CERTAIN SUBCLASSES OF FUNCTIONS OF POSITIVE REAL PART WITH NEGATIVE COEFFICIENTS

by

H.M. SRIVASTAVA, SHIGEYOSHI OWA and KATSUYUKI NISHIMOTO

DM-345-IR JANUARY 1985
CERTAIN SUBCLASSES OF FUNCTIONS OF POSITIVE REAL
PART WITH NEGATIVE COEFFICIENTS*

H.M. SRIVASTAVA1, SHIGEYOSHI OWA2 and KATSUYUKI NISHIMOTO3

ABSTRACT

The object of the present paper is to derive several useful properties of the class $\mathcal{P}(\alpha)$ which is related to the class $\mathcal{Q}(\alpha)$ defined earlier by H. Silverman and M. Ziegler [Houston J. Math. 4(1978), 269-275]. Relationships between $\mathcal{P}(\alpha)$ and various other classes including $\mathcal{Q}(\alpha)$, and some results for a modified convolution product of functions belonging to the class $\mathcal{P}(\alpha)$ are presented. Finally, a certain functional $\mathcal{J}(q)$ of functions $q(z)$ in $\mathcal{P}(\alpha)$ is considered.

*This research was carried out at the University of Victoria while the second author was on study leave from Kinki University, Osaka, Japan.

1H.M. SRIVASTAVA: Professor, Department of Mathematics, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada. The work of this author was supported, in part, by the Natural Sciences and Engineering Research Council of Canada under Grant A-7353.

2SHIGEYOSHI OWA: Department of Mathematics, Kinki University, Higashi-Osaka, Osaka 577, Japan.

3KATSUYUKI NISHIMOTO: Professor, College of Engineering, Nihon University, Koriyama, Fukushima 963, Japan.

1980 Mathematics Subject Classification. Primary 30C45.
1. INTRODUCTION

Let \(Q(\alpha) \) denote the class of functions of the form

\[
q(z) = 1 - \sum_{n=1}^{\infty} b_n z^n \quad (b_n \geq 0)
\]

which are analytic in the unit disk \(\mathbb{U} = \{z : |z| < 1 \} \) satisfying the condition

\[
|q(z) - 1| \leq 1 - \alpha \quad (z \in \mathbb{U})
\]

for some \(\alpha \ (0 \leq \alpha < 1) \). The class \(Q(\alpha) \) was introduced by Silverman and Ziegler [9]. A function \(q(z) \) of the form (1.1) is said to be in the class \(\mathcal{R}(\alpha) \) if and only if

\[
zq'(z) + 1 \in Q(\alpha).
\]

In the present paper, we prove several interesting results for functions belonging to the class \(\mathcal{R}(\alpha) \).

Let \(\mathcal{A} \) denote the class of functions of the form

\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n
\]

which are analytic in the unit disk \(\mathbb{U} \). Also let \(\mathcal{S} \) denote the subclass of \(\mathcal{A} \) consisting of analytic and univalent functions in the unit disk \(\mathbb{U} \). Then a function \(f(z) \) in \(\mathcal{S} \) is said to be starlike of order \(\alpha \ (0 \leq \alpha < 1) \) if and only if

\[
\text{Re} \left(\frac{zf'(z)}{f(z)} \right) > \alpha \quad (z \in \mathbb{U})
\]
for some α ($0 \leq \alpha < 1$). We denote by $\mathcal{S}^*(\alpha)$ the class of all starlike functions of order α in the unit disk \mathbb{U}.

A function $f(z)$ belonging to the class \mathcal{S} is said to be convex of order α ($0 \leq \alpha < 1$) if and only if

$$\text{Re} \left[1 + \frac{zf''(z)}{f'(z)} \right] > \alpha \quad (z \in \mathbb{U})$$

for some α ($0 \leq \alpha < 1$). We denote by $\mathcal{K}(\alpha)$ the class of all convex functions of order α in the unit disk \mathbb{U}.

The classes $\mathcal{S}^*(\alpha)$ and $\mathcal{K}(\alpha)$ were first introduced by Robertson [4], and were studied subsequently by Schich [5], MacGregor [2], Pinchuk [3], Jack [1], and others.

Let \mathcal{I} denote the subclass of \mathcal{S} consisting of functions whose nonzero coefficients, from the second one on, are negative. Thus an analytic and univalent function $f(z)$ is in the class \mathcal{I} if it can be expressed as

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n \quad (a_n \geq 0).$$

We denote by $\mathcal{I}^*(\alpha)$ and $\mathcal{G}(\alpha)$ the classes obtained by taking intersections, respectively, of the classes $\mathcal{S}^*(\alpha)$ and $\mathcal{K}(\alpha)$ with \mathcal{I}; that is,

$$\mathcal{I}^*(\alpha) = \mathcal{I} \cap \mathcal{S}^*(\alpha) \quad \text{and} \quad \mathcal{G}(\alpha) = \mathcal{I} \cap \mathcal{K}(\alpha).$$

The classes $\mathcal{I}^*(\alpha)$ and $\mathcal{G}(\alpha)$ were studied by Silverman [8]. Schich [6] considered a subclass of \mathcal{I} consisting of polynomials having $|z| = 1$ as the radius of univalence, Silverman [8] proved coefficient inequalities, distortion theorems, and covering theorems for $\mathcal{I}^*(\alpha)$ and $\mathcal{G}(\alpha)$, and Schich and Silverman [7] gave some interesting results for the convolution product of functions in
the classes \(\mathcal{J}^*(\alpha) \) and \(\mathcal{E}(\alpha) \).

We require the following lemmas due to Silverman [8] in our investigation.

Lemma 1. Let the function \(f(z) \) be defined by (1.6). Then \(f(z) \) is in the class \(\mathcal{J}^*(\alpha) \) if and only if

\[
(1.7) \quad \sum_{n=2}^{\infty} (n-\alpha) a_n \leq 1 - \alpha.
\]

Lemma 2. Let the function \(f(z) \) be defined by (1.6). Then \(f(z) \) is in the class \(\mathcal{E}(\alpha) \) if and only if

\[
(1.8) \quad \sum_{n=2}^{\infty} n(n-\alpha) a_n \leq 1 - \alpha.
\]

2. **Properties of the Class \(\mathcal{R}(\alpha) \)**

We begin by recalling here the following lemma due to Silverman and Ziegler [9].

Lemma 3. Let the function \(q(z) \) be defined by (1.1). Then \(q(z) \) is in the class \(\mathcal{R}(\alpha) \) if and only if

\[
(2.1) \quad \sum_{n=1}^{\infty} b_n \leq 1 - \alpha.
\]

Making use of Lemma 3, we shall prove...
THEOREM 1. Let the function \(q(z) \) be defined by (1.1). Then \(q(z) \) is in the class \(\mathcal{K}(\alpha) \) if and only if

\[
(2.2) \quad \sum_{n=1}^{\infty} n b_n n \leq 1 - \alpha.
\]

The result (2.2) is sharp.

PROOF. Since

\[
(2.3) \quad zq'(z) + 1 = 1 - \sum_{n=1}^{\infty} n b_n z^n,
\]

we prove the assertion (2.2) by substituting \(n b_n \) for \(b_n \) in Lemma 3. Further, for the function defined by

\[
(2.4) \quad q(z) = 1 - \left(\frac{1 - \alpha}{n} \right) z^n \quad (n \geq 1),
\]

we can easily see that the result (2.2) is sharp.

COROLLARY 1. Let the function \(q(z) \) defined by (1.1) be in the class \(\mathcal{K}(\alpha) \). Then

\[
(2.5) \quad b_n \leq \frac{1 - \alpha}{n} \quad (n \geq 1).
\]

Equality holds true for the function \(q(z) \) given by (2.4).

COROLLARY 2. Let \(0 \leq \alpha < 1 \). Then

\[
(2.6) \quad \mathcal{K}(\alpha) \subset \mathcal{Q}(\alpha).
\]
Next, by using Theorem 1, we shall prove

THEOREM 2. The class \(\mathcal{K}(\alpha) \) is convex.

PROOF. Let the function \(q(z) \) defined by (1.1) and the function \(g(z) \) defined by

\[
g(z) = 1 - \sum_{n=1}^{\infty} c_n z^n \quad (c_n \geq 0)
\]

be in the class \(\mathcal{K}(\alpha) \). Then it suffices to prove that the function

\[
h(z) = \lambda q(z) + (1-\lambda)g(z) \quad (0 \leq \lambda \leq 1)
\]

is also in the class \(\mathcal{K}(\alpha) \). We note that

\[
h(z) = 1 - \sum_{n=1}^{\infty} \left\{ \lambda b_n + (1-\lambda)c_n \right\} z^n
\]

and

\[
\sum_{n=1}^{\infty} n \left\{ \lambda b_n + (1-\lambda)c_n \right\} = \lambda \sum_{n=1}^{\infty} n b_n + (1-\lambda) \sum_{n=1}^{\infty} n c_n \\
\leq 1 - \alpha,
\]

which evidently completes the proof of Theorem 2.

We know from Theorem 2 that there are some extreme points of \(\mathcal{K}(\alpha) \).

THEOREM 3. Let

\[
q_0(z) = 1
\]

and
(2.11) \[q_n(z) = 1 - \left(\frac{1 - \alpha}{n} \right) z^n \quad (n \geq 1). \]

Then the function \(q(z) \) is in the class \(\mathcal{K}(\alpha) \) if and only if it can be expressed in the form

(2.12) \[q(z) = \sum_{n=0}^{\infty} \lambda_n q_n(z), \]

where \(\lambda_n \geq 0 \quad (n \geq 0) \) and

(2.13) \[\sum_{n=0}^{\infty} \lambda_n = 1. \]

PROOF. We assume that

(2.14) \[q(z) = \sum_{n=0}^{\infty} \lambda_n q_n(z) \]

\[= 1 - \sum_{n=1}^{\infty} \frac{(1-\alpha)\lambda_n n}{n} z^n. \]

Then, by appealing to Theorem 1, we have

(2.15) \[\sum_{n=1}^{\infty} n \cdot \frac{(1-\alpha)\lambda_n n}{n} = (1-\alpha)(1-\lambda_0) \leq 1 - \alpha, \]

which implies that the function \(q(z) \) belongs to the class \(\mathcal{K}(\alpha) \).

Conversely, let us assume that the function \(q(z) \) defined by (1.1) is in the class \(\mathcal{K}(\alpha) \). Then, since \[b_n \leq \frac{1 - \alpha}{n} \quad \text{for} \quad n \geq 1, \]
we can set

\[(2.16) \quad \lambda_n = \frac{n b_n}{1 - \alpha} \quad (n \geq 1)\]

and

\[(2.17) \quad \lambda_0 = 1 - \sum_{n=1}^{\infty} \lambda_n.\]

Consequently, we have the representation (2.12), and the proof of Theorem 3 is completed.

COROLLARY 3. The extreme points of \(\mathcal{R}(\alpha)\) are \(q_n(z)\) \((n \geq 0)\) given by (2.10) and (2.11).

3. SOME INTERESTING RELATIONSHIPS

Silverman and Ziegler [9] gave a relationship between \(Q(\alpha)\) and \(\mathcal{F}^*(\alpha)\). We derive several interesting relationships between \(Q(\alpha)\) and \(\mathcal{F}^*(\alpha)\), and between \(\mathcal{R}(\alpha)\) and \(\mathcal{C}(\alpha)\).

THEOREM 4. Let the function \(q(z)\) defined by (1.1) be in the class \(Q(\alpha)\). Then

\[\int_0^z q(z)dz\]

is in the class \(\mathcal{F}^*(\alpha)\).

PROOF. We note that
\[(3.1) \quad \int_0^z q(z)dz = z - \sum_{n=1}^{\infty} \left(\frac{b_n}{n+1} \right) z^{n+1}. \]

Hence, by Lemma 3,

\[(3.2) \quad \sum_{n=1}^{\infty} (n+1-\alpha) \left(\frac{b_n}{n+1} \right) \leq \sum_{n=1}^{\infty} b_n \leq 1 - \alpha, \]

which, in view of Lemma 1, implies that

\[\int_0^z q(z)dz \in \mathcal{F}^*(\alpha). \]

COROLLARY 4. Let the function \(q(z) \) defined by (1.1) be in the class \(\mathcal{R}(\alpha) \). Then

\[\int_0^z \{ zq'(z) + 1 \}dz \]

is in the class \(\mathcal{F}^*(\alpha) \).

PROOF. Since \(q(z) \in \mathcal{R}(\alpha) \) if and only if

\[zq'(z) + 1 \in Q(\alpha), \]

the proof of Corollary 4 is straightforward.

THEOREM 5. Let the function \(f(z) \) defined by (1.6) be in the class \(\mathcal{F}^*(\alpha) \). Then \(f'(z) \) is in the class \(Q \left[\frac{\alpha}{z - \alpha} \right] \).

PROOF. Note that Lemma 1 gives
(3.3) \[\sum_{n=1}^{\infty} a_n \leq \frac{1 - \alpha}{2 - \alpha}. \]

Therefore, we have

(3.4) \[\sum_{n=1}^{\infty} (n+1)a_{n+1} \leq 1 - \alpha + \alpha \sum_{n=1}^{\infty} a_{n+1} \]

\[\leq 1 - \frac{\alpha}{2 - \alpha}, \]

which implies that

\[f'(z) \in \mathcal{Q}\left(\frac{\alpha}{2 - \alpha}\right). \]

COROLLARY 5. Let the function \(f(z) \) be defined by (1.6). Then \(f(z) \) is in the class \(\mathcal{F}^*(0) \) if and only if \(f'(z) \) is in the class \(\mathcal{Q}(0) \).

PROOF. Corollary 5 follows easily upon setting \(\alpha = 0 \) in Theorem 5.

THEOREM 6. Let the function \(f(z) \) defined by (1.6) be in the class \(\mathcal{C}(\alpha) \). Then \(f'(z) \) is in the class \(\mathcal{K}(\alpha) \cap \mathcal{Q}\left(\frac{1}{2 - \alpha}\right). \)

PROOF. To prove that \(f'(z) \in \mathcal{K}(\alpha) \), we need only show that

(3.5) \[\sum_{n=1}^{\infty} n(n+1)a_{n+1} \leq 1 - \alpha. \]

In fact, from Lemma 2, we obtain
\begin{align*}
(3.6) \quad \sum_{n=1}^{\infty} n(n+1)a_{n+1} & \leq \sum_{n=1}^{\infty} (n+1)(n+1-a)a_{n+1} \leq 1 - \alpha,
\end{align*}

and

\begin{align*}
(3.7) \quad \sum_{n=1}^{\infty} (n+1)a_{n+1} & \leq 1 - \frac{1}{2 - \alpha},
\end{align*}

showing that

\[f'(z) \in \mathcal{Q}\left(\frac{1}{2 - \alpha}\right). \]

Thus we have Theorem 6.

THEOREM 7. Let the function \(f(z) \) defined by (1.6) be in the class \(\mathcal{F}^*(\alpha) \). Then

\begin{align*}
(3.8) \quad \frac{f(z)}{z} & \in \mathcal{R}(\alpha) \cap \mathcal{Q}\left(\frac{1}{2 - \alpha}\right).
\end{align*}

PROOF. Since

\begin{align*}
(3.9) \quad \frac{f(z)}{z} = 1 - \sum_{n=1}^{\infty} a_{n+1}z^n,
\end{align*}

we obtain

\begin{align*}
(3.10) \quad \sum_{n=1}^{\infty} n a_{n+1} = \sum_{n=2}^{\infty} (n-1)a_n \leq \sum_{n=2}^{\infty} (n-\alpha)a_n \leq 1 - \alpha
\end{align*}

and

\begin{align*}
(3.11) \quad \sum_{n=1}^{\infty} a_{n+1} = \sum_{n=2}^{\infty} a_n \leq 1 - \frac{1}{2 - \alpha}.
\end{align*}

Now the assertion (3.8) of Theorem 7 follows at once from (3.10) and (3.11).
Similarly, we have

THEOREM 8. Let the function $f(z)$ defined by (1.6) be in the class $C(\alpha)$. Then

\begin{equation}
\frac{f(z)}{z} \in B\left(\frac{1 + \alpha}{2}\right) \cap J\left(\frac{3 - \alpha}{2(2-\alpha)}\right).
\end{equation}

4. A MODIFIED CONVOLUTION PRODUCT

Let $q_j(z)$ $(j = 1, 2)$ be defined by

\begin{equation}
q_j(z) = 1 - \sum_{n=1}^{\infty} b_{n,j} z^n \quad (b_{n,j} \geq 0).
\end{equation}

We denote by $q_1 \ast q_2(z)$ a modified convolution product of two functions $q_1(z)$ and $q_2(z)$, defined by

\begin{equation}
q_1 \ast q_2(z) = 1 - \sum_{n=1}^{\infty} b_{n,1} b_{n,2} z^n.
\end{equation}

We now consider the modified convolution products of functions in the classes $Q(\alpha)$ and $R(\alpha)$.

THEOREM 9. Let the functions $q_i(z)$ $(i = 1, 2)$ be defined by (4.1). Also let $q_1(z) \in R(\alpha)$ and $q_2(z) \in R(\beta)$. Then the modified convolution product $q_1 \ast q_2(z)$ defined by (4.2) is in the class $R(\alpha + \beta - \alpha\beta)$.

PROOF. We have to find the largest $\gamma = \gamma(\alpha, \beta)$ such that
\[(4.3) \quad \sum_{n=1}^{\infty} n b_{n,1} b_{n,2} \leq 1 - \gamma,\]

or equivalently,

\[(4.4) \quad \sum_{n=1}^{\infty} \left(\frac{n}{1 - \gamma}\right) b_{n,1} b_{n,2} \leq 1.\]

We note from Theorem 1 that

\[(4.5) \quad \sum_{n=1}^{\infty} \left(\frac{n}{1 - \alpha}\right) b_{n,1} \leq 1\]

and

\[(4.6) \quad \sum_{n=1}^{\infty} \left(\frac{n}{1 - \beta}\right) b_{n,2} \leq 1.\]

By using the Cauchy-Schwarz inequality, we have

\[(4.7) \quad \sum_{n=1}^{\infty} \sqrt{\frac{n}{1 - \alpha}} \sqrt{\frac{n}{1 - \beta}} \sqrt{b_{n,1} b_{n,2}} \leq 1.\]

Hence, if

\[(4.8) \quad \left(\frac{n}{1 - \gamma}\right) \sqrt{b_{n,1} b_{n,2}} \leq \sqrt{\frac{n}{1 - \alpha}} \sqrt{\frac{n}{1 - \beta}}\]

for \(n \geq 1\), we have (4.4).

Further, it is sufficient to prove that

\[(4.9) \quad \frac{1}{1 - \gamma} \leq \frac{n}{(1 - \alpha)(1 - \beta)}\]

for \(n \geq 1\).
It follows from (4.9) that

\[
\gamma \leq 1 - \frac{(1-\alpha)(1-\beta)}{n}.
\]

Since

\[
\phi(n) = 1 - \frac{(1-\alpha)(1-\beta)}{n}
\]

is an increasing function of \(n \) \((n \geq 1)\), putting \(n = 1 \) in (4.11), we obtain

\[
\gamma \leq \phi(1) = \alpha + \beta - \alpha\beta < 1.
\]

Thus

\[
q_1 * q_2(z) \in \mathcal{P}(\alpha + \beta - \alpha\beta),
\]

which proves Theorem 7.

In a similar manner, we can prove

THEOREM 10. Let the functions \(q_i(z) \) \((i = 1, 2)\) be defined by (4.1). Also let \(q_1(z) \in \mathcal{Q}(\alpha) \) and \(q_2(z) \in \mathcal{Q}(\beta) \). Then the modified convolution product \(q_1 * q_2(z) \) defined by (4.2) is in the class \(\mathcal{Q}(\alpha + \beta - \alpha\beta) \).

THEOREM 11. Let the functions \(q_i(z) \) \((i = 1, 2)\) be defined by (4.1). Also let \(q_1(z) \in \mathcal{Q}(\alpha) \) and \(q_2(z) \in \mathcal{Q}(\beta) \). Then the modified convolution product \(q_1 * q_2(z) \) defined by (4.2) is in the class \(\mathcal{Q}(\alpha + \beta - \alpha\beta) \).
5. THE FUNCTIONAL $\mathcal{J}(q)$

We introduce the functional $\mathcal{J}(q)$ defined by

\begin{equation}
\mathcal{J}(q) = \frac{1}{z} \int_0^z q(z) \, dz,
\end{equation}

and prove

THEOREM 12. Let the function $q(z)$ defined by (1.1) be in the class $\mathcal{Q}(\alpha)$. Then $\mathcal{J}(q)$ is in the class $\mathcal{K}(\alpha) \cap \mathcal{Q}\left(\frac{1 + \alpha}{2}\right)$.

PROOF. Note that

\begin{equation}
\mathcal{J}(q) = 1 - \sum_{n=1}^{\infty} \left(\frac{b_n}{n + 1}\right) z^n.
\end{equation}

Hence

\begin{equation}
\sum_{n=1}^{\infty} n \left(\frac{b_n}{n + 1}\right) \leq \sum_{n=1}^{\infty} b_n \leq 1 - \alpha,
\end{equation}

which implies that $\mathcal{J}(q) \in \mathcal{K}(\alpha)$. Furthermore,

\begin{equation}
\sum_{n=1}^{\infty} \frac{b_n}{n + 1} \leq \frac{1}{2} \sum_{n=1}^{\infty} b_n \leq 1 - \left(\frac{1 + \alpha}{2}\right),
\end{equation}

which shows that

$\mathcal{J}(q) \in \mathcal{Q}\left(\frac{1 + \alpha}{2}\right)$.

In a similar way, we prove

THEOREM 13. Let the function $q(z)$ defined by (1.1) be in the class $\mathcal{K}(\alpha)$. Then $f(q)$ is in the class $\mathcal{K}\left(\frac{1 + \alpha}{2}\right)$.

REFERENCES

