.”   Section 2.3 describes the design 

principles and, together with the Appendix, provides a guide to the classes. 

An agent endeavours to improve its state (e.g., profit or revenue) in at least two 

ways.  The first type of learning is reinforcement learning that uses feedback on results of 

actions to improve the results.  The second type of learning is belief learning that 

involves updating beliefs about the environment, markets, and competitors, which may 

provide further improvements to the agent.   Section 2.4 presents the results of an 

evaluation of different methods of agent learning.   

2.2 Alternatives to Multiagent Systems 

The major alternatives to using a multiagent system are mathematical theory, lab 

experiments, econometric models, and computational models.   

2.2.1 Mathematical Theory 

In a mathematical approach, mathematical machinery is developed (e.g., 

optimization, order statistics, supermodularity, etc.), simplifying assumptions are made, 

and results proven using theorems.  However, applying these theoretical results to real-

world auctions is problematic.  For example, Milgrom (2004, p. 22) has identified the 

following problems:  “Academic mechanism design theory relies on stark and 

exaggerated assumptions to reach theoretical conclusions that can sometimes be fragile.  

Among these are the assumptions (i) that bidders’ beliefs are well formed and describable 

in terms of probabilities, (ii) that any differences in bidder beliefs reflect differences in 

their information, (iii) that bidders not only maximize, but also cling confidently to the 

belief that all other bidders maximize as well.”   
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A more realistic model of industry bidders can be achieved by using artificially 

intelligent software agents that are designed to optimize adaptively using the information 

they receive from the seller.  This approach directly addresses the problems identified by 

Milgrom.  There are fewer and more flexible simplifying assumptions
1
, information to 

agents can be restricted to own information or expanded to information about other bids, 

and agents are programmed to maximize within the constraints of the abilities and 

information they have.  

2.2.2 Lab Experiments 

One approach to dealing with the limitations of theory has been to perform lab 

experiments, usually using student subjects (Kagel and Levin, 2002).  These experiments 

have the benefit of bidders that encompass the wide range of human reasoning and 

feeling, but the disadvantage is the inexperience of the bidders.  The subjects, whether 

students or adults from industry, must learn about the bidding environment from scratch, 

and this constrains the complexity of the mechanisms that can be studied in the lab.  The 

subjects simply do not have the time to develop the richness of task-specific knowledge 

that is used again and again in a real-world industry auction (Dyer et alia, 1989).  Lab 

experiments are also expensive and time consuming.  Because of these constraints, the 

number of existing publications on human auction experiments is small, and the 

experiments are limited to relatively simple environments.  However, the results provide 

useful benchmarks to assess the results of the computational models (see Section 2.3.3).  

                                                 

1
 The single major assumption in this approach is the method the agents use to learn bidding strategies.     
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2.2.3 Econometric Models 

There are two types of econometric methods that have been applied to auction 

data:  regression analysis and structural models.  For example, regression analysis is 

applied by  De Silva et alia (2002, 2003) to bidding data from road construction 

procurement auctions, by Athey and Levin (2001) to data from U.S. timber auctions, and 

by Iledare et alia (2004) to data of oil lease auctions.  The aim of the structural modelling 

approach is to recover from the auction data distributions of values and bids, in order to 

then analyze such topics as:  whether the values are private, affiliated, or common; the 

extent of collusion; the impact of entry costs, and so on.  Some researchers use 

parametric distribution functions (Li and Perrigne, 2003; Haile et alia, 2003; Li et alia, 

2000) , but an increasing number of authors are using nonparametric methods (Campo et 

alia, 2003; Hendricks et alia, 2003).  A thorough overview with several examples is 

contained in Paarsch and Hong (2006). 

The major advantage of the econometric methods is that they use data from real 

auctions.  The most serious disadvantage is that data is very difficult to obtain.  In 

addition, econometric models are restrictive because the econometrician does not know 

the value estimates of the bidders, and all bidding strategies are based on these 

valuations.  In addition, the structural models assume that bidders use a Bayesian Nash 

equilibrium bidding strategy, which is a very questionable assumption (Bajari and 

Hortacsu, 2005).   

2.2.4 Computational Models 

Another approach is to use a computational method that is not agent-based.  

Dynamic programming methods have been used to determine optimal bidding strategies 
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for bidders.  The use of these methods began with Friedman (1956) and is reviewed in 

Stark and Mayer (1971).  Since a large volume of historical data on competitor bids is 

required to determine the optimal bidding strategy for a single bidder, the approach is 

useful for advising bidders in situations in which large volumes of data exists, such as 

online bidding (Tesauro and Bredin, 2002) and electricity markets (Attaviriyanupap et 

alia, 2005).  The main advantage of the dynamic programming approach is that it 

produces an optimized bidding strategy based on real-world data, but the disadvantage is 

that such datasets are few and far between. 

 In summary, there are advantages and disadvantages to each approach.  The 

major advantages of agent computational modelling are that it does not require the 

simplifying assumptions of mathematical analysis, can model the experienced bidders in 

complex environments that are beyond the reach of lab experiments, does not require 

assumptions about values or Bayesian Nash equilibrium required by econometric 

methods, and does not require large amounts of historical data required by dynamic 

programming methods.   

2.3 Design Methods 

The object-oriented design methods are described in Section 2.3.1.  Section 2.3.2 

describes some of the major classes that have been developed for the basic agent 

functions, auctions, and other applications.  In Section 2.3.3, I present the methods that 

are used to verify the validity of the agent models.   

2.3.1 Object-Oriented Design 

The multiagent system is designed using object-oriented principles and developed 

with Java, which is a platform-independent, object-oriented programming language.  Two 
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of the main advantages of an object-oriented approach are instantiation and extension.  

When we develop a Java program, we create a "class" that is an independent program 

with a specific purpose.  This class can be used ("instantiated") one or more times to 

become an "object" that can then be executed.  For example, I program a bidder agent 

class and then instantiate it many times to produce a large population of bidder agent 

objects.   Each class program consists of properties and methods.   For a bidder agent, 

properties include name, current bid price, and value estimate;  and methods include 

handling a message, moving to a new auction, and adjusting the bid price.   All properties 

are for private use by the class, but these properties may sometimes be set or retrieved by 

other classes.   Some methods are for public access but others are restricted for use only 

within the object.  We can create base classes with common attributes and functions and 

extend them using more specific attributes and functions.  For example, cars, trucks and 

busses have many common attributes and functions that we would place in a Vehicle 

class, which is then extended by the classes Car, Truck, and Bus.  Then, we can extend 

the Car class to classes for SUV, Sedan, and so on.  In this application, AbstractAgent 

class is extended by AbstractBidderAgent, which is extended by MultiUnitBidderAgent, 

which is extended by BankAgent.  All of the extensions from the AbstractAgent class are 

illustrated in Figure 2.1. 

2.3.2 Classes 

The base multiagent platform is implemented with about 22 Java classes that are 

shown in Table 2.1.  I have previously extended these classes in studies of repeated 

games with evolving finite automata using about 17 classes, repeated games with 

probabilistic finite automata using about 9 classes, and a simple trading economy using 
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about 15 classes.  The focus of this paper is auction simulations, which have been 

implemented using about 43 classes that are shown in Table 2.2.  Some of the classes are 

described in the Appendix. 

For auctions, there are auctioneer agents (sellers), bidder agents (buyers), and a 

coordinator agent to implement the important coordination mechanisms (Decker and 

Lesser, 1995).  The basic idea is that each auction format (e.g. single-unit sealed bid, 

single-unit English, etc.) has an associated auction class to handle the mechanics of 

fetching bids, choosing a winner, etc., and an associated conversation class that handles 

the communication between the bidders and the auctioneer.  The auctioneer uses the 

appropriate auction class and the bidder uses the appropriate conversation class.  The 

system supports a wide variety of options for current and future simulations.  I can select 

the auction type (sale or procurement), payment type (first-price, second-price), bid 

format (sealed, English), numbers (of items being auctioned, auctions, auctioneers, and 

bidders), value (private value, common value, mixed value), and so on.  The major design 

goal is to provide broad functionality so that different mechanisms can be studied for 

both single-unit and multi-unit auctions. 

2.3.3 Verification of Multiagent  Models 

Multiagent systems, like other computational methods, have the challenge of  

verification.  In my work, I use four approaches to verification.  

First, verification is facilitated in multiagent models by explicitly modelling real 

world objects and relationships.  For example, in the multiagent model of consumer 

choice in a transportation system, households, persons, and families are modeled with 

realistic behaviours (Salvini and Miller, 2005) based on observations and data.  In my 
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multiagent model, bidder learning is modeled using adjustment rules that are based on 

results from lab experiments (Ockenfels and Selten, 2005; Neugebauer and Selten, 2006).   

Second, verification is strengthened by comparing simulation results to data from 

lab experiments for the simple cases for which there are such results.  This is virtually 

impossible for very complex auction mechanisms, and in these cases test data itself is 

generated computationally (Leyton-Brown and Shoham, 2006).  For games that are less 

complex than auctions, there are good opportunities to test learning models against data 

from lab experiments (Arifovic et alia, 2006).  The single-unit sealed bid and English 

auctions that  I study are of moderate complexity (Chapter 3 and Chapter 4), and the 

results can be verified against lab experiments in the simple cases of, for example, pure 

private values and pure common values.  Agreement with this data lends credibility to the 

validity of the model in the more complex cases.    

Third, the model must have as few parameters as possible, and the model must 

produce results that are stable within a range of the parameters.  For example, if a 

reasonable range of one parameter is [0, 1], the model must be stable within a subset of 

this range, e.g. [0.3, 0.8].  If there are two or more parameters, then the model must be 

stable for an intersection of subranges.  This is admittedly a subjective process, but it 

provides a relative measure of confidence in the model if the results are stable over [0.3, 

0.8] when the results of another model are stable over [0.5, 0.7]. 

Fourth, the model must converge for the variables being studied.  These 

convergence results are important, since it is impossible to interpret auction results for 

bid strategies, profit, revenue, and efficiency when there is no convergence.  For 

example, without convergence the results are different when we stop the simulation in 
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period t+10 from the results when stopping the simulation in period t.  Also, the fact that 

convergence occurs in less than, say, 100 periods makes it reasonable to infer that the bid 

strategies of human agents could converge in a realistic number of real-world auctions.  

2.4 Learning Models 

An agent can improve its profit through learning in at least two ways.  The first 

type (“belief learning”) is described in Section 2.4.1.  Belief learning involves updating 

beliefs about the environment, markets, and competitors, which may provide further 

improvements to the agent.  Several alternative methods of  the second type (“action 

learning”) are described in Section 2.4.2, and Section 2.4.3 presents an evaluation of the 

alternative methods.   I have implemented the two types of learning with about 31 Java 

classes in three packages (Table 2.3). 

2.4.1 Belief Learning 

Belief learning is modelled by probabilistic networks (also called Bayesian 

networks and belief networks), and I developed the Java classes shown in Table 2.3 using 

the concepts and algorithms in Cowell et alia (1999) and Shafer (1996)
2
.  Briefly, a 

probabilistic network is a directed acyclic graph in which nodes represent the random 

variables, an arrow from node X to node Y means that X has a direct influence on Y, and 

each dependent node has a conditional probability table.  In constructing a probabilistic 

network, you choose
3
 the set of relevant variables that describe the beliefs, add  the nodes 

by adding the "root causes" first, then the variables they influence, and so on until you 

                                                 

2
 I developed a compact package of software for agents, but there are several products available that are 

oriented towards working with large datasets, e.g., Hugin. 

3
 Given a large enough dataset, it is possible to for an agent to learn the structure of its Bayesian network 

(Heckerman, 1998). 
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reach the leaves which have no direct causal influence on other variables.  Finally, you 

define the conditional probability table for each node, which provides the probability that 

a given node state will occur, given the states in the preceding nodes.  In order for the 

agent to make inferences from observed facts, the network must be converted into a more 

compact form called a junction tree.  First, the network is moralized, which means that all 

parents of a node are joined (or “married” and thus becoming “moral”!).  Second, the 

moralized network is triangulated, which means that every polygon larger than a triangle 

is filled in to produce a network of connected triangles.  Third, the triangles are converted 

into nodes of a junction tree, i.e., a junction tree is network of the triangles.  During this 

process, the conditional probability tables are modified appropriately.  Now when the 

agent observes some change in the environment, the change is propagated to all the nodes 

of the junction tree and the conditional probability tables are updated.  To the agent, this 

means that its belief system is updated to accommodate the new information. 

I performed many computational experiments with agents developing beliefs 

based on information they compile using the bid distribution classes listed in Table 2.2.  

These classes provide an agent with distributions of its own results for profit, winning, 

etc. and the results of other agents (for this, the I3 agents were provided with the identity 

of other bidders) in order to develop beliefs about relative strength.  The bidders then 

used these beliefs to modify their ongoing bid strategy depending on the specific 

opponents in each auction.  However, I found that using belief learning in this context did 

not significantly change the overall results for profit, revenue, and efficiency compared to 

agents who did not use belief learning.  This result occurred because the auction-specific 

strategies are stationary around the ongoing bidding strategy and thus had no effect on the 
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averages.  Therefore, in the interests of parsimony, I removed  belief learning from the 

model and have therefore not used it in the current research on auctions.  However, I 

believe that belief learning has potential application in other types of multiagent models, 

especially in macroeconomic models where expectations play a major role. 

2.4.2 Action Learning Alternatives 

There is considerable scope for choosing the action learning model for the agents.  

Alternatives for action learning include simple reinforcement learning, reinforcement 

learning methods,  experience-weighted attraction,  learning direction theory, genetic 

algorithms, and neural networks.   

Simple reinforcement learning uses profit to reinforce action weights.  Thus, the 

actions are usually modelled as discrete states that can be weighted, and only one type of 

information is used (profit).  This method has been applied with some success to normal 

form games (Erev and Roth , 1998) and to auctions by Armantier (2004), Daniel et alia 

(1998), Seale et alia (2001), Bower and Bunn (2001), and Nicolaisen et alia (2001).   I 

experimented with this simple reinforcement method, but I also extended it using two 

types of states:  the average profit of the bidder and the average profit of the bidder’s 

opponents.   In the first, the state is 0 if the bidder’s own average profit is negative, and 1 

if it is positive.   In the second, the state is 0 if the opponents on average are losers 

(negative average profits), and 1 if the opponents are on average profitable.  The action 

weights occur in pairs, one for each state, that are updated as in the simple reinforcement 

learning but now depending on the state. 

More sophisticated methods of reinforcement learning have not previously been 

used in auctions, so I performed simulations for common-value first-price sealed-bid 
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auctions using dynamic programming, temporal difference, and Q-Sarsa methods (Sutton 

and Barto, 1998).  The dynamic programming method reinforces actions by both actual 

profit and expected future profits (based on past profits) as in Sutton and Barto (1998, 

Chapter 4).   I use the states as described above for the extended simple reinforcement 

learning methods, along with a state transition table containing the probabilities of 

transition from one state to another.  The weights are then updated by combining the 

profit for the current state with the weights for the states indicated by the state transition 

table.  In the temporal difference method, the agent uses profit to reinforce the current 

state-action pair as well as the state-action pair that preceded the current action.  This 

approach closely follows Sutton and Barto (1998, Chapter 6).  Q-Sarsa learning involves 

reinforcing the current state-action pair as well as all of the state-action pairs that 

preceded this action.  This involves the use of eligibility traces as described in Sutton and 

Barto (1998, Chapter 7).   

Experience-weighted attraction uses profit for winners and foregone profit for 

losers to reinforce discrete action states.  Camerer has used this method extensively in 

games  (Camerer, 2003;  Camerer et alia, 2002), and it has been applied to auctions by 

Rapoport and Amaldoss (2004).   

Learning direction theory (Selten, 1998) has been applied as impulse balance 

learning to auctions by Selten and Buchta (1998), Selten et alia (2005), Ockenfels and 

Selten (2005), and Neugebauer and Selten (2006).  The method has also been used to 

interpret experimental data by Garvin and Kagel (1994) and Kagel and Levin (1999).  

Impulse balance learning uses foregone profit upon losing as an upward impulse on a 

continuous bidding strategy and money on the table upon winning as a downward 
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impulse.  The downward impulse is weighted by a balance factor that is the ratio of the 

expected value of the upward impulse to the downward impulse.  I augmented this 

method to include adjustment using actual loss by the winner and foregone loss (the 

amount the agent would have lost if it had won) by the losers.  The agent adjusts the bid 

strategy for a loser to bid higher depending on the level of foregone profit and bid lower 

depending upon the level of foregone loss.  A winner reduces its bid in proportion to the 

money on the table if it made a profit and in proportion to the actual loss if it made a loss. 

Genetic algorithms have been applied to auctions by Dawid (1999) and Andreoni 

and Miller (1995), and neural networks have been used by Bengio et alia (1999).  

Genetic algorithms require discrete states, and genetic algorithms and neural networks 

use only profit to guide the optimization.   

2.4.3 Action Learning Evaluation 

To guide selection of an appropriate learning method, we need to establish the 

level of intelligence required.  Since the research is motivated by an interest in real-world 

asset-sale auctions such as those for timber sales, drilling licences, and treasury 

securities, the agents must simulate experienced real-world auction bidders.  A credible 

learning method for simulating these sophisticated bidders must satisfy four criteria:  (1) 

be a realistic representation of how humans can potentially maximize profit in the auction 

environment, (2) potentially utilize all available information feedback, (3) handle 

continuous bids, and (4) be extendable.  

Human reasoning cannot be captured with a single computational paradigm but is 

situational and adaptable and involves a combination of heuristics and rules-of-thumb, 

together with logic and optimization when required (Dyer et alia, 1989; Hutchinson and 
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Gigerenzer, 2005; Ohtsubo and Rapoport, 2006).  In a study using experienced 

construction executives, Dyer et alia (1989, p. 115) concluded that “success in the field 

thus derives not from conformity to a narrow notion of rationality, but from acquiring and 

utilizing detailed knowledge of a particular market environment.”  Genetic algorithms 

and neural networks are general-purpose methods that require the researcher to fit the 

reasoning to the algorithm and do not accommodate the specific economic reasoning that 

goes into developing the various auction strategies.  The more straightforward methods 

like simple reinforcement, experience-weighted attraction, and impulse balance are 

superior in this regard.   

Research in auctions (Dyer and Kagel, 1996; Dyer et alia, 1989) demonstrates 

that bidders acquire and use detailed knowledge in their specific auction environments.  

Thus, a realistic learning method must accommodate different levels of information and 

utilize more than just profit.  Except for experience weighted attraction and impulse 

balance, the methods use only profit and are thus too informationally restrictive.  

Experience weighted attraction uses profit and foregone profit, but impulse balance uses 

money on the table and foregone profit and can be extended to use profit, loss, and 

foregone loss. 

A further limitation of most of the learning methods is that they are implemented 

using discrete states.  If the discretization is too fine, the implementation is too 

inefficient;  if it is too coarse, the bidding is not realistic enough for meaningful economic 
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conclusions.  The impulse balance model is the exception since it deals efficiently with 

continuous
4
 increases or decreases in the bidding strategy.   

Finally, the method should be extendable so that other auction mechanisms and 

context variables can be accommodated in future studies, but only a method like impulse 

balance can be practically extended in this way.  The basic method uses money on the 

table and foregone profit, and I have extended it to use actual profit, actual loss, foregone 

loss, and estimates of these impulses when information is restricted. 

In summary, the method that comes closest to satisfying the criteria is the 

augmented impulse balance method.  Thus, this method is developed and expanded in 

subsequent chapters. 

2.5 Conclusion 

The multiagent system approach with agents using modified impulse balance 

learning has the advantages of not requiring the simplifying assumptions of mathematical 

theory and of not being constrained in complexity by the limited experience of 

experimental subjects.  Impulse balance learning provides the best foundation for 

learning in auctions since it is a realistic representation of experienced human bidders, 

utilizes several types of information feedback, handles continuous bids, and is 

extendable.   Therefore, I modify and extend the impulse balance method in multiagent 

system simulations of sealed-bid auctions (Chapter 3), English auctions (Chapter 4), and 

treasury auctions (Chapter 5).   

                                                 

4
 Continuous in this context means real numbers that are not restricted to integers and that are represented 

by 32 bits. 
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2.7 Tables 

 

Table 2.1.  Base Packages and Classes 

Package Class Extends 

1. agent 1. AbstractAgent 

2. AgentInfo 

3. Registry 

 

2. distributions 4. RandomNumber 

5. Beta 

6. Normal 

7. Uniform 

 

RandomNumber 

RandomNumber 

RandomNumber 

3. grid 8. Cell 

9. Coordinates 

10. Grid 

11. Options 

 

4. gui 12. BasicMenu 

13. GuiFrame 

14. HelpFrame 

15. InfoPanel 

JMenuBar 

JFrame  

JFrame  

JPanel 

5. statistics 16. Moments 

17. Regression 

18. TimeSeries 

 

6. support.filesupport 19. Tracing  

7. support.guisupport 20. Console 

21. MenuCreator 

22. RadioButtonPanel 

 

 

JPanel 
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Table 2.2.  Auction Packages and Classes 

Package Class Extends 

1. auction.agent 1. AbstractAuctioneerAgent 

2. AbstractBidderAgent  

3. AbstractCoordinatorAgent 

4. BankAgent 

5. BidDistributions 

6. CentralBankAgent 

7. MultiUnitAuctionerAgent 

8. MultiUnitBidderAgent 

9. MultiUnitBidDistributions 

10. SingleUnitAuctioneerAgent 

11. SingleUnitBidderAgent 

12. SingleUnitBidDistributions 

13. SingleUnitCoordinatorAgent 

14. TreasuryCoordinatorAgent 

AbstractAgent 

AbstractAgent 

AbstractAgent 

MultiUnitBidderAgent 

 

MultiUnitAuctionerAgent 

AbstractAuctioneerAgent  

AbstractBidderAgent  

BidDistributions 

AbstractAuctioneerAgent 

AbstractBidderAgent  

BidDistributions 
AbstractCoordinatorAgent 

AbstractCoordinatorAgent 

2. auction.bidding 15. Auction 

16. AuctionResult 

17. Bid 

18. MultiUnit 

19. MultiUnitEnglish 

20. MultiUnitSealed  

21. SecondaryTreasuryMarket 

22. SingleUnit 

23. SingleUnitEnglish  

24. SingleUnitSealed 

 

 

 

Auction  

MultiUnit 

MultiUnit  

 

Auction 

SingleUnit 

SingleUnit 

3. auction.conversation 25. MultiUnitConversation  

26. MultiUnitSealedConversation 

27. MultiUnitEnglishConversation 

28. SingleUnitConversation 

29. SingleUnitSealedConversation 

30. SingleUnitEnglishConversation 

 

MultiUnitConversation  

MultiUnitConversation 

 

SingleUnitConversation 

SingleUnitConversation 

4. auction.grid 31. AuctionAgentCell  

32. AuctionAgentGrid  

33. AuctionAgentOptions  

Cell 

Grid 

Options 

5. auction.gui 34. AuctionAgentGuiFrame  

35. AuctionAgentOptionDialogSingleUnit  

36. AuctionAgentOptionDialogTreasury 

37. SliderHandlerSingleUnit 

38. SliderHandlerTreasury 

GuiFrame 

JDialog 

JDialog 

6. auction.simulation 39. AveragingImpulseOutput 

40. BidImpulseOutput  

41. EfficiencyOutput 

42. ProfitOutput  

43. RevenueOutput 
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Table 2.3.  Learning Packages and Classes 

Package Class Extends 

1. learning 1. Action 

2. SingleUnitLearning 

3. Rla 

4. RLas 

5. EWA 

6. DP 

7. TD 

8. Q 

9. IB 

10. IBA 

11. SingleUnitImpulse 

12. MultiUnitAdjustment 

13. MultiUnitRules 

 

 

SingleUnitLearning 

SingleUnitLearning 

SingleUnitLearning 

SingleUnitLearning 

SingleUnitLearning 

SingleUnitLearning 

SingleUnitLearning 

SingleUnitLearning 

SingleUnitLearning 

 

MultiUnitAdjustment 

2. probnet.algorithm 14. CreateJunctionTree 

15. FindCliques 

16. InitializePotentials 

17. Moralize 

18. PerfectOrder 

19. Triangulate 

 

3. probnet.bayesnetwork 20. ActiveBN 

21. BayesNetwork 

22. BayesNode 

23. ChainComponent 

24. JunctionTree 

25. JunctionTreeNode 

26. Key 

27. Network 

28. Node 

29. PotentialTable 

30. Separator 

31. Table 

 

Network 

Node 

Node 

Network 

Node 

 

 

 

Table 

Node 
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2.8 Figures 

 

Figure 2.1.  Simple Class Diagram for Auction Bidder Classes 
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2.9 Appendix  

This Appendix describes some of the design concepts used in implementing the 

functionality for Agents, Conversations, and Auctions. 

 Agent Classes 

There is a base AbstractAgent class that provides functions common to all agents.   

AbstractCoordinatorAgent, AbstractAuctioneerAgent, and AbstractBidderAgent classes 

extend AbstractAgent and then these in turn are extended for single-unit, multi-unit, and 

treasury auctions.     

A coordinator agent has two major tasks:  to create the other agents and 

coordinate the auctions.  For each auction, the coordinator broadcasts a message to every 

auctioneer to hold an auction and directs the agents to move if there is more than one 

auctioneer.  The coordinator can randomly distribute the bidders equally or unequally to 

the auctioneers.   

An auctioneer agent has three major tasks:  execute the auction, notify the 

bidders, and print results.  An auctioneer creates an auction object of the appropriate type 

(e.g., SingleUnitSealed, MultiUnitSealed, etc.) based on the type of auction that has been 

set by the experimenter.   The auctioneer then uses the auction object to execute the 

auction, fetch bids, pick winners, and send results to the bidders.  For the benefit of the 

experimenter, the auctioneer agent also prints results for the experimenter using classes in 

the auction.simulation package. 

A bidder agent has three major tasks:  learn how to improve bidding, calculate a 

bid and send it to the Auctioneer using the Bid class (The Bid class holds attributes for a 

bid:  the bidder, value signal, action that led to the bid, and the bid amount plus the 
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resulting ranking, profit, foregone profit, and so on.), and move to a new auctioneer (if 

the Bidders option is "random").   Each bidder agent has a learnBidFactor method that is 

called when the auction object requests the bidder's participation in an auction.  The 

learnBidFactor method in turn calls one of the learning algorithms (see Section 2.3) to 

calculate the bid factor.  For the benefit of the experimenter, the bidder agent also prints 

results for the experimenter using the classes in the auction.simulation package. 

Conversation Classes 

The bidder communicates with the auctioneer using protocols encapsulated in 

conversation classes.  The message types are consistent with FIPA Agent Communication 

Language (FIPA, 2002).    

The SingleUnitConversation and MultiUnitCoversation classes tell the bidders to 

learn and inform them of auction results.  They are extended by the classes for sealed-bid 

and English auctions that retrieve the bids from the bidders.  The process involves a 

single message for sealed-bid auctions, but involves many messages for the English 

auctions.  Starting with a low price, SingleUnitEnglish iterates through a loop:  send to 

active bidders the price and the latest dropout price;  remove bidders who reject this price 

level from the auction;  increment the price. 

Auction Classes 

Each auction involves the following four major functions:  manage the auction, 

fetch bids, pick the winner(s), and calculate payment(s).  The processes of auction 

management, picking the winner, and calculating the payment are handled by the 

SingleUnit and MultiUnit classes.  Since the process of fetching bids differs for sealed-

bid and English auctions, this function is handled by extensions of these classes. 
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Chapter 3 

Multiagent System Simulations of  Sealed-Bid Auctions 

 with Two-Dimensional Value Signals 

 

3.1 Introduction 

This study endows computational agents with a learning model and uses these 

agents in computational experiments to make three contributions to knowledge about 

multiagent simulations of sealed-bid auctions.   

Several empirical studies have shown that impulse balance learning explains how 

human bidders in auction experiments adjust their bid price strategies (Selten and Buchta, 

1998; Selten et alia, 2005; Ockenfels and Selten, 2005; Neugebauer and Selten, 2006; 

Garvin and Kagel, 1994; Kagel and Levin, 1999).  This makes it a promising method to 

investigate as the learning model in a multiagent system.  The first contribution is to 

adapt Selten’s impulse balance learning method for use by agents in a multiagent system.    

In real-world auctions (such as those for timber sales, oil leases, spectrum, and 

services) the item value often has both a private value and a common value component 

(Goeree and Offerman, 2002).   Thus, the second contribution is to determine how profit, 

revenue, and efficiency change as the common value component increases.  There are no 

lab experiments to indicate whether this change is linear or non-linear.  The multiagent 

simulations show that as the common value percent increases, profit, revenue, and 

efficiency all decrease monotonically (and often nonlinearly), but they decrease at 

different rates.  Profit curves tend to decrease faster at higher common values, revenue 
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curves tend to decrease more rapidly at low common value percents, and efficiency 

curves tend to stay high and then decrease rapidly for high percents of common value.   

The third contribution is to determine whether it may be worthwhile for a seller 

(such as a federal or state government) to enforce truthful revelation of the true common 

value by auction winners.   In lab experiments, Kagel and Levin (1999) show that 

revealing information about the true common value in first-price auctions increased or 

decreased revenue depending upon the number of bidders and the degree of uncertainty 

about the common value.  The multiagent simulations show that forcing revelation of the 

true common value may have beneficial revenue effects when there is a higher degree of 

uncertainty about the common value. 

In Section 3.2, I describe the auction model.  Section 3.3 provides details of the 

learning model and its properties of convergence and sensitivity.  Section 3.4 compares 

the results of learning model with results from lab experiments in other studies.  Section 

3.5 demonstrates the nonlinear variation of revenue and efficiency with the common 

value percent.  Section 3.6 shows the results of requiring the auction winners to reveal the 

actual common value to the auction losers.  Section 3.7 presents conclusions. 

3.2 Auction Model 

The multiagent system platform is described in Chapter 2.  In this section, I 

describe how the system implements values and the value signals for bidders (3.2.1), the 

levels of information feedback (3.2.2), and the number of periods and bidders (3.2.3).  

3.2.1 Values and Value Signals 

Before participating in a sealed-bid auction in period t, each bidder i determines 

its estimate for the value i

tv  of the item, and this estimate is called a value signal, denoted 
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ˆi

tv .1   Most auction research has involved a single value signal ˆi

tv  that is either pure 

private ( ,

i

P tv ) or pure common ( ,
ˆi

C tv ), and these pure signals are called “one-dimensional” 

value signals.  The bidders’ value signals are “pure private value” when they base their 

estimates on their own value for the item, without considering how other bidders might 

value the item.   The value signals are “pure common value” when bidders base their 

estimates on an estimated future actual value that is common to all bidders, for example a 

resale price.  In the case of pure private values, each bidder will have a different value 

signal and the estimated value for a bidder is the actual value of the item to that bidder.  

In the case of pure common values, the actual common value is unknown to the bidders 

before and during the auction, and is discovered in the markets after the auction only by 

the winning bidder.  

In most real-world situations, a value signal is a mixture of private and common 

value components.  A few researchers (Dasgupta and Maskin, 2000;  Jehiel and 

Moldovanu, 2001; Goeree and Offerman, 2002) have studied these mixed value signals 

and designated them “multi-dimensional” (or more precisely, “two-dimensional”) value 

signals.   For example timber sale auctions and oil leases have a common value 

component consisting of the volume and market price of the resource and a private value 

component consisting of firm-specific costs, capacities, and skills (Athey and Haile, 

2002; Hendricks et alia, 2003; Haile et alia, 2003).  Similarly, service procurement 

auctions have a common value component that is the scope of work and a private value 

component consisting of productivity, wage costs, and overhead costs.  Within the 

                                                 

1 The notation is summarized in Table 3.1. 
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context of a unique mixture of private and common values, the seller establishes the 

auction rules, the most fundamental of which are the payment rule and the information to 

be released to the bidders after the auction.  In this case, the value signal ˆi

tv  is a function 

of both  types of value so that , ,
ˆ ˆ ˆ( , )i i i i

t t P t C tv v v v= .  Following  Goeree and Offerman (2002),  

I use linear combinations of private values and common value signals to produce mixed 

value signals that range from pure private value to pure common value.  An agent’s value 

signal is , ,
ˆ ˆ(1 )i i i

t C P t C C tv v vθ θ= − + , where [ ]0,1Cθ ∈  is the fraction of common value.  The 

actual value, known by the winner, is therefore ,(1 )i i

t C P t C Cv v vθ θ= − + .  Two levels of two-

dimensional value signals ( Cθ = 0.14 and 0.25) have been investigated in experiments by 

Goeree and Offerman (2002), but my study is the first to look at the full spectrum of two-

dimensional signals and the variation in profit and revenue as well as efficiency.   

Values are distributed to the agent bidders in a different way than the distribution 

to human subjects in lab experiments (Kagel and Levin, 2002).  In this study, each bidder 

agent’s private and common value signals, as well as the actual common value, are fixed 

throughout the auctions.  This is an artificial situation, but it has the purpose of 

identifying the adaptively best bidding strategy for each possible value signal.  The 

alternative, which is used in lab experiments, is to provide each bidder with a random 

value signal for each auction.  This results in each bidder learning an average bidding 

strategy in response to the full range of value signals.  However, since bidding strategies 

may be different for different value signals, especially in first-price auctions, this average 

is not very informative.     
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The experimenter specifies the support P P[ , ]S S  of a distribution of the private 

value signals ,

i

P tv  and a support C C[ , ]S S  for the common value 
Cv .  In most experimental 

studies and the simulations in this paper C PC P[ , ] [ , ]S S S S= .   There are two methods of 

providing the bidding agents with value signals from these supports:  random and 

deterministic.   In the first method, a bidder’s private value ,

i

P tv  is drawn from a 

distribution (usually the uniform distribution) on the support.  Each bidder's common 

value signal ,
ˆi

C tv  is drawn from a distribution on the support centred on the common value 

[ , ]C Cv vε ε− + , where the common value is the centre of the support C C[ , ]S S .  There is 

uncertainty among the bidders about what this common value is, and a larger ε  

represents more uncertainty.  This method is satisfactory for investigating a single point 

in the two-dimensional value spectrum (i.e. 50% common value, pure common value, 

etc.)  However, for simulations performed across the full two-dimensional spectrum from 

pure common to pure private value, random draws lead to different value signal profiles 

at each common value percent.  This introduces some unnecessary noise into the results, 

but in fact does not change the overall results.  However, it is preferable to have the same 

profile across the simulations so that the results are perfectly comparable.  Therefore, the 

second method is a simple algorithm that sets the private and common value signals.  

Each agent is provided with a unique two-dimensional value signal so that the collection 

of signals spans the supports.  The first method is used for the fixed point simulations and 

the second is used for the simulations that span the two-dimensional value spectrum. 

When using the first method, I use the Uniform distribution of value signals over 

this support, since this is commonly used in the experiments in Kagel and Levin (2002) 
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and others.  I experimented with different distributions (normal, beta(2,2), beta(4,2), and 

beta(2,4)2 ) and the results are as expected:  the bid price strategies for the symmetric 

distributions (uniform, normal, and beta(2,2)) were virtually identical and the bid price 

strategies for the asymmetric distributions (beta(4,2) and beta(2,4)) shift right and left 

respectively.  

3.2.2 Information Levels  

The seller must decide how much information should be released to the bidders 

after the auction, with alternatives ranging from each bidder’s own information to 

information about all bids.  Dufwenberg and Gneezy (2002) compare the results from lab 

experiments for a two-person bargaining game with three incremental levels of 

information about auction results:  no information about others, the winning bid price 

(semi-full), and all bids (full).  Neugebauer and Selten (2006) report the results from lab 

experiments for first-price sealed-bid auction with three information levels provided in 

between auctions:  no information about others, the winning bid price, and the runner-up 

bid price.   Similarly, in this study I use three levels of information (own, winner, and 

winner and runner-up) and designate them I1, I2, and I3 respectively.3 

 Bidders do not know other bidders’ value signals, nor do they know the actual 

common value when they do not win.  The common value 
Cv  is unknown ex ante for all 

bidders, and only the winning bidders know 
Cv  ex post.  The actual value known to the 

winner in a two-dimensional value environment is ,(1 )i i

t C P t C Cv v vθ θ= − + .  In this study, I1 

                                                 

2 These distributions are, respectively, more in the middle with tails, more in the middle without tails, more 

on the high end, and more on the low end. 

3 The notation is defined in Table 3.1 and the information feedback is summarized in Table 3.2. 
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consists entirely of own information:  own value signal ˆiv , own bid price i

tb , own 

ranking i

tr , actual common value upon winning, and own payment i

tp .  I2 consists of the 

own I1 information plus information about the winning bid price (1)

tb
4  and the payment 

tp .  I3 consists of the information from levels I1 and I2 plus information about the 

runner-up bid price (2)

tb .   The actual value is revealed only to the winner, and it is 

revealed before the next iteration so that the agent can use the information.  However, all 

bidders know the support C C[ , ]S S  so that the I1 and I2 agents have an estimate for the 

gap between bids (see Section 3.3.2 and 3.3.3).  Since this method is constructed so the 

agents seek for their optimal bidding strategy for the value signals they have been given, 

the winning agent does not carry forward its knowledge of the actual common value.  

One way to interpret this is that it does not know that the common value will stay the 

same.  I have experimented with moving the actual common value randomly from period 

to period within the ε  neighbourhood of the center of the support, but this has minimal 

effect on the results. 

3.2.3 Number of Bidders and Periods 

Four and seven bidders per auction were chosen to be compatible with lab 

experiments of  Kagel et alia (1987) and Levin et alia (1996).  Twenty-five simultaneous 

seller agents are used when there are four bidders per auction (for a total of 100 agents) 

and sixteen when there are seven bidders per auction (for a total of 112).  These numbers 

                                                 

4 Superscript numbers in parentheses denote order statistics.  In a sealed-bid auction, 
(1)

tb  is the highest bid 

in the auction and 
( )n

tb  is the lowest bid in an auction with n bidders.   
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are chosen to provide a good mix of bidder agents and to keep the totals approximately 

equal.  Each auction has the same number of bidders and the bidder agents move 

randomly from seller to seller on a five-by-five or four-by-four torus.  This method 

matches the bidder agents randomly so that each agent has the opportunity to optimize its 

bidding strategies by bidding against a wide range of values held by the other agents.   

Each agent participates in one auction per period.  I use 150 periods in order to 

accommodate learning, but on average the agents converge to a steady state bidding 

strategy within about 50 auctions (see Figures 3.6 and 3.7).    

3.3 Learning Model 

The first contribution of the study is to determine if Selten’s impulse balance 

learning method is suitable for multiagent simulations.  In this section, I describe the 

impulse balance learning method and then show that it results in an unacceptable amount 

of negative profit and sensitivity to initial values.  A few simple modifications solve both 

problems and produce a learning method that converges well, is insensitive to the 

learning rate, and produces results for value-multiplier, profit, revenue, and efficiency 

that agree closely with results from lab experiments.  This demonstrates that a multiagent 

system with this learning method can be used as a credible alternative to lab experiments, 

especially where bidding experience is desirable. 

There is considerable scope for choosing the learning model for the agents, 

including reinforcement learning, experience-weighted attraction, impulse balance, and 

machine learning methods.  These methods are reviewed and evaluated in Chapter 2.  

Modified impulse balance learning provides the best foundation for learning in auctions 

since it is a realistic representation of experienced human bidders, utilizes all information 
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feedback, handles continuous bids, and is extendable.  The impulse balance method uses 

foregone profit5 upon losing as an upward impulse on a continuous bidding strategy and 

money on the table6 and actual loss upon winning as downward impulses.   Several 

empirical studies have shown that impulse balance learning fits the data for bid 

adjustments by lab experimental subjects (Selten and Buchta, 1998;  Selten et alia, 2005;  

Ockenfels and Selten, 2005;  Negebauer and Selten, 2006;  Garvin and Kagel, 1994;  

Kagel and Levin, 1999). 

Section 3.3.1 describes Selten’s impulse balance learning method.  The next two 

sections describe the adjustment rules for the downward impulses for winners (Section 

3.3.2) and the upward impulses for losers (Section 3.3.3) .  Section 3.3.4 presents results 

from using impulse balance learning and an improved learning method:  impulse learning 

with loss aversion (ILA).  Section 3.3.5 presents convergence and sensitivity analyses for 

the ILA method, and Section 3.3.6 compares simulation results to results from lab 

experiments.   

The common value signal supports in this section follow Kagel et alia (1989).  I 

use five bidders, C C[ , ] [10, 30]S S = , and 5ε = . 

3.3.1 Impulse Balance Learning 

Ockenfels and Selten (2005) apply impulse balance learning to first-price auctions 

with private values and Selten et alia (2005) apply impulse balance learning to first-price 

                                                 

5 A losing bidder regrets its low bid to the extent that its value signal ˆi

tv  is above the winner’s payment.  

This amount is called foregone profit and is denoted ,
ˆi i

F t t tv pπ = − . 

6 The winning bidder in a first-price auction sacrifices profit unnecessarily to the extent that its bid exceeds 

the runner-up bid.  This is called leaving “money on the table” and is denoted 
(2)i i

t t tm b b= − . 
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auctions with common values.  Bids are adjusted using downward ,

i

ta−  or upward ,

i

ta+  

adjustments or “impulses” that the agent calculates using profit 
i

tπ , foregone profit ,

i

F tπ ,  

and money on the table i

tm .   For profitable winners ,

i

ta−  is money on the table i

tm , and 

for unprofitable winners it is the loss 
i

tπ .  For losers,  ,

i

ta+  is the foregone profit.  A high-

value agent wins more frequently than it loses so that  typically i i

t tE a E a− +
� � � �>� � � �  for the 

high-value agent, and a low-value agent loses more frequently than it wins so that 

typically i i

t tE a E a+ −
� � � �>� � � �  for a low-value agent.  Thus, because the higher-value agent 

receives more downward impulses than upward impulses, it should put more weight on 

an upward impulse to compensate for its infrequency.  Similarly, a lower-value agent 

should put more weight on a downward impulse.  This is the motivation for the “balance” 

aspect of the impulse balance method.  Each agent i determines its balance weight i

tλ  as 

the ratio of  its expected value of the upward impulse to the expected value of the 

downward impulse:  
i

ti

t i

t

E a

E a
λ

+

−

� �� �=
� �� �

.  To determine its adjusted bid, the agent weights the 

impulses by a learning rate φ  and the downward impulse weight i

tλ .  The bid for period 

t+1 is then a revision of the previous bid 1 , ,( )i i i i i

t t t t tb b a aφ λ+ + −= + − .   This type of adjustment 

method does not require assuming that the bidding strategy is a linear function of the 

bidder’s value signal.  However, the bid at any time can be expressed as a ratio of the bid 

to the value estimate, 
ˆ

i
i t
t i

t

b

v
γ = , so that we can discuss the value multiplier i

tγ   that can be 

compared with theoretical and experimental results.   
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3.3.2 Downward Impulses  for Winners 

A winning agent is assigned a rank of 1, 1i

tr = , and its ordered bid price denoted 

(1)

tb .  Similarly, the runner-up has 2i

tr =  with ordered bid price (2)

tb , and so on.  In 

calculating its adjustments, the winner considers information (“impulses”) about its profit 

i

tπ  and, when the payment rule is first price,  its money on the table (1) (2)i

t t tm b b= − . 

Rule W1:  For all information levels, 1i

tr = , and 0.0i

tπ < :  ,

i i

t ta π− = . 

Demonstration:  If the agent wins but has a loss of 
i i

t t tv pπ = − , it lowers its bid 

in proportion to the loss in an effort to improve its expected profit.  Adjusting for actual 

loss was found to be a significant factor in bid adjustment by Garvin and Kagel (1994) 

and Selten et alia (2005). 

Rule W2(I3):  For I3, 1i

tr = , first-price payment, 0.0i

tπ > :  ,

i i

t ta m− = . 

Demonstration:  An agent with I3 can use information about the other bidders, 

specifically the runner-up, to make a more informed adjustment when it wins.  When 

winning is profitable in a first-price auction, the agent uses the value of the runner-up bid 

to determine how much it overbid.  This overbidding results when the payment rule uses 

the first-price since the winning bidder’s ideal situation is to have bid just slightly above 

the runner-up bidder.  Any amount that the winning bidder bids over the runner-up bidder 

is called “money on the table” and is denoted (2)i i

t t tm b b= − .  For a first-price payment 

rule, i

tm  is used to adjust the bid down.  Money on the table has been shown to be a 

significant factor in bid adjustment by Selten and Buchta (1998), Selten et alia (2005), 

Ockenfels and Selten (2005), and Negebauer and Selten (2006). 
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Rule W3(I1,I2):  For I1 and I2, 1i

tr = , first-price payment, 0.0i

tπ > :  ,
ˆi i

t ta m− = . 

Demonstration:  A profitable agent with I1 and I2 information must use an 

approximation for money on the table ˆ i

tm  to determine the adjustment for lowering its bid 

to improve its profit.  The alternative of making no adjustment is not consistent with the 

impulse balance method, since there would be no downward impulse.  Since the agent 

has information about the number of bidders n and the support C C[ , ]S S , it can use this to 

create an estimate for money on the table.  The gap between bids will decrease in 

proportion to n, and since the values are drawn uniformly, an upper bound on an estimate 

for money on the table is CCS S

n

− .  However, money on the table will be small with large 

i

tπ  so a simple estimate for money on the table is CCˆ i i

t t

S S
m

n
π

−
= − . 

3.3.3 Upward Impulses for Losers 

Rule L1(I2,I3):  For I2 and I3, 1i

tr > ,  when , 0i

F tπ ≥ , , ,

i i

t F ta π+ =  

Demonstration:  If an agent loses, it usually regrets its low bid to the extent that 

its value signal ˆi

tv  is above the winner’s payment.  This is the concept of foregone profit 

used by Camerer et alia (2002), Selten and Buchta (1998), Selten et alia (2005), 

Ockenfels and Selten (2005), and Negebauer and Selten (2006) with ,
ˆi i

F t t tv pπ = − .  An 

agent with I2 or I3 information knows the payment and so can calculate its foregone 

profit.   When foregone profit is positive the agent increases its bid in proportion to ,

i

F tπ  

since this will improve its probability of winning profitably.  If a bidder has a low value 

signal, the foregone profit will tend to be negative, and the bidder will not increase its 

bid.   
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Rule L2(I1):  For I1, 1i

tr > ,  when ,
ˆ 0i

F tπ ≥ , , ,
ˆi i

t F ta π+ =  

Demonstration:   With one exception, I1 agents do not know the payment and 

must estimate foregone profit ,
ˆ ˆˆ i i

F t t tv pπ = − .  The exception is the runner-up bidder, 

2i

tr = , in a second-price auction in which (2)i

t t tb b p= =  so bidder i’s  foregone profit is 

, ,
ˆˆ i i i i

F t F t t tv bπ π= = − .  For the other losing bidders, the foregone profit estimate 7is a fraction 

of  ˆi i

t tv b− , decreasing with the number of bidders and increasing with the rank.  In a 

second-price auction with 2i

tr > , ( ),

ˆ
ˆ 2

i i
i i t t
F t t

v b
r

n
π

−
= −  and in first-price auction with 

1i

tr >  ( ),

ˆ
ˆ 1

i i
i i t t
F t t

v b
r

n
π

−
= − .8 

3.3.4 Negative Profit and Sensitivity to Initial Values  

In this section, I analyze results of simulations and make changes to the impulse 

balance learning method.  The result is a learning method that uses impulses, excludes the 

balance principle, and includes loss aversion, so a reasonable name for the method is 

“impulse learning with loss aversion” (ILA). 

Result 1:   Using impulse balance learning in computational experiments results 

in a high degree of negative profit, i.e. loss, and sensitivity to initial values.  To achieve 

profitability and insensitivity to initial values, I make three changes to the impulse-

                                                 

7   I am using the term foregone profit for consistency with the other rules, but it is impossible for an I1 

agent to estimate the payment and hence the foregone profit.  Instead, the agent uses its value gap to 

calculate the upward adjustment. 

8   This rule is less of a foregone profit and more of a value gap adjustment.  With larger n, the gap between 

agents will be smaller, so the basic adjustment step is inversely proportional to n.  Agents with larger 
i

tr  

will need to adjust more than agents that are closer to the winner. 
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balance method.  First, the “balance” part of the method is removed.  Second, the loss 

adjustment in Rule W1 is weighted using a loss aversion factor | 0i i i

t t t tL E π π� �= <� �  that is 

the expected value of the magnitude of the losses.  Third, when a winning agent has an 

expected loss ( 0i

tL > ) and lowers its bid price to reduce its probability of winning, it is 

counter-productive for the agent to increase its bid price when it successfully reaches the 

losing state.   Thus, a losing agent uses foregone profit to raised its bid price only when 

0i

tL =  and the adjustment can be written using the indicator function
( 0)i

tL =
1 , i.e.,   

, ,( 0)
ˆi

t

i i

t F tL
a π+ =

= 1 .   In summary, the ILA method is to adjust bids using 

1 , ,( )i i i i

t t t tb b a aφ+ + −= + − , where the adjustment rules are: 

Rule W1: For all information levels, 1i

tr = , and 0.0i

tπ < :  ( ), 1i i i

t t ta L π− = + . 

Rule W2:  For I3, 1i

tr = , first-price payment, 0.0i

tπ > :  ,

i i

t ta m− = . 

Rule W3:  For I1 and I2, 1i

tr = , first-price payment, 0.0i

tπ > :  ,
ˆi i

t ta m− = . 

Rule L1:  For I2 and I3, 1i

tr > ,  when , 0i

F tπ ≥ , , ,( 0)i
t

i i

t F tL
a π+ =

= 1  

Rule L2:  For I1, 1i

tr > ,  when ,
ˆ 0i

F tπ ≥ , , ,( 0)
ˆi

t

i i

t F tL
a π+ =

= 1  

Discussion:  The results for impulse balance learning in Figure 3.1 show that a 

large proportion of the bidders (especially those with high value signals) experience 

losses.  This is a much higher level of losses than shown in results from lab experiments 

and a level of sensitivity to starting values that is undesirable in a computational model.  

For example, bankruptcies occur in about 6% of the auctions with experienced bidders 

(Kagel and Richard, 2001).  These bankruptcies occurred in two situations:  8% of 

bidders went bankrupt with a $10 cash balance with a support of [50, 380], 18ε = , and 7 
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bidders;  4% of bidders went bankrupt with a $20 cash balance with support of [25, 225], 

18ε = , and 4 bidders.   Experienced bidders in real-world auctions would likely be 

skillful enough to avoid losses and bankruptcies altogether, so the goal of the learning 

model should be a minimal level losses or bankruptcies, at least below the 6% in Kagel 

and Richard’s experiments.   

The fact that the high-value bidders are experiencing losses indicates that there is 

a problem with the learning model for high-value bidders.  The balance factor i

tλ , which 

varies with the bidder value, could be expected to deal with this problem but it is not 

producing satisfactory results.  Figure 3.2 shows that  the values of i

tλ  do vary with the 

bidder value, and tend to be lower for high-value bidders than  for low-value bidders as 

expected from the discussion in Section 3.3.1   When i

tλ  is removed from the model, the 

results improve slightly as shown in Figure 3.3a.  It may still be reasonable to expect the 

agent to put more weight on a downward impulse than an upward impulse, even though 

the balance factor may not be the approach that should be used.  An agent may obtain 

improved profits if it weights the downward impulse from negative profit more than the 

corresponding increase from positive foregone profit.   Tversky and Kahneman (1992, 

Table 3.6) estimate loss aversion factors in the range [0.97, 2.44], but it makes sense in 

this case of bidders with different value signals to have endogenous loss aversion.  Figure 

3. 3b shows the results for an endogenous loss aversion where the loss aversion factor is 

| 0i i i

t t t tL E π π� �= <� � .  Now 35% of the bidders experience losses but the overall average 

profit is up to -0.15.   It also makes no sense for an optimizing bidder to raise its bid after 

losing, when it has been experiencing losses when it is winning.  Thus, I introduce a 



  48 

 
 

profit switch 
( 0)i

tL =
1  that the agent uses for its upward impulses.  This final modification 

now raises all agents to non-negative profit as shown in Figure 3.3c, and an overall 

average profit level of  0.05.   

The overall model implementation is a nonlinear system with the potential of 

converging or not, or converging to a local optimum instead of a global optimum.  As 

such, it is preferable for the method to be insensitive to initial values (Judd, 1998) and 

other parameter values.  Figure 3.1 shows that the results from impulse balance learning 

vary significantly with the initial values 0.95 0.02± , 0.85 0.02± , and 0.75 0.02± .  

However, Figure 3.4 shows that the ILA method is quite insensitive to the initial values.  

In Figure 3.1, the profit curve for an initial value 0.95 0.02±  is close to zero for low-

value bidders and decreases rapidly to -1.7 for high-value bidders.  As the initial value is 

decreased to 0.85 0.02±  and then to 0.75 0.02± , the values for mid-value and high-value 

bidders increase considerably so that the curve becomes much flatter.  In Figure 3.4, the 

pattern of profit is much more similar across the initial values.  The low-value and high-

value bidders tend to have profit close to zero, with about twenty mid-value bidders with 

profits as high as 0.25 for all three initial values.  

One of the main methodological differences between the experiments with 

humans in the various studies cited in this paper and these computational experiments is 

that here each bidder’s private and common value signals are constant throughout the 

auctions (as explained in Section 3.2.2).  The alternative is to provide each agent with a 

random value signal for each auction.  This results in each agent learning an average bid 

strategy that is the adaptive best response to the full range of value signals.  Perhaps the 

impulse balance method is more suitable to learning an average bid strategy.  As shown 
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in Figure 3.5, this is not the case.  For varying common value signals, impulse-balance 

learning results in significant number of agents with high levels of negative profit.  

However, the ILA method results in most agents achieving positive profits, but with 

some achieving small negative profits.   

3.3.5 Convergence and Sensitivity to Learning Rate 

Result 2:   The ILA method results in value-multipliers that converge in less than 

100 periods, and this convergence is independent of the initial values and smoother than 

the convergence of the impulse-balance method.  

Discussion: Figure 3.6 shows value-multiplier convergence for the impulse 

balance and ILA methods.  The impulse-balance value multipliers converge to quite 

different values (0.94, 0.89, and 0.83) for the three initial values, whereas the ILA value 

multipliers converge to more similar values of (0.92, 0.90, and 0.89).  In addition, the 

pattern of the convergence is much smoother for the ILA method.  For the three initial 

values, convergence requires about 10, 60, and 90 periods.  These convergence results are 

important, since it is impossible to interpret auction results for profit, revenue, and 

efficiency when there is no convergence.  For example, without convergence the results 

in period 50 are different from the results in period 60, whereas if the results from period 

50 to infinity are the same, we can conclude that these are the results of the auction.  

Also, the fact that convergence occurs in less than 100 periods makes it reasonable to 

infer that the bid strategies of human agents could converge in a realistic number of real-

world auctions.  

Result 3:   The ILA method is insensitive to the learning rate φ .   
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Discussion: Why should we believe that a bidder’s downward impulse is all of its 

loss and not a fraction of the loss, or that a bidder’s upward impulse is all of its foregone 

profit and not a fraction of it?  Using different values for the learning rate φ  answers this 

question.  Figure 3.7 shows the value multiplier for first-price auctions using a sample of 

learning rates in the interval [ ]0.1, 1.0 .  First, the resulting value multiplier is very close 

across all of the learning rates (0.92).  Second, the pattern of variation is also very similar 

throughout the range.  The difference is that the smaller learning rates tend to produce 

smoother convergence, with the standard deviation ranging from about 0.0017 for φ =0.1 

to 0.0024 for φ =1.0.  These results are quite insensitive to initial value, and I use 0.5φ =  

and initial values of 0.85 0.02±  in the simulations as arbitrary choices. 

3.4 Comparing ILA Results with Lab Experiments 

Using simulations with the ILA learning method, I present results and compare 

them with lab experiment results in Kagel et alia (1989),  Kagel et alia (1995), Kagel and 

Richard (2001), and Goeree and Offerman (2002).  In the lab experiments, the 

information feedback is equal to or greater than the I3 information level.  Thus, in the 

figures related to this section, we are interested in only the I3 bidders, represented by the 

dashdot curves.   Also, the most frequently-used support for the common value signals is  

[25, 225] so that is what I use in the computational experiments.  For comparability with 

most of the lab experiment results, I vary the uncertainty using ε = 8, 12, 18, and 27 and 

use four and seven bidders for both first-price and second-price auctions.  The results that 

are illustrated in the figures are consistent across repeated simulations. 

In the following sub-sections I compare results for value multiplier, profit, and 

efficiency, and these results are summarized in Table 3.3.  The value multiplier and profit 
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are straightforward and have been discussed in Sections 3.1 to 3.3, but efficiency requires 

some explanation.  Since efficiency refers to the auction being won by the bidder with the 

highest value ex post, all auctions are equally efficient when the value is 100% common.  

Thus, in the two-dimensional value environment, efficiency can be considered only when 

there is some component of private value, i.e., when the common value component is less 

than 100%.  When the common value is 100%,  Kagel et alia (1989) and Kagel et alia 

(1995) measure efficiency by the percent of auctions won by the bidder with the highest 

value signal (ex ante).   This is not really efficiency, but it is still interesting to look at 

this highest-value-signal winning percent.  When the common value percent is less than 

100%, private value efficiency as used by Goeree and Offerman (2002) compares the 

winner’s private value with the maximum private value among the bidders, i.e.,  

{ }
{ } { }
, ,

, ,

min

max min

winner i

P t P t

i i

P t P t

v v

v v

−
=

−
� .   1=�  when the winner has the highest private value, and 0=�  

when the winner is the bidder with the lowest private value.   As the common value 

component increases, the common value signal may undermine the private value 

efficiency.  Consider two bidders, one with a high private value (say corresponding to 

low costs of production) and one with a low private value.  If the low private value bidder 

has a higher estimate of the common value than the high private value bidder, it may 

submit a higher bid and win the auction.  This leads to private value inefficiency.   

3.4.1 First-Price Auctions 

Value Multiplier:  From intuition and theory, we expect that bidders will shade 

their bids in first-price auctions, i.e., the value multiplier is expected to be less than 1.0.  

For pure private values, experimental evidence from Kagel and Levin (1993) shows an 
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average value multiplier of 0.92 for first-price auctions, averaged over experiments with 

five and 10 bidders with I3 information.  The simulation results for seven I3 bidders in 

Figure 3.8 show value multipliers of about 0.90.  These pure private-value results are 

consistent with the data from lab experiments.  Kagel and Richard (2001) show value 

multipliers for first-price common values with 18ε =  of about 0.92 for four I3 bidders 

and 0.95 for seven I3 bidders in the middle region of the support.  Figure 3.8 shows 

common value multipliers for 18ε =  of about 0.92 for four bidders and of about 0.94 for 

seven bidders.  Thus, both the private-value and common-value results agree very closely 

with the experimental results. 

Profit:  Data in Kagel et alia (1989) for first-price pure common-value auctions 

averaging about seven bidders show that profit tends to increase with more uncertainty in 

the common value signal (higherε ).   Figure 3.9 shows results for four and seven bidders 

across the full spectrum of two-dimensional value signals from pure private value (0% 

common value) to pure common value (100%).  For pure common value, profit increases 

significantly with uncertainty for four bidders (from about 1 to 10), but increases less 

with uncertainty for seven bidders (from about 0 to about 3).  Goeree and Offerman 

(2002) show profit increasing slightly with more uncertainty in auctions with two-

dimensional value signals that are about 14% common value (with six bidders) and 25% 

common value (with three bidders).  At common value percents of 14% and 25%, Figure 

3.9 shows that the profit remains the same as the uncertainty increases.  Thus, the agent 

results for the variation of profit with uncertainty are only partially in agreement with the 

lab experiment results.    
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Kagel and Richard (2001) find average profit is higher with four bidders than with 

seven bidders in first-price common-value auctions.  Comparing the left column (four 

bidders) of Figure 3.9 with the right column (seven bidders) shows that profit tends to be 

higher for four bidders at all levels of uncertainty and all information levels across the 

full range of common-value percent.  Thus, the agent results for the variation of profit 

with number of bidders are in agreement with the results from the lab experiments.   

Figure 3.10 shows the profit results for 12, 25, 50, 100, 200, and 300 bidders for 

first-price auctions with high ( 27ε = ) uncertainty.  For I2 and I3 bidders, profit further 

decreases with the increasing number of bidders, resulting in near-zero profits when there 

are over 200 bidders.  The profit of I1 agents continues to decrease significantly below 

zero as the number of bidders increases.  This highlights the importance to bidder profit 

of being informed about the payment.  

  Efficiency:  The efficiency results for first-price auctions with less than pure 

common value are shown in Figure 3.11, and the results for highest-value-signal winning 

percent for pure common-value auctions are shown in Table 3.4. 

From theory, we expect that efficiency will decrease when there is a common 

value component (Dasgupta and Maskin, 2000;  Jehiel and Moldovanu, 2001).  

Experiment results from Kagel et alia (1989) for about seven bidders show that the 

highest-value-signal winning percent tends to decrease with more uncertainty in first-

price auctions.  Table 3.4 shows that for I3 agents the highest-value-signal winning 

percent in first-price auctions decreases with increased uncertainty for both four bidders 

(from 94% to 28%) and seven bidders (from 95% to 22%), which is consistent with the 

results from the lab experiments.   
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Goeree and Offerman (2002) show that efficiency is lower with more uncertainty 

for common value percents of 14% (with six bidders) and 25% (with three bidders).  

Figure 3.11 shows that for I3 bidders, efficiency tends to stay the same or decrease 

slightly with increased uncertainty at both 14% and 25% common value for both four and 

seven bidders, which is consistent with the results from the lab experiments.   

3.4.2 Second-Price Auctions 

Value Multiplier:  From intuition and theory for second-price auctions, we 

expect that bidders will bid their values when the value is private and shade their bids 

when the value is common.   For private-value second-price auctions, experimental 

evidence from Kagel and Levin (1993) shows an average value multiplier of 1.02 for 

second-price auctions, averaged over experiments with five and ten bidders (assuming an 

average of about seven bidders).  The results in Figure 3.12 for seven bidders show value 

multipliers of about 0.99 for private-value second-price auctions.  For common-value 

second-price auctions, regressions in Kagel et alia (1995) show value multipliers of about 

0.97, 0.96, 0.94, and 0.92 for ε =8, 12, 18, and 27 respectively.  The results in Figure 3.12 

for seven bidders show a similar magnitude and pattern of value multipliers, namely 

about 0.98, 0.97, 0.96, and 0.95.     

Profit:  For second-price common-value auctions, Kagel et alia (1995) find that 

profit increases with ε  for four bidders, but decreases with ε  for seven bidders.  The 

results shown in Figure 3.13 are consistent with their results for four bidders (profit 

increases with ε ), but not for seven bidders (no change in profit with ε ).  Figure 3.13 

also shows that profit decreases slightly with an increase in the number of bidders, for all 

information levels and across the full range of common value percent.  This is the same 



  55 

 
 

computational result that was obtained for private values.  It is also consistent with the 

experimental results from Kagel et alia (1995) who found that profits were higher for 

four bidders than for seven.   

Efficiency:  The efficiency for second-price auctions with less than pure common 

value is shown in Figure 3.14, and the highest-value-signal winning percent for pure 

common-value auctions is shown in Table 3.4.  Kagel et alia (1995) found that the 

highest-value-signal winning percent was lower in second-price auctions than in first-

price auctions, when the level of uncertainty is 27ε = .  However,  Table 3.4 shows that 

the highest-value-signal winning percent is higher in second-price auctions.  Second-

price auctions are more efficient than first-price auctions for the agents because they are 

bidding closer to their values.  Since this is what is expected from theory, the agents are 

bidding more like optimizing agents than like the inexperienced agents in the 

experiments.  The results of Kagel et alia (1995) also show that highest-value-signal 

winning percent in second-price auctions is slightly lower for seven bidders than for four 

bidders.  Table 3.4 shows that the agents produce similar results for levels of uncertainty 

above 8ε = .   

3.5 Variation of Profit, Revenue, and Efficiency with Common Value Percent 

The second contribution of this study is to determine how the auction results 

change as the common value component increases, and specifically whether the change is 

linear.  In the figures used in the previous section, it is obvious that the results across the 

two-dimensional value signal are usually not linear.  As the common value percent 

increases, profit, revenue, and efficiency all decrease monotonically, but they decrease in 

different ways.  The seller endeavors to choose the payment rule and information level 
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that maximizes its revenue, maximizes efficiency, or maximizes both.  Therefore, the 

seller is interested in whether the different payment rules and information levels produce 

different levels of revenue and efficiency, or whether they are equivalent.  In this section, 

I discuss the results for all three information levels. 

3.5.1 Profit 

Result 4:    Profit curves decrease nonlinearly for first-price auctions and linearly 

for second-price auctions.  In first-price auctions the nonlinearity usually involves 

decreasing faster at higher common value percents.   

Discussion:  See Figure 3.9 for first-price auctions and Figure 3.13 for second-

price auctions.  The main difference between learning in first-price auctions and learning 

in second-price auctions is that the agents use money on the table in first-price auctions 

but not in second-price auctions.  When the value signal is dominated by private value 

(i.e., a low common value percent), the bid reduction from money on the table keeps the 

profit high.  As the common value component increases, the contributions from money 

on the table to profit become dominated by the effects of the common value signal.  

There is also some interesting variation with the level of information feedback.  

The curves tend to be the same for I1, I2, and I3 information levels at lower levels of 

uncertainty, but as uncertainty about the common value increases profit is higher for the 

more informed I3 bidders.  

3.5.2 Revenue 

See Figures 3.15 and 3.16 for revenue results for first-price and second-price 

auctions, respectively.   Revenue tends to decrease with increasing common value.   
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Result 5:    Revenue curves decrease nonlinearly for first-price auctions and 

linearly for second-price auctions.  In first-price auctions the nonlinearity usually 

involves decreasing faster at lower common value percents.   

Result 6:    In most cases, the seller receives less revenue when it provides bidders 

with more information feedback. 

Discussion:  The figures show that in most cases the seller receives less revenue  

when the bidders have I3 information.  However, for first-price auctions (Figure 3.15) 

with lower levels of uncertainty ( 18ε ≤ ), I3 agents provide higher revenue at high 

common value percents (30% to 90%) than the I1 and I2 agents, although this effect 

diminishes with more bidders.  Once again, the major difference between I3 agents and 

the I1 and I2 agents is that the former can calculate money on the table while the latter 

can only estimate it.  The estimate becomes less reliable as the uncertainty increases so 

that I3 agents are better able to keep their bid strategies profitable, taking more of the 

surplus and yielding lower revenue for the seller. 

3.5.3 Efficiency 

See Figure 3.11 for first-price auctions and Figure 3.14 for second-price auctions. 

As the common value component increases, the common value signal disrupts the private 

value efficiency.  Second-price auctions tend to be more efficient than first-price auctions 

because the agents bid closer to their values. 

Result 7:    Private-value efficiency curves tend to stay high at low percent 

common value and then decrease rapidly for higher common value percents.  
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Discussion:  The nonlinearity is especially pronounced in second-price auctions  

(Figure 3.14) where efficiency remains close to 1.0 until relatively high levels of 

common value percent, and then decreases rapidly to efficiency as low as 0.8.   

3.6 Revelation of Common Value to Losers 

The third contribution of this study is to determine whether it may be worthwhile 

for a seller (such as a federal or state government) to enforce truthful revelation of the 

true common value by auction winners.  In the experiments studied so far, and in nearly 

all real-world auctions, losing bidders do not know the actual common value.  The winner 

discovers the true common values after the auction.  For example, in timber sale auctions 

the winners learn the true quantity and value of timber; in highway procurement auctions, 

the winner discovers the true scope of the project; in oil lease licences, the winner 

discovers the true quantity of oil; and so on.  These values are carefully guarded company 

secrets (Baldwin et alia, 1997) and are not intentionally revealed to other bidders.  

However, some experimental work has studied the effects on bidding of revealing some 

information about the common value to all bidders (Kagel and Levin (1999) for first-

price auctions and Kagel et alia (1995) for second-price auctions).  This raises the 

question of whether a buyer or seller, say the government operating procurement or asset-

sale auctions, should require the auction winners to reveal the common value that they 

discover after winning.  I know of some attempts to do this in Canadian federal 

government procurement auctions in which the government asks bidders to reveal their 

costs.  Of course the costs provided are not truthful!  If it were worthwhile, the 

government could rationally decide to invest in implementing regulations and 

enforcement of truthful revelation of the winner’s value.  Given this information, losing 
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agents would use it in their calculation of the amount to increase their bid (in Rules L1 

and L2).  To obtain a computational answer to this question, I perform experiments with 

value revelation and observe the revenue.  Figure 3.17 shows for I3 bidders the 

differences between the revenue with revealed common value and the revenue without 

revelation.   The results that are illustrated in the figures are consistent across repeated 

simulations. 

Result 8:    For first-price auctions, when the common value percent is high 

(>60%) and there is a high degree of uncertainty in the common value signal ( 12ε > , 

revealing information about the common value increases revenue for I3 information.   

Discussion:  Experiments by Kagel and Levin (1999) for first-price common-

value auctions with 27ε =  show that revealing information about the true common value 

increased revenue (+2.75) for four bidders but decreased revenue (-0.88) for seven 

bidders.   For the same conditions, the top row of Figure 3.17 shows that revenue 

increases (+7) for four bidders and increases less (+3) for seven bidders.9  These results 

are consistent with the experimental data in that revenue increases more for four bidders 

than for seven, but is inconsistent in the direction of change for the seven bidders.  Figure 

17 also shows that the revenue effects are smaller as uncertainty decreases.  For 100% 

common value, the benefits become negligible when 8ε = .  For values with less common 

value percent, common value revelation sometimes has a negative impact on revenue.  

Thus, for the auction designer the percent common value and the degree of uncertainty 

about the common value all affect the impact of value revelation on revenue.   

                                                 

9   Since total revenue is approximately 125, the revenue increase of 7 is approximately 5%. 
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Result 9:    For second-price auctions, revealing information about the common 

value significantly increases revenue for I3 bidders, especially when there is a high 

degree of uncertainty in the common value signal. 

Discussion:  Experiments by Kagel et alia (1995) show that revealing information 

about the common value in second-price auctions increased revenue  (+0.31) for four-five 

bidders but decreased revenue  (-2.5) for six-seven bidders.  The bottom row of Figure 

3.17 shows that revenue increases  (+4) for four bidders and increases less (+2) for seven 

bidders.  Again, the results are in partial agreement with the experimental results.   

3.7 Conclusion  

I find that Selten’s impulse balance method can be adapted for use in multiagent 

simulations of auctions with values that have some common value component (Result 1 

in Section 3.3.4).  The resulting ILA (impulse learning with loss aversion) method 

converges within 100 periods and is insensitive to the learning rate (Results 2 and 3 in 

Section 3.3.5).   

I use the ILA method in multiagent simulations for first-price and second-price 

payment rules, three different information levels, and two-dimensional value signals that 

vary from pure private value to pure common value.  The results are compared to data 

from lab experiments in other studies (summarized in Table 3.3), and the agent results for 

the value multiplier, profit, and efficiency are usually consistent with results from lab 

experiments.  These consistencies support the real-world validity in this context of using 

multiagent simulations with learning agents. 

For values in between pure private and pure common value, curves for profit, 

revenue, and efficiency are nonlinear especially when the payment rule is first price.  The 
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profit curves tend to decrease nonlinearly for first-price auctions and linearly for second-

price auctions (Result 4 in Section 3.5.1).  The nonlinear revenue curves tend to decrease 

more rapidly at low common value percents (Result 5 in Section 3.5.2).  The very 

nonlinear efficiency curves tend to stay high and then decrease rapidly for common value 

percents (Result 7 in Section 3.5.3).  In addition, revenue in most cases decrease with 

increasing information feedback to the bidders (Result 6 in Section 3.5.2).   

Simulations also show that forcing revelation of the true common value may have 

beneficial revenue effects when the common-value percent is high and there is a high 

degree of uncertainty about the common value (Results 8 and 9 in Section 3.6).   

Using multiagent simulations has provided some insights into single-unit sealed-

bid auction performance for different levels of information feedback across different 

levels of common value.  The next paper will expand the approach to analyze English 

auctions. 
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3.9 Tables  

 

Table 3.1.  Sealed-Bid Model Notation Summary 

Symbol Description 

i

tb  Bid price of bidder i in auction t. 

(1) ( ),...,t t

n
b b  Ordered bid prices in a sealed-bid auction where (1)

tb  is the highest bid. 

ε  Radius of the support for the common value signal.  . 

i

tγ  Value multiplier: ˆi i i

t t tb vγ= . 

i

tλ   The balance weight in the impulse balance learning method. 

i

tm  Money left on the table by a profitable winner for first-price payment: (1) (2)i

t t tm b b= − . 

tp  Payment by winner in auction t. 

φ  Learning rate of bidder i at period t. 

i

tp  Payment made by bidder i, given that it wins. 

i

tπ  Profit of bidder i in auction t. 

,

i

F tπ  Foregone profit of bidder i in auction t. 

i

tr  Ranking of bidder i in auction t.  The winner is 1i

tr = , the runner-up 2i

tr = , etc. 

P CP C, , ,S S S S  Upper and lower bounds of supports for the private value signal and common value. 

Cθ  Common value component of the value signal. 

ˆi

tv  Value signal of bidder i in auction t. 

i

tv  Actual value, revealed only to winner. 
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Table 3.2. Information Levels (incremental) 

Level Description Feedback 

Number of bidders n 

Value signal support 
C C[ , ]S S  

Value Signal:  Own ˆi

tv  

Bid Price:  Own i

tb  

Ranking:  Own i

tr  

Payment:  Own | 1i i

t tp r =  

 

 

 

 

I1 

Value: Own | 1i i

t tv r =  

Bid Price:  Winner (1)

tb   

I2 

Payment 
tp  

I3 Bid Price:  Runner-up (2)

tb  
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Table 3.3.  Summary of Comparison with Lab Experiments (Section 3.3.6) 

  Private Value 14%, 25% Common Value 100% Common Value 

Payment Result Lab  Agent Lab Agent Lab Agent 

Value 
Multiplier 

0.92 
(1) 

0.90   0.92, 0.95 

(2) 

0.92, 0.94 

Profit   Increases 
with � 

 (4) 

Constant with 
� 

Increases with 
� and n 

(2,3) 

Increases with 
� and n 

 

First 
Price 

Efficiency   Decreases 
with �  

(4) 

Decreases 
slightly with � 

Decreases 
with � 

(3) 

Decreases 
with � 

Value 
Multiplier 

1.02 
(1) 

0.99   0.97, 0.96, 
0.94, 0.92 

(5) 

0.98, 0.97, 
0.96, 0.95 

Profit     Increases with 
� for n=4 

Decreases 
with � for n=7 

Decreases 
with n 

(5) 

Increases with 
� for n=4 

No change 
with � for n=7 

Decreases 
with n 

 

 

Second 
Price 

Efficiency     Decreases 
with n 

(5) 

Decreases 
with n 

1  Kagel and Levin (1993) 

2  Kagel and Richard (2001) 

3  Kagel et alia (1989) 

4  Goeree and Offerman (2002)  

5  Kagel et alia (1995) 

 



  68 

 
 

 

Table 3.4.  Highest-Value-Signal Winning Percent for Pure Common Value 

Information Level I3 

Payment Uncertainty ε  Four Bidders Seven Bidders 

8 93% 95% 

12 88% 72% 

18 44% 30% 

 

 

First Price 

27 28% 22% 

8 94% 94% 

12 81% 92% 

18 61% 72% 

 

 

Second Price 

27 44% 46% 
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3.10 Figures  

Figure 3.1.  Impulse Balance Learning:  Profit by Common Value Signal 

Common Value, First Price, I3 

Initial value multiplier 0.95 0.02±  Initial value multiplier 0.85 0.02±  Initial value multiplier 0.75 0.02±  
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Figure 3.2.  Impulse Balance Learning:  
i

tλ  by Common Value Signal 

Common Value, First Price, I3 

Initial value multiplier 0.95 0.02±  Initial value multiplier 0.85 0.02±  Initial value multiplier 0.75 0.02±  
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Figure 3.3.  Learning Alternatives:  Profit by Common Value Signal 

Common Value, First Price, I3, Initial value multiplier 0.95 0.02±  

3a. No Balance 3b  No Balance, Loss Aversion 3c. No Balance, Loss Aversion,    
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Figure 3.4.  ILA learning: Profit by Common Value Signal 

Common Value, First Price, I3 

Initial value multiplier 0.95 0.02±  Initial value multiplier 0.85 0.02±  Initial value multiplier 0.75 0.02±  
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Figure 3.5.  Bidders with Varying Value Signals 

Profit by Common Value Signal 

Initial value multiplier 0.95 0.02±  

Common Value, First Price, I3 
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Figure 3.6.  Convergence of Value Multiplier 

Value Multiplier by Period 

Common Value, First Price, I3 Information 

Impulse Balance ILA 

Initial Value multiplier: 0.95 0.02±  Initial Value multiplier: 0.95 0.02±  
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Figure 3.7.  Sensitivity to Learning Rate  

Value Multiplier by Period 

Common Value, First Price, I3 Information  

(I1:  Solid, I2: Dot, I3:  DashDot) 

Learning Rate 0.1 Learning Rate 0.3 

0.9

0.91

0.92

0.93

0.94

0.95

0.96

1 12 23 34 45 56 67 78 89 100 111 122 133 144

 

0.9

0.91

0.92

0.93

0.94

0.95

0.96

1 12 23 34 45 56 67 78 89 100 111 122 133 144

 

Learning Rate 0.5 Learning Rate 0.7 

0.9

0.91

0.92

0.93

0.94

0.95

0.96

1 12 23 34 45 56 67 78 89 100 111 122 133 144

 

0.9

0.91

0.92

0.93

0.94

0.95

0.96

1 12 23 34 45 56 67 78 89 100 111 122 133 144

 

Learning Rate 0.9 Learning Rate 1.0 

0.9

0.91

0.92

0.93

0.94

0.95

0.96

1 12 23 34 45 56 67 78 89 100 111 122 133 144

 

0.9

0.91

0.92

0.93

0.94

0.95

0.96

1 12 23 34 45 56 67 78 89 100 111 122 133 144

 

 

 



  73 

 
 

 

Figure 3.8.  Value Multiplier:  First-price auctions  

Value Multiplier by Common Value Percent 

 (I1:  Solid, I2: Dot, I3:  DashDot) 
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Figure 3.9.  Profit:  First-price auctions 

Profit by Common Value Percent 

 (I1:  Solid, I2: Dot, I3:  DashDot) 
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Figure 3.10.  Profit with Many Bidders  

Profit by Common Value Percent 

First-price Auctions, 27ε =  

 (I1:  Solid, I2: Dot, I3:  DashDot) 
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Figure 3.11. Efficiency:  First-price auctions  

Efficiency by Common Value Percent 
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Figure 3.12. Value Multiplier:  Second-price auctions 

Value Multiplier by Common Value Percent 

 (I1:  Solid, I2: Dot, I3:  DashDot) 
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Figure 3.13.  Profit:  Second-price auctions  

Profit by Common Value Percent 
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Figure 3.14.  Efficiency:  Second-price auctions  

Efficiency by Common Value Percent 
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Figure 3.15.  Revenue:  First-Price Auctions  

Revenue by Common Value Percent 

 (I1:  Solid, I2: Dot, I3:  DashDot) 
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Figure 3.16.  Revenue:  Second-Price Auctions  

Revenue by Common Value Percent 
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Figure 3.17.  Revenue Effects of Revealed Common Value 

Revenue Difference from No Information, by Common Value Percent 

I3 Information 

(Solid: 8ε = ; Dot: 12ε = ; Dash-Dot: 18ε = ; Dash-Dot-Dot: 27ε = ) 
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Chapter 4 

Multiagent System Simulations of Signal Averaging 

in English Auctions with Two-Dimensional Value Signals 

 

4.1 Introduction 

In each step s of an English ascending dropout auction, the auctioneer raises the 

price in small increments, and bidders drop out when the price exceeds the price they are 

willing to pay.  Thus, each bidder has information about prices at which other bidders 

drop out.  Empirical analysis of experimental data for common value auctions (Levin et 

alia, 1996) has shown that bidders at all experience levels modify their bids based on the 

most recent price at which other bidders drop out, called the dropout price. A bidder 

modifies its bid because the information provided by the dropout price results in the 

bidder revising its estimation of the value (its “value signal”) of the object being 

auctioned.  The bidder combines the information from the dropout price with its original 

value signal as a weighted average to produce a revised value signal.   The bidder 

continues to do this signal averaging until the auction price exceeds its revised value 

signal at which point it drops out.   

This study makes three contributions.  First, is this signal averaging something 

that computational agents can learn to do effectively?  Second, if so, how does this 

averaging vary across the percent of common value in the multi-dimensional value 

signal?  Third, how does signal averaging affect profit, revenue, and efficiency?  I find 

that agents learn to signal average, but it takes many periods; that signal averaging 

increases nonlinearly as the common value percent increases; and that the major effect of 
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signal averaging is on the percentage of auctions won by bidders with the highest 

common value signal. 

Section 4.2 describes the English auction format.  Section 4.3 provides details of 

the agent learning for the value multiplier and for the signal-averaging factor.  The 

section also analyzes the convergence and sensitivity properties of the learning method.  

Section 4.4 analyzes the signal-averaging results, including how they compare with the 

results from lab experiments, how signal averaging varies with the common value 

percent, and the effects of signal averaging on the value multiplier.  Section 4.5 

demonstrates how signal averaging affects profit, revenue, and efficiency.  Section 4.6 

presents conclusions. 

4.2 English Auction Model 

The multiagent system platform is described in Chapter 2, and Chapter 3 

describes how the system implements values and the value signals for bidders, the levels 

of information feedback, and the number of periods and bidders.  This section describes 

the format of the English auction and how bidders average their original value signals 

with information conveyed during the auction. 

4.2.1 Ascending Dropout Process 

Following Milgrom and Weber (1982) and Levin et alia (1996), I use the 

“ascending dropout” or “button auction” format for the English auction.  The seller 

begins the bidding at a low offer price and then raises it in small increments at each step 

s.  If this offer price 
,t sb  exceeds a bidder’s threshold price 

,

i

t sb , the bidder drops out of the 

auction.  Each bidder is provided with the information about whether a dropout has 

occurred at 
,t sb .  Thus, each bidder has information about prices at which other bidders 
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drop out.   Empirical analysis of experimental data for common value auctions (Levin et 

alia, 1996) has shown that bidders at all experience levels modify their bids based on the 

most recent price at which other bidders drop out, denoted ,

d

t sb .   

4.2.2 Signal Averaging 

Assuming a linear bidding strategy for bidder i of the form 
, 1 , 1

ˆi i i

t s t t sb vγ+ +=  (where 

, 1

i

t sb +  is the bid price at step s+1, i

tγ  is a learned Value Multiplier, and 
, 1

ˆi

t sv +  is bidder i’s 

revised value estimate at step s+1), the dropout value contains information about other 

bidders’ values.  Agent i’s revised value estimate , 1
ˆi

t sv +  in step s+1 is a weighted average 

of its previous value estimate and the latest dropout price ( ), 1 , ,
ˆ ˆ1i i i i d

t s t t s t t sv v bδ δ+ = − + , where 

i

tδ  is a learned signal-averaging factor (see Section 4.3.2) and 
,0

ˆ ˆi i

t tv v=  is the agent’s 

original value estimate before it observes any dropout bids.  The agent’s revised price 

threshold is then 
, 1 , 1

ˆi i i

t r t t rb vγ+ += , where i

tγ  is a learned Value Multiplier (see Section 4.3.1).  

The agent can either assume that ,

d

t sb  represents the dropout agent’s value (which is what 

is assumed here), or it can assume that the agent has a value multiplier similar to its own.  

In the latter case, the revised value would be ( ) ,

, 1 ,
ˆ ˆ1

d

t si i i i

t s t t s t i

t

b
v vδ δ

γ
+ = − + , but this 

modification does not change the results significantly because the value multiplier is 

close to 1.0 (see Figures 4.7 and 4.8). 

4.3 Learning Model 

Each agent uses information feedback at the I1, I2, or I3 level to learn the most 

profitable value multiplier i

tγ  and signal-averaging factor i

tδ .  The agents use impulse 
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learning with loss aversion (ILA) method for learning i

tγ  .  The ILA method was 

developed in  Chapter 3 and is based on Selten’s impulse balance method  (Selten and 

Buchta, 1998; Selten et alia, 2005; Ockenfels and Selten, 2005; Neugebauer and Selten, 

2006).   In the impulse balance method, the agents use profit and foregone profit that are 

balanced using a factor that depends on the frequency of winning and losing.  The ILA 

method replaces the balance factor with a loss aversion factor and a loss indicator 

function.  The loss aversion factor is | 0i i i

t t t tL E π π� �= <� � , i.e., the expected value of the 

magnitude of the losses.  The indicator function 
( 0)i

tL =
1  obtains the value 1 when 0i

tL = .  

Since a losing agent uses foregone profit to raise its bid price only when 0i

tL = ,  the 

adjustment can be written 
, ,( 0)

ˆi
t

i i

t F tL
a π+ =

= 1 .  In this study the ILA method is extended to 

learning the value multiplier in English auctions (Section 4.3.1) and the signal-averaging 

factor (Section 4.3.2).   

4.3.1 Learning the Value Multiplier 

There are two differences in learning the Value Multiplier in English auctions as 

opposed to sealed-bid auctions.  First, money on the table (the difference between the 

winning bid and the runner-up bid) is not relevant since in English auctions the winner 

pays the bid of the runner-up bidder.  Second, the calculation of foregone profit is 

different for English auctions than for the sealed-bid auctions.  Let s D=  be the step in 

which agent i drops out so then ,
ˆi

t Dv  is its revised value at the end of its participation in 

the auction in period t.  It makes more sense for the agent to use this revised value signal 

instead of its initial value signal to calculate foregone profit.  Thus, instead of 

,
ˆi i

F t t tv pπ = − , we have , ,
ˆi i

F t t D tv pπ = − . 
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The value multiplier i

tγ  is adjusted using downward 
,

i

ta−  or upward 
,

i

ta+  impulses 

that are calculated from information feedback.  Profitable winners make no adjustment 

since their strategy has produced a good result, but for unprofitable winners 
,

i

ta−  is the 

loss.  As in Chapter 3, the loss adjustment is weighted using a loss aversion factor 

| 0i i i

t t t tL E π π� �= <� �  that is the expected value of the magnitude of the losses, and once an 

agent has a loss ( 0i

tL > ), it ceases to process upward impulses when it loses.  For losers,  

,

i

ta+  is the foregone profit.   

The value multiplier is updated using 
1 , ,( )i i i i

t t t ta aγ γ φ+ + −= + − , where φ  is a learning 

rate.  The adjustment rules for the value multiplier are: 

Rule VM1: For all information levels, 1i

tr = , and 0.0i

tπ < :  ( ), 1
ˆ

i

ti i

t t i

t

a L
v

π
− = + . 

Rule VM2:  For I2 and I3, 1i

tr < ,  when , 0i

F tπ ≥ , ,

, ( 0) ˆ
i
t

i

F ti

t iL
t

a
v

π
+ =

= 1  

Rule VM3:  For I1, 1i

tr < ,  when ,
ˆ 0i

F tπ ≥ , ,

, ( 0)

ˆ

ˆ
i
t

i

F ti

t iL
t

a
v

π
+ =

= 1  

4.3.2 Learning the Signal-Averaging Factor 

Each agent adapts its signal-averaging factor i

tδ  using an impulse i

tc  that raises it 

or lowers it.  A winning agent learns the true value i
v , so it can use ,

ˆi

t Dv , ˆi

tv , and i
v to 

produce the impulse.  The signal-averaging factor is adjusted using 
1

i i i

t t tcδ δ ϕ+ = + , where 

ϕ  is the learning rate for signal averaging. The revision varies depending on whether it 

has been averaging its value estimate up ( ,
ˆ ˆi i

t D tv v> ) or down ( ,
ˆ ˆi i

t D tv v< ).  When the agent 
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wins, it learns the true value and can assess the benefit of signal averaging by comparing 

,
ˆi

t Dv  to i
v .  When an agent loses, it does not have information about the actual value and 

thus has no means of assessing and adjusting its signal averaging.   

Rule SA.1: If ,
ˆ ˆi i

t D tv v> , 
,

ˆi i

t Di

t i

v v
c

v

−
=   

Demonstration:  If a winning agent has been averaging up, the revised value is 

greater than the original value signal ( ,
ˆ ˆi i

t D tv v> ).  The agent is averaging too little if the 

revised value is still less than the true value ,
ˆ( )i i

t Dv v< .  In order to achieve a better 

estimate of i
v , the agent will raise i

tδ  using 
,

ˆi i

t Di

t i

v v
c

v

−
=  .  On the other hand, the agent 

is averaging up too much if the revised value is greater than the true value ( ,
ˆi i

t Dv v> ) so 

in this case it lowers i

tδ  using 
,

ˆi i

t Di

t i

v v
c

v

−
= .  

Rule SA.2: If  ,
ˆ ˆi i

t D tv v< , 
,

ˆi i

t Di

t i

v v
c

v

−
=  

Demonstration:  If the agent has been averaging down, the agent is averaging too 

little if the revised value is greater than the true value ( ,
ˆi i

t Dv v< ), so it raises i

tδ  using 

,
ˆi i

t Di

t i

v v
c

v

−
=  .  On the other hand, the agent is averaging down too much if ,

ˆi i

t Dv v< , so it 

lowers i

tδ  using 
,

ˆi i

t Di

t i

v v
c

v

−
= . 

Rule SA.3: If  ,
ˆ ˆi i

t D tv v= , 
ˆi i

ti

t i

v v
c

v

−
=  

Demonstration:  If there has been no signal averaging and therefore no effect on 
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the agent’s value estimate, the agent has not been averaging enough.  In this case, it will 

raise i

tδ  using the magnitude of the difference between the true value and the value 

signal.  This rule is not applied by an agent that has learned to reduce i

tδ  to zero. 

4.3.3 Sensitivity and Convergence 

The learning method for signal averaging described in Sections 4.3.1 and 4.3.2 is 

insensitive to learning rates.  However, the method is sensitive to the initial value, but this 

is understandable and explained below.  Results are shown for n = 4 and 8ε = , and are 

similar for n = 7 and for other values of ε . 

Result 1:   Signal averaging learning is insensitive to learning rates in the range 

1 3ϕ< ≤  and i

tδ  converges to about 0.4 in about 400 periods. 

Discussion:  Figure 4.1 shows that learning rates less that 1.0 require over 600 

periods for convergence.  For all of the learning rates greater than 1.0, the average signal-

averaging factor converges to about 0.4 is achieved within the 600 periods.  As the rate 

increases from 1.0 to 3.0, the number of periods required for convergence decreases 

gradually from about 600 to about 400.  Higher learning rates converge to slightly higher 

values, without much improvement in the rate of convergence.  For example, when 7ϕ =  

it takes about 300 periods to converge to a value for i

tδ  of about 0.49.  Such a large 

number of learning periods implies that i

tδ is a difficult factor to learn.  This is discussed 

more in Section 4.6.  In the simulations, I use 2ϕ = . 

Result 2:   For agents that have a significant level of learning, the learning is 

insensitive to the starting value. 

Discussion:  Figure 4.2 illustrates convergence for different initial values of  i

tδ .  
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When the initial value is 1.0, the average signal-averaging factor is about 0.75.  As the 

initial value decreases, the final value decreases until it is about 0.4 for the initial value of 

0.0.  The explanation is that agents receive impulses to adjust their signal-averaging 

factor only when they win.  Thus, agents that win at very low frequency do not have 

much opportunity to adjust their factors and remain stuck at the initial value.  The agents 

that win at very low frequency will, of course, tend to be the lower valued bidders.  This 

is illustrated in Figure 4.3.  When the initial value is 0.0, the signal-averaging factors of 

most of the low-valued bidders remain at or near 0.0.  When the initial value is 1.0, the 

signal-averaging factors of most of the low-valued bidders remain at or near 1.0.  These 

low-valued signal-signal-averaging factors are shown by the box.  However, Figure 4.3 

also shows that learning of signal averaging has similar results (indicated by the triangle) 

for the higher-valued bidders.  This is illustrated further in Figure 4.4 that shows the 

convergence for the initial values for the higher valued bidders only.  For the agents that 

have a significant level of learning, the learning is insensitive to the starting value, since 

they all end up converging to a value near 0.9.  This works out fine for the agents, since 

signal-averaging is more critical to the higher-valued agents because it helps them to 

avoid the winners’ curse. 

4.4 Results of Signal Averaging 

In this section, I compare the simulation results to data from lab experiments, 

analyze the variation of signal averaging with the common value percent, and comment 

on the effect of signal averaging on the value multiplier i

tγ .  The results that are 

illustrated in the figures are consistent across repeated simulations. 
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4.4.1 Comparing Signal Averaging Results with Lab Experiments 

Levin et alia (1996) present results for signal-averaging factors for four and seven 

bidders with I3 information averaged over ε = 18 and 30.  Regressions of bids with value 

signals and the recent dropout price show coefficients for the dropout price averaging 

about 0.78 for four bidders and 0.69 for seven bidders.  Running similar regressions on 

data produced by the agents, results in coefficients for the dropout price of 0.55 (0.009) 

for four bidders and 0.31 (0.003) for seven bidders.   Thus, the agents on average are 

placing a lower weight on dropout bids than the lab experimental subjects, but in both 

cases signal averaging decreases with the number of bidders. 

Levin et alia (1996) show for four experienced bidders that profit increased with 

ε  (18 and 30) from an average of about 1 to 7.  Figure 4.9 shows that for four agents 

profit increases with ε  from about 4 to about 7, which is similar to the results from the 

lab experiments.  

4.4.2 Variation of Signal Averaging with Common Value Percent 

For compatibility with Chapter 3 and with the lab experiments of Levin et alia 

(1996), the computational experiments use a value support of [25, 225] and common 

value uncertainties of ε = 8, 12, 18, and 27, and bidder numbers of four and seven. Figure 

4.5 shows the signal-averaging factor by common value percent. 

Result 3:   Signal averaging increases as the common value percent increases. 

Discussion:    The most obvious result in Figure 4.5 is that signal averaging 

increases as the common value percent increases.   This is reasonable since signal-

averaging is not useful to an agent when its value is private, but it is useful when the 

agent can benefit from other agents’ information about the common value, as signaled by 
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the dropout bids.  It is interesting to see that in most instances (except for four bidders 

with ε = 27) the pattern of increase is very nonlinear.  There is very little signal 

averaging up until the common value percent is between 60 to 80, and then it increases 

rapidly for the higher percents.  In other words, signal averaging is not used in linear 

proportion to the common value percent.  When the common value component is less 

than half, the agents place most of their weight on their own value estimates.  This is due 

to the fact that, up to a common value percent of 60%, the upward and downward 

impulses are small in magnitude (e.g., about 0.2 or less) and about equal.  For common 

value 70% and over, the magnitude of the upward impulses grows larger than that of the 

downward impulses.   

Result 4:   Signal averaging decreases as the number of bidders increases. 

Discussion:  Figure 4.5 also shows that signal averaging  is less when there are 

seven bidders than when there are four.  The detailed data for the agent learning shows 

that for seven bidders, there are about half as many upward impulses and they average 

about half the size as they do for four bidders.  At the same time, there are almost twice 

as many downward impulses and they are about three times the magnitude as for four 

bidders.   

Result 5:   As the common value signal becomes more uncertain (higherε ), 

signal averaging decreases for high common value percents and increases slightly at the 

middle percentages.   

Discussion:  Figure 4.5 shows that the curves tend to flatten out with increasing 

uncertainty.  Increasing uncertainty in all agents’ common value signals results in less 

signal improvement with averaging, so the averaging is not reinforced as much when 
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there is less uncertainty.   

4.4.3 Effects of Signal Averaging on the Value Multiplier 

Figure 4.6 shows one case of the value multiplier convergence.  The value 

multiplier is initialized at 0.93 and rises to about .975 by period 50.  Signal averaging 

learning starts at period 51 and the value multiplier decreases to 0.97 before rising to a 

final value between 0.975 and 0.980.  

Figures 4.7 and 4.8 show the value multiplier 
i

tγ  without signal averaging (on the 

left) and with signal averaging (on the right).  For four bidders, the value multipliers tend 

to increase slightly with common value percent (e.g. from 0.94 to 0.96) and stay flat or 

decrease slightly for seven bidders (e.g. 0.96 to 0.94).  For sealed-bid auctions (Chapter 

3), the value multiplier increased with the common value percent for first-price auctions 

(e.g. from 0.8 to 0.95) and decreased slightly for second-price auctions.(e.g. from 1.0 to 

0.97).  Thus, as expected, the English value multipliers are more similar to the second-

price value multipliers than to the first-price value multipliers.   

There appear to be no significant effects from signal averaging on the value 

multiplier when the common value uncertainty is low, but the multiplier decreases when 

12ε > .  This is demonstrated more clearly in Figure 4.9, which shows that when 12ε >  

bidders not only reduce their higher values using signal averaging but also increase their 

bid shading. 

4.5 Effects of Signal Averaging on Profit, Revenue, and Efficiency 

This section analyzes the effects of signal averaging on bidder profit, seller 

revenue, and efficiency.   
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4.5.1 Profit 

Figures 4.10 and 4.11 show that the variation of profit with common value 

percent is very close to linear and is decreasing.  In all cases, I3 agents are profitable, but 

I1 and I2 agents are often unprofitable when the value is 100% common value.   

Result 6:   When bidders use signal averaging, profit is slightly higher at high 

percents of common value.  This difference is higher for bidders with I2 and I3 

information. 

Discussion:  Figure 4.12 shows increases in profit with signal averaging for four 

bidders for all information levels, and these differences increase as ε  increases.  For 

seven bidders, there is no profit improvement for I1 bidders with signal averaging, some 

improvement for I3, and even more improvement for I2.  

 Signal averaging causes an increase in average profit because the agents with the 

highest common value signals win less often than without signal averaging.  This 

reduction in the frequency of winning with the highest signal reduces the probability of 

losses and thus abates the winner’s curse.  Result 3 showed that signal averaging is higher 

at high common value percents.  This in turn results in agents with high common value 

signals lowering their value estimates so that they win less than without signal averaging.  

This winner’s curse abatement effect is illustrated in Figures 4.13 and 4.14, which show 

the fraction of auctions won by the bidder with the highest common value signal (before 

signal averaging).  There are some interesting observations to make about these figures.  

When value signals are less than pure common value, the private value estimate has an 
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increasingly dampening effect on the winner’s curse
1
.  Then, when the value reaches 

100% common value, the fraction of auctions won by the bidder with the highest 

common value signal jumps back up, in many cases to 1.0.  With signal averaging, the 

fraction of auctions won by the bidder with the highest original common value signal is 

not only lower across the full range of two-dimensional signals, the jump at pure 

common value is dampened considerably, especially for bidders with I2 and I3 

information.   

4.5.2 Revenue 

Figure 4.15 shows revenue for four bidders, and Figure 4.16 for seven bidders.  

Revenue decreases almost linearly with increased percent of common value.  The most 

obvious revenue variation is with information level, with more information (I3) always 

resulting in slightly less revenue than with less information (I1 and I2), and the difference 

increases with the common value percent.    

Result 7:   When bidders use signal averaging, revenue is slightly lower at high 

percents of common value.  This difference is greater for bidders with I2 and I3 

information. 

Discussion:  Figure 4.17 shows that there are some small revenue decreases from 

signal averaging, reflecting the profit increases described in the previous section. There 

are decreases in revenue with signal averaging for four bidders for all information levels, 

and these differences increase as ε  increases.  For seven bidders, there is no revenue 

decrease for I1 bidders with signal averaging, some decrease for I3, and even less 

                                                 

1
 A bidder with a common value signal that is higher than the actual common value is more likely to win 

the auction than a lower-valued bidder.  Because the winner loses money in this case, the winner curses. 
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revenue for I2.  

4.5.3 Efficiency 

In this section, I use the definition of “private value” efficiency described in 

Goeree and Offerman (2002) and used in Chapter 3.  Figure 4.18 shows efficiency for 

four bidders and Figure 4.19 for seven bidders.  There is a marked nonlinear relationship 

of efficiency with common value percent.  The negative effect of common value percent 

on efficiency increases at an increasing rate as the percent increases.  This is similar to 

that reported for first-price and second-price auctions in Chapter 3.  

Result 8:   When four I3 bidders use signal averaging, private value efficiency 

decreases slightly at high common value percents. 

Discussion:  Figure 4.20 shows that signal averaging has some small effects on 

private value efficiency when the common value percent is over 60%.  The most 

significant effect is for I3 bidders when uncertainty is high, i.e., 12ε ≥ . 

4.6 Conclusion 

I have found that agents learn to signal average and learn to increase signal 

averaging as the common value percentage increases.  Signal averaging decreases as the 

number of bidders increases.  The uncertainty of the common value signal has an effect 

on signal-averaging and the results of signal averaging.  As the common value signal 

becomes more uncertain, signal averaging changes.  It decreases for high common value 

percents and increases slightly at the middle percentages.  When bidders use signal 

averaging, profit is slightly higher when the common value component is high.  This 

difference increases as the uncertainty about the common value increases.  For I3 bidders 

using signal averaging, profit increases with an increase in ε , but this does not occur for 
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I1 and I2 information levels.  The most obvious impact of signal averaging is on the 

frequency at which the bidder with the highest common value signal wins the auction.    

The problem with learning to average value signals is that it takes so long because 

bidders have information on the actual value only when they win.  We know that real-

world bidders will average signals (Levin et alia, 1996), but they will not have the 

opportunity to learn to signal average as well as they could if they had 300 repeated 

auctions.   

Using multiagent simulations has provided some insights into single-unit 

auctions, both sealed-bid auctions (Chapter 3) and English auctions.   Chapter 5 will 

expand the method from single-unit auctions to the multi-unit Treasury auctions. 
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4.8 Tables  

Table 4.1.   English Auction Model Notation Summary 

Symbol Description 

i

tb  Bid level of bidder i in auction t. 

,

i

t sb  Bid of agent i at step s of auction period t. 

,

d

t rb  Latest dropout price 

i

tδ  Signal-Averaging Factor  

ε  Radius of the support for the common value signal. 

i

tγ  Value multiplier or bid factor. 

tp  Payment by winner in auction t. 

φ  Learning rate for the value multiplier 
i

tγ  

ϕ  
Learning rate for the signal-averaging factor 

i

tδ  

i

tp  Payment made by bidder i, given that it wins. 

i

tπ  Profit of bidder i in auction t. 

,

i

F tπ  Foregone profit of bidder i in auction t. 

s, D s is step of bidding in an English auction; D is the step in which a bidder drops out 

i

tr  Ranking of bidder i in auction t. 

P CP C, , ,S S S S  Upper and lower bounds of the supports for the private value signal and common value. 

Cθ  Common value component of the value signal. 

ˆi

tv  Value signal of bidder i in auction t. 

,
ˆi

t sv  Revised value signal of bidder i at step r of auction t. 

i

tv  Actual value, revealed only to winner. 
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Table 4.2.  Information Levels (incremental) 

Level Description Feedback 

Number of bidders n 

Value Signal:  Own ˆi

tv  

Bid:  Own i

tb  

Ranking:  Own i

tr  

Payment:  Own | 1i i

t tp r =  

 

 

 

 

IL1 

Value: Own | 1i i

t tv r =  

Bid:  Winner (1)

tb   

IL2 

Payment 
tp  

IL3 Bid:  Runner-up (2)

tb  
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4.9 Figures 

Figure 4.1.  Sensitivity of Signal-Averaging Factor to Learning Rate 

I3 Information, 100% Common Value, n = 4, 8ε =  

Signal-Averaging Factor by Period 
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Figure 4.2.  Convergence  of Signal-Averaging Factor 

I3 Information, 100% Common Value, n = 4, 8ε =   

Signal-Averaging Factor by Period 
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Figure 4.3.  Distribution of Signal-averaging Factor with Signal Value 

I3 Information, 100% Common Value, n = 4, 8ε =  

(I1:  Solid, I2: Dot, I3:  DashDot) 
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Figure 4.4.  Convergence of Signal-Averaging Factor for Different Initial Values 

Restricted to high value bidders  

Signal-Averaging Factor by Period 

I3 Information, 100% Common Value, n = 4, 8ε =  
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Figure 4.5.  Signal-Averaging Factor 

Signal-Averaging Factor by Common Value Percent  

 (I1:  Solid, I2: Dot, I3:  DashDot) 
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Figure 4.6.  Convergence of Value Multiplier 

Value Multiplier by Common Value Percent 

Common Value, First Price, I3 Information, 8ε =  
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Figure 4.7.  Value Multiplier:  Four Bidders  

Value Multiplier by Common Value Percent 

 (I1:  Solid, I2: Dot, I3:  DashDot) 

Without Signal Averaging With Signal Averaging 
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Figure 4.8.  Value Multiplier:  Seven Bidders  

Value Multiplier by Common Value Percent 

 (I1:  Solid, I2: Dot, I3:  DashDot) 

Without Signal Averaging With Signal Averaging 
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Figure 4.9.  Value Multiplier Changes with Signal Averaging  

 by Common Value Percent 

 (I1:  Solid, I2: Dot, I3:  DashDot) 
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Figure 4.10.  Profit:  Four Bidders  

Profit by Common Value Percent 

 (I1:  Solid, I2: Dot, I3:  DashDot) 

Without Signal Averaging With Signal Averaging 
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Figure 4.11.  Profit:  Seven Bidders  

Profit by Common Value Percent 

 (I1:  Solid, I2: Dot, I3:  DashDot) 

Without Signal Averaging With Signal Averaging 
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Figure 4.12.  Profit Changes with Signal Averaging  

 by Common Value Percent 

 (I1:  Solid, I2: Dot, I3:  DashDot) 
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Figure 4.13.  Winner’s Curse Abatement:  Four Bidders 

Fraction of Auctions Won by Highest Common Value Signal by Common Value Percent 

 (I1:  Solid, I2: Dot, I3:  DashDot) 

Without Signal Averaging With Signal Averaging 
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Figure 4.14. Winner’s Curse Abatement:  Seven Bidders 

Fraction of Auctions Won by Highest Common Value Signal by Common Value Percent 

 (I1:  Solid, I2: Dot, I3:  DashDot) 

Without Signal Averaging With Signal Averaging 
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Figure 4.15.  Revenue:  Four Bidders  

Revenue by Common Value Percent 

 (I1:  Solid, I2: Dot, I3:  DashDot) 

Without Signal Averaging With Signal Averaging 
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Figure 4.16.  Revenue:  Seven Bidders  

Revenue by Common Value Percent 

 (I1:  Solid, I2: Dot, I3:  DashDot) 

Without Signal Averaging With Signal Averaging 
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Figure 4.17.  Revenue Changes with Signal Averaging  

by Common Value Percent 

 (I1:  Solid, I2: Dot, I3:  DashDot) 

Four Bidders Seven Bidders 
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Figure 4.18.  Private-Value Efficiency:  Four Bidders  

Private-Value Efficiency by Common Value Percent 

 (I1:  Solid, I2: Dot, I3:  DashDot) 

Without Signal Averaging With Signal Averaging 
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Figure 4.19.  Private-Value Efficiency:  Seven Bidders  

Private-Value Efficiency by Common Value Percent 

 (I1:  Solid, I2: Dot, I3:  DashDot) 

Without Signal Averaging With Signal Averaging 
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Figure 4.20.  Private Value Efficiency Changes with Signal Averaging  

by Common Value Percent 

 (I1:  Solid, I2: Dot, I3:  DashDot) 

Four Bidders Seven Bidders 
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Chapter 5 

Multiagent System Simulations of Treasury Auctions 

 

5.1 Introduction 

Auctions for treasury securities are used in about 42 countries (Bartolini and 

Cottarelli, 1997), including Canada. The Bank of Canada and many other central banks 

manage government debt and the money supply by buying or selling T-bills and bonds of 

several denominations in treasury auctions.  During the period 1998-2002 the U.S. 

Treasury held more than 800 auctions with a total nominal value of $12.7 trillion 

(Nyborg and Strebulaev, 2004), and the 2005 and 2006 totals were both about $3.4 

trillion (U.S. Department of Treasury).   During the last three fiscal years in Canada, the 

treasury auction volumes have been approximately $175 billion (Government of Canada, 

2005, 2006, 2007).  Following the auction, there is an inter-dealer secondary market for 

securities.  D’Souza and Gaa (2004) find that average daily trading volumes in the 

secondary market were $22.4 billion for Canada and $433.5 billion for the U.S. in 2003. 

Arnone and Iden (2003) surveyed  39 countries in 2001 and found that 29 had 

primary dealers and 10 do not.  Among the countries with primary dealers, the average 

number of primary dealers was 14.5.  For example, in 2001 Canada had 11 primary 

dealers for bonds and 9 for T-bills, with bi-annual status reviews.  Currently, Canada has 

12 primary dealers for bonds and 10 primary dealers for T-bills.  Sareen (2005) reports 

that one Canadian primary dealer explicitly quit in 2001, that dealers will be promoted to 

primary dealers if they bid for too much, and primary dealers will be demoted if they bid 

for too little.  All in all the number of primary dealers has increased by a couple, but 
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basically remains quite constant.  I treat the number of primary dealers and regular 

dealers as exogenous treatment variables, setting each to 10.  The designation of dealers 

could in principle be made endogenous by using the same formula that the Bank of 

Canada uses to calculate the bidding limits, but this formula is confidential.   

The objective of the Bank of Canada is to sell its entire issue of securities in order 

to finance the projected government expenditures.  Failure to sell this amount will have 

adverse effects on the government spending ability and would also have a bad signalling 

effect for investors that the country’s debt is not a good investment.  So, part of the 

primary dealer contract (Bank of Canada, 2005) is to ensure that each issuance is sold in 

full.  Each primary dealer has a minimum quantity constraint, but regular dealers have no 

minimum constraints.  In addition to minimum constraints, maximum bid constraints 

were set because the Bank of Canada was concerned that the auction process could be 

used to implement a squeeze in the secondary market (Bank of Canada, 1998). 

The target overnight  interest rate is the middle of the 0.5%-wide operating band.  

The bank rate is the top of the band.  Up until 1996, the bank rate was the average yield at 

the Bank of Canada's weekly auction of 3-month treasury bills plus 0.25%, so the rate 

changed weekly with every auction.  However, since 1996, the Bank of Canada has 

decoupled the bank rate from the auction, and the rates are managed through a daily 

process that is facilitated by the 1999 implementation of an electronic payments system, 

the Large Value Transfer System (LVTS).  Having announced a target interest rate, if the 

rate being used for trades is less than the target rate, the Bank of Canada uses Sale and 

Repurchase Agreements (SRA’s) to raise the rate.  If it is more than the target rate, the 

Bank of Canada uses Special Purchase and Resale Agreements (SPRA’s) to lower the 
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rate.  In Europe, this process is usually accomplished with an auction, but in Canada the 

trades are completed bilaterally between the Bank of Canada and the primary dealers, 

each having a predetermined limit for both types.  The weekly average value of traded 

SRA’s and SPRA’s for the period between April 2005 and March 2007 was $140 million 

(Belisle, 2007).   Although there is no public information about returns in these 

transactions, since they are one-day transactions the return is likely no more than about 

0.01%, which amounts to an average weekly  profit of only $14,000 to be distributed 

among the ten or so primary dealers.   Thus, the benefit of being a primary dealer is 

obviously not profit, but there may be some reputational benefits that result in a large 

client network (Sareen, 2005).  

Most of the countries with Treasury auctions use the discriminatory payment rule.  

A survey by Bartolini and Cottarelli (1997) showed that 39 of 42 countries used the 

Discriminatory payment rule.1  Briefly, with Discriminatory payment each bidder pays its 

bid price, and with Uniform payment all bidders pay the same cutoff price.  There has 

been a long-standing question for Treasury auctions of whether Discriminatory payment 

or Uniform payment will result in more revenue.  Friedman (1963) proposed that the 

Uniform payment rule would result in more revenue and less collusion, and the U.S. 

switched from Discriminatory payment to Uniform payment in 1992.  The econometric 

study by Malvey and Archibald (1998) shows slightly higher revenue for the Uniform 

payment, but they compare revenue by comparing the auction yield to the yield in the 

when-issued market.   

                                                 

1 The payment rules are described in Section 5.2.4.3.   
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The treasury auctions in Canada and some other countries are preceded by when-

issued markets and followed by secondary markets,2 both of which may affect the 

bidding strategies in the treasury auctions themselves.  Nyborg and Strebulaev (2004) 

criticize Malvey and Archibald’s use of the when-issued yield as a measure of revenue, 

by arguing that the type of auction can influence the yield in the when-issued market.  

This interaction between the auction payment format and when-issued markets was 

studied by Nyborg and Sundaresan (1996) who found significant impact of the when-

issued market on the auction results.  This is, of course, another reason for including the 

when-issued and secondary markets in the model of the treasury auction.   

I develop a model that includes the when-issued market, auction, secondary 

market, multi-unit bidding in the auction, ten primary dealers and ten regular dealers, and 

constraints on bidding.  Although I am using the Canadian treasury auction as the basis 

for this study, the results have broader applicability to any auction with before markets, 

after markets, and bidder constraints.  Previous models (see Table 5.1) have been limited 

to one or two markets and used single-unit bidding in the auction.  They have not 

included the constraints on the primary dealers, and some of the broader models 

(Chatterjea and Jarrow, 1998 and Nyborg and Strebulaev, 2004) strongly restrict the 

number of primary dealers who bid or win in the auction.  

                                                 

2 The when-issued and secondary markets are described in Sections 2.3 and 2.5 respectively.  The term 

“when issued” is a short form of “when, as, and if issued” and the market begins after the issue is 

announced, usually a week before the auction.  The “secondary” market refers to the resale market for 

securities that were purchased in the auction. 
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This model is used to answer the following research question:  Which payment 

rule provides the most revenue to the central bank and does the answer depend upon the 

spread of the prices in the when-issued and secondary markets?  To answer the research 

question, I have extended the more general multiagent system that is described in Chapter 

2.  The agents learn their bidding strategies using a modified impulse balance learning 

method similar to the method in Chapter 3 for single-unit auctions.  In this model, agents 

attempt to maximize their profits by adjusting bidding strategies in repeated auctions that 

are the same except for the strategies of other bidders that are also being adjusted.   

I find that the Spanish payment rule is revenue inferior to the Discriminatory 

payment rule across all market price spreads, but the Average rule is revenue superior.  

For most market-price spreads, Uniform payment results in less revenue than 

Discriminatory, but there are many cases in which Vickrey payment produces more 

revenue. 

The market model is presented in Section 5.2 and the agent learning model in 

Section 5.3.   Section 5.4 describes the learning adjustment rules in detail, but more 

details are also provided in the Appendix.  Section 5.5 analyzes the model’s sensitivity to 

parameter values, demonstrates convergence, and discusses the endogenous agent 

variation.  Section 5.6 presents the main results of the simulations that compare revenue 

across the payment rules and market price spreads.  Section 5.7 presents conclusions.   

5.2 Market Model  

This section first provides a brief overview of the market model illustrated in 

Figure 5.1.   Section 5.2.1 explains the market prices in the when-issued and secondary 

markets, which are used as values by the bidders in the auction.  This leads to a detailed 
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discussion of the three markets in the model:  when-issued market (Section 5.2.2), 

auction (Section 5.2.3), and secondary market (Section 5.2.4).    The model notation is 

summarized in Table 5.2.   

Figure 5.1 illustrates an overview of the three markets that occur sequentially in 

every period t.   There are three security categories:  securities that are sold short in the 

when-issued market (“security S”), bought long to sell to short-selling dealers in the 

secondary market (“security D”), and bought to sell to customers in the secondary market 

(“security C”).  A dealer is said to be selling short when it sells securities that it does not 

yet own and buying long when it does not yet have customers to sell to.   

The first market is the when-issued market in which a dealer i sells ,

S

i tq  securities 

at the market price SP , where the quantity ,

S

i tq  is endogenous but the market price SP  is 

exogenous.  In the auction, the dealer will attempt to buy the securities to cover its short 

sale quantity ,

S

i tq .   The when-issued market price SP , together with the secondary market 

prices price CP  and DP  are exogenous in the current version of the model.  To make them 

endogenous, I would create a model of the when-issued market and a model of the 

secondary market that dynamically extends across time periods.  This is a possibility for 

future work. 

The second market is the treasury auction, which consists of dealers submitting 

sealed bids to the central bank.  Dealers who sell short in the when-issued market will be 

trying to cover their position by bidding for ,

S

i tq  securities at bid price ,

S

i tb .   If their bid 

price is high enough they will be allocated ,

S

i tx  securities at a payment ,

S

i tp .  Some dealers 

may bid for ,

D

i tq  securities at bid price ,

D

i tb  to sell to short sellers who are unable to cover 
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their position in the auction (i.e., , ,

S S

i t i tx q< ) .   If their bid price is high enough they will 

be allocated ,

D

i tx  securities at a payment ,

D

i tp .  Bidders may also bid for securities to sell 

directly to customers in the secondary market.   They bid for ,

C

i tq  securities at bid price 

,

C

i tb , and are allocated ,

C

i tx  securities at a payment ,

C

i tp .   The bid prices, quantities, 

allocations, and payments are all endogenous.   

The third market is the secondary market in which long-buying dealers sell to 

short-selling dealers at price DP and all dealers sell to customers at price CP , where DP  

and CP are exogenous.  The long dealers sell as much as they can to the short sellers at 

price DP  and sell the remainder ,

D

i tδ  to customers at the lower price CP .   Any dealer may 

have been allocated ,

C

i tx  securities to sell directly to customers, which they sell at price 

CP .  The amount of  allocated ,

D

i tx  that long-buyers sell to short-sellers is designated  ,

D

i tτ  

and the amount of allocated ,

C

i tx  that is sold to customers is ,

C

i tτ = ,

C

i tx .  The amount of   ,

D

i tx  

that is not sold to short-sellers is designated ,

D

i tδ , and this amount is sold to customers.  

5.2.1 Market Prices 

Participants in treasury auctions submit bids that consist of one or more pairs of 

quantity and yield.  For ease of understanding, I replace yield with the equivalent price 

per $100 as presented in the auction results from the Bank of Canada.  Since the purpose 

of the model is to understand how the when-issued market, secondary market, and 

auction mechanism affect the auction outcomes, the choice variables of the model are the 

auction bid prices and quantities; the prices in the when-issued and secondary markets are 

exogenous parameters.    
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I use a set of three posted prices: the price charged to customers by short sellers in 

the when-issued market SP , the price charged to short sellers by dealers in the secondary 

market DP , and the price charged by all dealers to customers in the secondary market CP .   

A dealer sells securities to customers in the when-issued market with the intention of 

buying them in the auction, a process called “short selling.”  It competes in the auction 

with dealers who want to take advantage of the short-sellers’ contractual commitments to 

their customers by buying all of the securities in the auction, a process called “long 

buying.”  If a short seller fails to cover its position in the auction, it is forced to pay the 

high price DP  in the secondary market, called a “squeeze.”  In the secondary market, a 

high squeeze price DP  occurs in reality (Merrick et alia, 2005) and is used in other models 

such as Chatterjea and Jarrow (1998) and Nyborg and Strebulaev (2004). 

I set the non-auction prices using the relative magnitudes D S CP P P> > .  The first 

inequality is straightforward, since a dealer pays the high price DP  in the secondary 

market if it is squeezed as a result of a short position not being covered by auction 

winnings.  According to Nyborg and Sundaresam (1996) the when-issued market 

provides price and quantity insurance so the inequality S CP P>  can be justified by when-

issued customers willing to pay a premium rather than risk not obtaining their quantity in 

the secondary market.  The ordering D S CP P P> >  is consistent with prices in previous 

models (Chatterjea and Jarrow, 1998; Nyborg and Strebulaev, 2004). 

The market prices are parameters in the simulations.  First, I assume that the base 

yield is 4.25% for a 12-month T-Bill.  Then the associated price is approximately $95.90 
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and I set this as the short-sale price SP  in the when-issued market.3  Then, for simulation 

purposes I define variables Dε  and Cε  by D S DP P ε= +  and C S CP P ε= − , and vary Dε  

and Cε .  Second, I assume that this price interval [ S CP ε− , S DP ε+ ] is no larger than the 

price equivalent of about 50 basis points or 0.5%.  For the purpose of the simulations, I 

use $95.90SP = and both epsilons less than $0.20, i.e., Dε  and Cε both less than the price 

equivalent of 25 basis points.  Thus, the simulations are run to analyze prices that are in 

the ranges $95.90 $96.10DP< <  and $95.70 $95.90CP< < .   

5.2.2 When-Issued Market 

Bikhachandani et alia (2000) explain that dealers will sell short to customers in 

the when-issued market since this does not provide information to other dealers.  They do 

not buy long because they would have to do this with other dealers, and this would 

convey too much information about order flow.  In general, a sizable portion of the issue 

is sold in the when-issued market.  Hortacsu and Sareen (2005) found that in 2002 

Canadian Treasury auctions 54% of the total volume traded in the when-issued and 

secondary markets consisted of customer orders.  Each dealer receives customer orders 

and fills these orders by short selling the quantity ,

S

i tq  at the price SP  for when-issued 

revenue of ,

S

S i tP q .  When-issued trading volume is endogenous in the model.  The 

simulations involve agents adjusting their ,

S

i tq  in order to maximize profits. 

                                                 

3 A one-year T-bill with face value of $100 and a yield of 4.25% has a price of 100/(1+.0425) = $95.92. 
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5.2.3 Auction Market 

5.2.3.1 Bidding 

In the auction, each dealer endeavours to maximize overall profit by choosing 

prices and quantities.  Each bid consists of up to three price-quantity pairs, i.e., it is a 

three point demand schedule.   Table 5.3 shows bids from a Government of Canada 

auction reported in Lu and Yang (2003).  Most bids have three yield-quantity pairs, but 

some have two or four points.  For the sake of simplicity, in this model all bids have three 

price-quantity pairs for the quantities to cover the short selling (S) from the when-issued 

market, to allow a dealer squeeze (D) in the secondary market, and to sell to customers 

(C) in the secondary market.  Thus, each dealer i submits a set of 3 bids consisting of a 

chosen price that is associated with these quantities: { }, , , , , , ,( , ),( , ),( , )S S D D C C

i t i t i t i t i t i t i t
b q b q b qβ = .   

Each dealer will hope that its bidding strategy covers its short position since it is 

otherwise subject to being squeezed in the secondary market.  The dealer will be 

squeezed if its auction winnings are less than its short position in the amount 

, , ,

S S S

i t i t i tq x∆ = − .  Given short-selling revenue ,

S

S i tP q  in the when-issued market, a dealer 

makes the following decisions in the auction: 

1. a bid price decision ,

S

i tb  to maximize profit from short selling, resulting in an 

allocation of ,

S

i tx . 

2. a decision about bid price and quantity , ,( , )D D

i t i tb q  in expectation of profits from 

selling these to the short-selling dealers in the secondary market, resulting in an 

allocation of ,

D

i tx .  I assume that any D securities that are not sold to short-sellers 

are sold to customers, with the former quantity denoted ,

D

i tτ  and the latter ,

D

i tδ  so 

that , , ,

D D D

i t i t i txτ δ+ = . 
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3. a decision about , ,( , )C C

i t i tb q , resulting in an allocation of ,

C

i tx , and where I assume 

that all securities can be sold to customers in the secondary market. 

Depending upon the auction payment rule, the payments paid by dealer i for its 

allocations , , ,, , and S D C

i t i t i tx x x  are , , ,, , and S D C

i t i t i tp p p .  Thus, I can write the ex ante profit 

decision for the dealer in the auction as 

, , , , ,

, , , , ,

, , , ,
, , , ,

, ,

[ ] ( [ ])

max [ ]( [ ]) [ ]( [ ])

[ ]( [ ])

S D D C C
i t i t i t i t i t

S S S S S

S i t i t i t D i t i t

D D D D

i t D i t i t C i t
b b q b q

C C

i t C i t

P q E p x P q E x

E P E p E P E p

E x P E p

τ δ

� �− − −
� �
� �

+ − + −� �
� �
� �+ −� �

  

Each primary dealer has a minimum quantity constraint of 
i

θ = 50% of its 

maximum bid limit, but regular dealers have no minimum constraints.  The aggregated 

maximum is iθ  = 40% of the issue amount Q for primary dealers and iθ  = 20% of the 

issue amount for regular dealers.  Then, for agent i the maximum total bid quantity is 

max

i iq Qθ= , the minimum is min

i i i
q Qθ= .   After every quantity adjustment the bidders 

must ensure that min max

, , ,

D C S

i i t i t i t iq q q q q≤ + + ≤ .   For example, if the current set of bid 

quantities sums to less than min

iq , the agent must increase the bid quantities.   

5.2.3.2 Cutoff Price and Allocations 

Bids are allocated starting with the highest price and continuing down until the 

cutoff price cut

tp is reached, where cut

tp is the highest price such that the total bid quantity 

is greater than or equal to the issued amount.  If the total quantity bid at cut

tp is greater 

than the issued amount, the bids at cut

tp are only partially allocated.  Also, if there is more 
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than one bidder at cut

tp , the remaining quantity is shared among the bidders according to 

the quantities in their bids.  For each bidder, the allocated quantities are ,

S

i tx , ,

D

i tx , and ,

C

i tx . 

5.2.4.3 Payment rules 

Now we can easily substitute different payment rules, and the simulations in this 

paper use five payment rules:  Discriminatory, Uniform, Average, Spanish, and Vickrey.  

Let ,

j

i tp  be the auction price for security type j∈ {S, D, C}.  The Discriminatory payment 

rule is pay-your-bid, so the payments are , , , , , ,, , and S S D D C C

i t i t i t i t i t i tp b p b p b= = = .   For a 

Uniform cutoff price payment rule, all securities are priced at the cutoff price so 

, , ,

S D C cut

i t i t i t tp p p p= = = , and for an Average payment rule, all securities are priced at the 

average price so that , , ,

S D C avg

i t i t i t tp p p p= = = .  Abbink et alia (2006) describe the Spanish 

auction that uses a combination of Average and Discriminatory approaches.  Winning 

bids that are above the weighted average winning bid pay the same price, namely the 

weighted average winning bid.  Winning bids that are below the weighted average 

winning bid pay the bid price, as in the Discriminatory method.  Vickrey payment 

requires that a dealer who wins k units in a multi-unit auction pays the k highest losing 

bids of the other bidders.  Ausubel (2004, 2006) has recently proposed some new auction 

designs that use the English auction format, but this paper focuses on the sealed-bid 

format currently used by most of the central banks.   

5.2.4 Secondary Market  

As illustrated in Figure 5.1, the secondary market potentially consists of long-

buying dealers selling what they can to short-selling dealers and selling the residual to 

customers, and of all dealers selling to customers.  The secondary market for dealers that 
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have acquired C securities in the auction is straightforward.  The acquired ,

C

i tx  securities 

in the auction are all sold at price CP in the secondary market.   The situation for 

securities S and D is more complicated.  If a short-selling dealer does not cover its short 

position ,

S

i tq  with its allocation ,

S

i tx  in the auction, it must buy , , ,( )S S S

i t i t i tq x∆ = − at a high 

price DP  in the secondary market.  Similarly, the long-buying dealer will try to sell its 

allocation ,

D

i tx  to the short sellers.   Let D� denote the total amount of security D that is 

available for sale by the long buyers, and S� denote the total amount of security S that 

needs to be bought in the secondary market by the short sellers.  Then ,1

nD D

i ti
x

=
=� �  and 

,1

nS S

i ti=
= ∆� � .  While the agents are learning, there may be an excess on either side of 

the market, i.e., we can have D S>� �  or S D>� � .  In the first case, there is an 

excess of security D since the squeezing dealers have overbought in the auction, but the 

squeezed short-sellers can buy what they need to cover their short sells.   In the second 

case, there is an excess of security S since the squeezing dealers have under bought in the 

auction and the short-sellers cannot cover their positions.  Neither one of these situations 

should be an equilibrium by the end of the simulation since the agents will make quantity 

adjustments (see Section 5.4).    

There are at least three ways to model the secondary market transactions.   The 

first method simply allocates the securities proportionally.  Denoting the actual cleared 

amounts ,

D

i tτ  and ,

S

i tτ , in the case of an excess of security D ( D S>� � ) we have 

, ,

S

D D

i t i tD
xτ = �

�
 and , ,

S S

i t i txτ = ;  in the case of an excess of security S ( S D>� � ) we have 
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, ,

D

S S

i t i tS
xτ = �

�
 and , ,

D D

i t i txτ = .   Using this method, however, results in instability in the 

learning model.  Agents can oscillate back and forth between over allocation and under 

allocation by a very small quantity that in turn results in oscillation between profitability 

and unprofitability.  The learning model is stable when secondary market trades are based 

on market power, as done by Nyborg and Strebulaev (2004).  There are two ways to 

implement this.  One method is to allocate secondary market sales to the largest security 

holders first.  Given an ordering of the quantities for both the short sellers (S) and long 

buyers (D), match the largest long buyer with the largest short seller and if there are long 

holdings left the largents long sells to the next largest short, and so on.  Once the largest 

long buyer runs out of holdings to sell, the next largest long buyer takes over and 

continues to sell down the list to the shorts in decreasing order.  Another method is to 

make the realistic assumption that the primary dealers have more market power than the 

regular dealers.  In this case, primary dealer short sellers and  primary dealer long buyers 

are given first priority in secondary market transactions.  This second method is the one 

used in the simulations. 

In the case of an excess of security D in the secondary market, a long-buying 

agent may up holding , , ,( )D D D

i t i t i txδ τ= −  securities that it can sell to customers at the lower 

price CP .   The overall profit for security D is therefore , , , , ,

D D D D D

i t D i t C i t i t i tP P p xπ τ δ= + − .  With 

an excess of security S in the secondary market, a short selling agent may not be able to 

clear a portion of its position , , ,( )S S S

i t i t i tδ τ= ∆ − .   The short-selling agent cannot hold these 

securities because they belong to customers, and the short-seller must cancel the orders 

resulting in a refund of ( ), ,

S S

S i t i tP τ− ∆ − .  The overall profit for security S is thus 



 

  

134 

( ) ( ), , , , , , ,

S S S S S S S

i t S i t i t i t D i t S i t i tP q p x P Pπ τ τ= − + − ∆ − .   In summary, the profit from short selling is 

the revenue from the when-issued market minus the sum of the amounts paid in the 

auction and secondary market, minus the revenue from cancelled orders.  The profit from 

long buying is the revenue from the secondary market trading with the short sellers and 

customers minus the amount paid in the auction. 

5.3 Learning Model 

This section starts with a description of the linear bid adjustment strategy (Section 

5.3.1).  The discussion of information levels in Section 5.3.2 explains why the agents use 

a limited set of private information.  Section 5.3.3 explains the general concepts of 

learning how to adjust bid strategies in a multi-market environment. 

5.3.1 Linear Adjustments 

When an auction is considered in isolation (i.e. before and after markets are not 

considered), an agent sets a bid price in terms of its value estimate in the auction by using 

feedback on profit, foregone profit, and money on the table (as in the models of Chapter 3 

and Chapter 4).  However, the market model described in Section 5.2  uses three markets 

and three securities so that an agent’s value is a mix of the three market prices SP , DP , 

and CP .   An agent adjusts both bid prices and bid quantities for the three securities using 

simple linear adjustments.   Several empirical studies on impulse-balance learning  have 

shown that linear adjustments to bidding strategies explain how bidders adjust their bid 

strategies (Selten and Buchta, 1998;  Selten et alia, 2005;  Ockenfels and Selten, 2005;  

Negebauer and Selten, 2006;  Garvin and Kagel, 1994;  Kagel and Levin, 1999).  I have 

previously adapted the empirical impulse balance method (Ockenfels and Selten, 2005) 
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for use in computational models for single-unit sealed-bid (Chapter 3) and English 

auctions (Chapter 4).  In this model, it is extended further to the multi-unit case.   

The bid price is adjusted using , 1 , ,

j j j

i t i t i tb b aφ+ = + , where φ  is the price learning rate 

and ,

j

i ta  is the period t price adjustment for agent i’s security j.  Similarly, the quantity is 

adjusted using , 1 , ,

j j j

i t i t i tq q zχ+ = + , where ,

j

i tz  is a period t quantity adjustment for agent i’s 

security j and χ  is the quantity learning rate. 

5.3.2 Information Feedback 

When the agent wins a full or partial allocation of a security, it can determine its 

profit and foregone profit from its private information about its payment.  When the agent 

has no allocation, when the payment rule is Discriminatory it can calculate foregone 

profit using its bid price ,

j

i tb .  The Bank of Canada posts public information after each 

auction: the maximum bid price high

tb , average price avg

tb , and low (cutoff) price cut

tb .    

Using this information, the agent can also determine its foregone profit when it has no 

allocation for a security and the payment rule is non-discriminatory.  For the Uniform 

payment rule, the foregone profit is estimated using payment cut

tb ; for the Average 

payment rule it is avg

tb ; and for the Spanish payment rule the payment used is ,

j

i tb  since 

with no allocation ,

j

i tb  will be less than avg

tb .  For the Vickrey payment rule, the losing 

bids are not known so the agent uses the upper bound on the payment, cut

tb . 

For the following reasons, I assume that the agents do not use the public 

information feedback to modify their bidding strategies.  An agent might reason that it 

may not want to reduce its bid price below cut

tb , since this might adversely affect its 
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probability of winning, and may not want to increase its bid price above high

tb , since this 

might unnecessarily reduce its profitability.  This would result in a constraint on the bid 

price strategy of ( ){ }{ }, 1 , ,min ,max , 1j high cut j j j

i t t t i t i tb b b b aφ+ = + .  However, simulations not 

reported here  demonstrate that this constraint on adjustments results in negative profit, 

and thus agents in fact learn to not apply this constraint.  The reason for the constraint’s 

poor outcomes is the complexity of the interplay between allocation and clearing, 

especially for security S, and the narrow price band within which the adjustments must 

occur.  The constraint interferes with the agent’s ability to make the fine adjustments in 

bid price that are required to maximize profits in this complex environment.   

5.3.3 Bid Adjustment Concepts 

For each security, the agent applies different adjustments depending upon its 

allocation in the auction and the amount of clearing in the secondary market.  Security S 

(sold short in the when-issued market) is distinguished by being bought in the secondary 

market, whereas securities D (sold to dealers) and C (sold to customers) are sold.  

Security C is distinguished by being treated as fully sold to customers in the secondary 

market, whereas sales of D are matched with buys of S, with leftovers sold to customers.   

Figure 5.2 illustrates the general concepts of the learning model.  The general 

approach to the bid price is to raise it when the agent can make a profit with more 

allocation, and lower it when more allocation would lead to a loss. Figure 5.2 shows that, 

for each security, the agent generally increases its bid price when the foregone profit is 

greater than zero and decreases its bid price when the foregone profit is less than zero.  

The agent’s intended effect of raising its bid price is to increase the probability of 
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achieving an allocation in the auction, and the intended effect of lowering its bid price is 

to increase its expected profit, usually through indirect effects on the payment.   

The general approach to the bid quantity is to raise it when there is a profitable 

full allocation and to lower it when there is an actual loss or an allocation or clearing 

shortfall.  Figure 5.2 shows that generally the quantity is increased when there is a full 

allocation ( , 0j

i t∆ = ).  For securities D and S, quantity is usually decreased when there is a 

clearing shortfall ( , ,0,  0D S

i t i tδ δ> > ).   For security C, the main condition for decreasing 

quantity is a partial or nil allocation ( , 0C

i t∆ > ).  The agent’s intended effect of raising its 

bid quantity is to increase overall profits, and the intended effect of lowering its bid 

quantity is to reduce current or potential losses.   For quantity adjustments, the agent 

raises its bid quantity when the current quantity has been fully allocated in the auction, 

fully cleared the secondary market, and the resulting profit is positive.   

Each time the bidder makes quantity adjustments, it checks to make sure that the 

constraint  , , ,

D C S

i i t i t i t iq q q q q≤ + + ≤  is satisfied.  If the maximum constraint is exceeded it, 

the bidder lowers each security quantity in proportion to achieve the upper bound.  If the 

minimum constraint is subceeded, the agent has more of a challenge in determining how 

to raise its bid quantities.  The challenge comes when the agent needs to significantly 

reduce the quantity of a bid for Security S because it is unprofitable even with full 

allocation (Rule S2) of its when-issued quantity.  Since a straightforward balancing is 

likely to raise this quantity right back up again, the agent conditions on this rule and does 

not scale the quantity up for this security and instead scales up security D, C, or both.  



 

  

138 

5.4 Learning Adjustment Rules 

The adjustment rules are described in detail the following sections and 

summarized in Tables 5.4 to 5.8.  In these tables a downward arrow denotes a downward 

adjustment, and an upward arrow denotes an upward adjustment.  The adjustments for 

bid price and quantity are shown as functions ( )b �  and ( )q �  respectively, with the former 

being a function of profit π or foregone profit Fπ and the latter being a function of 1, the 

allocation shortfall ∆ , the clearing shortfall δ , or the bid quantity q .  Table 5.4 shows 

adjustment rules when there is full allocation of securities S and C and full allocation and 

full clearing of security D.  Table 5.5 shows the adjustment rules for security S when the 

agent has only a partial or nil allocation and thus must try to cover the shortfall in the 

secondary market.  The adjustments depend upon whether the bidder achieves a full or 

partial/nil clearing of this shortfall in the secondary market.  Tables 5.6 to 5.9 show the 

adjustment rules for security D when there is only partial/nil clearing with full allocation 

and when there is partial/nil allocation.  Table 5.10 shows the adjustments for security C 

for partial allocation and nil allocation.  Recall that security C always clears the 

secondary market.  Tables 5.11 to 5.13 list the adjustment rules for securities S, D, and C 

respectively. 

5.4.1 Full Allocation and Full Clearing of S, D, and C 

The main objective of bidding for security S is to achieve a full allocation in the auction.  

In this case the agent avoids paying a high squeeze price in the secondary market and 

avoids the risk of cancelling the unfilled customer orders.  The objective of an agent 

bidding for security D is to achieve a full allocation that it also fully clears by selling to 

short sellers in the secondary market.  Security C is set up to be fully cleared in the 
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secondary market so an agent’s only concern is to achieve a full allocation in the auction.  

As shown in Table 5.4, the agent will adjust its bid based on its profitability and as shown 

in the Appendix the maximum profits for the three security categories are 

, , ,( )S S S

i t S i t i tP p qπ = − . , , ,( )D D D

i t D i t i tP p qπ = − , and , , ,( )C C C

i t C i t i tP p qπ = − .  

Rule j1 (j = S, D, C):  When profit is non-negative, the agent maintains its price 

since raising it risks unprofitability and lowering it risks the full allocation.  However, the 

agent may be able to improve its overall profit by increasing its quantity.  Since too large 

an increase may result in unallocated units (that require purchase in the secondary 

market) , the agent’s increment is limited to the minimal quantity of 1.   

Rule j2 (j = S, D, C):  When the agent is losing money, it lowers its probability of 

allocation by its bid price in proportion to the loss ,

S

i tπ .  On the other hand, the loss is 

occurring with the most ideal results (full allocation or full allocation and full clearing) so 

a loss results only when ,

j

i t jp P> , which is usually always an irreversible state.  The 

agent has no potential benefit from bidding for this security, so it lowers its bid quantity 

in proportion to the current  quantity ,

j

i tq .   

5.4.2 Security S 

If the agent has a partial (or nil) allocation of security S in the auction ( , ,0 S S

i t i tx q≤ < ), but 

is fully cleared in the secondary market ( , , , 0S S S

i t i t i tτ δ= ∆ → = ), the adjustments depend 

upon the level of profit and foregone profit.  Table 5.5 shows the adjustment rules for full 

clearing of partial allocation (S3 to S5) and for partial clearing of partial allocation (S6 

and S7).  All of the adjustment rules for security S are listed in Table 5.11.  The 

derivations of the profits and foregone profits are in the Appendix. 
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5.4.2.1 Partial/Nil Allocation with Full Clearing 

Rule S3:  If profit and foregone profit are both non-negative ( , 0S

i tπ ≥  and ,

, 0F S

i tπ ≥ ), the 

agent anticipates further profits if it can achieve a full allocation.  Thus, the agent raises 

its bid price in proportion to the foregone profit in an attempt to achieve a full allocation 

in the auction.   There is no reason for the agent to raise or lower its quantity until it tries 

to achieve full allocation. 

Rule S4:  If foregone profit is non-negative, but actual profit is negative ( , 0S

i tπ <  and 

,

, 0F S

i tπ ≥ ), the agent can anticipate profits if it can achieve a full allocation.  The agent 

raises its bid price in proportion to the foregone profit in an attempt to achieve a full 

allocation in the auction.   However, since a full allocation may not be achievable, the 

agent reduces its current actual loss by decreasing its bid quantity by the marginal 

quantity of 1.   

Rule S5:  A partially-allocated, fully-cleared agent that has a negative foregone profit 

lowers its price since it does not want to achieve an allocation that will result in a 

negative profit.  This lowering is in proportion to the negative foregone profit.  As shown 

in the Appendix, foregone profit is , ,( )S S

D i t i tP p− ∆ , and it is negative when ,

S

i t Dp P> .  This 

state is more likely to occur for the Average and Spanish payment rules that tend to have 

higher payments and, since the agents in general have will have been increasing their bid 

prices to achieve full allocations, this state tends to be a steady state.  Thus, the agent will 

never be able to achieve an actual profit by being allocated an additional ,

S

i t∆  units so it 

reduces its bid quantity in proportion to ,

S

i t∆ .  The result is that the bid quantities will be 

shifted to more potentially profitable securities. 
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5.4.2.2 Partial/Nil Allocation with Partial/Nil Clearing 

Rule S6:  For partial (or nil) allocation ( , ,0 S S

i t i tx q≤ < ) with partial clearing 

( , , ,0 0S S S

i t i t i txτ δ< < → > ), the agent is short-selling securities that it is not able to cover in 

the auction or in the secondary market.  When the agent receives no allocation in the 

auction ( , 0S

i tx = ), the agent attempts to cover the entire bid quantity in the secondary 

market.  When there is a partial allocation, the agent knows the payment and can 

calculate the foregone profit ,

,

F S

i tπ .  When it achieves no allocation, the agent estimates 

foregone profit ,

,
ˆ F S

i tπ , as explained in the Appendix.   To the extent that the possibility of 

profit exists ( ,

, 0F S

i tπ ≥ or ,

,
ˆ 0F S

i tπ ≥ ), the agent raises its bid price to try to achieve a full 

allocation in the auction, which is the preferred result.  It will also want to reduce the bid 

quantity to reduce its exposure in the secondary market.  Since the agent knows that ,

S

i tδ  

units have not cleared the secondary market, it reduces its bid quantity in proportion to 

,

S

i tδ .    

Rule S7:  If the partially-allocated, partially cleared agent has a negative foregone profit 

or negative estimated foregone profit, it lowers its bid price in order to reduce its 

allocation.  From the Appendix, foregone profit is , , ,( ) ( )S S S

D i t i t D S i tP p P P δ− ∆ − − .  This will 

be negative when  ,

S

i t Dp P≤  and , , ,( ) ( )S S S

D i t i t D S i tP p P P δ− ∆ < −  or when  ,

S

i t Dp P> .   In order 

to shift its bid quantities to potentially more profitable securities, the agent reduces its bid 

quantity using ,

S

i tδ  in the former case and using , ,

S S

i t i tδ + ∆ in the latter case.  With an 

indicator function ( )•1 , the adjustment can be written 
,

, , ( )S
i t D

S S

i t i t p P
δ

>
+ ∆ 1 . 
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5.4.3 Security D 

The objective of an agent bidding for security type D is to sell the shares to short sellers 

in the secondary market at price DP .  After buying ,

D

i tx  securities at a price of ,

D

i tp  in the 

auction, the agent earns revenue in the secondary market by selling ,

D

i tτ  securities at the 

price DP  and selling , , ,

D D D

i t i t i txδ τ= −  securities at price CP .  Adjustment rules are 

summarized in Table 5.6 for partial and nil clearing of full allocation (D3 to D4), in Table 

5.7 for partial allocation with some clearing (D5 to D10), in Table 5.8 for partial and nil 

allocation (D11 to D13), and in Table 5.9 for nil allocation (D14 and D15).  All of the 

adjustment rules for security D are listed in Table 5.12.  The derivations of the profits and 

foregone profits are in the Appendix. 

5.4.3.1 Full Allocation with Partial/Nil Clearing 

When there is full allocation with partial/nil clearing, the foregone profit is never 

negative, but profit can be negative (see the Appendix). 

Rule D3:  Full allocations of  D clear the secondary market at price DP  only if there is 

enough demand by the short-sellers, i.e., only if there is enough of security S in the 

secondary market.  For full allocation with partial clearing ( , 0D

i tδ > ) and nonnegative 

actual profit, the agent lowers its bid quantity in proportion to the clearing shortfall ,

D

i tδ .  

Since it has a full allocation that is profitable, it does not change its bid price. 

Rule D4:  When actual profit is negative, the agent lowers its bid quantity in proportion 

to the clearing shortfall ,

D

i tδ  and also lowers its bid price in proportion to its loss in order 

to reduce its probability of an unprofitable allocation.  For non-discriminatory payment 

rules, this will also influence the payment downwards. 
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5.4.3.2 Partial Allocation with Full Clearing 

For partial allocation with full clearing, the profit is , ,( )D D

D i t i tP p x−  and the 

foregone profit is , ,( )D D

D i t i tP p− ∆  (see the Appendix). 

Rule D5:   For partial allocation of security D with full clearing, non-negative foregone 

profit, and non-negative profit, the agent tries to increase its allocation by raising the bid 

price in proportion to the foregone profit.  It does not increase the quantity since it is not 

fully allocated.    

Rule D6:  Profit is negative when ,

D

i t Dp P> , and the agent will want to reduce its 

probability of receiving an allocation by lowering its bid price in proportion to the loss.  

It is also desirable to decrease the portion of its total bid quantity that is devoted to the 

currently unprofitable security D.  Since the loss is , ,( )D D

D i t i tP p x− , the agent reduces its bid 

quantity in proportion to , .D

i tx   

Rule D7:  When the foregone profit , ,( )D D

D i t i tP p− ∆  is negative, the agent has no potential 

for profit.  Thus, it reduces its probability of allocation by lowering the bid price in 

proportion to the foregone profit and lowers its bid quantity in proportion to its allocation 

shortfall ,

D

i t∆ .   

5.4.3.3 Partial Allocation with Partial Clearing 

In the Appendix, I show that for this case the profit is , , , ,

D D D D

D i t C i t i t i tP P p xτ δ+ −  and 

the foregone profit , , , ,( )D D D D

D i t i t i t i tP q pτ− − ∆ . 

Rule D8:   For partial allocation of security D with partial clearing (at price DP ), 

non-negative foregone profit, and non-negative profit, the agent can try to increase its 
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profit by increasing its probability allocation by raising its bid price in proportion to the 

foregone profit.   Should it increase or decrease its bid quantity?  If it increases its bid 

quantity by 1 and its allocation increases by 1, it will clear at DP  or CP .   Since it is 

currently partially clearing at DP , it is almost certain that this additional unit will clear at 

CP .  Thus, if the agent’s allocation increases by 1, the expense will increase by ,

D

i tp  and 

the revenue will increase by CP .  If ,

D

C i tP p> , this will increase the profit, but if ,

D

C i tP p<  

it will decrease the profit.  Similarly, if the agent’s allocation decreases by 1, the expense 

decreases by ,

D

i tp , the revenue decreases by CP , and the profit will increase if ,

D

C i tP p< .    

Therefore, the agent should increase its bid quantity by 1 if ,

D

C i tP p>  and lower its bid 

quantity by 1 if ,

D

C i tP p< .   This bid quantity adjustment can be written 
, ,( ) ( )D D

i t C i t Cp P p P< >
−1 1 . 

Rule D9:  When profit is negative ( , , , ,

D D D D

D i t C i t i t i tP P p xτ δ+ < ), the agent will want to reduce 

its probability of allocation by lowering its bid price in proportion to the loss.  When 

, , , ,

D D D D

D i t C i t i t i tP P p xτ δ+ < , ,

D

C i tP p<  so lowering the bid quantity by ,

D

i tx  reduces the loss.  

However, the major objective of lowering the bid quantity by ,

D

i tx  is to decrease the 

portion of its total bid quantity that is devoted to this unprofitable security D.  

Rule D10:  When the foregone profit, , , , ,( )D D D D

D i t i t i t i tP q pτ− − ∆ , is negative, 

, , , ,( )D D D D

D i t i t i t i tP q pτ− < ∆   and the agent has no potential for profit.  Thus, it reduces its 

probability of allocation by lowering the bid price in proportion to the negative foregone 

profit and reduces the amount it bids on D by lowering the bid quantity in proportion to 

,

D

i t∆ .   
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5.4.3.4 Partial Allocation with Nil Clearing 

For this case, the Appendix shows that profit is , ,( )D D

C i t i tP p x−  and the foregone profit 

, , , ,

D D D D

D i t C i t i t i tP q P x p− − ∆ . 

Rule D11:   For partial allocation of security D with no clearing (at price DP ), non-

negative foregone profit, and non-negative profit, the agent increases its probability of 

allocation by raising its bid price in proportion to the foregone profit.   Since ,

D

C i tP p>  it 

can also increase its potential profit by raising its bid quantity by 1.  If its allocation 

increases by 1, its profit increases by ,

D

C i tP p− .  .   

Rule D12:  When profit is negative, the agent reduces its probability of allocation by 

lowering its bid price in proportion to the loss.  Negative profit occurs when ,

D

C i tP p<  so 

also lowering the bid quantity by ,

D

i tx  reduces the loss.  However, the major objective of 

lowering the bid quantity by ,

D

i tx  is to decrease the portion of its total bid quantity that is 

devoted to this unprofitable security D.  

Rule D13:  When the foregone profit, , , , ,

D D D D

D i t C i t i t i tP q P x p− − ∆ , is negative, 

, , , ,

D D D D

D i t C i t i t i tP q P x p− < ∆  and the agent has no potential for profit.  Thus, it reduces its 

probability of allocation by lowering the bid price in proportion to the negative foregone 

profit.  With no potential for profit, the agent also reduces the quantity that it bids on 

security D by lowering its bid quantity in proportion to ,

D

i t∆ .    

5.4.3.5 Nil Allocation  

In the case of no allocation, the agent’s profit for security D is zero and an 

estimate of the foregone profit is , ,(0.5 0.5 )D D

D C i t i tP P p q+ − . 
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Rule D14:  When an agent has no allocation for security D ( , 0D

i tx = ), if the estimated 

foregone profit is non-negative, it raises its bid price to increase its probability of an 

allocation.   

Rule D15:  When the agent has no allocation of  D and estimates a negative foregone 

profit, since it already has no allocation there is no reason to decrease the bid price to 

lower the probability of allocation.  However, a decrease in the bid price may indirectly 

influence the payment to decrease for non-discriminatory payment rules.  Thus, the agent 

should decrease its bid price in proportion to the foregone loss.  It should also decrease 

the quantity it bids on this security in to ,

D

i tq .   

5.4.4 Security C 

Since security C is set up to be fully cleared in the secondary market, i.e., the allocation 

,

C

i tx  in the auction clears the secondary market at price CP , an agent’s objective is to be 

fully allocated in the auction and to make a profit.  Table 5.10 shows the adjustment rules 

for partial allocation (C3 and C4) and nil allocation (C5 and C6).  All of the adjustment 

rules for security C are listed in Table 5.13. 

Rule C3:  In the case of partial allocation ( , ,0 C C

i t i tx q< < ) and non-negative foregone 

profit, the agent raises its bid price in proportion to the foregone profit in an attempt to 

achieve full allocation.   

Rule C4:  In the case of partial allocation with negative foregone profit, the agent lowers 

its bid price to reduce its probability of allocation, and reduce its bid quantity.  .   

Foregone profit , ,( )C C

C i t i tP p− ∆  is negative when ,

C

i t Cp P> , and the agent reduces its 

quantity in proportion to ,

C

i t∆ . 
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Rule C5:  When an agent has no allocation for security C and the foregone profit is non-

negative, the agent increases its bid price in order to increase its probability of allocation.  

Rule C6:  When the agent has no allocation of  C and estimates a negative foregone 

profit, it reduces its bid quantity. Foregone profit is , ,( )C C

C i t i tP p q− , so when the agent has 

no profit potential it reduces its bid quantity in proportion to , ,

C C

i t i tq∆ = .   

5.5 Sensitivity, Convergence, and Agent Variation 

The simulations use an issue size (in millions of Canadian dollars) Q = 2,500, 

which is representative of typical Bank of Canada auctions (Hortascu and Sareen, 2005). 

There is a single auctioneer representing the central bank, and there are twenty bank 

agent bidders consisting of ten primary dealers and ten regular dealers.  In this section, I 

discuss three important modelling considerations:  Are there parameter ranges within 

which the model results are stable;  does the model converge to steady state bidding 

strategies and steady state market trading; and do the agents vary in their bidding 

strategies and results? 

5.5.1 Sensitivity to Parameters 

There are four parameters that must be set:  the initial values for bid price and bid 

quantity and the learning rates for price and quantity.  Because of the maximum and 

minimum bid quantities, the model results are very insensitive to variations to the initial 

quantities.  In the simulations, each agent’s initial bid quantity for each of the three 

securities is an equal portion of its maximum bid limit.   For the other three parameters, 

sensitivity analysis helps to determine the values to use in the simulations.  To examine 

the sensitivity of revenue to the initial bid price-value percent (the initial price expressed 

as a percentage of the value), bid price learning rate φ , and the bid quantity learning 
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rate χ , I ran simulations for price spreads from Dε = Cε = 0.02 to Dε = Cε = 0.20, five 

payment rules, initial price-value percents on [95.5%, 1.0%], price learning rate φ  on [1, 

10],  and quantity learning rate χ  on [0.1, 1.0].    

When the price spread is small, e.g., Dε = Cε < 0.10,  the revenue results are 

insensitive to the parameter values.  Sensitivity increases as the price spread increases 

and I therefore present results for the worst case, i.e., Dε = Cε = .20.  For purposes of 

illustration, Figure 5.3 illustrates the revenue topography within the parameter ranges of  

initial price-value percent [99.0,  99.9]∈ , price learning rate [1.0,  5.5]φ ∈ , and quantity 

learning rate [0.1,  0.95]χ ∈ .  The sensitivity is assessed at a variation of 0.1%, i.e., a 

variation of $2.5 million on total revenue of approximately $2.5 billion. The light areas in 

the figures represent parameter values for which the revenue variation is less than 0.1%, 

and the darker areas represent parameter values for which revenue varies from the light 

area by more than 0.1%. 

Result 1:  The model’s revenue results are insensitive across the five payment rules when 

the parameters are restricted to initial price-value percent [97.5,  99.5]∈ , price learning 

rate [3.5,  9]φ ∈ , and  quantity learning rate [0.1,  0.7]χ ∈ . 

Discussion:  The first observation about the results in Figure 5.3 is that the Uniform and 

Spanish payment rules are the least sensitive to changes in the parameter values.  The 

second observation is that the model is insensitive within a wide range of parameter 

values.  Specifically, the left column of Figure 5.3 shows that the price learning rate 

should be in the range [3.5,  9]φ ∈  and that the initial price-value percent should be in the 

range [97.5, 99.5].  The middle column shows the same range for the initial price-value 
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percent and that the quantity learning rate should be in the range [0.1,  0.7]χ ∈ .  The third 

column shows that the quantity learning rate should be in the range [0.1,  0.7]χ ∈  and the 

price learning rate in the range [3.5,  9]φ ∈ .  Thus, to ensure consistent results across the 

five payment rules, the parameters should be within these ranges.  For the simulations in 

the following sections, I use price-value percent = 98.5, 4φ = , and 0.1χ = .   

5.5.2 Convergence to Steady State 

Convergence is illustrated in Figure 5.4, which presents charts for the 

convergence for bid price, bid quantity, allocation, and clearing for the three securities.  

Note that the lines in the charts that represent the securities S, D, and C are distinct 

except for the charts for Clearing.  In the Clearing charts, the dark gray line is hiding a 

black line behind it, i.e., the dark gray line represents the amount of security S that must 

be purchased in the secondary market from sellers of security D.  In other words, this is 

the “squeeze.”   

Result 2:  The model results in convergence of bid strategies and market trading.  

The payment rule with the fastest convergence is the Discriminatory payment rule, 

followed in order by Spanish, Uniform, Average, and Vickrey. 

Discussion:  The model results in convergence of bid price, bid quantity, auction 

allocation, and secondary market clearing.   Convergence requires about 150 periods for 

the Discriminatory and Spanish payment rules, about 200 periods for Uniform, and 300 

for Average and Vickrey.  The agents find it easiest to learn how to bid with the 

Discriminatory payment rule because the payment is a straightforward pay-your-bid rule, 

and Spanish is similar because bidders below the average  pay their bid.  The most 

difficult to learn payment rules are Vickrey, which depends upon losers’ bids, and 
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Average, which forces bidders to pay more than their bid when they are below the 

average. 

Result 3:   After converging to steady state, agents are profitable since short-

sellers learn to avoid being squeezed in the secondary market. 

Discussion:   In the Clearing charts in Figure 5.4, the dark gray line represents the 

amount of security S that is being squeezed in the secondary market.  All of the agents 

learn to avoid being squeezed after about 100 periods.  Being squeezed is unprofitable for 

the short sellers and they all learn to adjust their bidding strategies to eventually avoid the 

loss.  The Allocation charts show that the agents all still sell short in the when-issued 

market (black lines), but they sell only the amount that they have learned they can cover 

in the auction.  When-issued selling is slightly higher for Discriminatory, Average, and 

Vickrey payment rules than it is for the Uniform and Spanish payment rules.  As agents 

learn to avoid being squeezed, they also learn to avoid buying long in the auction in order 

to sell in the secondary market.  The long-buying agents learn quickly when the source of 

security S dries up in the secondary market. 

5.5.3 Endogenous Agent Variation 

Figure 5.5 illustrates the endogenous agent variation in bid price and Figure 5.6 

illustrates the endogenous agent variation in bid quantity, auction allocation, and 

secondary market clearing.   

Result 4:  The bid price variation is greatest for the Uniform payment rule.     

Discussion:   First, compare the bid prices for Discriminatory and Uniform payment 

rules.  Figure 5.5 shows that bid prices are much more variable for the Uniform payment 

rule than for the Discriminatory.  These results are consistent with the empirical results in 
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Goldreich (2006) who analyzed US data for 105 Discriminatory and 178 Uniform 

auctions and found that there is a wider dispersion of bid prices for the Uniform payment 

rule than for Discriminatory.  They are also consistent with experimental results in 

Abbink et alia (2006) who find a much higher dispersion of bid prices for Uniform than 

Discriminatory.  Second, Figure 5.5 shows that the bid prices for Spanish auctions are 

slightly more variable than for Discriminatory, which is also consistent with the slightly 

higher dispersion for Spanish auctions found by the experiments of Abbink et alia 

(2006). 

Result 5:  Bidding is more dispersed among primary and secondary dealers for 

Discriminatory and Spanish payment rules than for the other payment rules.  When-

issued selling varies among the payment rules, but it is always done by the primary 

dealers.   

Discussion:  The left column of Figure 5.6 shows examples of variation for the 

bid quantities.  The first observation is that the bidding is dominated by the primary 

dealers (Agents 1 to 10), which is expected because of their minimum bidding 

constraints.  The second observation is that regular bidders (Agents 11 to 20) bid much 

higher quantities (almost all Security C) for the Discriminatory and Spanish payment 

rules.  Thus, pay-your-bid payments are more conducive to auction participation.  Third, 

for all payment rules, the primary bidders do all of the short-selling in the when-issued 

market and all of the resulting bidding for security S in the auction.   Fourth, primary and 

regular dealers bid small quantities for security D that they sell to customers in the 

secondary market for the price of security C.  
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Result 6:  The pattern across agents of auction allocation and secondary clearing 

is similar for Discriminatory and Spanish payments, and these are somewhat different 

from Uniform and Average, and very different from Vickrey.  Most auction allocation is 

for security S.  All secondary clearing is for security D or C at the price of security C.  

Discussion:  In Figure 5.6, the middle column shows the variation among the 

bidders for the auction allocations and the right column shows the variation for the 

clearing in the secondary market.  First, note that for all of the payment rules, the primary 

dealers win allocations of security S to completely cover their short sales in the when-

issued market.  Second, note the variation in allocation and clearing among the payment 

rules.   For Discriminatory and Spanish auctions, all dealers (primary and regular) win 

small allocations of security C that is cleared in the secondary market.  For Uniform 

auctions, primary dealers win larger allocations of security C and regular dealers win 

small allocations of security D, both of which are sold in the secondary market at the 

price of security C.  In Average and Vickrey auctions, the dealers win allocations of 

security D that clear the secondary market at the security C price.     

5.6 Comparisons Across Market Price Spreads 

In this section,  I compare the auction revenue results and the activity in the when-

issued and secondary markets for the five payment rules across the spectrum of market 

price spreads, i.e., values of Dε  and Cε  ranging from 0.02 to 0.20.  The results are 

illustrated in Figure 5.7 to Figure 5.10, and these results are consistent across repetitions 

of the simulations. 
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5.6.1 Revenue  

Result 7:  Discriminatory payment results in  revenue that varies the least across 

the market price spreads, followed by Average, Vickrey, Uniform, and Spanish.  

Discussion:  Figure 5.7 shows the levels of revenue for the 100 combinations of 

Dε  and Cε .   Generally, for each payment rule, revenue is lower when the market price 

spreads are higher.  Revenue for Discriminatory payment is quite uniform across the 

spreads, with gradual monotonic decrease as the spreads increase.  The results for 

Average payment are similar but more irregular.  The revenue results for Spanish 

payment show a steep, regular monotonic decrease as Cε  increases.  For each value of 

Dε , the decrease is the same, i.e., it just varies with Cε .  In contrast, for Uniform payment 

a similar decrease with Cε  occurs except when Dε  is small.  For Dε ≤ 0.10, the revenue 

does not decrease with Cε .  Similarly for Vickrey payment, revenue does not decrease for 

Dε ≤ 0.10, but for higher values of Dε  the results are irregularly higher or lower.   

Result 8:    The Spanish payment rule is revenue inferior to the Discriminatory 

across all market price spreads, but the Average rule is revenue superior.  For both 

Uniform and Vickrey payment rules, the revenue comparison with Discriminatory 

depends on the market price spreads. 

Discussion:  Figure 5.8 shows the differences between the revenue for the four 

non-discriminatory payment rules and the revenue for the discriminatory payment rule.  

The Spanish payment rule is revenue inferior to the Discriminatory across all market 

price spreads, but the Average rule is revenue superior.  Of course, the Average rule 
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would probably not be accepted by bidders because they sometimes would pay more than 

their bid, whereas for all other payment rules they pay their bid or less.   

For both Uniform and Vickrey payment rules, the revenue comparison with 

Discriminatory depends on the market price spreads.  The Vickrey payment rule results in 

more revenue for low values of  Cε  with high values of Dε  and for low values of  Dε  

with high values of Cε .  For most cases, the Uniform payment rule results in less 

revenue.  However, when Dε ≤ 0.10, there are several cases when Uniform payment 

produces more revenue than Discriminatory.  Whether or not these differences are 

statistically significant is indicated in Table 5.14 by a t-statistic greater than 2.756 

( 0.01α = ).  The cases for which the Uniform revenue exceeds the Discriminatory revenue 

are all statistically significant, since there is little variation across the simulations.  

Whether these differences, which are $1.5 million or less, are practically significant 

would be up to the central bank.  Daripa (2001) develops a model that predicts that the 

Discriminatory and Uniform payment rules will result in the same revenue.  I ran 

simulations without the when-issued and secondary trading, and indeed the revenue for 

all payment rules is equivalent.  However, as seen in Figure 5.8, this result does not hold 

when the when-issued and secondary markets are included.  The experiments of Abbink 

et alia (2006) result in higher revenue for the Spanish and Uniform auctions than the 

Discriminatory, but again these experiments do not include  when-issued and secondary 

markets.    

5.6.2 When-Issued and Secondary Markets 

It is interesting to examine the corresponding quantities that are traded in the 

when-issued and secondary markets.  Figure 5.9 shows the volume of short selling in the 
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when-issued market for the 100 combinations of Dε  and Cε .   When-issued trading is 

consistently high for the Discriminatory and Average payment rules across all of the 

market price spreads, although it tends to decrease for higher values of Dε .  When-issued 

trading is also high for Uniform payment when 0.1Dε <  and for Vickrey payment when 

both 0.1Dε <  and 0.1Cε < .  For the Spanish payment rule, when-issued trading is lower 

for all market-price spreads, diminishing substantially as Dε  increases.   

Why is a smaller amount of when-issued trading with higher Dε  a consistent 

result across the payment rules?  With narrow price spreads, especially when Dε  is small, 

it is more likely that a dealer bidding for S securities can outbid the price for D securities.  

This makes a squeeze less likely and thus makes it likely that when-issued selling will be 

higher.  With larger price spreads, especially when Dε  is large, bid prices for security D 

are more likely to exceed those for security S so that long-buyers are more likely to an 

allocation and short-sellers are not.  This makes a squeeze more likely for short-sellers 

and causes agents to learn to restrict their short-selling in the when-issued market.   

Figure 5.10 shows the volume of selling in the secondary market.  There is no 

secondary market trading in security S and D at price DP , and all secondary market 

trading is for securities C and D at price CP .  Spanish payment, which had the lowest 

when-issued trading, has the consistently highest secondary market trading across the 

market price spreads, with some diminution occurring when 0.06Dε < .  Discriminatory 

and Average payment rules have consistently low levels of secondary market trading, 

while Uniform and Vickery auctions have unevenly high trading volumes when  

0.06Dε > .   
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5.7 Conclusion 

Using a multiagent system with learning agents has produced a simulation tool 

that produces consistent results that are stable across a range of initial values and learning 

rates.  This provides a method to analyze the bidding behaviour and revenue results for a 

variety of payment rules across a full spectrum of market price spreads.  Most previous 

studies have focused on possible revenue improvements from adopting Uniform payment 

over Discriminatory payment, and results have been inconclusive (Swierzbinski and 

Borgers, 2004).   Taking into account the effects of a when-issued and secondary market 

on the auction bidding strategies, this study shows that for most market-price spreads 

Discriminatory payment used by the Bank of Canada results in higher revenue than 

Uniform payment used by the United States.  Similarly, Vickrey payment is revenue 

inferior to Discriminatory payment for most market-price spreads.  Spanish payment is 

revenue inferior to Discriminatory payment across all market-price spreads, but Average 

payment is revenue superior across all market-price spreads. 

The agents in this model are all able to avoid unprofitable short-selling and long-

buying by learning through repetitions of the same environment.  In future work it will be 

interesting to gradually introduce extensions such as varying the issue size and market 

price spreads with t, creating a secondary market that dynamically extends across time 

periods, making the market prices endogenous, and introducing constraints that 

correspond to the U.S. rules. 
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5.9 Tables 

 

Table 5.1.  Treasury Auction Models  

 Wang & 
Zender 
(2002) 

Daripa 
(2001) 

Viswanathan 
& Wang 
(2004) 

Chatterjea 
& Jarrow 

(1998) 

Nyborg & 
Strebulaev 

(2004) 

This Model 

Number of when-
issued sellers 

– – – 2 1 n 

Auction + + + + + + 

Secondary – – + + + + 

Multi-Unit – – – – + + 

Primary dealer 
constraints 

– – – – – + 

Number of auction 
winners 

n n n 2 1 n 

Payment Rules 2 2 2 2 2 5 
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Table 5.2.  Treasury Model Notation Summary 

,

SO

i tα  Share for dealer i of the overall allocation at the stopout price. 

,

j

i tb  Price bid in auction for security j 

,

S

i tδ , ,

D

i tδ  Quantity not cleared in the secondary market: , , ,( )S S S

i t i t i tδ τ= ∆ − , , , ,( )D D D

i t i t i txδ τ= −  

Dε , Cε  Difference between common values for security D and C from security S. 

cut

tp , 
avg

tp  Auction cutoff price and average price. 

COt Percentage of issue quantity that is customer orders. 

,

S

i t∆ , ,

D

i t∆  Quantity not allocated in the auction, i.e., difference between the bid quantity and the 
allocation.   

i Dealer i.   

n Total number of dealers 

nP, nR Number of primary and regular dealers respectively.   

,

j

i tp  Payment in auction for security  j 

j
P  Market price for security j. 

,

j

i tπ  Profit at end of period t across the markets for security j. 

,

,

F j

i tπ  Foregone profit at end of period t across the markets for security j. 

φ  Bid price learning rate. 

χ  Bid quantity learning rate. 

,

S

i tq  Quantity sold by short sellers in the when-issued market. 

,

j

i tq  Quantity bid in auction for security j. 

tQ , 
j

tQ  
Total auction issue quantity, and total quantity traded for security j. 

, i iq q  Maximum and minimum total auction bid quantity allowed for dealer i. 

,

CO

i tq  Customer order quantity for dealer i. 

t Time period t ∈ {0, 1, …, T}, where T is very large. 

,

j

i tτ  , ,

S

i tτ  Quantities that clear the secondary market, 

iθ ,
i

θ  Maximum and minimum allowed fraction of issue for which a dealer can bid. 

j
v  Values for security {S,D,C}j ∈ , where j j

v P=
 

,

j

i tx  Quantity allocated in auction for security j. 
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Table 5.3.  Bids from a Bank of Canada Auction 

 (Source: Lu and Yang, 2003) 

Bidder Yield (%) 
Amount 

($ million) 

Awarded 

($ million) 
 Bidder Yield (%) 

Amount 

($ million) 

Awarded 

($ million) 

FKA 5.148 25 25  LJB 5.205 100  

FPB 5.165 50 50  RWE 5.208 25  

KVI 5.168 100 100  AXJ 5.21 25  

LZE 5.17 50 50  YPQ 5.21 200  

AXG 5.18 31.5 31.5  RWE 5.213 100  

AXJ 5.18 50 50  YPQ 5.22 200  

KVI 5.18 10 10  AXG 5.23 100  

KVI 5.184 525 525  TOA 5.236 250  

FPB 5.188 75 75  LZE 5.248 100  

AXJ 5.19 50 50  RWE 5.248 200  

LJB 5.19 150 150  FKA 5.25 400  

LJB 5.19 300 300  FPB 5.25 200  

LZE 5.19 100 100  JQS 5.25 200  

TOA 5.198 250 250  RFB 5.3 100  

FPB 5.199 75 75  

AXG 5.2 100 91.042  

AXJ 5.2 25 22.76  

LJB 5.2 20 18.208  

LJB 5.2 100 91.042  

LJB 5.2 250 227.604  

YPQ 5.2 225 204.844  
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Table 5.4.  Adjustment rules for S, D, C:  

Full Allocation with Full Clearing (D) 

, 0j

i tπ ≥  , 0j

i tπ <  

↑ q(1) ↓ b(π ), ↓ q(q) 

j1 j2 

 
 

Table 5.5.  Adjustment rules for S: Partial/Nil Allocation 

Full Clearing Partial/Nil Clearing 

,

, 0F S

i tπ ≥  

, 0S

i tπ ≥  , 0S

i tπ <  

,

, 0F S

i tπ <  
,

, 0F S

i tπ ≥ ,  

 

,

, 0F S

i tπ < ,  

 

↑ b( Fπ ) ↑ b( Fπ ), ↓ q(1) ↓ b( Fπ ), ↓ q(�) ↑ b( Fπ ), ↓ q(δ) ↓ b( Fπ ), ↓ q(δ,�) 

S3 S4 S5 S6 S7 

 
 

Table 5.6.  Adjustment rules for D:  Full Allocation with Partial/Nil Clearing 

, 0D

i tπ ≥  , 0D

i tπ <  

↓q(δ) ↓b(π ), ↓q(δ) 

D3 D4 
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Table 5.7.  Adjustment rules for D: Partial Allocation, Some Clearing 

Full Clearing Partial Clearing 

,

, 0F D

i tπ ≥  ,

, 0F D

i tπ ≥  

, 0D

i tπ ≥  , 0D

i tπ <  

,

, 0F D

i tπ <  

, 0D

i tπ ≥  , 0D

i tπ <  

,

, 0F D

i tπ <  

↑b( Fπ ) ↓b(π ), ↓q(x) ↓b( Fπ ), ↓q(�) ↑b( Fπ ),↑↓q(1) ↓b(π ), ↓q(x) ↓b( Fπ ), ↓q(�) 

D5 D6 D7 D8 D9 D10 

 

Table 5.8.  Adjustment rules for D: Partial Allocation, Nil Clearing 

,

, 0F D

i tπ ≥  

, 0D

i tπ ≥  , 0D

i tπ <  

,

, 0F D

i tπ <  

↑b( Fπ ), ↑q(1) ↓b(π ), ↓q(x) ↓b( Fπ ), ↓q(�) 

D11 D12 D13 

 

Table 5.9.  Adjustment rules for D:  Nil Allocation 

,

, 0F D

i tπ ≥  ,

, 0F D

i tπ <  

↑b( Fπ ) ↓b( Fπ ), ↓q(q) 

D14 D15 
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Table 5.10  Adjustment rules for Security C:   Partial/Nil Allocation 

Partial Allocation Nil Allocation 

,

, 0F C

i tπ ≥  
,

, 0F C

i tπ <  
,

, 0F C

i tπ ≥  
,

, 0F C

i tπ <  

↑ b( Fπ ) ↓ b( Fπ ), ↓ q{�} ↑ b( Fπ ) ↓ q{�} 

C3 C4 C5 C6 
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Table 5.11.  List of adjustments:  Security S 

Rule   Price 

Adjustment 

Quantity 

Adjustment 

S1 
, 0S

i ta =  , 1S

i tz =  

S2 
,

,

,

S

i tS

i t S

S i t

a
P q

π
=  

, ,

S S

i t i tz q= −  

S3 ,

,

,

,

F S

i tS

i t S

S i t

a
P q

π
=  

, 0S

i tz =  

S4 ,

,

,

,

F S
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, 1S
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S S
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F S
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a
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S S
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i tS

i t S

S i t

a
P q

π
=  ,

, , , ( )
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Table 5.12.  List of adjustments:  Security D 

Rule Price 

Adjustment 

Quantity 

Adjustment 

Rule Price 

Adjustment 

Quantity 

Adjustment 

D1 
, 0D

i ta =  , 1D

i tz = . D9 
,

,

,

D

i tD

i t D

D i t

a
P q

π
=  

, ,

D D

i t i tz q= − . 

D2 
,

,

,

D

i tD

i t D

D i t

a
P q

π
=  

, ,

S D

i t i tz q= − . D10 ,

,

,

,

F D

i tD

i t D

D i t

a
P q

π
=  

, ,

D D

i t i tz = −∆  

D3 
, 0D

i ta =  , ,

D D

i t i tz δ= − . D11 ,

,

,

,

F D

i tD

i t D

D i t

a
P q

π
=  

, 1D

i tz = . 

D4 
,

,

,

D

i tD

i t D

D i t

a
P q

π
=  

, ,

D D

i t i tz δ= − . D12 
,

,

,

D

i tD

i t D

D i t

a
P q

π
=  

, ,

D D

i t i tz x= − . 

D5 ,

,

,

,

F D

i tD

i t D

D i t

a
P q

π
=  

, 0D

i tz = . D13 ,

,

,

,

F D

i tD

i t D

D i t

a
P q

π
=  

, ,

D D

i t i tz = −∆  

D6 
,

,

,

D

i tD

i t D

D i t

a
P q

π
=  

, ,

D D

i t i tz x= − . D14 ,

,

,

,

F D

i tD

i t D

D i t

a
P q

π
=  

, 0D

i tz =  

D7 ,

,

,

,

F D

i tD

i t D

D i t

a
P q

π
=  

, ,

D D

i t i tz = −∆ . D15 ,

,

,

,

F D

i tD

i t D

D i t

a
P q

π
=  

, ,

D D

i t i tz q= −  

D8 ,

,

,

,

F D

i tD

i t D

D i t

a
P q

π
=  , ,

, ( ) ( )D D
i t C i t C

D

i t p P p P
z

< >
= −1 1 .    
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Table 5.13.  List of adjustment:s  Security C 

Rule Price 

Adjustment 

Quantity 

Adjustment 

C1 
, 0C

i ta =  , 1C

i tz = . 

C2 
,

,

,

C

i tC

i t C

C i t

a
P q

π
=  

, ,

C C

i t i tz q= − . 

C3 ,

,

,

,

F C

i tC

i t C

C i t

a
P q

π
=  

, 0C

i tz = . 

C4 ,

,

,

,

F C

i tC

i t C

C i t

a
P q

π
=  

, ,

C C

i t i tz = −∆ . 

C5 ,

,

,

,

F C

i tC

i t C

C i t

a
P q

π
=  

, 0C

i tz = . 

C6 
, 0C

i ta =  , ,

C C

i t i tz = −∆ . 
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Table 5.14.  Revenue Differences from Discriminatory (n=30) 

 Mean Differences t-statistic 

Cε Dε  Average Spanish Uniform Vickrey Average Spanish Uniform Vickrey 

.02.02 0.159 -0.317 -0.338 0.002 185 -753 -1168 0.01 

.02.04 0.134 -0.318 -0.335 -0.106 14 -961 -1472 -0.47 

.02.06 0.112 -0.320 -0.334 -62.971 8 -973 -1232 -1.02 

.02.08 0.090 -0.315 -0.332 -60.703 5 -853 -1052 -0.98 

.02.10 0.058 -0.316 -0.332 1.495 2 -1154 -1536 5.14 

.02.12 0.107 -0.318 -0.333 1.772 4 -1054 -1390 5.63 

.02.14 0.033 -0.318 -0.333 1.746 1 -769 -1056 13.70 

.02.16 -0.008 -0.319 -0.333 1.864 0 -1140 -1513 228.41 

.02.18 -0.019 -0.320 -0.333 2.124 0 -917 -1472 231.08 

.02.20 -0.153 -0.321 -0.333 2.359 -4 -874 -1005 231.60 

.04.02 0.292 -0.642 0.272 0.285 237 -596 57 97.22 

.04.04 0.317 -0.646 -0.678 -0.312 158 -923 -1211 -0.94 

.04.06 0.296 -0.644 -0.673 -0.391 18 -813 -1015 -1.57 

.04.08 0.271 -0.634 -0.667 -36.950 15 -798 -1044 -0.98 

.04.10 0.265 -0.633 -0.665 -0.264 14 -886 -1155 -0.79 

.04.12 0.254 -0.634 -0.666 -0.377 10 -1018 -1378 -1.36 

.04.14 0.167 -0.637 -0.666 0.510 4 -948 -1213 2.47 

.04.16 0.192 -0.639 -0.667 1.467 5 -1054 -1432 9.43 

.04.18 0.280 -0.639 -0.667 1.838 9 -1190 -1565 14.74 

.04.20 0.207 -0.641 -0.668 2.260 6 -972 -1242 207.30 

.06.02 0.404 -0.947 0.389 0.396 229 -443 78 114.18 

.06.04 0.464 -0.979 0.372 0.395 261 -976 5 7.97 

.06.06 0.478 -0.970 -1.014 -1.014 329 -1040 -1386 -1385.80 

.06.08 0.477 -0.957 -1.004 -0.321 78 -910 -1109 -0.75 

.06.10 0.446 -0.954 -1.001 0.194 26 -853 -1082 0.46 

.06.12 0.496 -0.951 -1.000 -0.634 53 -1052 -1349 -2.44 

.06.14 0.421 -0.950 -0.998 -62.951 15 -937 -1261 -1.02 

.06.16 0.413 -0.953 -0.999 -10.548 12 -1146 -1470 -1.13 

.06.18 0.373 -0.954 -0.999 -1.170 11 -719 -792 -6.24 

.06.20 0.320 -0.958 -1.001 -0.335 8 -1055 -1323 -1.26 
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Table 5.14.  Differences from Discriminatory (continued) 

 Mean Differences t-statistic 

Cε Dε  Average Spanish Uniform Vickrey Average Spanish Uniform Vickrey 

.08.02 0.496 -1.237 0.475 0.467 212 -310 76 77.78 

.08.04 0.603 -1.301 0.573 0.584 218 -810 61 92.32 

.08.06 0.622 -1.303 -1.364 0.616 223 -899 -1154 108.86 

.08.08 0.650 -1.285 -1.346 -0.860 248 -790 -974 -3.55 

.08.10 0.646 -1.277 -1.340 -6.630 85 -958 -1227 -1.04 

.08.12 0.600 -1.274 -1.336 -0.954 25 -881 -1112 -6.45 

.08.14 0.615 -1.272 -1.337 -17.685 27 -877 -1209 -1.00 

.08.16 0.612 -1.270 -1.334 -21.354 34 -1054 -1269 -1.04 

.08.18 0.496 -1.271 -1.334 -1.251 13 -978 -1239 -15.52 

.08.20 0.560 -1.273 -1.336 -1.076 15 -826 -1052 -4.78 

.10.02 0.577 -1.511 0.536 0.539 208 -271 68 68.75 

.10.04 0.722 -1.626 0.706 0.704 235 -602 89 84.10 

.10.06 0.771 -1.634 0.701 0.739 190 -785 48 26.29 

.10.08 0.800 -1.613 -1.689 -1.308 180 -830 -1003 -7.43 

.10.10 0.807 -1.603 -1.681 -24.770 141 -839 -1053 -1.12 

.10.12 0.799 -1.599 -1.677 -0.728 109 -1034 -1211 -1.68 

.10.14 0.755 -1.592 -1.673 -1.419 37 -801 -977 -11.62 

.10.16 0.735 -1.591 -1.674 -1.354 24 -1009 -1287 -8.22 

.10.18 0.767 -1.591 -1.671 -1.616 28 -957 -1242 -9.35 

.10.20 0.621 -1.591 -1.669 -1.700 15 -1059 -1329 -25.68 

.12.02 0.650 -1.778 0.616 0.603 233 -225 80 71.44 

.12.04 0.841 -1.950 0.798 0.826 238 -624 75 115.57 

.12.06 0.914 -1.953 0.876 0.889 250 -708 62 80.75 

.12.08 0.938 -1.954 -1.458 0.811 160 -958 -7 8.19 

.12.10 0.958 -1.931 -2.022 -1.471 140 -980 -1251 -4.43 

.12.12 0.961 -1.923 -2.016 -22.797 102 -724 -834 -1.22 

.12.14 0.952 -1.911 -2.009 -20.183 102 -860 -1064 -1.05 

.12.16 0.975 -1.907 -2.006 -1.194 77 -874 -1111 -3.69 

.12.18 0.945 -1.908 -2.007 -1.539 55 -923 -1219 -5.00 

.12.20 0.928 -1.911 -2.009 -14.366 40 -819 -997 -1.12 
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Table 5.14.  Differences from Discriminatory (continued) 

 Mean Differences t-statistic 

Cε Dε  Average Spanish Uniform Vickrey Average Spanish Uniform Vickrey 

.14.02 0.709 -1.990 0.643 0.683 228 -198 50 77.93 

.14.04 0.942 -2.258 0.932 0.932 257 -557 94 121.37 

.14.06 1.037 -2.285 0.995 1.024 212 -659 99 134.85 

.14.08 1.078 -2.281 1.004 0.787 184 -897 62 3.82 

.14.10 1.110 -2.266 -2.369 -2.366 183 -994 -1283 -609.23 

.14.12 1.107 -2.257 -2.364 -1.469 144 -879 -1173 -3.81 

.14.14 1.107 -2.241 -2.352 -97.697 103 -1014 -1225 -1.48 

.14.16 1.120 -2.235 -2.349 -1.143 85 -778 -917 -3.32 

.14.18 1.119 -2.223 -2.340 -1.301 70 -893 -1130 -3.80 

.14.20 1.120 -2.229 -2.346 -1.731 81 -783 -945 -4.72 

.16.02 0.770 -2.174 0.675 0.712 173 -169 40 51.77 

.16.04 1.049 -2.554 0.978 1.009 228 -474 60 75.29 

.16.06 1.163 -2.616 1.115 1.145 231 -708 97 108.46 

.16.08 1.215 -2.614 1.148 1.190 169 -717 78 74.59 

.16.10 1.237 -2.605 -1.973 -1.361 111 -778 -7 -3.98 

.16.12 1.265 -2.581 -2.704 -2.179 110 -784 -903 -6.89 

.16.14 1.260 -2.570 -2.696 -1.708 94 -922 -1171 -4.87 

.16.16 1.261 -2.562 -2.690 -129.145 109 -1010 -1518 -1.47 

.16.18 1.281 -2.556 -2.686 -63.681 107 -884 -1092 -1.04 

.16.20 1.313 -2.546 -2.679 -64.562 101 -839 -1110 -1.03 

.18.02 0.829 -2.379 0.736 0.749 206 -143 43 52.11 

.18.04 1.145 -2.840 1.110 1.087 250 -424 77 83.62 

.18.06 1.274 -2.934 1.238 1.256 243 -642 78 110.75 

.18.08 1.358 -2.933 1.306 1.306 151 -700 79 104.01 

.18.10 1.372 -2.951 1.331 1.028 149 -879 47 4.91 

.18.12 1.397 -2.915 -3.048 -14.645 91 -936 -1221 -1.22 

.18.14 1.431 -2.903 -3.040 -1.515 142 -930 -1140 -2.82 

.18.16 1.403 -2.884 -3.026 -1.774 122 -798 -1013 -4.85 

.18.18 1.434 -2.876 -3.023 -63.933 90 -820 -1154 -1.03 

.18.20 1.456 -2.877 -3.024 -1.763 101 -813 -1064 -3.92 

.20.02 0.880 -2.628 0.765 0.761 168 -138 35 38.12 

.20.04 1.229 -3.149 1.183 1.174 206 -405 88 71.53 

.20.06 1.383 -3.257 1.323 1.385 234 -808 87 125.05 

.20.08 1.469 -3.261 1.455 1.489 170 -701 86 149.13 

.20.10 1.518 -3.290 1.497 1.506 126 -909 65 80.41 

.20.12 1.571 -3.261 -1.774 -2.218 118 -699 -4 -5.28 

.20.14 1.560 -3.226 -3.381 -2.659 95 -912 -1228 -8.65 

.20.16 1.567 -3.214 -3.377 -63.976 113 -733 -910 -1.04 

.20.18 1.564 -3.206 -3.369 -1.049 106 -970 -1392 -1.84 

.20.20 1.588 -3.193 -3.363 -9.670 91 -728 -944 -1.27 
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5.10 Figures 

Figure 5.1.  Market Model Concepts 

 

 

Figure 5.2.  Learning Model Concepts 
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Figure 5.3.  Sensitivity to Initial price and Learning Rates 

Dε = Cε = 0.20 

(Light area: revenue variation less than 0.1%; 

Dark areas: revenue varies from light area by more than 0.1%.) 
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Figure 5.4.  Convergence  

Dε = Cε = 0.10 

(S: black; D: medium gray;  C:  light gray) 
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Figure 5.4.  Convergence (continued) 

Dε = Cε = 0.10  

 (S: black; D: medium gray;  C:  light gray) 
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Figure 5.5.  Endogenous Agent Variation:  Bid Price 

Dε = Cε = 0.10 

(S: black; D: medium gray;  C:  light gray) 

 (Primary Dealers:  Agents 1-10; Regular Dealers: Agents 11-20) 
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Figure 5.6.  Endogenous Agent Variation:  Quantities 

Dε = Cε = 0.10 

(S: black; D: medium gray;  C:  light gray) 

 (Primary Dealers:  Agents 1-10; Regular Dealers: Agents 11-20) 
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Figure 5.7.  Revenue 

(000,000) 
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Figure 5.8.  Revenue Differences from Discriminatory 

(millions) 
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Figure 5.9.  When-Issued Trading (Security S) 
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Figure 5.10.  Secondary Market Trading (Security C) 

Discriminatory Payment  Uniform Payment  
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5.11 Appendix 

Profit for S1, S2:  For a full allocation and full clearing of security S, profit is 

, , ,( )S S S

i t S i t i tP p qπ = − .    

The profit for security S is the difference between the revenue from the short sale 

( ,

S

S i tP q ), the amount paid in the auction and the secondary market to acquire the shares 

( ), , ,

S S S

i t i t D i t
p x P τ+ , and the amount of revenue refunded to the client if the unallocated 

shares are able to be acquired in the secondary market ( ( ), ,

S S

S i t i t
P τ∆ − ).  Therefore, the 

full profit function is ( ) ( ), , , , , , ,

S S S S S S S

i t S i t i t i t D i t S i t i t
P q p x P Pπ τ τ= − + − ∆ −  = 

( ), , , , ,

S S S S S

S i t i t i t D i t S i t
P q p x P Pτ δ− + − .  The main objective of a short selling agent is to achieve a 

full allocation in the auction ( , ,

S S

i t i tx q= ) so that , 0S

i t∆ =  and , 0S

i tτ = .  In this case the agent 

avoids paying a high squeeze price in the secondary market and avoids the risk of 

cancelling the unfilled customer orders.  Full allocation results in the maximum possible 

profit for the current bid price: , , , , , ,( )S S S S S S

i t S i t i t i t S i t i tP q p x P p qπ = − = − .  This level of profit is 

the benchmark that the agent uses to calculate foregone profits in the cases when security 

S is not fully allocated or fully cleared.  Actual profit is negative when ,

S

i t Sp P> . 

Foregone Profit for S3, S4, S5:  For a partial or nil allocation and full clearing of 

security S, foregone profit is ,

,

F S

i tπ = , ,( )S S

D i t i tP p− ∆ .    

If the agent is partially or nil allocated in the auction but clears the allocation 

shortfall ,

S

i t∆  in the secondary market ( , , , 0S S S

i t i t i tτ δ= ∆ → = ), its profit function is 

( ), , , , , ,

S S S S S S

i t S i t i t i t D i t S i t
P q p x P Pπ τ δ= − + −   = ( ), , , ,

S S S S

S i t i t i t D i t
P q p x P− + ∆ .   The foregone profit is 

the difference between this and the benchmark profit in the previous section so that 
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( ),

, , , , , , ,( )F S S S S S S S

i t S i t i t S i t i t i t D i t
P p q P q p x Pπ = − − + + ∆  = , , , , ,

S S S S S

i t i t i t i t D i tp q p x P− + + ∆ = , ,( )S S

D i t i tP p− ∆ .    

The foregone profit is the extra amount paid in the secondary market to cover the auction 

shortfall. 

Foregone Profit for S6, S7:  For partial or nil clearing of a partial allocation of security 

S, the foregone profit is ,

,

F S

i tπ = , , ,( ) ( )S S S

S i t i t D S i tP p P P τ− ∆ + −  = 

, , ,( ) ( )S S S

D i t i t D S i tP p P P δ− ∆ − − .    

If the agent is partially allocated in the auction ( , ,0 S S

i t i tx q< < ) and partially cleared 

in the secondary market ( , , ,0 0S S S

i t i t i tτ δ< < ∆ → > ), its profit function is 

( ) ( ), , , , , , ,

S S S S S S S

i t S i t i t i t D i t S i t i t
P q p x P Pπ τ τ= − + − ∆ − , the revenue from the short sales in the when-

issued market, minus the amount paid in the auction, minus the amount paid in the 

secondary market, minus the amount refunded to the customers resulting from the 

amount not cleared in the secondary market.   The foregone profit ,

,

F S

i tπ  is the difference 

between this profit and the benchmark profit, so that ,

,

F S

i tπ  =  

( ) ( ), , , , , , , ,( )S S S S S S S S

S i t i t S i t i t i t D i t S i t i t
P p q P q p x P Pτ τ− − + + + ∆ −  

= , , , , , , , , ,

S S S S S S S S S

S i t i t i t S i t i t i t D i t S i t S i tP q p q P q p x P P Pτ τ− − + + + ∆ −  = 

, , , , , , ,

S S S S S S S

i t i t i t i t D i t S i t S i tp q p x P P Pτ τ− + + + ∆ −  = , , , , ,

S S S S S

i t i t D i t S i t S i tp P P Pτ τ− ∆ + + ∆ −  = 

, , ,( ) ( )S S S

S i t i t D S i tP p P P τ− ∆ + − .   Substituting , ,

S S

i t i tδ∆ −  for ,

S

i tτ  yields  

, , , ,( ) ( )( )S S S S

S i t i t D S i t i tP p P P δ− ∆ + − ∆ − = , , , , , , ,( ) ( )S S S S S S S

i t i t D i t i t S i t S i t i tp P P Pδ δ− ∆ + ∆ − + ∆ − ∆ −  = 

, , , , , , ,

S S S S S S S

i t i t D i t D i t S i t S i t S i tp P P P P Pδ δ− ∆ + ∆ − + ∆ − ∆ +  = , , , ,( )S S S S

D i t i t D i t S i tP p P Pδ δ− ∆ − + =  
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, , ,( ) ( )S S S

D i t i t D S i tP p P P δ− ∆ − − .    Note that when , 0S

i tδ = , we have the result in the previous 

section. 

Profit for D1, D2:  Profit for a full allocation and full clearing is , , ,( )D D D

i t D i t i tP p qπ = − .   

The agent bidding for security type D has a full profit function 

, , , ,

D D D D

i t D i t i t i tP p xπ τ= − , earning revenue in the secondary market by selling ,

D

i tτ  securities at 

the price DP  after buying ,

D

i tx  securities at a price of ,

D

i tp  in the auction.  If the agent is 

fully allocated in the auction ( , ,

D D

i t i tx q= ) and clears all of its allocation at price DP  in the 

secondary market ( , ,

D D

i t i txτ = ), the profit is , , , , , ,( )D D D D D D

i t D i t i t i t D i t i tP q p q P p qπ = − = − .    This level 

of profit is the benchmark that the agent uses to calculate foregone profits for security S.  

Actual profit is negative when ,

D

i t Dp P> . 

Foregone profit for D3, D4:  Foregone profit with a full allocation of security D with 

partial clearing is ,

,

F D

i tπ  = ,( ) D

D C i tP P δ−  and with nil clearing is ,( ) D

D C i tP P q− . 

If an agent has a full allocation ( , ,

D D

i t i tx q= ) that it partially clears 

( , , , 0D D D

i t i t i tqτ δ< → > ) at price DP , the profit function is , , , , ,

D D D D D

i t D i t C i t i t i tP P p xπ τ δ= + −  = 

, , , ,

D D D D

D i t C i t i t i tP P p qτ δ+ − .   Since the foregone profit is the difference between this profit and 

the benchmark profit, ,

,

F D

i tπ = , , , , , ,( )D D D D D D

D i t i t D i t C i t i t i tP p q P P p qτ δ− − − +  = , , ,( )D D D

D i t i t C i tP q Pτ δ− −  = 

,( ) D

D C i tP P δ− .  For nil clearing , ,

D D

i t i tqδ = .  Profit is negative when , , , ,

D D D D

D i t C i t i t i tP P p qτ δ+ < , 

but foregone profit is never negative since DP  is always greater than CP . 

Foregone Profit for D5, D6, D7:  Foregone profit for a partial allocation and full 

clearing (at price DP ) is ,

,

F D

i tπ  = , ,( )D D

D i t i tP p− ∆ .    
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When there is full clearing of a partial allocation ( , ,

D D

i t i txτ = ),  setting  , ,

D D

i t i txτ =  the 

profit is , , ,( )D D D

i t D i t i tP p xπ = −  and foregone profit is ,

,

F D

i tπ = , , , ,( ) ( )D D D D

D i t i t D i t i tP p q P p x− − −  = 

, ,( )D D

D i t i tP p− ∆ .  Profit and foregone profit are negative when ,

D

i t Dp P> . 

Foregone Profit for D8, D9, D10:  Foregone profit for a partial allocation and partial 

clearing is ,

,

F D

i tπ  = , , , ,( )D D D D

D i t i t i t i tP q pτ− − ∆ .     

If an agent partially clears ( , , , 0D D D

i t i t i txτ δ< → > ) a partial allocation ( , ,0 D D

i t i tx q< < ) 

at price DP , the profit function is , , , , ,

D D D D D

i t D i t C i t i t i tP P p xπ τ δ= + − .  The foregone profit is 

,

,

F D

i tπ = , , , , , ,( )D D D D D D

D i t i t D i t C i t i t i tP p q P P p xτ δ− − − +  = , , , , , ,( ) ( )D D D D D D

D i t i t C i t i t i t i tP q P p q xτ δ− − − −  = 

, , ,( ) D D D

D C i t i t i tP P pδ− − ∆ .   Profit is negative when , , , ,

D D D D

D i t C i t i t i tP P p xτ δ+ < , and foregone profit 

is negative when , , ,( ) D D D

D C i t i t i tP P pδ− < ∆ .   

Foregone Profit for D11, D12, D13:  Foregone profit for a partial allocation and nil 

clearing at price DP  is ,

,

F D

i tπ  = , , , ,

D D D D

D i t C i t i t i tP q P x p− − ∆ .     

If an agent clears none ( , , ,0D D D

i t i t i txτ δ= → = ) of a partial allocation ( , ,0 D D

i t i tx q< < ) 

at price DP , the entire allocation is sold at CP , yielding a profit function 

, , , ,

D D D D

i t C i t i t i tP x p xπ = − = , ,( )D D

C i t i tP p x− .  The foregone profit is ,

,

F D

i tπ = 

, , , ,( ) ( )D D D D

D i t i t C i t i tP p q P p x− − −  = , , , , , ,

D D D D D D

D i t C i t i t i t i t i tP q P x p x p q− + −  = , , , ,

D D D D

D i t C i t i t i tP q P x p− − ∆ .   

Profit is negative when when ,

D

C i tP p< , and foregone profit is negative when a high 

payment leads to  , , , ,

D D D D

D i t C i t i t i tP q P x p− < ∆ .   

Foregone Profit for D14, D15:  Foregone profit for a nil allocation is ,

,

F D

i tπ  = 

, ,(0.5 0.5 )D D

D C i t i tP P p q+ − .    
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The profit with no allocation is zero.  The foregone profit in this case depends 

upon the agent’s expectation of clearing at price DP  in the secondary market.  Assuming 

equal probability of clearing and not clearing, the agents expected foregone profit is 

,

, , ,(0.5 0.5 )F D D D

i t D C i t i tP P p qπ = + − , which is negative when  ,0.5 0.5 D

D C i tP P p+ < . 

Profit for C1, C2:  Profit for a full allocation and full clearing of security C is 

, , ,( )C C C

i t C i t i tP p qπ = − .     

Security C is set up to be fully cleared in the secondary market, i.e., the allocation 

,

C

i tx  in the auction clears the secondary market at price CP .  Thus, an agent’s only concern 

is to be fully allocated in the auction and to make a profit.  The full profit function is 

, , , ,

C C C C

i t C i t i t i tP x p xπ = − , and a fully allocated agent will have a profit of , , ,( )C C C

i t C i t i tP p qπ = − .   

Actual profit is negative when ,

C

i t Cp P> . 

Foregone Profit for C3, C4:  Foregone profit for a partial allocation of security C is 

,

,

F C

i tπ  = , ,( )C C

C i t i tP p− ∆ .    

In the case of partial allocation ( , ,0 C C

i t i tx q< < ) the profit is , , ,( )C C C

i t C i t i tP p xπ = − , and 

there is a foregone profit of ,

, , , ,( )( )F C C C C

i t C i t i t i tP p q xπ = − −  = , ,( )C C

C i t i tP p− ∆ .  Foregone profit 

is negative when ,

C

i t Cp P> . 

Foregone Profit for C5, C6:  Foregone profit for a nil allocation of security C is ,

,

F C

i tπ  

= , ,( )C C

C i t i tP p q− .    

In the case of nil allocation,  , ,

C C

i t i tq∆ =  so profit is zero and the foregone profit is the 

benchmark profit , ,( )C C

C i t i tP p q− .  Foregone profit is negative when ,

C

i t Cp P> . 


