A CERTAIN CLASS OF BIORTHOGONAL POLYNOMIALS ASSOCIATED WITH THE LAGUERRE POLYNOMIALS

T.M. RASSIAS, & H.M. SRIVASTAVA

DMS-834-IR July 1999
A CERTAIN CLASS OF BIORTHOGONAL POLYNOMIALS ASSOCIATED WITH THE LAGUERRE POLYNOMIALS

Themistocles M. Rassias
Department of Mathematics
The National Technical University of Athens
Zografou Campus, GR-15780 Athens, Greece
E-Mail: trassias@math.ntua.gr

and

H.M. Srivastava
Department of Mathematics and Statistics
University of Victoria
Victoria, British Columbia V8W 3P4, Canada
E-Mail: harimsri@math.uvic.ca

Abstract

The main object of this paper is to present some general families of bilinear, bilateral, or mixed multilateral generating functions for some biorthogonal polynomials which are associated rather closely with the classical Laguerre polynomials. Relevant connections of the results considered here with those that were given in earlier works, especially from the viewpoint of Lie groups and Lie algebras, are also discussed briefly.

1. Introduction and Definitions

Over three decades ago, Konhauser ([3]; see also [2]) introduced and studied two interesting classes of polynomials $Y_n^\alpha(x; \ell)$ and $Z_n^\alpha(x; \ell)$, where $Y_n^\alpha(x; \ell)$ is a polynomial in x and $Z_n^\alpha(x; \ell)$ is a polynomial in x^ℓ, with (in general)

$$\text{Re}(\alpha) > -1 \quad \text{and} \quad \ell \in \mathbb{N} := \{1, 2, 3, \ldots \}.$$

For $\ell = 1$, each of these polynomials reduces to the classical Laguerre polynomials (cf., e.g., Szegö [15]):

$$L_n^{(\alpha)}(x) := \sum_{k=0}^{n} \binom{n+\alpha}{n-k} (-x)^k \frac{(n)^k}{k!}. \quad (1.1)$$

1991 Mathematics Subject Classification. Primary 33C45; Secondary 33C20, 33C80.

Key words and phrases. Biorthogonal polynomials, Laguerre polynomials, generating functions, Lie groups and Lie algebras, hypergeometric functions, explicit representations.
In their special case when \(\ell = 2 \), these polynomials were encountered earlier by Spencer and Fano [7] in their investigation of the penetration of Gamma rays through matter, and were discussed subsequently by Preiser [4]. Furthermore, we have [3, p. 303]

\[
\int_0^{\infty} x^\alpha e^{-x} Y_n^\alpha(x; \ell) Z_n^\alpha(x; \ell) \, dx = \frac{\Gamma(\alpha + n\ell + 1)}{n!} \delta_{m,n} \tag{1.2}
\]

\((\text{Re}(\alpha) > -1; \; \ell \in \mathbb{N}; \; m, n \in \mathbb{N}_0 := \mathbb{N} \cup \{0\})\),

which exhibits the fact that the polynomial sets \(\{Y_n^\alpha(x; \ell)\}^\infty_{n=0} \) and \(\{Z_n^\alpha(x; \ell)\}^\infty_{n=0} \) are biorthogonal with respect to the weight function \(x^\alpha e^{-x} \) over the interval \((0, \infty)\), \(\delta_{m,n} \) being the Kronecker delta.

The following explicit representation for the polynomials \(Z_n^\alpha(x; \ell) \) was given by Konhauser [3, p. 304, Equation (5)]:

\[
Z_n^\alpha(x; \ell) = \frac{\Gamma(\alpha + n\ell + 1)}{n!} \sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{x^{k\ell}}{\Gamma(\alpha + k\ell + 1)} \tag{1.3}
\]

or, equivalently,

\[
Z_n^\alpha(x; \ell) = \frac{(\alpha + 1)n\ell}{n!} \, _1F_1 \left[-n; \frac{\alpha + 1}{\ell}, \ldots, \frac{\alpha + \ell}{\ell}; \left(\frac{x}{\ell}\right)^\ell \right] \tag{1.4}
\]

in terms of a generalized hypergeometric \(_pF_q\) function with \(p \) numerator and \(q \) denominator parameters, defined by

\[
_pF_q \left[\alpha_1, \ldots, \alpha_p; \beta_1, \ldots, \beta_q; z \right] := \sum_{k=0}^{\infty} \frac{(\alpha_1)_k \cdots (\alpha_p)_k \, z^k}{(\beta_1)_k \cdots (\beta_q)_k \, k!}, \tag{1.5}
\]

\((\lambda)_k\) being the Pochhammer symbol defined by

\[
(\lambda)_k := \frac{\Gamma(\lambda + k)}{\Gamma(\lambda)} = \begin{cases} 1 & (k = 0) \\ \lambda(\lambda + 1) \cdots (\lambda + k - 1) & (k \in \mathbb{N}). \end{cases} \tag{1.6}
\]

Subsequently, Carlitz pointed out that [1, p. 427, Equation (9)]

\[
Y_n^\alpha(x; \ell) = \frac{1}{n!} \sum_{k=0}^{n} \frac{x^k}{k!} \sum_{j=0}^{k} (-1)^j \binom{k}{j} \left(\frac{\alpha + j + 1}{\ell}\right)_n \tag{1.7}
\]

A systematic presentation of numerous interesting properties and characteristics of each of the biorthogonal polynomials \(Y_n^\alpha(x; \ell) \) and \(Z_n^\alpha(x; \ell) \) can be found in the works of (for example) Srivastava ([11]; see also [12]). The main object of the present sequel to these earlier works is to develop several general families of bilinear, bilateral, or mixed multilateral generating functions for the Konhauser polynomials \(Y_n^\alpha(x; \ell) \) and to show how the results presented here would relate to those that were considered by earlier workers, especially from the viewpoint of Lie groups and Lie algebras.
2. The Main Generating Functions

The first of our main results on generating functions for the Konhauser polynomials $Y_n^\mu(x; \ell)$ is contained in

Theorem 1. Corresponding to a non-vanishing function $\Omega_\mu(\xi_1, \ldots, \xi_s)$ of s complex variables ξ_1, \ldots, ξ_s $(s \in \mathbb{N})$ and of (complex) order μ, let

$$
\Lambda_{m,p,q}^{(1)}[x; \xi_1, \ldots, \xi_s; z] = \sum_{n=0}^{\infty} a_n Y_{m+q}^{\alpha+\lambda q n}(x; \ell) \Omega_{\mu+pn}(\xi_1, \ldots, \xi_s) z^n
$$

$$
(a_n \neq 0; m \in \mathbb{N}_0; p, q \in \mathbb{N})
$$

and

$$
\Theta_{n,m,p}^{\alpha, \ell} (x; \xi_1, \ldots, \xi_s; z) = \sum_{k=0}^{[n/q]} \binom{m+n}{n - qk} a_k Y_{m+n}^{\alpha+\lambda q k}(x; \ell) \cdot \Omega_{\mu+pk}(\xi_1, \ldots, \xi_s) z^k,
$$

where λ is a suitable (real or complex) parameter.

Then

$$
\sum_{n=0}^{\infty} \Theta_{n,m,p}^{\alpha, q, \ell} (x; \xi_1, \ldots, \xi_s; z) t^n
$$

$$
= (1 - t)^{-m - (\alpha + 1)/\ell} \exp \left(x \left(1 - (1 - t)^{-1/\ell} \right) \right)
\cdot \Lambda_{m,p,q}^{(1)} \left[x(1-t)^{-1/\ell}; \xi_1, \ldots, \xi_s; \frac{zt^q}{(1-t)(\lambda+\ell)q/\ell} \right]
$$

$$
(|t| < 1; \ell \in \mathbb{N}),
$$

provided that each member of (2.3) exists.

Proof. For the sake of convenience, let S denote the first member of the assertion (2.3) of Theorem 1. Then, upon substituting for the polynomials

$$
\Theta_{n,m,p}^{\alpha, q, \ell} (x; \xi_1, \ldots, \xi_s; z)
$$
from (2.2) into the left-hand side of (2.3), we obtain

\[S := \Theta_{n,m,p}^{\alpha,\lambda} (x; \xi_1, \ldots, \xi_s; z) t^n \]

\[= \sum_{n=0}^{\infty} \sum_{k=0}^{[n/q]} \binom{m+n}{n-qk} a_k Y_{m+n}^{\alpha+\lambda k} (x; \ell) \]

\[\cdot \Omega_{\mu+pk} (\xi_1, \ldots, \xi_s) z^k \]

\[= \sum_{k=0}^{\infty} a_k \Omega_{\mu+pk} (\xi_1, \ldots, \xi_s) (zt^q)^k \]

\[\cdot \sum_{n=0}^{\infty} \binom{m+n+qk}{n} Y_{m+n+qk}^{\alpha+\lambda k} (x; \ell) t^n, \quad (2.4) \]

by inverting the order of the double summation involved.

The inner series in (2.4) can be summed in a closed form by appealing to the known generating function (cf., e.g., [11, p. 238, Equation (2.17)]):

\[\sum_{n=0}^{\infty} \binom{m+n}{n} Y_{m+n}^{\alpha} (x; \ell) t^n = (1 - t)^{-m-(\alpha+1)/\ell} \]

\[\cdot \exp \left(x \left\{ 1 - (1 - t)^{-1/\ell} \right\} \right) Y_{m}^{\alpha} (x(1 - t)^{-1/\ell}; \ell) \quad (2.5) \]

with \(m \) and \(\alpha \) replaced by \(m + qk \) and \(\alpha + \lambda k \), respectively \((q \in \mathbb{N}; k \in \mathbb{N}_0)\). We thus find from (2.4) and (2.5) that

\[S = (1 - t)^{-m-(\alpha+1)/\ell} \exp \left(x \left\{ 1 - (1 - t)^{-1/\ell} \right\} \right) \]

\[\cdot \sum_{k=0}^{\infty} a_k Y_{m+n+qk}^{\alpha+\lambda k} (x(1 - t)^{-1/\ell}; \ell) \]

\[\cdot \Omega_{\mu+pk} (\xi_1, \ldots, \xi_s) \left(\frac{zt^q}{(1 - t)^{(\lambda+\ell)q/\ell}} \right)^k \quad (|t| < 1). \quad (2.6) \]

If we now interpret this last infinite series in (2.6) by means of the definition (2.1), we shall arrive readily at the second member of the assertion (2.3).

This evidently completes the proof of Theorem 1 under the assumption that the double series involved in the first two steps of our proof are absolutely convergent. Thus, in general, Theorem 1 holds true (at least as a relation between formal power series) for those values of the various parameters and variables involved for which each member of the assertion (2.3) exists.

The proof of Theorem 1, which we have detailed above fairly adequately, can be applied mutatis mutandis with a view to deriving each of the following results (Theorem 2 and Theorem 3 below). Indeed, in place of the generating function (2.5) used in proving Theorem 1, the proof of Theorem
2 would make use of the known result (cf., e.g., [11, p. 238, Equation (2.19)]):

\[
\sum_{n=0}^{\infty} \binom{m+n}{n} Y_{m+n}^{a-n\ell}(x; \ell) t^n = (1 + t)^{-1+(a+1)/\ell}
\cdot \exp \left(x \left\{ 1 - (1 + t)^{1/\ell} \right\} \right) Y_m^\alpha (x(1 + t)^{1/\ell}; \ell)
\tag{2.7}
\]

\(|t| < 1; m \in \mathbb{N}_0\),

and we shall require yet another known generating function (cf., e.g., [11, p. 240, Equation (2.35)]):

\[
\sum_{k=0}^{\infty} Y_{n+k}^\alpha(x; \ell) \frac{t^n}{n!} = e^t Y_n^\alpha(x - t; \ell) \quad (n \in \mathbb{N}_0)
\tag{2.8}
\]

in proving Theorem 3 below.

Theorem 2. Under the hypotheses of Theorem 1, let

\[
\Lambda_{m,p,q}^{(2)} [x; \xi_1, \ldots, \xi_s; z]
= \sum_{n=0}^{\infty} a_n Y_{m+n}^{\alpha+(\lambda-\ell)q}(x; \ell) \Omega_{\mu+pn}(\xi_1, \ldots, \xi_s) z^n
\tag{2.9}
\]

\((a_n \neq 0; m \in \mathbb{N}_0; p, q \in \mathbb{N})\)

and

\[
\Phi_{n,m,p}^{\alpha,q,\lambda}(x; \xi_1, \ldots, \xi_s; z)
= \sum_{k=0}^{[n/q]} \binom{m+n}{n-qk} a_k Y_{m+n}^{\alpha-n\ell+\lambda k}(x; \ell)
\Omega_{\mu+pkn}(\xi_1, \ldots, \xi_s) z^k,
\tag{2.10}
\]

where \(\lambda\) is a suitable (real or complex) parameter.

Then

\[
\sum_{n=0}^{\infty} \Phi_{n,m,p}^{\alpha,q,\lambda}(x; \xi_1, \ldots, \xi_s; z) t^n
= (1 + t)^{-1+(a+1)/\ell} \exp \left(x \left\{ 1 - (1 + t)^{1/\ell} \right\} \right)
\cdot \Lambda_{m,p,q}^{(2)} \left[x(1 + t)^{1/\ell}; \xi_1, \ldots, \xi_s; z t^q(1 + t)^{(\lambda-\ell)q} \right]
\tag{2.11}
\]

\(|t| < 1; \ell \in \mathbb{N}\),

provided that each member of (2.11) exists.
Theorem 3. Under the applicable hypotheses of Theorem 1 (and Theorem 2), let
\[\Lambda_{p,q,\lambda}^{(3)}[x; \xi_1, \ldots, \xi_s; z] \]
\[= \sum_{k=0}^{\infty} a_k \frac{Y_{\lambda}^{(\alpha+\lambda+1)q_k} (x; \ell) \Omega_{\mu+p+k} (\xi_1, \ldots, \xi_s; z)}{(q_k)!} \frac{z^k}{k!} \] \((a_k \neq 0; n \in \mathbb{N}_0; p, q \in \mathbb{N}) \)
and
\[\Psi_{k,\mu,\lambda}^{(3)}(x; \xi_1, \ldots, \xi_s; z) \]
\[= \sum_{j=0}^{\lceil k/q \rceil} \binom{k}{qj} a_j Y_{\lambda}^{(\alpha+\lambda+qj+k)} (x; \ell) \cdot \Omega_{\mu+p+j} (\xi_1, \ldots, \xi_s; z)^j, \] \((\lambda \text{ is a suitable (real or complex) parameter}) \)

Then
\[\sum_{k=0}^{\infty} \Psi_{k,\mu,\lambda}^{(3)}(x; \xi_1, \ldots, \xi_s; z) \frac{z^k}{k!} \]
\[= e^t \Lambda_{p,q,\lambda}^{(3)}[x - t; \xi_1, \ldots, \xi_s; z t^q], \] (2.14)

provided that each member of (2.14) exists.

3. Concluding Remarks and Observations

For each suitable choice of the coefficients \(a_k \ (k \in \mathbb{N}_0) \), if we express the multivariable function
\[\Omega_{\mu}(\xi_1, \ldots, \xi_s) \quad (s \in \mathbb{N} \setminus \{1\}) \]
as an appropriate product of several simpler functions, each of our results (Theorems 1, 2, and 3 above) can be shown to yield various families of mixed bilateral multilateral generating functions for the Konhauser biorthogonal polynomials \(Y_{\lambda}^{(\alpha)}(x; \ell) \).

Since
\[Y_{\lambda}^{(\alpha)}(x; 1) = L_{\lambda}^{(\alpha)}(x) = Z_{\lambda}^{(\alpha)}(x; 1), \] (3.1)
as we pointed out in Section 1, the special case \(\ell = 1 \) of each of our results (Theorems 1, 2, and 3 above) would yield the corresponding family of bilinear, bilateral, or mixed multilateral generating functions for the classical Laguerre polynomials \(L_{\lambda}^{(\alpha)}(x) \), and we are thus led to the main results of Rassias and Srivastava [5], which (in turn) contain numerous assertions made in the recent (as well as current) literature on bilateral multilateral generating functions for the Laguerre (or the modified Laguerre) polynomials, especially from the viewpoint of Lie groups and Lie algebras (see, for details, [5] and the references cited therein).

Finally, we turn to a very special case of Theorem 1 when
\[m = \lambda = 0 \quad \text{and} \quad s = p = q = 1, \]
which was given, over two decades ago, by Srivastava [8, p. 489, Equation (1)] and which was re-derived very recently by Shrestha and Bajracharya [6] by using the aforementioned group-theoretic
technique. In fact, much more general results for the Konhauser biorthogonal polynomials \(Y_n^\alpha(x; \ell) \) than that given earlier by Srivastava [8] (and, very recently, by Shreshth and Bajracharya [6]) can be found in the works of Srivastava and Lavoie [13, p. 315, Corollary 14], Srivastava ([10, p. 197, Equation (1)]; [9, Part II, p. 241, Corollary 18], and [11, p. 241, Equation (2.37)]), and Srivastava and Manocha [14, p. 433, Corollary 18].

Acknowledgments

The present investigation was supported, in part, by the Natural Sciences and Engineering Research Council of Canada under Grant OGP0007353.

REFERENCES