Remote Sensing Chlorophyll-a in the Strait of Georgia

by

Nicholas M. Komick
BSc, University of Victoria, 2005

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science

in the Department of Geography

© Nicholas M. Komick, 2007
University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part by photocopy or other means, without the permission of the author.
Remote Sensing Chlorophyll-a in the Strait of Georgia

by

Nicholas M. Komick
BSc, University of Victoria, 2005

Supervisory Committee

Dr. M. Costa, Supervisor (Department of Geography)

Dr. J. Gower, Member
(Department of Geography, Adjunct)
(Institute of Ocean Sciences, Department of Fisheries and Oceans)

Dr. J. Dower, Member (Department of Biology)

Dr. S. Johannessen, External Member
(Institute of Ocean Sciences, Department of Fisheries and Oceans)
Abstract

The main objective of this thesis was to evaluate the use of Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua imagery to estimate chlorophyll-a (chl) concentrations in the surface waters of the Strait of Georgia, located off the southwest coast of Canada. To meet this objective two components were addressed: (1) evaluate chl algorithms using ship-based radiometric and biophysical measurements, (2) evaluate atmospheric correction methods in conjunction with chl algorithms using MODIS Aqua imagery.

In Chapter 2, biophysical and above-water reflectance measurements collected in 2006 were used to evaluate the OC3M, standard Garver-Siegel-Maritorena version 1 (GSM01), and a modified version of the GSM01 algorithms for estimating chl concentrations in the Strait. The Strait was generally classified as a case 2 water body,
transitioning from chromophoric dissolved organic matter (CDOM) dominant in the central region to possibly particulate dominant in the Fraser River plume region. From these biophysical measurements, results showed that the OC3M algorithm was somewhat effective ($r^2 = 0.552$) outside the most turbid areas of the Fraser River plume. However, a systematic overestimation of lower chl concentrations was found, which may have been related to the higher CDOM absorption observed throughout the Strait. The standard GSM01 algorithm had moderately good agreement with measured CDOM absorption ($r^2 = 0.584$) and total suspended solids (TSS) concentrations ($r^2 = 0.866$), but was ineffective at estimating chl concentrations. Localized characterization of the CDOM absorption, through a hyperbolic CDOM model, improved the modified GSM01 results by providing better agreement with measured CDOM absorption ($r^2 = 0.620$) and TSS concentrations ($r^2 = 0.935$). By limiting the GSM01 algorithm to regions with lower combined CDOM and non-algal particulate absorption, the statistical relationship between measured and estimated chl improved ($r^2 = 0.690$). The further re-interpretation of phytoplankton absorption from the modified GSM01 algorithm with a two-component phytoplankton model resulted in a chl relationship with an $R^2 = 0.702$ and a linear slope closer to one. However, due to the nature of the GSM01 algorithm, its effectiveness is dependent the accurate characterization of the absorption and backscattering of the optically significant water constituents, which is not always available. Furthermore, the GSM01 algorithm effectiveness is contingent upon the accurate atmospheric correction of the shorter blue wavelengths within satellite imagery.

Using unattended fluorometric chl measurements, different atmospheric correction approaches in conjunction with the standard OC3M chl algorithm and modified GSM01 algorithm from Chapter 2 were evaluated in Chapter 3. Atmospheric correction methods that were evaluated included: the standard near infrared (NIR) correction, a shortwave infrared (SWIR) correction, and an adapted version of the
correction developed at the Management Unit of the North Sea Mathematical Models (MUMM). The NIR correction with the OC3M algorithm was statistically significant with an adjusted $R^2 = 0.759$ outside the most turbid portions of the Strait, but had a relatively large $RMSE$ of 0.523, was limited to $chl < 21$ mg m$^{-3}$, and only estimated concentrations for 63% of the pixels. Effectiveness of the SWIR correction was limited with the OC3M algorithm because of the low percentage of estimated chl concentrations (21% of the pixels) and a lower adjusted $R^2 = 0.572$ outside the more turbid portion of the Strait. The adapted MUMM correction was the most effective, using the spatially averaged aerosol properties from the SWIR correction with the fixed NIR water-reflectance ratio defined by the MUMM method. The MUMM correction with the OC3M algorithm, when limited to pixels outside the Fraser River influence, had an adjusted $R^2 = 0.720$ and provided chl estimates for 84% of the pixels. The modified GSM01 algorithm was ineffective with all three atmospheric corrections due to the overcorrection of the 412 nm band. Several possible reasons for this overcorrection were identified, including the presence of absorbing aerosols and absorption from atmospheric NO$_2$. When comparing spatial-temporal patterns in the MUMM corrected OC3M image with chl measurements, general spatial patterns and temporal trends match, with some explainable exceptions. Firstly, turbidity typically found near Fraser River plume makes the OC3M algorithm ineffective. Secondly, under lower aerosol reflectance conditions, the signal-to-noise ratio of the SWIR bands can make the spatial identification of the aerosol properties difficult.
Table of Contents

Supervisory Committee ii

Abstract iii

Table of Contents vi

List of Tables viii

List of Figures x

List of Symbols xv

Acknowledgements xix

1 Introduction 1

1.1 Strait of Georgia .. 3
1.2 Remote Sensing Theory 9
1.3 Atmospheric Optical Properties 20
1.4 Water Column Optical Properties 22
1.5 Thesis Methods ... 31

2 Bio-optical algorithm evaluation for MODIS for western Canada coastal waters: an exploratory approach using in situ reflectance 33

2.1 Introduction ... 33
2.2 Bio-optical Algorithm Background 35
List of Tables

2.1 Phytoplankton specific absorption coefficients (a_{ph}^*) used in conjunction with Eq. (2.9) to estimate chl concentrations (Maritorena et al. 2002). Wavelengths are based on SeaWiFS bands and are linearly interpolated to MODIS band centres. .. 38

2.2 Field measured minimum-maximum(mean) values from cruise data of surface samples used in this study. ... 47

2.3 Deviation of measured CDOM absorption from several models using MODIS band centres based on the mean Absolute Difference (AD) and the mean absolute Relative Percent Difference (RPD) in the 412 to 551 nm range. ... 49

2.4 Results of the OC3M algorithm compared with measured chl concentrations for all stations and stations in the Fraser River area excluded (Fraser River Exc.). ... 50

2.5 Results of the standard GSM01 algorithm. ... 51

2.6 Results of the modified GSM01 algorithm. ... 52

2.7 Results of the modified GSM01 algorithm with chl results filtered to $a_{dg}(443) \leq 0.8$ m$^{-1}$ and the filtered $a_{ph}(443)$ values reinterpreted using the Devred et al. (2006) two-component (two-comp.) phytoplankton models. ... 55
3.1 The number of MODIS pixels after previously discussed spatial and temporal subsetting \((n)\) and \(chl\) minimum-maximum (mean) for each date (YYYYMMDD) from ferry measurements. The Fraser River exclusion columns (Fraser River Exc.) specify the number of pixels and the \(chl\) concentrations for pixels outside the Fraser River exclusion region (Fig. 3.1). .. 77

3.2 Results of the near infrared (NIR) atmospherically corrected estimated \(chl\). .. 77

3.3 Results of the shortwave infrared (SWIR) atmospherically corrected \(chl\) estimates compared to ferry \(chl\) measurements. 80

3.4 \(\varepsilon(748,869)\) and \(\gamma\) values estimated from SWIR atmospheric correction and used for the MUMM atmospheric correction. 84

3.5 Results of the MUMM atmospherically corrected \(chl\) estimates compared to ferry measured concentrations. 85

A.1 Expanded list of MODIS bands used for high resolution (HIRES) ocean-colour image processing (Franz et al. 2006). 125
List of Figures

1.1 Map of the study area. ... 4
1.2 A generalized food web for deepwaters in the Strait of Georgia (modified from Harrison et al. 1983). Of particular interest are the limiting factors for phytoplankton growth during each season, which are shown in parenthesis beside each season. ... 7
1.3 Typical interactions encountered by photons measured in an ocean-colour image. While not presented on the graphic, interactions between and within each component, through multiple scattering, do occur. ... 10
1.4 The geometric definitions used in this study. The graphic is reproduced based on a similar image by Loisel and Morel (2001). 11
1.5 Water absorption, a_w, (solid) and backscatter, b_{bw}, (dashed) in the visible and NIR wavelengths. Values are taken from Mueller (2003). Note the difference in scale between the absorption (left hand scale) and backscatter (right hand scale) coefficients. 24
1.6 Phytoplankton absorption, a_{ph}, for 1 mg m$^{-3}$ of chlorophyll-a based on the Devred et al. (2006) general two-component phytoplankton absorption model. .. 25
1.7 Particulate backscattering, b_{bp}, models and measurements based on case 1 water model (Morel and Maritorena 2001) at $chl = 1$ and 10 mg m$^{-3}$ (dot-dashed and dashed, respectively), measured by D’Sa et al. (2006) (solid), and approximated from Morel et al. (2006) for CDOM dominant case 2 waters (dotted). ... 27

1.8 Non-algal particle absorption, a_{NAP}, curves fitted to sample measurements by Babin et al. (2003b) for the Baltic Sea (solid), North Sea (dash), and Atlantic Ocean (dot-dash). ... 29

1.9 CDOM absorption curves measured by Kowalczuk et al. (2005) in the Baltic Sea coastal zone (solid), Babin et al. (2003b) in the Atlantic Ocean (dashed), and D’Sa et al. (2006) in the Mississippi River influenced Gulf of Mexico (dot-dashed). 30

2.1 Sampling stations in the Strait of Georgia used in this study. The shaded area identifies the Fraser River exclusion region that were excluded when evaluating the Fraser River plume influence. 39

2.2 Modelled phytoplankton absorption, $a_{ph}(440)$, in relation to chl concentrations for the standard GSM01 algorithm (solid line), the Vancouver Island two-component (dashed line), and the general two-component models (dotted line). Two chl ranges are provided, (a) from 0 to 100 mg m$^{-3}$ and (b) 0 to 10 mg m$^{-3}$. 44

2.3 Comparison of CDOM models with CDOM absorption measurements based on MODIS Aqua bands. The models are compared to measured values using the Relative Percent Difference (RPD) (Eq. (2.19)). 49
2.4 Comparison of OC3M algorithm and measured chl concentrations. Stars are stations within the Fraser River exclusion region east of the dashed line in Fig. 2.1. The dashed line is the line of best fit for all stations and the dot-dashed line is the best fit with Fraser River points excluded.

2.5 Comparison of the standard GSM01 algorithm results with measured (a) chl concentrations, (b) CDOM absorption, and (c) TSS. The solid line represents a one-to-one relationship and the dashed line is the linear best fit.

2.6 Comparison of the modified GSM01 algorithm results with measured (a) chl concentrations, (b) CDOM absorption, and (c) TSS. The solid line represents a one-to-one relationship and the dashed line is the linear best fit.

2.7 Comparison of the modified GSM01 algorithm chl absolute differences with measured chl against (a) $b_{bp}(443)$ and (b) $a_{dg}(443)$. Stations from April 2006 are identified as circles and July 2006 stations are identified as triangles. The dashed line marks the possible threshold for limiting errors in chl estimates associated with particulate variability.

2.8 Comparison of the modified GSM01 algorithm chl with measured concentrations (a) limited to $a_{dg}(443) \leq 0.08$ m$^{-1}$, remodelled chl estimates using the Devred et al. (2006) (b) general, and (c) Vancouver Island two-component models.

3.1 Ferry route (dashed line) and Fraser River exclusion region (shaded region) used in this study.
3.2 Preliminary daily mean Fraser River discharge measurements from Hope, BC, hydrologic station (≈ 150 km from the Strait). Vertical lines signify the dates of the satellite images used in this study. Data was courtesy of the Water Survey of Canada. 76

3.3 Comparison of ferry \(chl \) measurements with \(chl \) estimates from MODIS Aqua imagery with the NIR atmospheric correction using (a) the OC3M algorithm and (b) the OC3M algorithm with points in the Fraser River exclusion area identified in Fig. 3.1 removed. 78

3.4 Relative error between combined NIR atmospheric correction and OC3M estimates versus ferry measured \(chl \) concentrations for (a) all measurements and (b) measurements outside the Fraser River exclusion region. 78

3.5 Comparison of ferry \(chl \) measurements with \(chl \) estimates for MODIS Aqua imagery with the SWIR atmospheric correction using (a) the OC3M algorithm, (b) the OC3M algorithm with the Fraser River region excluded, and (c) the modified GSM01 algorithm. 79

3.6 Relative error between combined SWIR atmospheric correction and OC3M estimates versus ferry measured \(chl \) concentrations for (a) all measurements and for (b) measurements outside the Fraser River exclusion region. 80

3.7 \(\varepsilon(748,869) \) estimates for the May 3, 2006 image using the (a) and (c) NIR and (b) and (d) SWIR atmospheric correction. Differences in population sizes, \(n \), in the two histograms is related to the SWIR bands having a resolution of 500 m and the NIR bands having a resolution of 1 km. The black box on each image shows the area that was used to produce the histograms. 83
3.8 Scatterplot of Rayleigh-corrected reflectance at 748 and 869 nm in the central and southern portions of the Strait for (a and b) May 3, 2006 and (c and d) August 19, 2006. The $\varepsilon(748,869)$ for each day is identified with the solid line and the $\alpha = 1.945$ from Ruddick et al. (2006) is displayed as the dashed line.

3.9 Comparison of ferry chl measurements with chl estimates for MODIS Aqua imagery with the MUMM atmospheric correction using (a) the OC3M algorithm, (b) the OC3M algorithm with measurements in the Fraser River exclusion area removed, and (c) the modified GSM01 algorithm.

3.10 Relative error between combined MUMM atmospheric correction and OC3M estimates versus ferry measured chl concentrations for (a) all measurements and (b) measurements outside the Fraser River exclusion region.

3.11 Temporal series of OC3M chl images using the MUMM atmospheric correction. The ferry path is shown on each satellite image as a white line and the Fraser River exclusion region is represented by the shaded box on each transect graph.
List of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>wavelength</td>
<td>nm</td>
</tr>
<tr>
<td>λ_0</td>
<td>reference wavelength</td>
<td>nm</td>
</tr>
<tr>
<td>a</td>
<td>absorption coefficient</td>
<td>m$^{-1}$</td>
</tr>
<tr>
<td>A</td>
<td>absorbance</td>
<td></td>
</tr>
<tr>
<td>a^*</td>
<td>specific absorption coefficient</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>scattering coefficient</td>
<td>m$^{-1}$</td>
</tr>
<tr>
<td>b_b</td>
<td>backscattering coefficient</td>
<td>m$^{-1}$</td>
</tr>
<tr>
<td>\tilde{b}_b</td>
<td>scatter:backscattering ratio</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>volume scattering function</td>
<td>sr$^{-1}$m$^{-1}$</td>
</tr>
<tr>
<td>$\tilde{\beta}$</td>
<td>scattering phase function</td>
<td>sr$^{-1}$</td>
</tr>
<tr>
<td>ϖ</td>
<td>single-scatter albedo</td>
<td></td>
</tr>
<tr>
<td>ϖ_a</td>
<td>aerosol single-scatter albedo</td>
<td></td>
</tr>
<tr>
<td>θ_0</td>
<td>solar zenith angle</td>
<td></td>
</tr>
<tr>
<td>θ_v</td>
<td>view zenith angle</td>
<td></td>
</tr>
<tr>
<td>$\Delta\phi$</td>
<td>azimuth difference between solar and view</td>
<td></td>
</tr>
<tr>
<td>ψ</td>
<td>scattering angle</td>
<td></td>
</tr>
<tr>
<td>a_w, a_{NAP}</td>
<td>absorption from water and non-algal particulate,</td>
<td>m$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>respectively</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Name</td>
<td>Units</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td>a_{cdom}, a_{ph}</td>
<td>absorption from CDOM and phytoplankton, respectively</td>
<td>m^{-1}</td>
</tr>
<tr>
<td>a_{dg}</td>
<td>combined absorption from CDOM and non-algal particulate</td>
<td>m^{-1}</td>
</tr>
<tr>
<td>b_{bw}, b_{bp}</td>
<td>backscatter from water and particulate, respectively</td>
<td>m^{-1}</td>
</tr>
<tr>
<td>L</td>
<td>radiance</td>
<td>$\mu W\ cm^{-2}sr^{-1}nm^{-1}$</td>
</tr>
<tr>
<td>L_u</td>
<td>upwelling radiance below the air-water interface</td>
<td>$\mu W\ cm^{-2}sr^{-1}nm^{-1}$</td>
</tr>
<tr>
<td>L_s</td>
<td>sky radiance</td>
<td>$\mu W\ cm^{-2}sr^{-1}nm^{-1}$</td>
</tr>
<tr>
<td>L_t</td>
<td>total water-surface radiance</td>
<td>$\mu W\ cm^{-2}sr^{-1}nm^{-1}$</td>
</tr>
<tr>
<td>L_w</td>
<td>water-leaving radiance</td>
<td>$\mu W\ cm^{-2}sr^{-1}nm^{-1}$</td>
</tr>
<tr>
<td>L_{wn}</td>
<td>normalized water-leaving radiance</td>
<td>$\mu W\ cm^{-2}sr^{-1}nm^{-1}$</td>
</tr>
<tr>
<td>L_{wn}^{ex}</td>
<td>exact normalized water-leaving radiance</td>
<td>$\mu W\ cm^{-2}sr^{-1}nm^{-1}$</td>
</tr>
<tr>
<td>E</td>
<td>plane irradiance</td>
<td>$\mu W\ cm^{-2}nm^{-1}$</td>
</tr>
<tr>
<td>E_u, E_d</td>
<td>upwelling, downwelling irradiance below the air-water interface</td>
<td>$\mu W\ cm^{-2}nm^{-1}$</td>
</tr>
<tr>
<td>E_s</td>
<td>downwelling sky irradiance</td>
<td>$\mu W\ cm^{-2}nm^{-1}$</td>
</tr>
<tr>
<td>R_{rs}</td>
<td>remote sensing reflectance</td>
<td>sr^{-1}</td>
</tr>
<tr>
<td>r_{rs}</td>
<td>remote sensing reflectance below the air-water interface</td>
<td>sr^{-1}</td>
</tr>
<tr>
<td>ρ</td>
<td>extraterrestrial reflectance</td>
<td></td>
</tr>
<tr>
<td>ρ_t, ρ_r, ρ_w</td>
<td>top-of-atmosphere, Rayleigh, and water extraterrestrial reflectance, respectively</td>
<td></td>
</tr>
<tr>
<td>ρ_{as}</td>
<td>aerosol extraterrestrial reflectance</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Name</td>
<td>Units</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>ρ_{ra}</td>
<td>aerosol-Rayleigh multiple scatterings extraterrestrial reflectance</td>
<td></td>
</tr>
<tr>
<td>ρ_A</td>
<td>combined aerosol and aerosol-Rayleigh multiple scatterings extraterrestrial reflectance</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>irradiance reflectance</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>refractive index of water</td>
<td></td>
</tr>
<tr>
<td>\mathcal{R}</td>
<td>air-water interface term</td>
<td></td>
</tr>
<tr>
<td>\mathcal{R}_0</td>
<td>air-water interface term (nadir solar/view angle)</td>
<td></td>
</tr>
<tr>
<td>t_f, \bar{t}_f</td>
<td>transmittance from air-to-water and from water-to-air</td>
<td></td>
</tr>
<tr>
<td>\bar{r}</td>
<td>reflectance of upwelling water irradiance by air-water interface</td>
<td></td>
</tr>
<tr>
<td>\bar{F}_0</td>
<td>extraterrestrial solar irradiance</td>
<td></td>
</tr>
<tr>
<td>d, d_0</td>
<td>actual, mean earth-sun distance</td>
<td>AU</td>
</tr>
<tr>
<td>Q</td>
<td>coefficient relating radiance to upwelling irradiance</td>
<td>sr</td>
</tr>
<tr>
<td>Q_0</td>
<td>coefficient relating radiance to upwelling irradiance (nadir solar/view angle)</td>
<td>sr</td>
</tr>
<tr>
<td>f'</td>
<td>bio-optical modelling coefficient</td>
<td></td>
</tr>
<tr>
<td>f'_0</td>
<td>bio-optical modelling coefficient (nadir solar/view angle)</td>
<td></td>
</tr>
<tr>
<td>τ</td>
<td>atmospheric optical thickness</td>
<td></td>
</tr>
<tr>
<td>ε</td>
<td>aerosol reflectance ratio</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>atmospheric diffuse transmittance</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>fixed water reflectance ratio</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Name</td>
<td>Units</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>γ</td>
<td>atmospheric transmittance ratio</td>
<td></td>
</tr>
<tr>
<td>Chl</td>
<td>chlorophyll-a concentration</td>
<td>mg m$^{-3}$</td>
</tr>
<tr>
<td>ℓ</td>
<td>path length</td>
<td>m</td>
</tr>
<tr>
<td>χ^{model}</td>
<td>model estimated biophysical variable</td>
<td></td>
</tr>
<tr>
<td>χ^{true}</td>
<td>measured biophysical variable</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>number of samples</td>
<td></td>
</tr>
<tr>
<td>S_{cdom}</td>
<td>exponential CDOM absorption slope</td>
<td>nm$^{-1}$</td>
</tr>
<tr>
<td>S_{ph}</td>
<td>exponential two-component phytoplankton slope</td>
<td></td>
</tr>
<tr>
<td>C_{m}^{1}</td>
<td>chlorophyll-a maximum for background phyto-</td>
<td>mg m$^{-3}$</td>
</tr>
<tr>
<td></td>
<td>plankton population</td>
<td></td>
</tr>
<tr>
<td>RMSE</td>
<td>root mean squared error</td>
<td></td>
</tr>
<tr>
<td>RPD</td>
<td>relative percent difference</td>
<td></td>
</tr>
<tr>
<td>AD</td>
<td>absolute difference</td>
<td></td>
</tr>
</tbody>
</table>
Acknowledgements

There are several people I need to thank for their assistance, without whom I would not have survived. The first person I would like to thank is my supervisor, Maycira Costa, for giving me the opportunity to undertake this research and her patience, feedback, and encouragement. Maycira provided considerable encouragement and time to clarify the structure and communication of this thesis. I would hate to know how this thesis would sound without her guidance. I would also like to thank Jim Gower for his feedback on Chapter 2, without which the results would not be as complete.

I also thank the various members of the Spectral Lab, including Eduardo Loos and Jennifer O’Neill for their participation in the ship sampling, and Thiago Silva for reviewing components of this thesis. Their overall presence in the lab has definitely made the writing process easier. Thank you, also, to Ricardo Rossin, for assistance with HPLC method development and pigment sample processing and to Sophia Johannessen for assistance with CDOM absorption methods.

For the ferry based measurements, I would like to thank Mark Halverson and the STRATOGEM project for all the hard work in maintaining the instrument and freely providing such a valuable data source.

Thank to my family and friends. Without my parents’ encouragement, I would never have persuade such an undertaking. I would also like to thank my wife, Ann, who has been an abundant source of patience and encouragement. I don’t know if I would have persevered without her. Finally, I would like to thank Renée Elliott for providing perspective and a constant source of amusement.

Funding for this research was provided by NSERC from an Individual Discov-
ery Grant and ship-time grant to Maycira Costa. Field and lab equipment funding was provided by the Canadian Foundation for Innovation and the British Columbia Knowledge Development Fund.
Chapter 1

Introduction

Since 1978 with the Coastal Zone Color Scanner, a number of satellites capture ocean-colour imagery at various spatial and temporal scales (IOCCG 2007) providing information difficult to attain with ship-based measurements. This information is currently being used in a number of applications including understanding how physical processes influence bio-optical processes (Sathyendranath and Platt 2007), estimation of light penetration into the water column (Lee et al. 2005), and primary productivity (Behrenfeld and Falkowski 1997).

Specifically, oceanographic remote sensing has historically estimated chlorophyll-a (chl) concentrations in open ocean waters where it is the dominant optical variable (Gordon and Morel 1983). However, with the advent of improved ocean-colour satellite sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Medium Resolution Imaging Spectrometer (MERIS) instruments, and the increased sophistication of bio-optical algorithms, research has moved from the open-waters to the more optically complex waters in coastal environments (Gordon and Morel 1983, IOCCG 2000).

Coastal zones, defined as 200 m above and 200 m below mean sea level, are an important resource with 60% of the human population living and 90% of world fish caught in these zones (Pernetta and Milliman 1995). With this substantial an-
thropic influence, there is a growing need to monitor coastal zones and their associated turbidity (Li et al. 2003b, Hu et al. 2004, Warrick et al. 2004), dissolved organic matter (Doxaran et al. 2005, Kowalczuk et al. 2005, Siegel et al. 2005, Coble 2007), harmful algal blooms (Stumpf 2001, Gower et al. 2005), and primary productivity (Muller-Karger et al. 2005). Primary productivity and its proxy, chlorophyll-a concentration, is a particularly important biophysical variable in the marine food web and consequently for higher trophic levels, such as economically important fisheries. A better understanding of natural variability in primary productivity and how it is influenced by anthropogenic forces and climatic events, such as El Niño and the Pacific Decadal Oscillation, may be achieved through larger spatial and temporal scale measurements of dynamic coastal waters.

As identified in biological oceanographic studies of the Strait of Georgia (Harrison et al. 1983, Li et al. 2000), located off the southwest coast of British Columbia, the larger spatial and longer temporal scales of satellite imagery may provide an additional data source to ship-based measurements for studying primary productivity dynamics in these waters. According to the above authors, only with a higher degree of sampling can the interdependencies between physical and biological processes be better understood.

The general objective of this research was to evaluate remote-sensing techniques to estimate chlorophyll-a (chl) concentrations in the Strait of Georgia. To meet this objective, two components were addressed. Firstly, several chl algorithms and bio-optical models were evaluated using spectral ship-based measurements modified to MODIS bands, as covered in Chapter 2. Secondly, several atmospheric correction methods were evaluated for estimating chl concentrations from MODIS imagery, which is covered in Chapter 3. Chapter 4 summarizes the findings and presents the conclusions of this research. The remainder of this chapter provides a review of the biological and physical processes in the Strait (Section 1.1), theoretical background
for oceanographic remote sensing (Section 1.2), and the optical properties of water column constituents (Section 1.4).

1.1 Strait of Georgia

The Strait of Georgia is a large estuary-like coastal basin between the mainland of British Columbia and Vancouver Island. Several tributaries, bays, inlets, and sounds are connected to the Strait, with tributaries providing both freshwater and sediment. The largest source of these inputs is the Fraser River, which introduces 73 % of the freshwater and 64 % of the particles into the Strait (Johannessen et al. 2003). Pacific Ocean tidal activity also influences the Strait, resulting in a mainly semi-diurnal tide with approximately 4 m of range (LeBlond 1983).

Connectivity to the Pacific Ocean is provided through Johnstone Strait at the north end and through Haro and Juan de Fuca Strait at the south end (Fig. 1.1). Based on calculations by Li et al. (2000), the Strait of Georgia is the most productive of these water bodies, with an annual primary productivity of 377 g C m\(^{-2}\) year\(^{-1}\), with Juan de Fuca Strait producing 303 g C m\(^{-2}\) year\(^{-1}\), and Haro Strait producing 238 g C m\(^{-2}\) year\(^{-1}\). The average productivity of these three straits is higher than the open North Pacific Ocean, which has primary productivity generally varying from 60 to 100 g C m\(^{-2}\) year\(^{-1}\) (Harrison et al. 1983). A more detailed discussion on the Strait’s biology is provided in Section 1.1.2.

An important component to primary productivity in the Strait of Georgia is the influx of intermediate and deep water from the Pacific Ocean into the Strait, which is generally colder and nutrient rich (Masson 2006). This deep-water renewal from the Juan de Fuca Strait shelf is mixed with surface waters in the strong tidal currents through passages around Haro Strait and introduced as a subsurface intrusion into the Strait. This subsurface renewal is strongest in summer, when the Fraser River discharge is highest and estuary circulation is strongest. Similarly, a possible interme-
adiate depth renewal may occur through Johnstone Strait into the northern portion of the Strait. In addition to these renewals, Masson (2006) also noted remineralisation of nutrients in the deeper waters of the Strait.

1.1.1 Fraser River

The Fraser River is exceeded only by the Columbia and Yukon Rivers for discharge into the Pacific Ocean from North America (Johannessen et al. 2003). With a drainage basin of 250,000 km² and a mean annual discharge of 3400 m³s⁻¹, the Fraser River is the most significant source of freshwater and suspended sediment into the Strait (Milliman 1980, Waldichuk 1983).

Of particular interest is the Fraser River freshet and its possible ecological effects on phytoplankton bloom dynamics. As identified in several studies ((Milliman 1980,
Kostaschuk et al. 1993), the discharge from the Fraser River can reach a peak of approximately 8,000 to 10,000 m3 s$^{-1}$ with a surge in sediment concentrations at the beginning of the freshet. In the summer, suspended sediment concentrations from the Fraser River decrease at a faster rate than the river discharge relative to spring conditions. Sediment laden water at the beginning of the freshet reduces light penetration through the water column, reducing phytoplankton growth in waters under the influence of the Fraser River plume (Harrison et al. 1983). As will be discussed in Section 1.1.2, the large volume of freshwater input can increase the stratification of the euphotic zone and influence phytoplankton bloom dynamics. Although primary productivity is nutrient limited in the Fraser River discharge during the summer, the possible entrainment of nutrient-rich deeper waters may increase phytoplankton growth in the outer portions of the Fraser River plume (Harrison et al. 1991).

1.1.2 Strait of Georgia Biology

Phytoplankton is an integral component of productivity in aquatic environments by providing a base for the food web through photosynthesis. An indirect indicator of productivity within a water body is the concentration of photosynthetic pigments, which have a direct impact on water colour. Within phytoplankton, the dominant photosynthetic pigment is commonly chlorophyll-a (chl) with other pigments present in lesser quantities (IOCCG 2000).

In the Strait of Georgia, chl concentrations have been found to range from < 1 mg m$^{-3}$ in the winter and reaching 10 to 50 mg m$^{-3}$ during early spring (Harrison et al. 1983, Li et al. 2000). Peak chl concentrations are associated with the spring bloom usually during late March to early April (Harrison et al. 1983, Haigh and Taylor 1991) with noted fluctuations possibly related to El Niño conditions (Yin 1997).

Growth of phytoplankton is commonly limited by one of two factors, either light
or macronutrient deficiency. In warmer equatorial waters, around Oregon and California, the limiting factor is usually macronutrients and in northern waters around Alaska the major limiting factor is usually the amount of available solar energy (Gargett 1997). The Strait of Georgia is in the transitional region between these two types of environments with summers leading to nutrient deficiencies and winter leading to light deficiencies (Li et al. 2000). With the transition from nutrient rich conditions in winter to light rich conditions in summer, the spring conditions are advantageous to phytoplankton growth. This transitional period is possibly important to higher marine trophic levels that migrate during this time by providing a larger food source for zooplankton, which the higher trophic levels feed on during migration along North American coastal waters (Gargett 1997).

An important aspect to the pelagic food web of the Strait is the factors limiting phytoplankton growth and how these factors are possibly linked to cycles of other organisms in the marine food web (Harrison et al. 1983, Haigh and Taylor 1991). For instance, changes in the dominant phytoplankton bloom community composition may influence the structure of the food web. As shown in Fig. 1.2, higher trophic levels, such as herring and salmon, generally favour macrozooplankton that feed on larger centric diatoms (Harrison et al. 1983). Possible shifts in diatom bloom timing may affect the success rate of macrozooplankton and hence the success of salmon spawning runs (Parsons and Kessler 1987).

In addition to the two major limiting factors to phytoplankton growth identified previously, stability and stratification of the upper water column may impact phytoplankton growth (Mann 1993). Winter conditions in the Strait usually involve higher wind speeds, creating instability and mixing in surface waters. This is not conducive to phytoplankton growth because they are continuously moved in and out of the euphotic zone. Contrarily, in the spring, winds are generally calmer and larger influxes of freshwater create abrupt temperature and salinity gradients that provides
Figure 1.2: A generalized food web for deepwaters in the Strait of Georgia (modified from Harrison et al. 1983). Of particular interest are the limiting factors for phytoplankton growth during each season, which are shown in parenthesis beside each season.
a greater degree of stratification in the upper water column. With this increased
stratification, there is limited mixing with the nutrient-rich deeper waters and phy-
toplankton consumes all the nutrients within the euphotic stratified layer (Gargett
1997). Transition between the nutrient-rich well-mixed water column to stratified
nutrient limited water column can create an “optimal window” for phytoplankton
blooms to occur (Mann 1993). According to Collins (2005), wind was found to ex-
plain 75% of variance in the arrival time of the spring bloom. In other words, the
water column stratification in early spring and therefore the spring bloom is domi-
nantly triggered by the decrease in wind. This is contrary to previous studies (Yin
et al. 1997) that identified that the dominant trigger was the influx of freshwater
from the Fraser River.

Furthermore, phytoplankton community composition has been found to vary be-
tween different regions of the Strait. Past sampling campaigns of phytoplankton
community structure have been carried out for the central (Harrison et al. 1983) and
northern (Haigh and Taylor 1991) portions of the Strait. As identified by Harrison
et al. (1983), centric diatoms dominated the phytoplankton community during the
summer of 1975 in the central portion of the Strait. In the northern portion, phyto-
plankton communities were dominated by non-loricate oligotrichs and dinoflagellates
during the spring bloom of 1986 (Haigh and Taylor 1991). The spring bloom in the
northern portion transitioned to flagellates except for a few pockets of diatoms near
the central portion of the Strait. According to the authors, these differences in phy-
toplankton community composition in the northern portion of the Strait may have
been related to increased wind activity in the region. Harrison et al. (1983) noted
that diatoms were of particular abundance around the Fraser River plume and en-
trances to inlets. The trend was further supported through data collected by Haigh
and Taylor (1991) were it was found that diatom populations were abundant near
the entrance to Sutil Channel and by Cape Lazo. As shown by these studies, the
phytoplankton community composition can vary both spatially and temporally.

1.2 Remote Sensing Theory

The main objective behind optical remote sensing is to use electromagnetic radiation, or light, to retrieve information about a target without coming into physical contact with it (Martin 2004). When analysing ocean-colour imagery acquired by satellites, many environmental variables influence the amount of light that is reflected back to the satellite sensor. As electromagnetic radiation travels through Earth’s atmosphere and possibly interacts with the water column, the radiation can interact with several substances and travel in different paths. Fig. 1.3 depicts several of the more common environmental variables, such as atmospheric and water column constituents, that light may interact with when traveling from the sun to the satellite sensor. A detailed discussion of atmospheric optical constituents is provided in Section 1.3 and in Section 1.4 the influence of water column constituents on light attenuation is discussed. In the remainder of this section, the basic optical units and how they relate to light or radiometric measurements are discussed.

To evaluate biophysical variables, such as chlorophyll-a (chl) concentrations, and their associated influence on measured electromagnetic radiation above the water surface, the inherent optical properties of these variables must be differentiated from their influence on the apparent optical properties of the water body. It is important to note that the following discussion of inherent optical properties focuses on elastic scattering for which the wavelength of the incident light does not change. Inelastic scattering or transpectral scattering, which changes the wavelength of the incident light, is not discussed. Inelastic scattering processes in aquatic environments include chl fluorescence (Gower et al. 1999, 2004) and Raman scattering (Bartlett et al. 1998). Although effects of light polarization are also not discussed, the analysis of polarization influence on remote-sensing reflectance is provided by other authors
Figure 1.3: Typical interactions encountered by photons measured in an ocean-colour image. While not presented on the graphic, interactions between and within each component, through multiple scattering, do occur.
Figure 1.4: The geometric definitions used in this study. The graphic is reproduced based on a similar image by Loisel and Morel (2001).

Geometry of the radiometric measurements is an important component in relating apparent optical properties of a water body to its inherent optical properties. For this study, the geometry defined by Loisel and Morel (2001) and shown in Fig. 1.4 was used.

The solar zenith angle, θ_0, is the angle formed by a vector perpendicular or normal to the medium surface and a vector in the illumination direction. The view zenith angle, θ_v, is formed by the vector normal to the medium surface and the vector in the sensor direction. $\Delta \phi$ is the azimuth angle difference between the illumination and view vector on the plane parallel to the medium surface. The combination of the solar zenith, view zenith, and azimuth difference angles are used to form the scattering angle, ψ, from the cosine law of spherical geometry (Mueller et al. 2003a). ψ is defined as
\[
\cos \psi = -\cos \theta_0 \cos \theta_v - \sin \theta_0 \sin \theta_v \cos \Delta \phi \tag{1.1}
\]

1.2.1 Inherent Optical Properties

To characterize the inherent optical properties (IOPs) of a medium, the absorption, \(a(\lambda)\), and scattering, \(b(\lambda)\), coefficients are generally used (Mueller et al. 2003a). The angular distribution of the scattering is described through the scattering phase function, \(\tilde{\beta}(\lambda, \psi)\) (Mobley et al. 2002).

The absorption coefficient of a medium describes the portion of monochromatic light that is removed from the optical path for a given path length (m\(^{-1}\)). The energy that is removed from the optical path is converted to another form of energy, such as heat. For some mediums, such as pure water, the absorption coefficient is commonly defined using a constant. However, the absorption coefficient can be dependent upon the properties of the medium. For example, the absorption properties of water can vary at certain wavelengths in relation to temperature and salinity differences (Pegau et al. 1997).

The scattering coefficient, \(b(\lambda)\), defines the portion of the incident light beam that is sent in a direction other than the incident beam. To relate the probability of light scattering at a particular angle, the scattering phase function must be identified. Identifying the scattering phase function is usually done in one of two approaches. One approach is to derive it theoretically, assuming spherical particles using Mie theory with the refractive index and size distribution of the particles. This approach has been carried out for a range of particles types (Ulloa et al. 1994, Woźniak and Stramski 2004) and several predefined models exist, such as one defined by Fournier and Forand (1994). The second is to measure the volume scattering function, \(\beta(\lambda, \psi)\), which is related to the scattering phase function using Eq. (1.2) (Mobley et al. 2002).
The volume scattering function defines the portion of incident light scattered at a particular angle, \(\psi \). The selection of the scattering phase function can have significant influence on the modelling of the reflectance properties for a water body (Mobley et al. 2002). Nevertheless, it is one of the least measured and most difficult to measure IOPs. The most commonly used measurements are a set of 8 volume scattering functions measured for several different water bodies provided by Petzold (1972). While not looking at the full phase function, several studies have measured particulate scattering in relation to different particulate types and their wavelength dependences (Babin et al. 2003a, Bowers and Binding 2006).

The sum of the scattering in the upper portion of the volume scattering coefficient or in the opposite direction of the incident light is described by the backscattering coefficient, \(b_b(\lambda) \). To model remote-sensing reflectance above the water surface, the backscattering coefficient is commonly used (Gordon et al. 1988b) and is derived from the volume scattering function based on the following.

\[
\tilde{b}(\lambda, \psi) = \beta(\lambda, \psi)/b(\lambda)
\]

(1.2)

The scattering to backscattering ratio, \(\tilde{b}_b \), is commonly used to estimate backscattering from the more readily measured scattering coefficient. The most commonly used backscatter ratios are derived from the volume scattering functions measured by Petzold (1972) and range from 0.044 for clear ocean water to 0.013 for coastal waters (Mobley 1994). The reason for the higher \(\tilde{b}_b \) in clear water is because the scattering is more isotropic, while for turbid waters the scattering is dominated by forward scattering.

Relating an IOP to a biophysical variable, such as \(chl \), is typically done using a
specific optical property. The specific optical property defines how the IOP varies with the biophysical variable. For example, the specific absorption coefficient for a given biophysical variable, $a^*(\lambda)$, can be described using the linear relationship in Eq. (1.4) with $a(\lambda)$ representing the absorption coefficient of the biophysical variable at a given concentration, n.

$$a^*(\lambda) = a(\lambda)/n \quad (1.4)$$

A similar relationship is commonly used to define the specific backscatter coefficient of a biophysical variable (Gallie and Murtha 1992, Maritorena et al. 2002). In addition to the linear form of Eq. (1.4), non-linear relationships are also used (Morel and Maritorena 2001, Devred et al. 2006).

To describe the optical properties of a medium, as well as the combined influence from scattering and absorption, the single-scatter albedo, $\varpi(\lambda)$, is commonly used. The single-scatter albedo (Eq. (1.5)) describes the probability of a photon’s survival upon interaction with the medium.

$$\varpi(\lambda) = \frac{b(\lambda)}{b(\lambda) + a(\lambda)} \quad (1.5)$$

For optical constituents that are weakly or nonabsorbing, the single-scatter albedo will approach one, while for strongly absorbing constituents, the albedo will approach zero. For example, water is generally considered a strongly absorbing medium with a $\varpi(550) = 0.033$ (Mueller 2003) and Maritime aerosols are a weakly absorbing medium with $\varpi(550) = 0.996$ at 90% humidity (Shettle and Fenn 1979).

1.2.2 Apparent Optical Properties

To associate the inherent optical properties with the apparent optical properties (AOP), measured radiometric quantities and their geometric dependences must be related to the optical properties of the medium (the water column) (Mobley 1994).
In optical oceanography the two most common measured radiometric quantities are radiance, \(L(\lambda, \theta_0, \theta_v, \Delta\phi) \), and irradiance, \(E(\lambda, \theta_0) \). Radiance measurements are dependent upon a solid angle identified by a view zenith angle, \(\theta_v \), a solar zenith angle, \(\theta_0 \), and an azimuth angle difference between the illumination (commonly the sun) and viewing vector, \(\Delta\phi \), as shown in Fig. (1.4). Irradiance measurements do not have a view or azimuth angle and are a measure of total energy from a plane surface. Radiance can be related to irradiance using Eq. (1.6), in which irradiance is defined as the sum of radiance measurements for all view and azimuth angles within a hemisphere.

\[
E(\lambda, \theta_0) = \int_0^{2\pi} \int_0^{\pi} L(\lambda, \theta_0, \theta_v, \phi) \cos \theta_v \sin \theta_v \, d\theta_v \, d\phi, \quad \mu\text{W cm}^{-2}\text{nm}^{-1} \quad (1.6)
\]

Based on the irradiance definition, the irradiance reflectance from a plane surface is defined as

\[
R(\lambda, \theta_0) = \frac{E_u(\lambda, \theta_0)}{E_d(\lambda, \theta_0)} \quad (1.7)
\]

where \(E_d(\lambda, \theta_0) \) is the downwelling irradiance at a particular wavelength that is received by the plane surface and \(E_u(\lambda, \theta_0) \) is the upwelling irradiance that is reflected by the plane. In the case of an aquatic environment, the downwelling irradiance is the irradiance that passes through the atmosphere and is measured below the air-water interface. Upwelling irradiance, on the other hand, is the irradiance that is being returned to the atmosphere from the water column and is also measured below the air-water interface.

The variability of downwelling radiance, \(L_u(\lambda, \theta_0, \theta_v, \Delta\phi) \), in relation to \(E_u(\lambda, \theta_0) \) is commonly summarized as a function \(Q(\theta_0, \theta_v, \Delta\phi) \) and defined as (Loisel and Morel 2001)
\[Q(\theta_0, \theta_v, \Delta \phi) = \frac{E_u(\lambda, \theta_0)}{L_u(\lambda, \theta_0, \theta_v, \Delta \phi)}, \ \text{sr} \] (1.8)

The form of the \(Q(\theta_0, \theta_v, \Delta \phi) \) function is dependent upon the total volume scattering function, which is the sum of the volume scattering functions for each optical constituent (Mueller et al. 2003a). The value of \(Q \) has found to range from 0.3 to 6.5 sr (Morel and Gentili 1993). However, \(Q \) values estimated by Sathyendranath et al. (2004a) off Vancouver Island ranged from about 2 to 8 sr.

A important component to measuring radiance from a water body is the air-water interface and its influence on downwelling and upwelling radiance. Due to the difference in refractive index of water in relation to air, Snell’s law dictates that a component of the upwelling radiance, \(L_u \), is internally reflected back into the water column. The resulting measured energy that leaves the water column, passing through the air-water interface, is referred to as the water-leaving radiance. The relationship between water-leaving radiance, \(L_w \), and \(L_u \), while varying with windspeed (Gordon 2005) and weakly with atmospheric properties (Wang 2006b), is defined as

\[L_w(\lambda, \theta_0, \theta_v, \Delta \phi) = \mathcal{R}(\lambda, \theta_0, \theta_v)L_u(\lambda, \theta_0, \theta_v, \Delta \phi), \ \mu W \text{ cm}^{-2} \text{nm}^{-1} \text{sr}^{-1} \] (1.9)

where

\[\mathcal{R}(\lambda, \theta_0, \theta_v) = \left\{ \frac{t_f(\theta_0)\bar{t}_f(\theta_v)}{m^2[1 - \bar{R}(\lambda, \theta_0)]} \right\} \] (1.10)

\(t_f(\theta_0) \) represents the transmittance of the solar energy into the water and \(\bar{t}_f(\theta_0) \) the transmittance from the water into the air. Both of these variables vary with wind speed, solar, and viewing geometry. However, \(\mathcal{R} \) can be replaced by the Fresnel Reflectance function representing a flat-water surface for a range of conditions to
within 0.01 (Gordon 2005). For Eq. (1.10), $R(\lambda, \theta_0)$ is defined in Eq. (1.7), m is the refractive index of water, and \bar{r} is the reflectance of upward irradiance by the interface. As noted by Gordon (2005), $R(\lambda, \theta_0)$ is relatively low in open-ocean waters and \bar{r} is approximately 0.48. Thus, the influence of $\bar{r}R(\lambda, \theta_0)$ and the associated influence of water column IOPs on the value of $\mathcal{R}(\lambda, \theta_0, \theta_v)$ in more open waters is limited. An $\mathcal{R} = 0.529$ is appropriate for a range of illumination, view geometries, and wind speeds. In more turbid waters, the $R(\lambda, \theta_0)$ value may not be as low and the relationship between above- and below-water reflectance defined by Lee et al. (1999) and used later in Chapter 2 (Section 2.2.2) may be more appropriate under a greater range of conditions.

In addition to influence from the air-water interface, radiance measurements have a strong dependence on illumination conditions. Slight variations in atmospheric properties or solar zenith angles can cause variations in the downwelling irradiance and the resulting upwelling radiance measurement. To minimize these variations, radiance measurements are normalized to illumination conditions, resulting in remote-sensing reflectance, $R_{rs}(\lambda)$, (Eq. (1.11)) and normalized water-leaving radiance, $L_{wn}(\lambda)$, (Eq. (1.12)) (Morel and Gentili 1996, Mueller et al. 2003a).

$$R_{rs} = \frac{L_w(\lambda, \theta_v, \theta_0, \Delta \phi)}{E_s(\lambda, \theta_0)}, \text{ sr}^{-1} \tag{1.11}$$

$$L_{wn} = L_w(\lambda, \theta_v, \theta_0, \Delta \phi) \frac{\bar{F}_o(\lambda)}{E_s(\lambda, \theta_0)}, \mu\text{W cm}^{-2}\text{nm}^{-1}\text{sr}^{-1} \tag{1.12}$$

$\bar{F}_o(\lambda)$ is the extraterrestrial solar spectral irradiance based on a mean earth-sun distance (Thuillier et al. 2003) and $E_s(\lambda)$ is the downwelling sky irradiance measured above the water surface. For radiometric field measurements, $R_{rs}(\lambda)$, is commonly used and extraterrestrial remote sensing reflectance, $\rho(\lambda)$, is frequently used with satellite imagery (Morel and Gentili 1996, Gordon 1997), which is defined as
\[\rho(\lambda) = \frac{\pi L(\lambda)}{F_0(\lambda) \cos \theta_0 \left(\frac{d_0}{d} \right)^2} \]

(1.13)

where \(d \) and \(d_0 \) are the actual and mean earth-sun distance, respectively. Extraterrestrial water reflectance, \(\rho_w(\lambda) \), can be related to field remote-sensing reflectance using Eq. (1.14) with \(t(\lambda, \theta_0) \) representing the diffuse transmittance of the atmosphere (Mueller et al. 2003c). The difference between \(R_{rs} \) and \(\rho \) is that \(E_s(\lambda, \theta_0) \) in Eq. (1.11) is replaced with the total irradiance from the sun before entering the atmosphere (Gordon and Wang 1994, Mueller et al. 2003c). The \(R_{rs}(\lambda) \) variable has the unit \(\text{sr}^{-1} \) to represent the solid angle nature of the measurement and \(\rho(\lambda) \) is unitless.

\[R_{rs}(\lambda) = \frac{\rho_w(\lambda)}{\pi t(\theta_0, \lambda)} \]

(1.14)

1.2.3 Relating Inherent and Apparent Optical Properties

The relationship between inherent and apparent optical properties is more accurately done using numerical simulations (Mobley et al. 1993), such as Monte Carlo simulations. Nevertheless, the use of quasi-single-scattering approximation (Gordon et al. 1988b) provides agreement with simulations of \(\sim 2\% \) to \(\sim 10\% \) for sea surface reflectance (Lee et al. 2002). The quasi-single-scattering model is defined as

\[R_{rs}(\lambda) = \mathfrak{R}(\theta_0, \theta_v, \Delta \phi, IOP) \frac{f'(\theta_0, \theta_v, \Delta \phi, IOP) b_\theta(\lambda)}{Q(\theta_0, \theta_v, \Delta \phi, IOP) b_\theta(\lambda) + a(\lambda)} \]

(1.15)

with \(f'(\theta_0, \theta_v, \Delta \phi, IOP) \) representing a unitless factor that is dependent on geometry and water column IOPs, \(Q(\theta_0, \theta_v, \Delta \phi, IOP) \) is previously defined in Eq. (1.8), and \(\mathfrak{R}(\theta_0, \theta_v) \) represents the air-water interface, as previously defined in Eq. (1.10). The \(b_\theta(\lambda) \) and \(a(\lambda) \) are IOPs and represent the sum of the backscattering and absorption coefficients of the optical constituents within the water column, respectively.

Although normalizing the radiance measurements with the downwelling irradi-
ance in Eq. (1.11) reduces the influence from varying solar zenith angle and atmospheric properties, the geometric dependence of the radiance measurement is still present. This geometric dependence, represented in the $f'(\theta_0, \theta_v, \Delta \phi, IOP)$ and $Q(\theta_0, \theta_v, \Delta \phi, IOP)$, is associated with the scattering phase function of the medium. Variability in reflectance related to geometry is commonly referred to as the bidirectional reflectance properties of the water and can be modelled into the bidirectional reflectance distribution function (BRDF) of the water body (Loisel and Morel 2001).

Using a BRDF model, radiometric measurements captured under different illumination and viewing geometries can be adjusted from normalized water-leaving radiance, L_{wn}, to exact normalized water-leaving radiance, L_{wn}^{ex}, which has a predefined consistent geometry. The commonly used geometry for L_{wn}^{ex} is to have the solar and viewing zenith angles equal to zero, so that they are both at nadir with an undefined azimuth. This is also the common geometry used to set the f'/Q variables in semi-analytical ocean-colour algorithms (Carder et al. 1999, Maritorena et al. 2002). The adjustment of L_{wn} to L_{wn}^{ex} is done through (Morel and Gentili 1996)

$$L_{wn}^{ex}(\lambda) = L_{wn}(\lambda, \theta_v, \theta_0) \frac{R_0}{R(\theta_0, \theta_v)} \frac{f'_0(IOP)}{Q_0(IOP)} \times \left(\frac{f'(\theta_0, \theta_v, \Delta \phi, IOP)}{Q(\theta_0, \theta_v, \Delta \phi, IOP)} \right)^{-1}$$

which requires a model of f'/Q over a range of geometric configurations and IOPs. The $f'_0(IOP)$, $Q_0(IOP)$, and R_0 terms have their view and solar angle dependences removed because they are the values for a solar and view zenith angle of zero with an undefined azimuth.

A model of f'/Q provided by Morel et al. (2002) has shown to compare well with measurements (Voss and Morel 2005). However, the model is based on case 1 waters and was compared against equatorial waters. As will be discussed in Section 1.4,
both of these criteria are not applicable in the Strait of Georgia. A comparison of a f'/Q for different geometries using a sediment dominant and chromophoric dissolved organic matter (CDOM) dominant water body found that the coefficients can vary significantly, particularly as the solar and viewing zenith angles deviate from nadir (Loisel and Morel 2001). This divergence is related to the single-scattering albedo (Eq. (1.5)) of each water body. For water bodies with higher absorption from CDOM, single scattering events dominate and the BRDF are more closely related to the volume scattering functions of the particles. Conversely, for sediment dominated waters, the BRDF of the water body is not as closely tied to the particulate volume scattering and the reflectance distribution is more diffuse.

1.3 Atmospheric Optical Properties

When measuring energy reflected by Earth’s surface, it is important to account for how that energy is influenced by passing through the Earth’s atmosphere. Similar to aquatic environments, it is crucial to define the inherent optical properties of the medium, in this case the optical constituents in the air column above the water surface. By defining atmospheric IOPs, the influence of atmospheric constituents on ocean-colour imagery can be described.

In the next two sections, the inherent optical properties of the atmosphere are defined and the associated influence on ocean-colour imagery is discussed.

1.3.1 Atmospheric Inherent Optical Properties

The absorption, $a(\lambda)$, and scattering, $b(\lambda)$, coefficients, in conjunction with the scattering phase function discussed in Section 1.2.1, are used to describe optical constituents within the atmosphere. In addition to the absorption and scattering coefficients, the extinction coefficient, $c(\lambda)$, (Eq. (1.17)) is commonly used to describe the influence of an optical constituent (Gordon and Wang 1994).
\[c(\lambda) = a(\lambda) + b(\lambda) \quad (1.17) \]

When the extinction coefficient is integrated over entire height of the atmosphere, \(z \), the atmospheric optical thickness, \(\tau(\lambda) \) can be defined as

\[\tau(\lambda) = \int_0^z c(\lambda) \, dz \quad (1.18) \]

The optical thickness defines the amount of influence the atmospheric constituents have on electromagnetic radiation passing through the atmosphere at a particular wavelength.

1.3.2 Atmospheric Influence on Ocean-Colour Imagery

Using the definitions of inherent optical properties, the atmospheric influence on ocean colour can be estimated. To describe this influence, the extraterrestrial reflectance (Eq. (1.13)) is used to approximate the total reflectance measured at the top of the atmosphere, \(\rho_t(\lambda) \), as (Gordon and Wang 1994, Gordon 1997)

\[\rho_t(\lambda) = \rho_r(\lambda) + \rho_{as}(\lambda) + \rho_{ra}(\lambda) + t(\lambda)\rho_w(\lambda) \quad (1.19) \]

where \(\rho_r(\lambda) \) is the reflectance from air molecules (Rayleigh scattering), \(\rho_{as}(\lambda) \) the scattering from aerosols, and \(\rho_{ra}(\lambda) \) the multiple scattering between air molecules and aerosols. The isolation of \(\rho_w(\lambda) \) is critical to ocean-colour remote sensing, thus, it is important to characterize the other components in Eq. (1.19). The contribution of \(\rho_r(\lambda) \) is well characterized based on geometry and atmospheric pressure (Gordon et al. 1988a, Wang 2005). \(\rho_{ra}(\lambda) \) is dependent upon the aerosol type, aerosol reflectance and Rayleigh optical depth. \(\rho_{as}(\lambda) \) is provided by (Gordon and Wang 1994)
\[
\rho_{as}(\lambda) = \varpi_a(\lambda) \tau_a(\lambda) p_a(\lambda, \theta_v, \theta_0, \Delta \phi) / 4 \cos \theta_v \theta_0,
\]
\[
p_a(\lambda, \theta_v, \Delta \phi) = P_a(\psi_-, \lambda) + (r(\theta_v) + r(\theta_0)) P_a(\psi_+, \lambda),
\]

(1.20)

\[
\cos \psi_\pm = \pm \cos \theta_v \cos \theta_0 - \sin \theta_v \sin \theta_0 \cos \Delta \phi
\]

where \(\varpi_a \) is the aerosol single-scatter albedo represented by Eq. (1.5), \(\tau_a(\lambda) \) is the aerosol optical thickness from Eq. (1.18), \(P_a(\psi, \lambda) \) is the aerosol scattering phase function, and \(r(\theta) \) is the Fresnel reflectance of the interface at an incident angle \(\theta \).

The component relating to the scattering angles \(\psi_\pm \) is an extension of Eq. (1.1) and accounts for the aerosol scattering geometry from the sun to the surface and from the surface to the sensor.

The modelling of the aerosol scattering phase function, \(P_a(\psi, \lambda) \), in Eq. (1.20) requires the inherent optical properties of the aerosol types typically found in marine environments. The aerosol IOPs commonly used are defined by Shettle and Fenn (1979) and include oceanic, marine, and tropospheric aerosols with varying relative humidities and an addition coastal model defined by Wang and Gordon (1994). The aerosol model refractive index and particle size distribution are used with Mie theory to produce a theoretical scattering phase function assuming spherical particles.

Characterization of atmospheric aerosols is an important component to atmospherically correcting ocean-colour imagery and the isolation of \(\rho_w \) in Eq. (1.19). The approaches to aerosol characterization and atmospheric correction are discussed further in Chapter 3.

1.4 Water Column Optical Properties

Initial forays into oceanographic remote sensing began with the estimation of chlorophyll-a (chl) concentrations in open-ocean waters. To accomplish this task, two major assumptions were made. The first was that chl is the dominant optical constituent and the second assumption was that all other constituents, such as chromophoric dis-
solved organic matter (CDOM) and suspended particulate, are absent or correlated with chl concentration (Gordon and Morel 1983, Morel and Maritorena 2001). These water types are typically classified as case 1.

The more general water classification, referred to as case 2, assumes that all major constituents vary independently (Gordon and Morel 1983). This is usually the situation in coastal waters with significant terrestrial influence, such as the Strait of Georgia. In case 2 waters, the major optical constituents typically considered are: pure water, photosynthetic pigments, suspended particulate and CDOM (IOCCG 2000). Each of these major constituents and their inherent optical properties will be discussed in the context of ocean colour for the Strait of Georgia in the following sections.

1.4.1 Pure Water

The optical properties of water have been reviewed by both the International Ocean Colour Coordination Group (IOCCG 2000) and Mueller et al. (2003b). Accordingly, a key optical characteristic of pure water is the strong absorption of the red and near-infrared (NIR) wavelengths (Fig. 1.5). This characteristic limits the usable portion of the spectrum for ocean-colour remote sensing to the visible wavelengths and in turbid waters, the shorter NIR wavelengths up to approximately 800 nm (Ruddick et al. 2001). The backscattering coefficients of water are generally lower than the absorption coefficients in the visible wavelengths and are highest in the blue wavelengths (Fig. 1.5), giving large clear water bodies a blue colour. Optical properties of water also have a dependence on temperature and salinity at certain wavelengths > 550 nm (Sullivan et al. 2006).

1.4.2 Photosynthetic Pigments

Photosynthetic pigments are crucial to phytoplankton for the photosynthetic process, which creates organic compounds from solar energy (Martin 2004). While all
photosynthetic pigments impact ocean colour, chl is typically the dominant pigment. Concentrations of chl within aquatic environments have historically been used in ocean-colour remote sensing as a proxy for phytoplankton biomass because of its distinctive absorption features in the blue and red portions of the spectrum (Fig. 1.6) and its common dominance in relation to other pigments. An important note is that surface estimated chl concentrations may not necessarily be directly related to primary productivity because primary productivity is a time/depth integrated variable and the relationship between chl concentrations and biomass is phytoplankton community dependent. Relationships between chl and primary productivity have been modelled through several studies and a review is provided by Behrenfeld and Falkowski (1997).

The development of algorithms to estimate chl concentrations have historically been based on the absorption properties of chl fitted to empirically derived formulas. To develop these algorithms, a data set of in situ radiometric and chl concentration measurements in a diverse set of conditions are needed to model chl concentrations to satellite band configurations. These measurements are than used to develop empirical
Figure 1.6: Phytoplankton absorption, a_{ph}, for 1 mg m$^{-3}$ of chlorophyll-a based on the Devred et al. (2006) general two-component phytoplankton absorption model.

algorithms for estimating chl concentrations based on reflectance ratios at various wavelengths (O’Reilly et al. 1998).

To improve the accuracy of chl algorithms, NASA has developed a data set known as SeaWiFS Bio-optical Archive and Storage System (SeaBASS) (O’Reilly et al. 1998, Bailey and Werdell 2006). SeaBASS includes a total of 2,853 sets of multispectral ocean-colour and chl concentrations measurements, ranging from 0.008 to 90 mg m$^{-3}$ with the majority of measurements representing 0.08 to 3 mg m$^{-3}$ (O’Reilly et al. 2000).

Historically, chl algorithms developed from equatorial measurements, such as the OC3M algorithm, have underestimated chl concentrations above $\sim 50^\circ$ latitude (IOCCG 2000). In these regions, phytoplankton community composition has an impact on phytoplankton absorption coefficients, with larger diatoms absorbing less light in the blue wavelengths compared to phytoplankton communities found at lower latitudes with the same chl concentration (Sathyendranath et al. 2001). As pointed out in Section 1.1.2 and Fig. (1.2), diatom phytoplankton blooms are common during certain periods in the Strait and may have distinctive influence on standard chl
algorithms.

The lower absorption characteristics of chl associated with larger phytoplankton cells, such as diatoms, compared to smaller cells, such as prymnesiophytes, is due to the packaging effect, which causes chl to form discrete packets instead of being continuously dispersed within the phytoplankton cellular structure (Kirk 1994). This packaging of pigments results in lower specific absorption coefficients at blue wavelengths and an underestimation of chl concentrations from generalized algorithms based on phytoplankton communities with limited packaging effect. While the packaging effect significantly influences the blue wavelengths, chl absorption properties at wavelengths > 623 nm are not significantly influenced (Stuart et al. 1998).

1.4.3 Suspended Particles

Suspended particles in aquatic environments consist of two main groups, organic and inorganic. Organic particles can originate in situ from detritus and the cellular structure of phytoplankton, as well as from terrestrial sources through land runoff. Inorganic particles are usually from terrestrial mineralogic sources and, while they can be found far from continental shelves, they is generally limited to coastal waters (Woźniak and Stramski 2004, Loisel et al. 2006).

Inherent optical properties of suspended particles are typically described as the absorption from non-algal particles, a_{NAP}, which includes absorption from particles excluding photosynthetic pigments (Babin et al. 2003a,b), and particulate backscatter, b_{bp}. Particulate backscatter corresponds to scattering from the phytoplankton cellular structure, mineralogic, and colloidal particles (Babin et al. 2003a, Stramski et al. 2004, Stramski and Woźniak 2005), which is the total backscatter minus the backscatter from the water.

Based on the assumption of spherical particles, particulate backscatter properties are dependent upon the particle size distribution and their refractive index (Ulloa et al. 1994, Babin et al. 2003a). As the particle size distribution shifts from one
Figure 1.7: Particulate backscattering, b_{bp}, models and measurements based on case 1 water model (Morel and Maritorena 2001) at $chl = 1$ and 10 mg m$^{-3}$ (dot-dashed and dashed, respectively), measured by D’Sa et al. (2006) (solid), and approximated from Morel et al. (2006) for CDOM dominant case 2 waters (dotted).

dominated by 0.45 - 200 µm particles to one dominated by 0.02 - 0.45 µm particles, scattering increases in the shorter blue wavelengths and decreases in the longer red wavelengths. Also, with increases in the particulate refractive index there is an increase in total scattering (Babin et al. 2003a). To illustrate these variables, several examples of both measured and modelled particulate backscattering spectra are provided in Fig. (1.7), including backscatter measured in the coastal waters of the Gulf of Mexico with $chl = 4.40$ mg m$^{-3}$ (3.15 mg l$^{-1}$ of suspended particulate) (D’Sa et al. 2006), CDOM dominated South African coastal waters with $chl \approx 4.0$ mg m$^{-3}$ (~ 0.85 mg l$^{-1}$ of suspended particulate) (Morel et al. 2006), and case 1 particulate backscatter models at chl concentrations of 1.0 and 10.0 mg m$^{-3}$ (Morel and Maritorena 2001). As the coastal waters of the Gulf of Mexico have higher suspended particulate concentrations, higher particulate backscattering was measured. The CDOM dominant South African waters, on the other hand, had lower particulate concentrations for similar chl concentrations to the Gulf of Mexico and had particulate backscatter coefficients more consistent with the case 1 water models.
The relationship between particulate backscatter and particulate scattering can be important in modelling the apparent optical properties of a water body. While in certain situations the particulate backscattering to scattering ratio, \tilde{b}_{bp}, can have a wavelength dependence, Whitmore et al. (2007) noted that spectral variability was limited in most circumstances and \tilde{b}_{bp} was found to be 0.013. A statistical relationship was found by D’Sa et al. (2006) between b_{bp} and b_p, suggesting that \tilde{b}_{bp} varies with b_p. Although the relationship between b_p and \tilde{b}_{bp} is generally independent of wavelength, it is likely dependent upon b_p.

Similar to the scattering properties of particles, their absorption properties can be significant in optically complex waters. Absorption related to particles with photosynthetic pigments removed is commonly referred to as non-algal particle absorption, $a_{NAP}(\lambda)$, and consists of the combined absorption from organic and inorganic particulate. In open ocean waters, such as the Atlantic Ocean, a_{NAP} is limited. However, in river influenced coastal waters, non-algal particulate absorption can be as high as absorption from CDOM (Fig. 1.8) (Babin et al. 2003b). In Fig. 1.8, the a_{NAP} in the North Sea is likely higher because of higher TSS concentrations ($0.4 \sim 80$ g m$^{-3}$) compared to the Baltic Sea ($1 \sim 6$ g m$^{-3}$) and the Altantic Ocean ($0.02 \sim 0.4$ g m$^{-3}$). The spectral shape of non-algal particle absorption typically follows an exponential curve similar to CDOM; except, with a different slope value. Due to this spectral similarity, non-algal particulate absorption is commonly grouped with CDOM absorption in semi-analytical algorithms (Carder et al. 1999, Maritorena et al. 2002, Lee et al. 2002).

In relation to the Strait of Georgia, suspended particles can be an optically significant constituent. As shown through airborne multispectral video by Liedtk et al. (1995), the suspended particulate concentrations in the Fraser River plume were highly correlated ($r^2 = 0.945$) with reflectance in the red portion of the spectrum. The spatial and seasonal patterns of the particles were also studied by Johannessen
et al. (2006) using a transmissometer measuring at 660 nm. In that study, it was found that surface waters of the Strait were turbid during late summer and early autumn with the waters becoming clearer during the winter. During autumn conditions, it was found that particulate concentrations were more dispersed throughout the Strait and not as well associated with the Fraser River plume. These higher particulate concentrations can have a significant impact on chl and near-infrared (NIR) atmospheric correction used to produce standard chl images, as will be discussed in Chapter 2 and 3, respectively.

1.4.4 Chromophoric Dissolved Organic Matter

Chromophoric dissolved organic matter, or CDOM, results from the breakdown of organic matter into humic and fluvic acids and is measured as the absorption from the component in the water $< 0.2\mu m$ (Bricaud et al. 1981, Carder et al. 1989). In case 1 waters, CDOM is assumed to result from $in situ$ primary productivity, so absorption from CDOM should vary proportionally with chl concentrations (Carder et al. 1989, Twardowski and Donaghay 2001). In case 2 waters, CDOM is not assumed
Figure 1.9: CDOM absorption curves measured by Kowalczuk et al. (2005) in the Baltic Sea coastal zone (solid), Babin et al. (2003b) in the Atlantic Ocean (dashed), and D’Sa et al. (2006) in the Mississippi River influenced Gulf of Mexico (dot-dashed).

to vary linearly with chl concentrations because of inputs from terrestrial sources (Twardowski and Donaghay 2001).

CDOM absorption has a consistent spectral shape, the properties of which have been reviewed in several studies (Bricaud et al. 1981, Carder et al. 1989, Twardowski et al. 2004). Examples of CDOM absorption characteristics in several water bodies are provided in Fig. (1.9), include coastal waters (Baltic Sea and Gulf of Mexico) and open ocean (Atlantic). CDOM absorption is greater in the blue wavelengths compared to green, increasing the blue-green ratio commonly used with empirical chl algorithms (Sathyendranath et al. 2001).

In the Strait of Georgia, higher CDOM absorption is expected due to terrestrial runoff, the relative shallowness of the Strait around the shores, the decomposition of phytoplankton cells, and the limited exchange with open ocean waters (Twardowski and Donaghay 2001).
1.5 Thesis Methods

Methods related to the bio-optical algorithm evaluations are provided in Chapter 2 (Section 2.3), while the atmospheric correction evaluation methods are presented in Chapter 3 (Section 3.3). Coordinates for sampling stations used in the bio-optical algorithm evaluation are provided in Appendix B.

At several stations listed in Appendix B, multiple above-water reflectance measurements were taken and the individual measurements are plotted for each station in Appendix C. For the bio-optical algorithm study in Chapter 2, the average of all the spectra at a station was used to represent the station.

Chl measurements used to evaluate the algorithms were collected using the method described in Chapter 2 and are provided in Appendix E. On each day of the cruise, three blank filters were collected with filtered deionized water and are represented by Station Names as ‘BlankXXXX’ with XXXX representing the month and day of collection. At several stations, multiple samples were collected and are provided in columns ‘Samples 1 - 3’ with the mean and standard deviation of the samples provided in the ‘Mean’ and ‘Std.’ column, respectively. Lab duplicates were also processed, which are station samples that were measured a second time by the High Performance Liquid Chromatography (HPLC) instrument. Lab duplicates are identified by the station name with the suffix ‘(Lab Dup.)’ and provide estimate of replicability of the instrument. In addition to replicates from a single cast, at a few stations a second cast was collected and are identified as ‘(Cast 2)’.

CDOM absorption was measured from the filtrate of a sample that sequentially passes through a 0.7 μm and 0.2 μm filter. Unlike *chl* samples, triplicate CDOM samples were only collected during the April cruise and only single samples were collected during the July cruise due to logistic and time constraints (Appendix D). Single blank samples were collected each day and are represented by the station names
'BlankXXXX' with XXXX representing the month and day of collection. Absorption measurements associated with the July samples are more accurate than those collected in April. This is related to increasing the integration time of measurements with the spectrophotometer and increasing the precision of the output from the spectrophotometer software package.

Total suspended solid (TSS) measurements are provided in Appendix F and includes multiple samples at each station. Similar to the chl samples, multiple casts were collected and these additional casts are identified as '(Cast 2)'.

At several stations, such as the July TSS concentration at station 'S2-3', large variability was observed between replicates. This large variability may be related to the configuration of sample bottles during collection. To collect the three litres of water for a given sample, two 5 l Niskin bottles need to be deployed in close succession to collect three samples in a single cast. With the bottles having an approximate length of 70 cm, there can be nearly 1 m between bottle centres that would represent the surface water sample. The close grouping of two samples and a single sample with a drastically different value could be explained by two samples usually collected from one Niskin bottle and a single sample collected from the second bottle. With no way to identify samples with the appropriate Niskin bottle, the mean of all the samples at a station were taken.
Chapter 2

Bio-optical algorithm evaluation for MODIS for western Canada coastal waters: an exploratory approach using in situ reflectance

2.1 Introduction

The use of satellite imagery has proven effective for deriving biophysical variables in optically deep waters dominated by phytoplankton at temporal and spatial scales difficult to attain with direct field measurements (Sathyendranath et al. 2004b). Chlorophyll-a (chl) concentrations have typically been the main biophysical variable derived from ocean-colour imagery. When estimating chl concentrations, algorithms are commonly empirical or semi-analytical based. Empirical approaches rely on a specific spectral feature, such as a spectral ratio modelled to biophysical measurements using statistical regression. Semi-analytical algorithms rely on greater knowledge of the optical properties of the water column and try to isolate the spectral influence of several optical variables (IOCCG 2006).

Historically, research has focused on developing chl algorithms for ocean-colour
imagery of open-ocean waters, typically referred to as case 1 waters (IOCCG 2000). With case 1 waters, chl is assumed to be the dominant optical constituent and all other optical constituents are limited or co-vary with chl concentrations. In coastal terrestrially influenced water bodies, all major optical constituents, including suspended particles and chromophoric dissolved organic matter, can vary independently. These regions are more commonly classified as case 2 waters (Gordon and Morel 1983). Algorithms developed for open-ocean waters typically do not perform well in these optically complex case 2 waters. To accommodate coastal environments, algorithms based on case 1 waters need to be evaluated and possibly modified (IOCCG 2000, Darecki and Stramski 2004, Gower et al. 2005, Garcia et al. 2005).

In addition to the optical complexity of case 2 water, ocean-colour chl algorithms have shown reduced performance in open water conditions with latitudes above \(\sim 50^\circ\) (IOCCG 2000). In these regions, phytoplankton community composition impacts the specific absorption properties with varying accessory pigments and pigment packaging effects. Phytoplankton typically found at higher latitudes, such as diatoms, have lower specific absorption properties in the blue portion of the spectrum compared to phytoplankton at lower latitudes (Sathyendranath et al. 2001).

The Strait of Georgia, located between Vancouver Island and the mainland of British Columbia, is an area of environmental and economic importance to the west coast of Canada. The Strait is a large estuary-like coastal basin with several tributaries, bays, inlets, and sounds. The tributaries provide both freshwater and suspended material, the largest source of which is the Fraser River (Johannessen et al. 2003). Terrestrial inputs coupled with nutrient-rich deep water from the Pacific Ocean and mixing forces produce a highly productive seasonal system (Li et al. 2000).

Links between physical and biological dynamics in the Strait have been the focus of current research (Collins 2005, Masson 2006). However, these studies are primarily based on ship measurements. The broad spatial scale and temporal frequency of
ocean-colour sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on the NASA Aqua satellite, may provide a consistent observational platform to gain insight into the relationship between physical and biological processes (Harrison et al. 1983, Li et al. 2000).

With these needs in mind, the focus of this study was the evaluation of ocean-colour algorithms for estimating \(chl\) concentrations in the Strait of Georgia. The following algorithms were evaluated: the empirical OC3M (O’Reilly et al. 2000), semi-analytical Garver-Siegel-Maritorena version 1 (GSM01) (Maritorena et al. 2002), and a modified GSM01. The OC3M algorithm was selected because of its common use in global \(chl\) monitoring. The GSM01 algorithm was selected because it can easily be modified for use in other applications, such as for specific coastal waters, by changing the individual bio-optical components (Magnuson et al. 2004, IOCCG 2006). Modifications to the GSM01 algorithm focused on the inherent optical properties used with the algorithm. Biophysical measurements and \textit{in situ} hyperspectral radiometric measurements modelled to MODIS spectral bands were used to evaluate the various algorithms. In addition to evaluating these algorithms, different inherent optical property (IOP) models were evaluated for use with the GSM01 algorithm.

\section*{2.2 Bio-optical Algorithm Background}

\subsection*{2.2.1 OC3M Algorithm}

The empirical OC3M algorithm is extended from the OC4 and OC2 algorithms developed for the SeaWiFS sensor and adapted to the spectral bands of MODIS. The algorithm is statistically derived based on \(chl\) concentrations ranging from 0.0008 to 90 mg m\(^{-3}\). However, most of the measurements have concentrations between 0.08 and 3 mg m\(^{-3}\) (O’Reilly et al. 2000, Bailey and Werdell 2006). Standard \(chl\) concentration images produced by NASA’s Ocean Color Group using MODIS imagery are based on the OC3M algorithm, defined as
\begin{align*}
\text{Chl} & = 10.0^{(0.2830 - 2.7533R_{3M} + 1.4572R_{3M}^2 + 0.6593R_{3M}^3 - 1.4034R_{3M}^4)} \quad (2.1) \\
R_{3M} & = \log_{10} \left(\frac{\max[R_{rs}(443), R_{rs}(488)]}{R_{rs}(551)} \right) \quad (2.2)
\end{align*}

where \textit{max} specifies the greater of the two values and \(R_{3M} \) is the band ratio that emphasizes the absorption by \textit{chl} in the blue wavelengths in relation to green reflectance.

\subsection*{2.2.2 GSM01 Algorithm}

The GSM01 algorithm uses a Levenberg-Marquardt nonlinear least-squares procedure to fit modelled to measured remote-sensing reflectance (Maritorena et al. 2002). To derive modelled remote-sensing reflectance at a particular wavelength, \(\hat{R}_{rs}(\lambda) \), a semi-analytical model is used (Gordon et al. 1988b) and is defined as

\begin{equation}
\hat{R}_{rs}(\lambda) = \Re \frac{f'}{Q} \left(\frac{b_b(\lambda)}{b_b(\lambda) + a(\lambda)} \right) \quad (2.3)
\end{equation}

where the \(\Re, f', \) and \(Q \) represent the air-water interface, the transition from the quasi-single-backscatter albedo to subsurface upwelling irradiance, and the angular distribution of the upwelling irradiance, respectively. The \(f'/Q \) term varies with viewing geometry and inherent optical properties (IOPs) properties, such as the volume scattering function (Morel et al. 2002, Loisel and Morel 2001, Park and Ruddick 2005). In the standard GSM01 algorithm, these terms are set to a quadratic formula (Eq. (2.4)) with \(g_i = (0.0949, 0.0794) \) and represent the remote-sensing reflectance below the air-water interface, \(r_{rs}(\lambda) \), as defined in Eq. (2.5).

\begin{equation}
\frac{f'}{Q} \left(\frac{b_b(\lambda)}{b_b(\lambda) + a(\lambda)} \right) = \sum_{i=1}^{2} g_i \left(\frac{b_b(\lambda)}{b_b(\lambda) + a(\lambda)} \right)^i \quad (2.4)
\end{equation}

\begin{equation}
r_{rs}(\lambda) = \frac{f'}{Q} \left(\frac{b_b(\lambda)}{b_b(\lambda) + a(\lambda)} \right) \quad (2.5)
\end{equation}
While the R term in Eq. (2.3) varies with wind speed and wavelength at solar zenith angles $> 60^\circ$ (Gordon 2005, Wang 2006b), the relationship described by Lee et al. (1999) and shown in Eq. (2.6) was used to relate above-water remote-sensing reflectance, $R_{rs}(\lambda)$, to remote-sensing reflectance below the air-water interface.

$$R_{rs}(\lambda) = \frac{0.52r_{rs}(\lambda)}{1 - 1.7r_{rs}(\lambda)}$$ (2.6)

$b_b(\lambda)$ and $a(\lambda)$ in Eq. (2.3) represent the total backscatter and absorption properties of the water column, respectively. Estimation of the influence from each optical constituent is dependent upon the assumption that each constituent maintains consistent spectral characteristics and is vertically homogeneous in the upper portion of the water column. The combined influence of the optical constituents on $\hat{R}_{rs}(\lambda)$ are described through Eq. (2.3), (2.7), and (2.8).

$$b_b(\lambda) = b_{bw}(\lambda) + b_{bp}(\lambda)$$ (2.7)

$$a(\lambda) = a_w(\lambda) + a_{ph}(\lambda) + a_{dg}(\lambda)$$ (2.8)

In the GSM01 algorithm, the IOPs of phytoplankton absorption, $a_{ph}(\lambda)$, particulate backscatter, $b_{bp}(\lambda)$, and the combined absorption of non-algal particles and chromophoric dissolved organic matter, $a_{dg}(\lambda)$, are defined by Eq. (2.9), (2.10), and (2.11), respectively. The absorption and backscatter of water are represented by $a_w(\lambda)$ and $b_{bw}(\lambda)$, respectively. The coefficients for water absorption are provided by Pope and Fry (1997) and backscatter are provided by Smith and Baker (1981).

$$a_{ph}(\lambda) = Chl \, a_{ph}^*(\lambda)$$ (2.9)

$$b_{bp}(\lambda) = b_{bp}(\lambda_0)(\lambda/\lambda_0)^{-\eta}$$ (2.10)

$$a_{dg}(\lambda) = a_{dg}(\lambda_0)exp[-S_{cdom}(\lambda - \lambda_0)]$$ (2.11)
Table 2.1: Phytoplankton specific absorption coefficients (a_{ph}^*) used in conjunction with Eq. (2.9) to estimate chl concentrations (Maritorena et al. 2002). Wavelengths are based on SeaWiFS bands and are linearly interpolated to MODIS band centres.

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>412</th>
<th>443</th>
<th>490</th>
<th>510</th>
<th>555</th>
<th>670</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_{ph}^* (m2(Chl mg)$^{-1}$)</td>
<td>0.00665</td>
<td>0.05582</td>
<td>0.02055</td>
<td>0.01910</td>
<td>0.01015</td>
<td>0.01424</td>
</tr>
</tbody>
</table>

The standard GSM01 algorithm defines the values of S_{cdom}, η, and $a_{ph}^*(λ)$ as constants, which represent the exponential absorption slope of CDOM and non-algal particles, the power law distribution for particulate backscatter, and the specific absorption properties of phytoplankton, respectively. All of these values were estimated by Maritorena et al. (2002) using a simulated annealing approach from a global data set. To model the optical constituents to remote-sensing reflectance, the standard GSM01 algorithm uses 443 nm as a reference wavelength ($λ_0$), an S_{cdom} of 0.0206 nm$^{-1}$ and an η of 1.0337. The values for $a_{ph}^*(λ)$ based on SeaWiFS bands (Table 2.1) are linearly interpolated to MODIS band centres.

2.3 Methods

Biophysical and radiometric measurements, collected during two research cruises on the R/V John Strickland, were used to evaluate the OC3M, standard GSM01, and modified GSM01 algorithms. The two cruises were carried out in late April (early spring) and early July (summer) in 2006, sampling the stations shown in Fig. 2.1. At each station above-water hyperspectral radiometric measurements were acquired and subsurface water samples collected to measure chl concentration, CDOM absorption (a_{cdom}), and total suspended solid (TSS) concentrations. Above-water remote-sensing reflectance was derived from spectral measurements and modelled to the spectral bands of MODIS (see below).

2.3.1 Optical Measurements

Above-water radiometric measurements were taken with a Satlantic HyperSAS instrument package, which includes a sea surface radiance ($L_t(λ)$), sky radiance ($L_s(λ)$),
Figure 2.1: Sampling stations in the Strait of Georgia used in this study. The shaded area identifies the Fraser River exclusion region that were excluded when evaluating the Fraser River plume influence.
and sky irradiance \((E_s(\lambda))\) sensor. With each radiometric acquisition, effort was made to maintain a fixed geometry with the vessel bow or stern pointed at the sun, the instrument at a 90° azimuth, and the \(L_t\) sensor at a 40° angle from nadir (Mobley 1999). At each station, approximately 2 to 3 minutes of radiometric measurements were acquired and the lowest 5% reflectance in the NIR were used to produce an average reflectance spectrum (Hooker and Morel 2003). Radiometric measurements were converted to above-water remote-sensing reflectance, \(R_{rs}(\lambda)\), according to Eq. (2.12), (2.13), and (2.14) (Ruddick et al. 2006).

\[
R_{rs}(\lambda) = \frac{L_t(\lambda) - \rho_{sky} L_s(\lambda)}{E_s(\lambda)} \tag{2.12}
\]

\[
\rho_{sky} = 0.0256 + 0.00039W + 0.000034W^2, \text{ when } \frac{L_s(750)}{E_s(750)} < 0.05 \tag{2.13}
\]

\[
\rho_{sky} = 0.0256, \text{ when } \frac{L_s(750)}{E_s(750)} \geq 0.05 \tag{2.14}
\]

The \(\rho_{sky}\) value represents the proportion of sky radiance that is reflected off the surface of the water and is dependent upon wind speed, \(W\), and the proportion of cloud cover in the sky radiance measurements, as identified by the ratio \(L_s(750)/E_s(750)\). Under clear sky conditions, \(L_s(750)/E_s(750) < 0.05\), the \(\rho_{sky}\) value varies based on the water surface roughness and the associated increase in bright reflections off the water surface. For cloudy conditions, \(L_s(750)/E_s(750) \geq 0.05\), the sky is more uniform and there is limited glint, resulting in \(\rho_{sky}\) being independent of the wind speed (Mobley 1999, Ruddick et al. 2006).

To limit variability in the water-leaving radiance related to the air-water interface at higher solar zenith angles, radiometric measurements were limited to those taken
with a solar zenith angle less than 60° (Gordon 2005, Wang 2006b). In addition to the solar zenith angle criteria, two stations were excluded from this analysis, one due to an excessively rough water surface and another due to negative reflectance at 700 nm. The negative reflectance is likely related to an overestimation of the ρ_{sky} in Eq. (2.12) due to cloud or wind variability at the station. A total of 28 stations were used in this study.

The final hyperspectral remote-sensing reflectance measurements were modelled to the spectral bands of the MODIS Aqua sensor using spectral response functions provided by NASA Ocean Color Group website (http://oceancolor.gsfc.nasa.gov/DOCS/RSR_Tables.html) and a weighted mean approach.

2.3.2 Biophysical Measurements

To measure CDOM absorption, a_{cdom}, samples were filtered with a prepared 0.2 μm Pall® filter and the filtrate frozen in amber bottles for the remainder of the cruise. The 0.2 μm filters were prepared by filtering 250 ml of deionized water and drying the filter at 100°C for an hour. Absorption properties of the filtrate were measured using an Ocean Optics 2000USB spectrophotometer with a 100 mm cuvette and deionized water as a reference sample. CDOM absorption data was processed using the methods defined by Pegau et al. (2003), which included the conversion from absorbance to absorption and the removal of offsets. To remove offsets from the final measurements, the average absorption coefficient from 690 to 710 nm was subtracted from all wavelengths. Absorbance, $A(\lambda)$, measured by the spectrophotometer was converted to absorption, $a(\lambda)$, using Eq. (2.15) with a path length, ℓ, of 100 mm.

$$a(\lambda) = 2.303 \frac{A(\lambda)}{\ell}$$ (2.15)

Determination of total suspended solid (TSS) concentrations was accomplished
using a gravimetric method. Each TSS water sample of 1 to 3 litres was filtered with a prepared 0.7 µm Whatman GF/F filter. After the sample was filtered, 50 ml of deionized water was filtered to remove salts. The filters were then stored for the remainder of the cruise. To prepare filters, 250 ml of deionized water was filtered and the filters were heated to 450°C for an hour to dry and remove any remaining organic matter. Following the cruise, each filter was dried at 60°C for several hours, until the weight stabilized (Clesceri et al. 1998).

Chl samples were collected by filtering 1 to 3 litres of water through a 0.7 µm Whatman GF/F filter. Chl samples were filtered on the day of collection and the resulting filters frozen at -20°C until the samples were processed. In the lab, pigments were extracted by macerating the filter in a 90% acetone solution under low light conditions, allowed to sit overnight at -20°C, and centrifuged the following day to remove filter fibres. The samples were processed using High Performance Liquid Chromatography (HPLC) with an eluent gradient defined by Arar (1997) and modified to improve peak separability.

2.3.3 GSM01 Modifications

The GSM01 algorithm implemented in the SeaDAS version 5.0 software package (Baith et al. 2001) was modified for use in this study. Modifications include the use of a different CDOM absorption model and a reinterpretation of phytoplankton absorption for higher latitude waters to estimating chl concentrations.

To modify the CDOM absorption characteristics, the spectral model of CDOM in Eq. (2.11) was replaced with the relationship defined by Twardowski et al. (2004), as

\[
a_{cdom}(\lambda) = a_{cdom}(\lambda_0) \left(\frac{\lambda}{\lambda_0} \right)^{-6.92}
\]

(2.16)

Samples from several water bodies, including Fraser River-influenced waters, were
used to develop this CDOM absorption model. While the Twardowski et al. (2004) model is based on a reference wavelength (λ_0) of 412 nm, the reference wavelength was set to 443 nm for comparison with the model defined by the standard GSM01 algorithm. It is important to note that the Twardowski et al. (2004) model is based on only absorption by CDOM and that the GSM01 algorithm uses the model to estimate the combined absorption of CDOM and non-algal particles. However, CDOM absorption typically dominates over non-algal particles in coastal waters with limited turbidity (Darecki et al. 2003, D’Sa et al. 2006).

Prior to implementing the CDOM absorption modification in the GSM01 algorithm, the suitability of the several CDOM models was evaluated. This evaluation compared the following models: (i) the Twardowski et al. (2004), (ii) the standard CDOM absorption exponential curve with $S_{cdom} = 0.0206$ nm$^{-1}$, (iii) and the exponential absorption curve with a more common S_{cdom} value of 0.015 nm$^{-1}$ (Lee et al. 2002). These CDOM absorption curves were compared to CDOM absorption measurements collected during this study with absorption coefficients selected at MODIS band centres.

In addition to modifying the CDOM model, the estimated phytoplankton absorption, a_{ph}, from the modified GSM01 algorithm was re-evaluated using a two-component phytoplankton absorption model developed by Devred et al. (2006). This model defines the combined absorption of two phytoplankton populations, a background population with higher specific absorption coefficients (a_1^*) and a bloom population with lower coefficients (a_2^*). The transition between the specific absorption properties of the two populations is associated with chl concentration using

$$a_{ph}(\lambda) = C_1^m[a_1^*(\lambda) - a_2^*(\lambda)][1 - \exp(-S_{ph} Chl)] + a_2^*(\lambda) Chl \quad (2.17)$$

where S_{ph} is a constant that specifies the transition between the two populations using an exponential relationship and C_1^m represents the maximum chl concentra-
Figure 2.2: Modelled phytoplankton absorption, $a_{ph}(440)$, in relation to chl concentrations for the standard GSM01 algorithm (solid line), the Vancouver Island two-component (dashed line), and the general two-component models (dotted line). Two chl ranges are provided, (a) from 0 to 100 mg m$^{-3}$ and (b) 0 to 10 mg m$^{-3}$.

The variability of $a_{ph}(440)$ in relation to chl concentrations for the standard GSM01, Vancouver Island two-component, and general two-component models are shown in Fig. 2.2. To apply the two-component models to the modified GSM01 algorithm, $a_{ph}(440)$ of the models was taken as equivalent to $a_{ph}(443)$ from the modified GSM01 algorithm.

The Vancouver Island two-component model has a nonlinear transition in $a_{ph}(440)$ from higher specific absorption coefficients of the background phytoplankton popu-
lation to lower specific absorption of the bloom population (Fig. 2.2(b)). This is contrasted by the linear relationship of $a_{ph}(443)$ in the GSM01 algorithm. The non-linear transition is also observed with the general two-component model, except at a lower range of chl concentrations ($0 \sim 2$ mg m$^{-3}$). The different specific absorption properties associated with the Vancouver Island compared to the general model is due to diatom blooms in the Vancouver Island samples. In other regions sampled by the Devred et al. (2006) study, smaller phytoplankton cells more commonly associated with oligotrophic waters and with lower specific absorption coefficients, compared to the Vancouver Island samples, were found.

To utilize the two-component phytoplankton absorption models, $a_{ph}(443)$ was estimated using Eq. (2.9) and the chl concentration from the modified GSM01 algorithm. The $a_{ph}(443)$ was then re-evaluated using a look-up table (LUT) based on the two-component model. A corresponding chl concentration was then identified for the $a_{ph}(443)$ value from the modified GSM01 algorithm. The LUT was generated with chl values ranging from 0 to 100 mg m$^{-3}$ with 0.1 mg m$^{-3}$ steps and the corresponding $a_{ph}(440)$ calculated from Eq. (2.17) for each of the two previously defined two-component models.

2.3.4 Algorithm Evaluation

To evaluate results of the algorithms in relation to measured biophysical values, the Root-Mean-Square-Error ($RMSE$) defined as Eq. (2.18) was calculated (IOCCG 2006). In addition to $RMSE$, the Relative Percent Difference (RPD) and Absolute Difference (AD) defined in Eq. (2.19) and (2.20), respectively, were used to evaluate IOP models.

$$RMSE = \left(\frac{1}{N} \sum_{i=1}^{N} \left(\frac{\log_{10}(\chi_{i}^{model}) - \log_{10}(\chi_{i}^{true})}{n-2} \right)^{2} \right)^{1/2}$$ (2.18)
\[RPD = \frac{\chi_{model} - \chi_{true}}{\chi_{true}} \]

(2.19)

\[AD = |\chi_{model} - \chi_{true}| \]

(2.20)

\(\chi_{model} \) and \(\chi_{true} \) represent the modelled and measured biophysical values, respectively, and \(n \) is the number of samples. When summarizing a model’s fit, the absolute \(RPD \) was used for calculating the mean to avoid offsetting positive and negative values from cancelling out errors in the model’s fit. For this study, statistical significance is taken as a confidence level greater than 95%.

When evaluating the OC3M and GSM01 algorithms, considerations were made for the influence from the Fraser River plume, because high turbidity was expected to influence \(chl \) estimates (Woźniak and Stramski 2004). The OC3M algorithm was evaluated with all stations and without stations directly under the influence of the Fraser River. Stations removed are identified in the shaded region on Fig. 2.1, which corresponds to an approximate 4 km buffer from the Fraser River delta tidal banks representing the most turbid region of the plume (Kostaschuk et al. 1993). To limit the Fraser River influence on the modified GSM01 algorithm, the advantage of additional IOP estimates from the algorithm was used and thresholds on estimated \(a_{dg}(443) \) and \(b_{bp}(443) \) were evaluated. This approach should identify the transition from less turbid conditions of the Strait to Fraser River-influenced regions with greater terrestrial influence.

2.4 Results

2.4.1 Field Data

Results showed a range of conditions in the biophysical properties of the Strait of Georgia, from the central portions of the Strait characterized by lower \(a_{cdom}(443) \)
Table 2.2: Field measured minimum-maximum(mean) values from cruise data of surface samples used in this study.

<table>
<thead>
<tr>
<th>Dates</th>
<th>n</th>
<th>TSS (g m(^{-3}))</th>
<th>Chl (mg m(^{-3}))</th>
<th>(a)(_{\text{cdom}})(443) (m(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr 25 - 28</td>
<td>10</td>
<td>2.65-11.88(5.06)</td>
<td>0.55-5.13(2.61)</td>
<td>0.21-0.79(0.44)</td>
</tr>
<tr>
<td>July 12 - 17</td>
<td>18</td>
<td>1.53-15.24(3.77)</td>
<td>0.39-8.46(3.74)</td>
<td>0.22-0.40(0.32)</td>
</tr>
</tbody>
</table>

(0.22 - 0.48 m\(^{-1}\)) and TSS concentrations (1.76 - 3.47 g m\(^{-3}\)), to significant terrestrial influence closer to the Fraser River plume with relatively higher \(a\)\(_{\text{cdom}}\)(443) (0.21 - 0.79 m\(^{-1}\)) and TSS concentrations (1.53 - 15.24 g m\(^{-3}\)) (Fig. 2.1). Chl concentrations were found to have the greatest variability in the southern portion (0.39 - 8.46 mg m\(^{-3}\)) compared to the central portion (1.55 - 6.48 mg m\(^{-3}\)). Table 2.2 summarizes these results.

Maximum \(chl\) concentrations during the cruises were found to be lower than concentrations found in other studies in this region (Harrison et al. 1983, Li et al. 2000), which is likely related to the timing of the cruises missing spring bloom conditions in the surface waters. However, the \(chl\) concentration range from this study was similar to that found in summer surface waters in other studies of the Strait (1.91 - 6.87 mg m\(^{-3}\)) (Radi et al. 2007). During the April 2006 cruise, the highest surface \(chl\) concentrations were found at the two southern most stations with concentrations of 3.94 and 5.13 mg m\(^{-3}\). In July, the highest \(chl\) concentrations were west of the Fraser River plume with concentrations ranging from 5.99 to 8.46 mg m\(^{-3}\).

Concentrations of TSS in the central portions of the Strait were higher than those found in more open-ocean waters (0.59 ~ 2.84 g m\(^{-3}\)) (Tilstone et al. 2005) and similar to other river influenced regions (0.99 ~ 7.24 g m\(^{-3}\)) (D’Sa et al. 2006). At the stations closest to the Fraser River exclusion region, TSS concentrations (6.72 - 15.24 g m\(^{-3}\)) were similar to those found in past studies of the Strait (5 ~ 200 g m\(^{-3}\)) (Kostaschuk et al. 1993). Central Strait CDOM absorption properties at 443 nm were higher than those found in more open-waters (< 0.01 ~ 0.13 m\(^{-1}\)) (Morel et al. 2006) and open-waters under terrestrial influence (0.07 - 0.21 m\(^{-1}\)) (D’Sa et al. 2006).
2006). The average CDOM absorption in the Strait \(a_{cdom}(443) = 0.36 \text{ m}^{-1} \) was similar to that found in coastal areas of the Baltic Sea during summer, with a mean \(a_{cdom}(443) = 0.31 \text{ m}^{-1} \) (Kowalczuk et al. 2005), and comparable to measurements by Twardowski and Donaghay (2001) in the southern portion of the Strait (0.16 \(\sim \) 0.32 m\(^{-1}\)).

Comparison of absorption properties from individual IOPs is a general approach to classifying the dominant optical constituent and the type of water mass (Prieur and Sathyendranath 1981, IOCCG 2000). Using the Devred et al. (2006) model in Eq. (2.17) with the Vancouver Island two-component model, for an average \(chl \) concentration of 3.34 mg m\(^{-3}\), the estimated \(a_{ph}(440) \) was 0.13 m\(^{-1}\). The average measured \(a_{cdom}(443) \) was 0.36 m\(^{-1}\), which indicates that CDOM absorption dominates over phytoplankton absorption, thus classifying the Strait as a case 2 water. Although there was no non-algal particulate absorption measurements, based on the higher TSS concentrations near the Fraser River, waters in the Strait likely transition from CDOM dominant case 2 waters in the central Strait to suspended particulate dominant case 2 waters at the mouth of the Fraser River.

2.4.2 CDOM Model Evaluation

As mentioned in Section 2.3.3, CDOM absorption models were evaluated before implementing the modified GSM01 algorithm. The relative percent difference (\(RPD \)) and absolute difference (\(AD \)) between measured CDOM absorption and the three CDOM models (Twardowski et al. (2004), standard GSM01, and Lee et al. (2002)) are provided in Table 2.3 and Fig. 2.3.

The CDOM absorption model in the standard GSM01 algorithm does not match measured absorption coefficients with a mean absolute difference of 0.045 m\(^{-1}\) and a mean absolute \(RPD \) of 27.5\% (Table 2.3). The Twardowski model had the best fit to measured \(a_{cdom} \) of the three models with a mean absolute \(RPD \) of 2.0\% and \(AD \) of 0.003 m\(^{-1}\), compared to the Lee model with a mean absolute \(RPD \) and \(AD \).
Table 2.3: Deviation of measured CDOM absorption from several models using MODIS band centres based on the mean Absolute Difference (\(AD\)) and the mean absolute Relative Percent Difference (\(RPD\)) in the 412 to 551 nm range.

<table>
<thead>
<tr>
<th>Model</th>
<th>(AD) (m(^{-1}))</th>
<th>Absolute (RPD) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twardowski Model</td>
<td>0.003</td>
<td>2.0</td>
</tr>
<tr>
<td>Lee Model ((S_{cdom} = 0.015) nm(^{-1}))</td>
<td>0.009</td>
<td>5.9</td>
</tr>
<tr>
<td>Standard GSM01 ((S_{cdom} = 0.0206) nm(^{-1}))</td>
<td>0.045</td>
<td>27.5</td>
</tr>
</tbody>
</table>

Figure 2.3: Comparison of CDOM models with CDOM absorption measurements based on MODIS Aqua bands. The models are compared to measured values using the Relative Percent Difference (\(RPD\)) (Eq. (2.19)).

...of 5.9\% and 0.009 m\(^{-1}\), respectively.

2.4.3 Algorithm Evaluation

Statistical results of the OC3M, standard GSM01, and modified GSM01 algorithms in relation to biophysical measurements are summarized in Tables (2.4), (2.5), and (2.6), respectively.

The OC3M algorithm provided an \(r^2 = 0.345\) when \(chl\) estimates were compared to measured concentrations (Fig. 2.4 and Table 2.4). Removing stations in the direct vicinity of the Fraser River tidal region (Fig. 2.1) improved \(chl\) estimates with an \(r^2 = 0.552\) and a lower \(RMSE\) was observed (Table 2.4). However, overestimation of lower \(chl\) concentrations was still observed. This overestimation was similarly observed in the Baltic Sea where \(chl\) concentrations vary from 0.3 to 100 mg m\(^{-3}\) (Darecki and Stramski 2004). This may be related to similar mean CDOM absorption
Figure 2.4: Comparison of OC3M algorithm and measured chl concentrations. Stars are stations within the Fraser River exclusion region east of the dashed line in Fig. 2.1. The dashed line is the line of best fit for all stations and the dot-dashed line is the best fit with Fraser River points excluded.

Table 2.4: Results of the OC3M algorithm compared with measured chl concentrations for all stations and stations in the Fraser River area excluded (Fraser River Exc.).

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>r^2</th>
<th>p-value</th>
<th>RMSE</th>
<th>intercept</th>
<th>slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC3M (All Stations)</td>
<td>28</td>
<td>0.345</td>
<td>0.001</td>
<td>0.391</td>
<td>3.744</td>
<td>0.403</td>
</tr>
<tr>
<td>OC3M (Fraser River Exc.)</td>
<td>24</td>
<td>0.552</td>
<td>< 0.001</td>
<td>0.308</td>
<td>3.205</td>
<td>0.484</td>
</tr>
</tbody>
</table>

coefficients found in both the Strait ($a_{cdom}(443) = 0.36 \text{ m}^{-1}$) and in the coastal zone of the Baltic Sea ($a_{cdom}(443) = 0.33 \text{ m}^{-1}$) (Darecki et al. 2003), which are higher than those found in more open-ocean waters ($< 0.01 \sim 0.13 \text{ m}^{-1}$) (Morel et al. 2006). CDOM absorbs more in the blue compared to green wavelengths, therefore increasing the blue/green ratio associated with the OC3M algorithm (Eq. 2.2) (Sathyendranath et al. 2001).

Estimation of chl concentrations using the standard GSM01 algorithm was not statistically significant with an $r^2 = 0.001$ (Fig. 2.5(a) and Table 2.5). The reduced performance of this algorithm in higher absorption and backscattering environments has also been found in other studies (IOCCG 2006). As identified with the modified GSM01 algorithm (discussed later), this may be related to the limited characterization of particulate optical properties within Fraser River-influenced regions.
While the algorithm was not effective at estimating chl, it was able to identify higher CDOM absorption and particulate backscatter with statistically significant r^2 values of 0.584 and 0.866, respectively (Fig. 2.5(b) and (c)). The higher $a_{cdom}(443)$ slope of 3.686 may partially be due to the increase absorption related to non-algal particles estimated in the GSM01 $a_{dg}(443)$, which was not reflected in the $a_{cdom}(443)$ measurements. Although absorption from non-algal particles has been found to be as high as CDOM absorption in turbid waters (Doxaran et al. 2006), the relatively high slope and negative intercept suggest poor separation of a_{dg} from the other optical constituents in the more turbid waters of the Strait.

With the inclusion of the Twardowski et al. (2004) CDOM absorption model into the modified GSM01 algorithm, the statistical relationship for chl concentrations was slightly improved with a slope closer to one compared to measured chl concentrations. However, the relationship was still not statistically significant (Fig. 2.6 and Table 2.6). The improved chl relationship is possibly related to better separation between

Figure 2.5: Comparison of the standard GSM01 algorithm results with measured (a) chl concentrations, (b) CDOM absorption, and (c) TSS. The solid line represents a one-to-one relationship and the dashed line is the linear best fit.

Table 2.5: Results of the standard GSM01 algorithm.

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>r^2</th>
<th>p-value</th>
<th>RMSE</th>
<th>intercept</th>
<th>slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chl</td>
<td>28</td>
<td>0.001</td>
<td>0.896</td>
<td>0.799</td>
<td>16.717</td>
<td>0.269</td>
</tr>
<tr>
<td>$a_{cdom}(443)$</td>
<td>28</td>
<td>0.584</td>
<td>< 0.001</td>
<td>0.285</td>
<td>-0.734</td>
<td>3.686</td>
</tr>
<tr>
<td>TSS</td>
<td>28</td>
<td>0.866</td>
<td>< 0.001</td>
<td>N/A</td>
<td>-0.106</td>
<td>0.044</td>
</tr>
</tbody>
</table>
Figure 2.6: Comparison of the modified GSM01 algorithm results with measured (a) \(chl\) concentrations, (b) CDOM absorption, and (c) TSS. The solid line represents a one-to-one relationship and the dashed line is the linear best fit.

Table 2.6: Results of the modified GSM01 algorithm.

<table>
<thead>
<tr>
<th></th>
<th>(n)</th>
<th>(r^2)</th>
<th>p-value</th>
<th>RMSE</th>
<th>intercept</th>
<th>slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chl</td>
<td>28</td>
<td>0.022</td>
<td>0.449</td>
<td>0.481</td>
<td>5.215</td>
<td>0.316</td>
</tr>
<tr>
<td>(a_{cdom}(443))</td>
<td>28</td>
<td>0.620</td>
<td>< 0.001</td>
<td>0.281</td>
<td>-0.322</td>
<td>2.688</td>
</tr>
<tr>
<td>TSS</td>
<td>28</td>
<td>0.935</td>
<td>< 0.001</td>
<td>N/A</td>
<td>-0.051</td>
<td>0.025</td>
</tr>
</tbody>
</table>

The low \(r^2\) value with the modified GSM01 \(chl\) estimates (Fig. 2.6(a)) is mainly related to approximately 8 stations in the southern Fraser River plume region having overestimated \(chl\) concentrations. A possible cause for this overestimating is the optical influence of particulate backscatter and pigment absorption, which is reflected in the general lowering of \(b_{bp}(443)\) estimates and a slight improvement in the relationship between TSS and \(b_{bp}(443)\) (Fig. 2.6(c)). The relationship between measured \(a_{cdom}(443)\) and modified GSM01 estimated \(a_{dg}(443)\) improved with a slope value closer to one, an intercept value closer to zero, and a higher \(r^2\). As discussed in relation to the standard GSM01 algorithm, a deviation from a slope of one is expected for higher \(a_{cdom}(443)\) values because of increased non-algal particulate absorption in the GSM01 \(a_{dg}(443)\) term, which is not represented in the \(a_{cdom}(443)\) measurement. With non-algal particulate absorption found to be greater than CDOM absorption in turbid waters (Doxaran et al. 2006), the slope value of 2.688 can be expected in the Fraser River-influenced waters.
limited characterization of particulate optical properties in the Fraser River plume. With particulate scattering being the dominant optical constituent in turbid environments (Morel and Belanger 2006), it is important to have a relatively accurate representation of their optical properties so that the spectral characteristics of other constituents, such as phytoplankton absorption, are not masked by unaccounted for attenuation. In Fig. 2.7 the absolute difference (AD) between estimated and measured chl concentrations is compared to the modified GSM01 $b_{bp}(443)$ and $a_{dg}(443)$. The greatest difference in chl values is encountered when $a_{dg}(443) > 0.8 \text{ m}^{-1}$ and $b_{bp}(443) > 0.05 \text{ m}^{-1}$.

The 8 stations with $a_{dg}(443) > 0.8 \text{ m}^{-1}$ and 9 stations with $b_{bp}(443) > 0.05 \text{ m}^{-1}$ are all in the region of the Strait with the greatest influence of the Fraser River plume. By limiting the modified GSM01 algorithm to stations with $a_{dg}(443) <= 0.8 \text{ m}^{-1}$, the statistical relationship between estimated and measured chl is improved ($r^2 = 0.690$) (Fig. 2.8(a)). This suggests that the algorithm performs well in conditions found outside the influence of the Fraser River plume. While most of the stations with $a_{dg}(443) > 0.8 \text{ m}^{-1}$ are during April 2006, it is unclear if algorithm difficulties are related to the limited characterization of particulate absorption, or backscatter, or a combination of both during the initial conditions of the Fraser River freshet.

Limiting chl estimates to regions with lower $a_{dg}(443)$ values provides a more consistent relationship with measured chl concentrations (Fig. 2.8(a) and Table 2.8). However, the relationship is not one-to-one due to a slight overestimation at lower concentrations and underestimation at higher concentrations. As previously discussed, the overestimation of chl at higher concentrations is common for algorithms developed from lower latitude chl measurements and applied to higher latitudes due to the lower specific absorption coefficients from the pigment packaging effect (Sathyendranath et al. 2001). Using the two-component absorption model developed by Devred et al. (2006), the difference in packaging effects and accessory pigments for a
Figure 2.7: Comparison of the modified GSM01 algorithm chl absolute differences with measured chl against (a) $b_{bp}(443)$ and (b) $a_{dg}(443)$. Stations from April 2006 are identified as circles and July 2006 stations are identified as triangles. The dashed line marks the possible threshold for limiting errors in chl estimates associated with particulate variability.

bloom population over a background population can be accommodated.

To accommodate the differences in packaging effect, the $a_{ph}(443)$ values estimated by the modified GSM01 algorithm were re-evaluated using the Devred et al. (2006) phytoplankton model to estimate chl concentrations. Results of this re-evaluation are shown in Fig. 2.8(b) and (c) for the general and Vancouver Island two-component phytoplankton models, respectively. Statistical results of the general two-component model did not improve agreement with measured concentrations compared to the modified GSM01 chl estimates. The Vancouver Island two-component model showed a slightly higher $RMSE$ value. However, the model did improve agreement with measured chl concentrations resulting in a slope closer to one and a slight improvement in the r^2 value to 0.702. There was an unexplained offset between measured and estimated chl, which may be associated with the specific phytoplankton absorption properties used by the GSM01 algorithm or residual non-algal particulate absorption uncharacterized by the Twardowski et al. (2004) CDOM model.

The evaluation of the two-component models was only based on the reinterpretation of $a_{ph}(443)$ with the spectral shape of the phytoplankton specific absorption
properties maintained from the standard GSM01 algorithm. With the phytoplankton specific absorption in the standard GSM01 algorithm developed using simulated annealing on a global data set, the spectral shape of the specific absorption coefficients may not accurately reflect the phytoplankton absorption in the Strait and may cause a systematic overestimation in phytoplankton absorption at 443 nm. Further improvements to the IOP characteristics in the Strait may reduce this offset.

2.5 Discussion

The simplicity of the OC3M algorithm is a benefit when used in the diverse waters found in the Strait of Georgia. The OC3M algorithm was effective at estimating chl concentrations under the greatest range of water column optical properties measured in this study. With the OC3M algorithm relying only on the ratio of two wavelengths, the spectral characterization of other inherent optical properties is not
needed (IOCCG 2006). Although a fixed region around the Fraser River mouth was used to limit the influence of turbidity on the OC3M algorithm, the region of influence may vary during different Fraser River discharge, tidal, and wind regimes. Typically, a remote-sensing reflectance threshold at 667 nm is applied to identify turbid waters and to mask chl estimates in those areas (Patt et al. 2003). Nevertheless, under higher chl concentrations, particulate associated with phytoplankton cellular structures may cause a reflectance threshold to mask phytoplankton blooms as turbid waters. To avoid this situation, a more adaptive bio-optical model technique developed by Morel and Belanger (2006) may be more effective at identifying turbid waters.

Compared to the OC3M algorithm, the semi-analytical GSM01 algorithm has the benefits of estimating and compensating for the optical influence from particulate backscatter and combined CDOM and non-algal particulate absorption. However, the characterization of particulate optical properties was a limiting factor in accurately estimating chl concentrations in Fraser River-influenced waters, thus requiring the masking of stations with greater particulate optical influence. To mask these stations, thresholds on $a_{dp}(443)$ and $b_{bp}(443)$ estimates were evaluated. A threshold that only considered stations with $a_{dp}(443) < 0.8 \text{ m}^{-1}$ improved the modified GSM01 chl r^2 from 0.022 to 0.690 and slope from 0.316 to 0.564. The statistical relationship of chl estimates was further improved by using the $a_{ph}(443)$ with a two-component phytoplankton absorption model developed from Vancouver Island samples (Devred et al. 2006), resulting in an r^2 of 0.702 and a slope of 1.100. The phytoplankton absorption model was developed from field measurements (Devred et al. 2006) and defines the transition from a background phytoplankton population with higher specific absorption coefficients to a bloom population dominated by diatoms, which have lower specific coefficients due to packaging effects (Sathyendranath et al. 2001).

Although the Vancouver Island two-component model, which is based on diatom
blooms, improved the \(chl \) relationship, diatoms do not homogeneously dominate blooms in the Strait. For example, the northern waters of the Strait have shown phytoplankton blooms dominated by non-loricate oligotrichs and dinoflagellates (Haigh and Taylor 1991) instead of diatom blooms found in the southern and central regions (Harrison et al. 1983, Stuart et al. 1998). With differences in the pigment packaging effect and accessory pigments, dinoflagellates are expected to have different specific absorption properties compared to diatoms. These differences in phytoplankton community composition affect the specific absorption properties of phytoplankton in the region and consequently, \(chl \) estimates (Sathyendranath et al. 2001). Therefore, when the phytoplankton model based on diatom blooms is indiscriminately applied to \(chl \) estimates throughout the entire Strait, errors in estimates may occur.

The reinterpretation of phytoplankton absorption coefficients with the Vancouver Island two-component model, while improving the linear relationship with measured \(chl \), had an increased \(RMSE \) of 0.362 compared to the GSM01’s \(RMSE \) of 0.227 (Table 2.7). The increased \(RMSE \) may be related to the phytoplankton specific absorption coefficients used in the GSM01 algorithm. Unaccounted for attenuation or transspectral scattering maybe compensated for in the simulated-annealing derived phytoplankton specific absorption coefficients. As noted by Maritorena et al. (2002), the specific absorption coefficients at 412 and 490 nm (Table 2.1) are lower than values typically measured in other studies (Bricaud et al. 1998) and may be related to unaccounted for attenuation from particles or CDOM. As well, the specific absorption coefficient at 670 nm is lower and may account for the fluorescence scattering, which can influence wavelengths near the peak at 685 nm (Gower et al. 1999). To reduce the \(RMSE \) associated with the Vancouver Island two-component \(chl \) estimates, three approaches may be effective. The first is to use simulated annealing with reflectance measurements from the Strait of Georgia to derive the phytoplankton specific absorption coefficients, as done in other studies (Kostadinov et al. 2007). A second
approach is to incorporate fluorescence as an additional optical component that is
dependent upon chl. The final approach is to use a band that is not as close to the
fluorescence peak at 685 nm, such as the 645 nm land band on the MODIS sensor
(Franz et al. 2006).

Another limiting factor in using the GSM01 algorithm is the fixed nature of η
(Eq. (2.10)), which is characterized by: the particle size distribution, the ratio of
organic to inorganic, and the particulate refractive index (Babin et al. 2003a). While
semi-analytical algorithms are not sensitive to small differences in η (Lee et al. 2002),
errors in particulate backscatter estimates are transferred to the absorption properties
(Dall’Olmo and Gitelson 2006). A possible method to overcome a fixed η is to use
a regression equation relating a reflectance ratio to η (Lee et al. 2002) and model it
to the particulate backscatter properties found in the Strait. This would allow for a
transition from less turbid to Fraser River-influenced waters. Spectral variability in
particulate backscatter properties in the Strait is not known. However, it is expected
to vary spatially and temporally in relation to Fraser River plume dynamics.

In addition to the fixed particulate backscatter properties, the proper definition
of non-algal particulate absorption characteristics, compared to CDOM absorption,
is important in turbid waters. As identified in coastal environments (Darecki et al.
2003, D’Sa et al. 2006) and within the Fraser River catchment (Gallie and Murtha
1992), the absorption properties of non-algal particles can be significant compared
to open-water environments. April 2006 chl estimates had the greatest absolute
difference (Fig. 2.7), even though TSS concentrations ranges were similar to those
found during July 2006 (Table 2.2). This would suggest higher non-algal particulate
absorption in Fraser River plume waters during April, before the freshet, and may
be related to a higher portion of organic particles typically found during this period
(Milliman 1980). The plume would then shift towards inorganic particles at the peak
of the freshet. To account for the absorption properties of non-algal particles, it is
important to characterize how the spectral properties differ from CDOM absorption under a range of Fraser River discharge conditions.

Three important factors have to be taken into consideration when interpreting results of this study. First, the sampling extent was spatially limited within the Strait of Georgia. With all the study samples collected in the southern and central regions, biophysical properties of the northern portion of the Strait may not be represented. For instance, optical properties of biophysical variables, such as phytoplankton and CDOM absorption, may differ in the northern region. Second, at least half of the above-water remote-sensing reflectance measurements were collected under cloudy conditions. As identified in past studies (Ruddick et al. 2006), an accurate estimation of the ρ_{sky} value in Eq. (2.12) is difficult under variable cloud conditions. A more precise and adaptive method for estimating ρ_{sky} would allow for more reliable above-water reflectance measurements, particularly under heavy cloud cover conditions. Finally, to apply the evaluated algorithms to MODIS Aqua imagery, atmospheric attenuation process must be accounted for. In consideration of this point, the OC3M algorithm might perform better than GSM01 algorithms because the OC3M algorithm only relies on the ratio of two wavelengths. As shown in bio-optical models (Dall’Olmo and Gitelson 2006) and field measurements (Darecki and Stramski 2004), accurate atmospheric correction of all wavelengths is critical to deriving biophysical measurements from ocean-colour imagery.

Further, as identified by several studies (Bailey and Werdell 2006, Darecki and Stramski 2004), atmospheric correction can be problematic in coastal waters for several reasons, including turbidity related reflectance in the near infrared (Lavender et al. 2005), absorbing aerosols (Bailey and Werdell 2006), and nitrogen dioxide absorption (Ahmad et al. 2007). In particular, the overcorrection of the shorter 412 and 443 nm wavelengths can cause issues with semi-analytical algorithms that are dependent upon accurate correction of these wavelengths.
Inversion of multi-spectral coastal water measurements into the optical influence of biophysical variables is an extremely ambiguous mathematical problem (Defoin-Platel and Chami 2007). With several combinations of biophysical variables resulting in similar remote-sensing reflectance, it is important to limit the possible ranges of biophysical values. To accommodate this, Defoin-Platel and Chami (2007) suggested dividing the global problem-set into more localized versions that better represent bio-optical conditions found in common environments. In the case of the Strait, it may be beneficial to have semi-analytical models for various levels or stages of influence from the Fraser River plume. This would smooth the transition from CDOM dominant conditions found in the central portion of the Strait to the highly turbid conditions found close to the mouth of the Fraser River. As identified in this study, the threshold value for $a_d(443)$ may provide a transition point to an environment influenced by particles from the Fraser River.

2.6 Conclusion

The OC3M, standard GSM01, and modified GSM01 algorithms were evaluated in the case 2 waters of the Strait of Georgia. To evaluate these algorithms, above-water remote-sensing reflectance and biophysical measurements were taken under spring and summer conditions in 2006. Results showed that the OC3M was only effective at estimating chl concentrations when limited to areas outside the immediate vicinity of the Fraser River discharge and the associated higher turbidity. Therefore, to effectively use the OC3M algorithm with MODIS Aqua imagery, it is necessary to mask the more turbid regions of the Fraser River plume. With the possible dynamic nature of the Fraser River plume, a technique that accounts for bio-optical characteristics of a phytoplankton bloom over turbid waters, such as that defined by Morel and Belanger (2006), would possibly be more effective than the predefined geographical region used in this study.
Similarly, the modified GSM01 algorithm was only effective at estimating \(chl \) concentrations at stations with lower combined CDOM and non-algal particulate absorption \((a_{dg}) \), even given the improving CDOM absorption model. This suggests that the optical properties of particles in plume waters needs to be better characterized to improve the modified GSM01 algorithm’s accuracy.

In conjunction with the standard and modified GSM01 algorithms, inherent optical property models were evaluated for the Strait of Georgia. First, the Twardowski et al. (2004) hyperbolic CDOM absorption model was found to improve spectral agreement with CDOM absorption measurements in the Strait. Second, a two-component phytoplankton absorption model defined by Devred et al. (2006) was found to better represent the relationship between \(chl \) and phytoplankton absorption at 443 nm. These modifications to the GSM01 algorithm, in conjunction with the filtering of stations with higher combined absorption from non-algal particles and CDOM, provided the best relationship between measured and estimated \(chl \) concentrations with an \(r^2 = 0.702 \) and a slope of 1.1. Although the IOP models in this study were evaluated in the context of the GSM01 algorithm, they are general models that can be incorporated into other semi-analytical algorithms, such as one developed by Lee et al. (2002).

A key element to increasing the effectiveness of the modified GSM01 algorithm in the Strait of Georgia is the characterization of the particulate optical properties. This includes the spectral characterization of absorption and backscatter from non-algal particles. Through the inclusion of the particulate optical properties into the modified GSM01 algorithm, it may be more effective at estimating biophysical variables in Fraser River-influenced waters.

In conclusion, based on simulated MODIS Aqua bands, both the OC3M and modified GSM01 algorithms should be adequate at estimating \(chl \) concentrations in the Strait of Georgia using MODIS Aqua imagery given effective atmospheric correction.
and excluding in the Fraser River plume area. These algorithms, in conjunction with
the time series of MODIS Aqua imagery, can provide a broader scale view of chl
concentrations and associated biophysical processes in the Strait of Georgia surface
waters.
Chapter 3

Atmospheric correction of MODIS imagery for western Canada coastal waters

3.1 Introduction

Atmospheric correction of ocean-colour imagery is critical to measuring energy reflected from the water column and to derive biophysical variables (Stamnes et al. 2005). For open-ocean and some coastal waters, the atmospheric correction of ocean-colour imagery has proven to be effective (Zibordi et al. 2006, Wang et al. 2005). However, the standard atmospheric correction for the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua sensor has been problematic in many coastal areas because of turbidity induced water reflectance in the near infrared, absorbing aerosols, and absorption from nitrogen dioxide (NO$_2$) (Lavender et al. 2005, Schollaert et al. 2003, Ahmad et al. 2007). Atmospheric correction difficulties have been identified by the poor correlation between in situ and satellite estimated water-leaving radiance in the Baltic Sea by Darecki and Stramski (2004). These difficulties are further supported by the identification of a globally consistent overcorrection of shorter blue wavelengths in coastal waters compared to open ocean waters (Bailey and Werdell...
As the standard OC3M chlorophyll-a (chl) algorithm is dependent upon the blue wavelengths (O’Reilly et al. 2000), chl products produced by NASA’s Ocean Color Group are particularly vulnerable to the atmospheric correction difficulties in coastal waters. The standard chl products produced by NASA’s Ocean Color Group from MODIS imagery uses a near infrared atmospheric correction (Patt et al. 2003) with the OC3M algorithm. The OC3M algorithm is an adaptation of the OC2 and OC4 algorithms developed for the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) to the spectral bands on the MODIS sensor (O’Reilly et al. 2000). While this algorithm is primarily based on more open-water measurements, it generally works well in coastal waters with limited chromophoric dissolved organic matter absorption and suspended particles (Blondeau-Patissier et al. 2004). Nonetheless, the OC3M algorithm shows limited performance in waters with high CDOM absorption or suspended particles (Darecki and Stramski 2004).

The Strait of Georgia, located off the southwest coast of Canada, is a typical example of a case 2 water body, in which, spatially, light attenuation is dominated by either CDOM absorption or scattering from suspended particles (Johannessen et al. 2006, Loos and Costa submitted). Therefore to effectively estimate chl concentrations using MODIS Aqua imagery, it is important to evaluate the performance of the combination of atmospheric correction approaches and chl algorithms with imagery of the Strait.

The objective of this study was therefore to evaluate two ocean-colour algorithms designed for MODIS Aqua imagery for identifying spatial and temporal chl concentration patterns in the surface waters of the Strait of Georgia. As a key component to this objective, these chl algorithms were evaluated in conjunction with three atmospheric correction methods: a near infrared (NIR), a shortwave infrared (SWIR), and a combined spatially averaged correction approach developed by the Manage-
ment Unit of the North Sea Mathematical Models (MUMM) and adapted for this study.

3.2 Atmospheric Correction Background

Reflectance from the water surface is used to estimate the optical influence of biophysical variables, such as chl concentrations (Stamnes et al. 2005). Hence, to estimate chl concentrations from water reflectance, the attenuation and reflectance related to atmospheric constituents must be removed from the top-of-atmosphere radiance measured by the MODIS Aqua sensor (Gordon and Wang 1994, Gordon 1997). The top-of-atmosphere radiance, measured by the MODIS sensor, was normalized using the extraterrestrial reflectance.

For this study, extraterrestrial reflectance at a particular wavelength, $\rho(\lambda)$, is defined as (Gordon and Wang 1994)

$$\rho(\lambda) = \pi L(\lambda)/\bar{F}_0(\lambda) \cos \theta_0$$

where $L(\lambda)$ is radiance at a given wavelength λ, $\bar{F}_0(\lambda)$ is the extraterrestrial solar irradiance, and θ_0 is the solar zenith angle.

Using the extraterrestrial reflectance in Eq. (3.1), the combined extraterrestrial reflectance of the atmosphere and water body, ρ_w, on the top-of-atmosphere reflectance, $\rho_t(\lambda)$, is defined as (Gordon and Wang 1994)

$$\rho_t(\lambda) = \rho_r(\lambda) + \rho_A(\lambda) + t(\lambda)\rho_w(\lambda)$$

with $\rho_r(\lambda)$ and $\rho_A(\lambda)$ representing the reflectance from air molecules (Rayleigh scattering) and aerosols (including multiple scattering between aerosols-air), respectively. $t(\lambda)$ represents the diffuse transmittance through the atmosphere at a sensor viewing angle. To use ocean-colour algorithms for chl estimation, the above-water
reflectance, ρ_w, term must be isolated from ρ_t.

The $\rho_A(\lambda)$ includes both direct scattering from aerosols and multiple scattering between air molecules and aerosols. As identified by Wang (2006a), ρ_A can be related to the single-scattering aerosol reflectance, ρ_{as}, using lookup tables based on viewing geometry and aerosol optical thickness. Past studies have looked at separating the multiple scattering component from direct aerosol scattering (Antoine and Morel 1999). However, Wang (2004) found that separating these components had limited influence on the final atmospheric correction. Thus, $\rho_{as}(\lambda)$ is used in the single scatter epsilon, $\varepsilon(\lambda_s, \lambda_l)$, defined as

$$\varepsilon(\lambda_s, \lambda_l) = \frac{\rho_{as}(\lambda_s)}{\rho_{as}(\lambda_l)} \tag{3.3}$$

The single scatter epsilon characterizes the aerosol type using $\rho_{as}(\lambda)$ at two wavelengths, with λ_s representing a shorter wavelength and λ_l a longer wavelength. The $\varepsilon(\lambda_s, \lambda_l)$ value is used to identify the appropriate aerosol type and, consequently, to correct the visible wavelengths based on optical properties of predefined aerosol models (Shettle and Fenn 1979, Gordon and Wang 1994, Wang 2006a).

In following sections, the theoretical backgrounds and major assumptions associated with the three evaluated atmospheric correction algorithms are discussed.

3.2.1 Near Infrared (NIR) Atmospheric Correction

The near infrared (NIR) atmospheric correction uses NIR wavelengths to characterize aerosol scattering and to correct visible wavelengths. This is the standard atmospheric correction for MODIS imagery used to produce ocean-colour products from NASA’s Ocean Color Group (Patt et al. 2003, Bailey and Werdell 2006). This standard correction approach is based on the assumption that $\rho_w(\lambda)$ in Eq. (3.2) is close to zero in the NIR and that any reflectance is associated with atmospheric scattering. This is commonly referred to as the black pixel assumption (Siegel et al. 2000).
Provided that $\rho_r(\lambda)$ is well characterized (Gordon et al. 1988a, Wang 2005), Eq. (3.2) can be re-arranged to calculate Rayleigh-corrected reflectance, $\rho_{rc}(\lambda)$, defined as

$$\rho_{rc}(\lambda) = \rho_t(\lambda) - \rho_r(\lambda)$$

As ρ_w is approximately zero at 748 nm and 869 nm, $\rho_{rc} \approx \rho_A$ and the NIR ρ_{rc} can be use to characterize both the aerosol type and reflectance (Gordon and Wang 1994, Wang 2006a).

To identify the aerosol type at a MODIS Aqua image pixel, the $\varepsilon(748, 869)$ is calculated using Eq. (3.3) (Gordon and Wang 1994, Gordon 1997, Siegel et al. 2000) with a typical range of 0.95 to 1.26 (Wang 2007). The identified aerosol type in conjunction with the $\rho_A(869)$ is then used to estimate $\rho_A(\lambda)$ and atmospheric transmittance in the visible wavelengths through predefined lookup tables (Gordon and Wang 1994, Wang 2006a). For standard ocean-colour products from MODIS Aqua imagery, the NIR atmospheric correction relaxes the black pixel assumption by incorporating an iterative fit approach that combines the reflectance from aerosols and possible reflectance from particles correlated to chl concentration. By compensating for particulate reflectance associated with chl concentrations greater than 2 mg m$^{-3}$, the NIR atmospheric correction is effective in a broader range of water conditions (Siegel et al. 2000, Patt et al. 2003).

3.2.2 Shortwave Infrared (SWIR) Atmospheric Correction

As 25 g m$^{-3}$ of suspended fine particles can reach $\rho_w(800) \approx 0.05$ (Bale et al. 1994) and known NIR reflectance related to phytoplankton blooms (Siegel et al. 2000), the zero water reflectance assumption in the NIR may not be effective for atmospherically correcting coastal imagery (Darecki and Stramski 2004, Wang et al. 2007). As an alternative, the use of shortwave infrared (SWIR) wavelengths, greater than 1000 nm, has been proposed for the characterization of aerosols in turbid coastal waters (Gao
et al. 2000, Wang 2007). At these wavelengths, water absorption coefficients are an order of magnitude higher compared to 869 nm (Hale and Querry 1973), and therefore the SWIR bands are less influenced by turbid water reflectance. By using the 1240 and 2130 nm bands on the MODIS Aqua satellite to calculate $\varepsilon(1240, 2130)$ in Eq. (3.3), the contribution of ρ_w to ρ_t is avoided in turbid waters (Wang and Shi 2005). The $\varepsilon(1240, 2130)$ typically ranges from 0.98 to 4.76, which is a wider range of values compared to $\varepsilon(748, 869)$. This larger range of values is related to the greater wavelength distance between bands centres (Wang 2007).

Similar to the NIR atmospheric correction, the SWIR atmospheric correction identifies the aerosol properties at each pixel within the image using $\varepsilon(1240, 2130)$ and $\rho_A(2130)$. The aerosol properties in the SWIR bands are then used to estimate $\rho_A(\lambda)$ in the visible wavelengths using lookup tables generated by a radiative transfer model (Wang 2007).

3.2.3 MUMM Atmospheric Correction

Several methods of atmospherically correcting turbid water imagery using the NIR wavelengths have been suggested. A common method is to apply aerosol properties from non-turbid to turbid waters by assuming spatial homogeneity in atmospheric aerosols (Hu et al. 2000). A variation to this method, defined by Ruddick et al. (2000), assumes that aerosol type variability is spatially limited (\sim 200 km) and particulate backscatter variability is spectrally limited in the NIR (Gould et al. 1999, Zhang et al. 1998).

A consequence to the limited spectral variability of particulate backscatter in the NIR is that variability is generally dominated by water absorption. As identified through bio-optical models (Ruddick et al. 2000, Li 2003), the $\rho_w(\lambda)$ at two NIR wavelengths maintain a consistent ratio, α, in turbid waters (Eq. (3.5)). This ratio was found to equal 1.945 for the MODIS Aqua sensor (Ruddick et al. 2006).
\[
\frac{\rho_w(748)}{\rho_w(869)} = \alpha
\]
(3.5)

The Ruddick et al. (2000) approach uses \(\alpha \) and a predefined \(\varepsilon(748, 869) \) to isolate the water and aerosols reflectance, respectively, in the Rayleigh-corrected reflectance, \(\rho_{rc}(\lambda) \), defined in Eq. (3.4). The Rayleigh-corrected reflectance includes the aerosol reflectance and water reflectance that is transmitted through the atmosphere. Using an estimated value of \(\varepsilon(748, 869) \) and \(\alpha \), the following equations can be solved to separate the reflectance from aerosols and water in the Rayleigh-corrected reflectance (Ruddick et al. 2000).

\[
\rho_A(869) = \frac{\alpha \rho_{rc}(869) - \rho_{rc}(748)}{\alpha - \varepsilon(748, 869)}
\]
(3.6)

\[
t(869)\rho_w(869) = \frac{\rho_{rc}(748) - \varepsilon(748, 869)\rho_{rc}(869)}{\alpha - \varepsilon(748, 869)}
\]
(3.7)

\[
\rho_A(748) = \varepsilon(748, 869) \left[\frac{\alpha \rho_{rc}(869) - \rho_{rc}(748)}{\alpha - \varepsilon(748, 869)} \right]
\]
(3.8)

\[
t(748)\rho_w(748) = \alpha \left[\frac{\rho_{rc}(748) - \varepsilon(748, 869)\rho_{rc}(869)}{\alpha - \varepsilon(748, 869)} \right]
\]
(3.9)

To account for the effect of diffuse atmospheric transmittance, \(t(\lambda) \), on \(\rho_w \) in Eq. (3.7) and (3.9), the \(\alpha \) constant is multiplied by \(\gamma \), which is defined as (Ruddick et al. 2000)

\[
\gamma = \frac{t_v(748)\, t_0(748)}{t_v(869)\, t_0(869)}
\]
(3.10)

where \(t_v(\lambda) \) is the sensor diffuse transmittance and \(t_0(\lambda) \) is the solar diffuse transmittance. Atmospheric transmittance and the resultant \(\gamma \) are dependent upon the
geometry, aerosol optical thickness, and aerosol optical properties (Yang and Gordon 1997).

Following the separation of ρ_w and ρ_A from ρ_{rc}, $\rho_A(748)$ and $\rho_A(869)$ are passed to the standard NIR atmospheric correction discussed in Section 3.2.1. With the iterative fit of the standard NIR atmospheric correction (Patt et al. 2003), some degree of variability in the aerosol type and optical thickness is allowed. This approach is commonly referred to as the Management Unit of the North Sea Mathematical Models (MUMM) atmospheric correction and has effectively been applied to satellite imagery of turbid North Sea waters to monitor biophysical parameters (van der Woerd and Pasterkamp 2004).

An important component to the MUMM atmospheric correction is the definition of $\varepsilon(748, 869)$ for use in Eq. (3.6) through (3.9). The original algorithm was defined for imagery acquired with the SeaWiFS sensor, thus requiring the estimation of the NIR single scattering epsilon from less turbid regions and applying it to turbid waters (Ruddick et al. 2000). In the Strait of Georgia, with chl concentrations consistently higher than 3 mg m$^{-3}$ (Harrison et al. 1983, Radi et al. 2007) and significant terrestrial particulate influence (Johannessen et al. 2006), the identification of areas with limited turbidity is difficult or impossible during spring bloom, Fraser River freshet, and even late summer conditions.

To overcome the difficulty with selecting $\varepsilon(748, 869)$ in turbid waters, the SWIR atmospheric correction was used to estimate NIR aerosol reflectance for each image pixel. Using the SWIR atmospheric correction estimated aerosol radiance at 748 and 869 nm, the resulting $\varepsilon(748, 869)$ were calculated using Eq. (3.3) for each pixel in the image. The SWIR estimated $\varepsilon(748, 869)$ in the central and southern portions of the Strait allows a definition of the atmospheric aerosol type that can be averaged for the study area with limited turbid water influence. However, the low signal-to-noise ratio (SNR) of the SWIR MODIS Aqua bands (Wang 2007) and possible
land contamination of the SWIR reflectance can make these bands problematic for atmospheric correction of smaller water bodies, such as the Strait of Georgia. To limit land contamination and reduce noise associated with the SWIR bands, the mean $\varepsilon(748,869)$ value from the more open portions of the southern and central Strait were used. In conjunction with the mean $\varepsilon(748,869)$, the sensor and solar diffuse transmittance estimated by the SWIR atmospheric correction were use to calculate the spatial mean γ based Eq. (3.10).

3.3 Methods

3.3.1 Ferry Chl Data

To evaluate chl estimates from the MODIS Aqua imagery, chl measurements from an unattended flow-through fluorometer installed on the BC Ferry central route shown in Fig. 3.1 were used. This fluorometer measures chl concentrations in the engine water uptake of the ferry (Halverson et al. 2003). The ferry fluorometer samples at 30-second intervals; as a result, multiple ferry measurements coinciding with a single MODIS pixel were averaged. Although the minimum and maximum number of ferry measurements per image pixel was 1 and 7, respectively, typically only 2 or 3 measurements coincided. Ferry measurements were also spatially limited to between -123.66° and -123.17° longitude to reduce possible land influence. This instrument has been in operation since 2003, but measurements were limited to those taken in 2006. This is the time frame the instrument was most frequently cleaned and had been most recently calibrated (October 2005). Bio-fouling was corrected for by a linear correction between the previously cleaned instrument blank reading and the subsequent pre-cleaned or bio-fouled blank reading. The difference between the cleaned and bio-fouled reading was linearly applied to measurements between cleanings (Halverson, personal communication, May 8, 2007).
Figure 3.1: Ferry route (dashed line) and Fraser River exclusion region (shaded region) used in this study.
3.3.2 MODIS Aqua Imagery

For this study, ferry measurements were limited to ±1 hour from the satellite pass to limit movement of water masses between ferry measurements and the MODIS Aqua acquisition (Bailey and Werdell 2006). In addition to this temporal limitation, images with visible cloud cover or haze over the central or southern portions of the Strait were eliminated from this analysis. Based on these criteria, a total of 9 images were selected for analysis. MODIS Aqua imagery, including higher resolution bands, were processed from level 1A (L1A) using the SeaDAS version 5.1.3 (Baith et al. 2001). Images were not corrected for bi-directional reflectance variability because the standard bi-directional reflectance distribution function is based on case 1 waters (Morel et al. 2002) and the Strait of Georgia is expected to be a case 2 water body.

When selecting MODIS imagery pixels, many of the flags used with level 3 chl mosaics produced by NASA’s Ocean Color Group were masked for this study. The masked flags include sun glint, high solar/sensor zenith angles, and atmospheric correction warnings/errors. However, flags more common in coastal waters, such as stray light, turbid waters, and high radiance pixels were not masked. In addition to these masked flags, pixels with negative reflectance in the 443 and 488 nm bands were also masked for the OC3M algorithm and pixels with negative reflectance in the 412, 443, or 488 nm bands were masked for the modified GSM01 algorithm. Differences between the number of pixels used in this study and the number of pixels resulting from each combination of atmospheric correction and chl algorithm is because of pixels masked due to difficulty with the atmospheric correction algorithm.

3.3.3 MUMM Correction Modifications

To apply the MUMM correction, the SWIR atmospheric correction was used to estimate the ε(748,869) (Section 3.2.3). However, because the SWIR bands are particularly sensitive to atmospheric water vapour (Gao et al. 1993), they were initial
corrected for water-vapour absorption using the implementation in the SeaDAS software package.

In summary, the following steps were used to apply the MUMM atmospheric correction.

- Atmospherically correct the image using the SWIR correction.
- Spatially average $\varepsilon(748, 869)$ from the SWIR estimated NIR aerosol reflectance.
- Spatially average γ using SWIR estimated NIR atmospheric transmittance.
- Atmospherically correct the image using MUMM correction with calculated $\varepsilon(748, 869)$ and γ values.

3.3.4 Atmospheric Correction Evaluation Criteria

To evaluate the effectiveness of the NIR, SWIR, and MUMM atmospheric correction, $\rho_w(\lambda)$ was processed using the OC3M algorithm (O’Reilly et al. 2000) and a modified version of the GSM01 algorithm (Chapter 2). The modified GSM01 algorithm was an adaptation of standard GSM01 algorithm (Maritorena et al. 2002) with the combined chromophoric dissolved organic matter (CDOM) and detrital particulate absorption model replaced with a hyperbolic function identified by Twardowski et al. (2004). Based on in situ reflectance measurements, this algorithm more accurately estimated chl concentrations in regions of the Strait under limited Fraser River influence, compared to the OC3M algorithm (Chapter 2).

In addition to evaluating the OC3M algorithm with all atmospherically corrected pixels, the influence of the Fraser River plume on the OC3M algorithm was also evaluated. Within a ~ 4 km region around the Fraser River tidal region, particulate concentrations are highest during the freshet, reaching values as high as 400 mg m$^{-3}$ (Kostaschuk et al. 1993) and adversely affecting OC3M algorithm (Chapter 2). Thus, points within a ~ 4 km region around the Fraser River tidal region were removed
for the Fraser River excluded OC3M analysis. The Fraser River exclusion region is identified in Fig. 3.1 as the shaded region.

The modified GSM01 algorithm has also previously shown to be sensitive to Fraser River influence and its associated particulate (Chapter 2). In this case, the modified GSM01 algorithm was used to estimate the combined absorption at 443 nm from chromophoric dissolved organic matter and non-algal particulate, \(a_{dg}(443) \). Chapter 2 identified \(a_{dg}(443) < 0.8 \, m^{-1} \) as an effective threshold to limit Fraser River influence. However, for this study the threshold was set to 1.2 \(m^{-1} \) to allow for possible inaccuracy associated with atmospheric correction of blue wavelengths.

The estimated \(chl \) concentrations from each algorithm were compared to \(chl \) measurements from the unattended ferry fluorometer using the Root-Mean-Square-Error (RMSE) defined as (IOCCG 2006)

\[
RMSE = \left(\frac{1}{n-2} \sum_{i=1}^{n} \left[\log(\frac{\chi_{i}^{model}}{\chi_{i}^{true}}) \right]^2 \right)^{1/2}
\]

where \(\chi_{i}^{model} \) representing the algorithm \(chl \) estimate, \(\chi_{i}^{true} \) the measured \(chl \) concentration, and \(n \) the number of evaluated measurements. Linear regression and the associated slope and intercept were also used to evaluate the relationship between estimated and measured \(chl \) concentrations. Due to the differences in population sizes (number of pixels) between combinations of atmospheric correction and \(chl \) algorithms, the adjusted \(r^2 \) value was used to evaluated the fit of linear models.

3.4 Results

A total of 9 MODIS Aqua images, representing spring and summer conditions with diverse Fraser River influence (Fig. 3.2), were used in the analysis. Table 3.1 summarizes the mean \(chl \) concentrations from the ferry fluorometric measurements that coincide with MODIS image pixels. The average coefficient of variation for measured \(chl \) within the pixel resolution of MODIS Aqua ocean colour bands was 6.0%. Results
show a progression of lower average chl concentrations in March (3.5 mg m$^{-3}$), to higher concentrations in May (11.3 mg m$^{-3}$), and to lower concentrations in August (1.9 mg m$^{-3}$). Additionally, Table 3.1 provides ferry summaries for measurements outside of the Fraser River exclusion region (Fig. 3.1). Generally, the observed seasonal chl variations are similar to those measured in other studies (Harrison et al. 1983, Haigh and Taylor 1991, Yin et al. 1997).

In the following sections, the NIR, SWIR, and MUMM atmospheric correction algorithms were evaluated for estimating chl concentrations using the OC3M and modified GSM01 algorithms.

3.4.1 NIR Atmospheric Correction Results

Results of the NIR atmospheric correction are provided in Fig. 3.3 and Table 3.2. The linear relationship between the ferry and OC3M chl concentrations had a statistically significant adjusted r^2 of 0.603 (Fig. 3.3(a)). However, chl concentrations were generally overestimated and estimates were limited to concentrations < 21 mg m$^{-3}$ in the May 3rd image (Table 3.1). The consistent overestimation is reflected in the RMSE of 0.545 for all points (Fig 3.3(a)). As shown in Fig. 3.4(a), the largest relative chl errors were in the 0 to 5 mg m$^{-3}$ range. Further, the NIR atmospheric correction was only effective for 75% of the image pixels in this study. As will be
Table 3.1: The number of MODIS pixels after previously discussed spatial and temporal subsetting \((n)\) and \(chl\) minimum-maximum (mean) for each date (YYYYMMDD) from ferry measurements. The Fraser River exclusion columns (Fraser River Exc.) specify the number of pixels and the \(chl\) concentrations for pixels outside the Fraser River exclusion region (Fig. 3.1).

<table>
<thead>
<tr>
<th>Date</th>
<th>(n)</th>
<th>(chl) (mg m(^{-3}))</th>
<th>Fraser River Exc.</th>
<th>(n)</th>
<th>(chl) (mg m(^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>20060320</td>
<td>11</td>
<td>2.6-5.0(3.5)</td>
<td>11</td>
<td>2.6-5.0(3.5)</td>
<td></td>
</tr>
<tr>
<td>20060422</td>
<td>49</td>
<td>0.2-1.0(0.5)</td>
<td>35</td>
<td>0.2-0.8(0.5)</td>
<td></td>
</tr>
<tr>
<td>20060424</td>
<td>36</td>
<td>0.4-12.1(7.3)</td>
<td>17</td>
<td>0.4-9.9(6.8)</td>
<td></td>
</tr>
<tr>
<td>20060501</td>
<td>57</td>
<td>2.1-15.7(9.7)</td>
<td>40</td>
<td>7.3-15.7(12.4)</td>
<td></td>
</tr>
<tr>
<td>20060503</td>
<td>56</td>
<td>3.3-26.0(14.6)</td>
<td>39</td>
<td>6.5-26.0(16.7)</td>
<td></td>
</tr>
<tr>
<td>20060508</td>
<td>55</td>
<td>1.6-20.8(9.7)</td>
<td>38</td>
<td>1.6-20.8(10.4)</td>
<td></td>
</tr>
<tr>
<td>20060627</td>
<td>55</td>
<td>0.6-15.3(3.5)</td>
<td>38</td>
<td>0.6-7.2(2.0)</td>
<td></td>
</tr>
<tr>
<td>20060812</td>
<td>51</td>
<td>0.8-3.4(1.8)</td>
<td>37</td>
<td>0.8-3.4(1.7)</td>
<td></td>
</tr>
<tr>
<td>20060819</td>
<td>50</td>
<td>0.9-4.7(2.0)</td>
<td>30</td>
<td>0.9-1.9(1.3)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>420</td>
<td>0.2-26.0(5.8)</td>
<td>285</td>
<td>0.2-26.0(6.1)</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.2: Results of the near infrared (NIR) atmospherically corrected estimated \(chl\).

<table>
<thead>
<tr>
<th></th>
<th>(n)</th>
<th>Adj. (r^2)</th>
<th>p-value</th>
<th>RMSE</th>
<th>intercept</th>
<th>slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC3M</td>
<td>313</td>
<td>0.603</td>
<td>< 0.001</td>
<td>0.545</td>
<td>4.852</td>
<td>1.019</td>
</tr>
<tr>
<td>OC3M (Fraser River Exc.)</td>
<td>180</td>
<td>0.759</td>
<td>< 0.001</td>
<td>0.523</td>
<td>3.630</td>
<td>1.244</td>
</tr>
<tr>
<td>Modified GSM01</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

identified in Section 3.4.3, this is due to the algorithm’s inability to identify the \(\varepsilon(748,869)\) in more turbid and higher \(chl\) regions of the Strait.

With the removal of points within the Fraser River region, the adjusted \(r^2\) value improved to 0.759 (Fig. 3.4(b) and Table 3.2). However, there was limited improvement to the \(RMSE\) and the percentage of total pixel that had \(chl\) estimates reduced to 63%. Removal of Fraser River plume points reduced the number of points with the largest errors in the 0 to 5 mg m\(^{-3}\) range (Fig 3.4(b)), thus increasing the slope and decreasing the intercept (Table 3.2). These changes in the linear regression between ferry and OC3M \(chl\) suggests that \(chl\) estimates within the Fraser River area have a larger offset and more variability compared to ferry \(chl\) measurements, which is possibly related to the spectral influence of high turbidity (Dall’Olmo and Gitelson 2006).
Figure 3.3: Comparison of ferry chl measurements with chl estimates from MODIS Aqua imagery with the NIR atmospheric correction using (a) the OC3M algorithm and (b) the OC3M algorithm with points in the Fraser River exclusion area identified in Fig. 3.1 removed.

Figure 3.4: Relative error between combined NIR atmospheric correction and OC3M estimates versus ferry measured chl concentrations for (a) all measurements and (b) measurements outside the Fraser River exclusion region.
The modified GSM01 algorithm was not effective at estimating chl concentrations with the NIR atmospheric correction (Table 3.2). The NIR atmospheric correction resulted in negative remote-sensing reflectance at 412 nm from the overcorrection of this band. The modified GSM01 algorithm depends on the 412 nm band; as a result, it was only able to estimate the chl concentration for a single NIR corrected pixel with lower $a_d(443)$ absorption.

3.4.2 SWIR Atmospheric Correction Results

The SWIR atmospheric correction combined with the OC3M algorithm only provided chl estimates for approximately 21% of the available pixels. This is likely related to the low signal-to-noise ratio (SNR) of the SWIR bands (Wang 2007). Although the adjusted $r^2 = 0.514$ was statistically significant (Fig. 3.5(a) and Table 3.3), the linear slope of 0.386 between measured and estimate chl concentrations is slightly lower than recent studies using in situ reflectance measurement (Chapter 2) and indicates over- and under-estimation at lower and higher chl concentrations, respectively (Fig. 3.6(a)).

Exclusion of points near the Fraser River plume improved the relationship with ferry chl measurements (adjusted $r^2 = 0.572$) by removing points at lower and intermediate concentrations (Fig. 3.5(b), Fig. 3.6(b), and Table 3.3). However, the
Figure 3.6: Relative error between combined SWIR atmospheric correction and OC3M estimates versus ferry measured chl concentrations for (a) all measurements and for (b) measurements outside the Fraser River exclusion region.

Table 3.3: Results of the shortwave infrared (SWIR) atmospherically corrected chl estimates compared to ferry chl measurements.

<table>
<thead>
<tr>
<th>Method</th>
<th>n</th>
<th>Adj. r^2</th>
<th>p-value</th>
<th>RMSE</th>
<th>intercept</th>
<th>slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC3M</td>
<td>87</td>
<td>0.514</td>
<td>< 0.001</td>
<td>0.347</td>
<td>3.982</td>
<td>0.386</td>
</tr>
<tr>
<td>OC3M (Fraser River Exc.)</td>
<td>61</td>
<td>0.572</td>
<td>< 0.001</td>
<td>0.388</td>
<td>3.587</td>
<td>0.415</td>
</tr>
<tr>
<td>Modified GSM01</td>
<td>11</td>
<td>0.984</td>
<td>< 0.001</td>
<td>0.342</td>
<td>-0.051</td>
<td>0.878</td>
</tr>
</tbody>
</table>
percentage of total measurements that chl concentrations were estimated was still relatively low with 21% of study pixels having chl estimates. The linear slope of 0.415 and intercept of 3.587 are similar to those found with in situ radiometric and chl measurements (Woźniak and Stramski 2004).

The modified GSM01 algorithm was not effective at estimating chl concentrations with SWIR atmospherically corrected images (Fig. 3.5(c) and Table 3.3) because chl concentration were only estimated for 11 pixels of the study. Although the 412 nm band did not have as significant an overcorrection issues (not shown), as found with the NIR correction, the modified GSM01 algorithm was not able to estimate chl concentrations for the majority of the pixels.

3.4.3 MUMM Atmospheric Correction Results

To apply the MUMM atmospheric correction, the aerosol characterization, as defined by $\varepsilon(748, 869)$, and the atmospheric transmittance, as defined by γ, had to be assessed for each image using the estimated NIR aerosol reflectance and atmospheric transmittance from the SWIR atmospheric correction. Examples of $\varepsilon(748, 869)$ values estimated by the NIR atmospheric correction and SWIR correction for the May 3, 2006 image are provided in Fig. 3.7. The histograms show that the SWIR correction (Fig. 3.7(b) and (d)) provides lower estimates of $\varepsilon(748, 869)$ compared to the NIR atmospheric correction (Fig. 3.7(a) and (c)). Also, the SWIR estimated $\varepsilon(748, 869)$ has a bimodal distribution. The slightly higher $\varepsilon(748, 869)$ average in the NIR image is likely associated with chl reaching concentrations greater than 20 mg m$^{-3}$ on May 3rd, 2006 (Table 3.1). Consequently, the zero NIR water reflectance assumption of the NIR atmospheric correction is violated (Siegel et al. 2000), and the iterative black pixel correction may not effectively compensate under these higher chl concentrations. Difficulties with NIR atmospheric correction $\varepsilon(748, 869)$ estimation may also be related to particles from the Fraser River plume. However, the plume usually does not reach as far north (Johannessen et al. 2006) as the variability in the NIR
estimated $\varepsilon(748, 869)$ shows (Fig. 3.7(a)).

The bimodal distribution of the SWIR estimated $\varepsilon(748, 869)$ may be related to the low signal-to-noise ratio of the SWIR bands causing the atmospheric correction algorithm to switch between two aerosol models. Spatially, the SWIR estimated $\varepsilon(748, 869)$ has lower values in the open portions of the Strait and increases near the coastline (Fig. 3.7(b)), which represents the second small peak at $\varepsilon(748, 869) \approx 1.03$. This is possibly related to land influence on the SWIR bands, which disproportionately increases both the reflectance at 1240 nm and the resulting $\varepsilon(748, 869)$ estimate (Wang 2007). To minimize this possible influence, $\varepsilon(748, 869)$ values were averaged from pixels in only the middle of the Strait (Table 3.4), and when a bimodal distribution was found, the mean of the dominant peak was used. For instance, the mean $\varepsilon(748, 869)$ with the May 3rd, 2006 image was estimated at 1.007 for the lower range $\varepsilon(748, 869)$ peak and is identified by the red dashed line on Fig. 3.7(d). The value of γ was selected in the same manner as the spatially averaged $\varepsilon(748, 869)$ value for each image.

To validate the use of the spatially average SWIR $\varepsilon(748, 869)$ and α values, these ratios were evaluated against variability in the Rayleigh-corrected reflectance at 748 and 869 nm. In Fig. 3.8, scatterplots of Rayleigh-corrected reflectance in the NIR are presented with the solid line representing the SWIR estimated $\varepsilon(748, 869)$ and α represented by the dashed line. Results show that pixels dominated by aerosol reflectance fall close to the $\varepsilon(748, 869)$ slope and pixels dominated by turbid waters have reflectance ratios closer to the α slope (Fig. 3.8). With increasing turbidity, $\rho_{w}(748)$ is disproportionately increased over $\rho_{w}(869)$ because of higher water absorption at 869 nm and the $\rho_{rc}(748)/\rho_{rc}(869)$ ratio approaches α. Points that have higher $\rho_{rc}(869)$ values and that fall above the $\varepsilon(748, 869)$ line are mostly land influenced pixels.

Upon evaluating the spatial variability of the SWIR estimated $\varepsilon(748, 869)$, the
Figure 3.7: \(\varepsilon(748, 869) \) estimates for the May 3, 2006 image using the (a) and (c) NIR and (b) and (d) SWIR atmospheric correction. Differences in population sizes, \(n \), in the two histograms is related to the SWIR bands having a resolution of 500 m and the NIR bands having a resolution of 1 km. The black box on each image shows the area that was used to produce the histograms.
Figure 3.8: Scatterplot of Rayleigh-corrected reflectance at 748 and 869 nm in the central and southern portions of the Strait for (a and b) May 3, 2006 and (c and d) August 19, 2006. The $\varepsilon(748, 869)$ for each day is identified with the solid line and the $\alpha = 1.945$ from Ruddick et al. (2006) is displayed as the dashed line.

Table 3.4: $\varepsilon(748, 869)$ and γ values estimated from SWIR atmospheric correction and used for the MUMM atmospheric correction.

<table>
<thead>
<tr>
<th>Date</th>
<th>$\varepsilon(748, 869)$</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>20060320</td>
<td>1.131</td>
<td>0.980</td>
</tr>
<tr>
<td>20060422</td>
<td>1.117</td>
<td>0.982</td>
</tr>
<tr>
<td>20060424</td>
<td>1.043</td>
<td>0.985</td>
</tr>
<tr>
<td>20060501</td>
<td>1.085</td>
<td>0.983</td>
</tr>
<tr>
<td>20060503</td>
<td>1.007</td>
<td>0.986</td>
</tr>
<tr>
<td>20060508</td>
<td>1.154</td>
<td>0.982</td>
</tr>
<tr>
<td>20060627</td>
<td>0.997</td>
<td>0.986</td>
</tr>
<tr>
<td>20060812</td>
<td>1.190</td>
<td>0.982</td>
</tr>
<tr>
<td>20060819</td>
<td>1.202</td>
<td>0.982</td>
</tr>
</tbody>
</table>
Figure 3.9: Comparison of ferry chl measurements with chl estimates for MODIS Aqua imagery with the MUMM atmospheric correction using (a) the OC3M algorithm, (b) the OC3M algorithm with measurements in the Fraser River exclusion area removed, and (c) the modified GSM01 algorithm.

Table 3.5: Results of the MUMM atmospherically corrected chl estimates compared to ferry measured concentrations.

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Adj. r^2</th>
<th>p-value</th>
<th>RMSE</th>
<th>intercept</th>
<th>slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC3M</td>
<td>373</td>
<td>0.567</td>
<td>< 0.001</td>
<td>0.484</td>
<td>4.970</td>
<td>0.625</td>
</tr>
<tr>
<td>OC3M (Fraser River Exc.)</td>
<td>238</td>
<td>0.720</td>
<td>< 0.001</td>
<td>0.420</td>
<td>4.020</td>
<td>0.736</td>
</tr>
<tr>
<td>Modified GSM01</td>
<td>6</td>
<td>-0.235</td>
<td>0.839</td>
<td>0.703</td>
<td>2.378</td>
<td>0.078</td>
</tr>
</tbody>
</table>

averaged values of $\varepsilon(748,869)$ and γ (Table 3.4) were used in conjunction with the MUMM atmospheric correction. The combination of the MUMM correction and the OC3M algorithm was effective at estimating chl in a greater range of conditions compared to other two atmospheric correction or the modified GSM01 algorithm, as reflected in the percentage of total pixels with chl estimates. While the adjusted r^2 value is slightly lower than for the NIR OC3M chl estimates, the RMSE is lower, and the algorithm was able to estimate chl concentrations for 89% of the pixels used in this study. Both the intercept and slope were slightly higher than recent evaluations of the OC3M algorithm in the Strait using in situ reflectance measurements (Chapter 2). The results show an overestimation at lower chl concentrations (Fig. 3.10(a)) and slope lower than one. Some of the difference in the slope and intercept may be related to a consistent overestimation of lower chl concentrations in the August 19 image, which is identified in Section 3.4.4.

The observed overestimation at lower chl concentrations (Fig. 3.10) may be re-
Figure 3.10: Relative error between combined MUMM atmospheric correction and OC3M estimates versus ferry measured chl concentrations for (a) all measurements and (b) measurements outside the Fraser River exclusion region.

lated to higher CDOM absorption \(a_{cdom}(443) = 0.36 \text{ m}^{-1}\) usually found in the Strait (Chapter 2) compared to more open-ocean waters (Morel et al. 2006), for which the OC3M algorithm was developed. The slope being less than one suggests that diatoms, which have a lower specific absorption value compared to more equatorial phytoplankton communities (IOCCG 2000) and are commonly found in the southern portion of the Strait (Harrison et al. 1983, Stuart et al. 1998), may be the dominant bloom phytoplankton in the study images.

Excluding pixels in the immediate vicinity of the Fraser River (Fig. 3.1) slightly improved the adjusted \(r^2\) and \(RMSE\) values. Also, the intercept was lowered and slope increased, bringing the linear regression close to a one-to-one relationship with measured chl concentrations. The exclusion of Fraser River pixels reduced errors in chl estimates in 0 to 5 mg m\(^{-3}\) range (Fig. 3.10(b)), suggesting that bloom conditions (chl > 10 mg m\(^{-3}\)) generally occur outside of the excluded region for the selected dates of this study. This is further indicated by the spatial-temporal patterns discussed in Section 3.4.4.

The modified GSM01 algorithm was ineffective with MUMM atmospherically corrected images with only 6 pixels having chl estimates. This was due to negative
412 nm reflectance in the less turbid central portions of the Strait, which is generally where the modified GSM01 algorithm is limited.

3.4.4 Spatial-Temporal Chl Patterns

To identify spatial-temporal *chl* patterns using MODIS Aqua imagery, the MUMM atmospheric correction with the OC3M algorithm was used because of the relatively high percentage of total pixels (89%) and lower *RMSE* that the combination had, compared to the NIR OC3M combination. Using the MUMM atmospheric correction, a selection of OC3M *chl* images and their associated ferry transects are provided in Fig. 3.11 to evaluate spatial and temporal patterns in the Strait of Georgia. Transects in Fig. 3.11 provide ferry *chl* measurements and the corresponding OC3M *chl* estimates based on longitude. A progression of conditions is observed, with lower *chl* concentrations in late winter (Fig. 3.11 (a) and (b)), to *chl* bloom conditions in early May (Fig. 3.11 (c) to (f)) followed by late summer conditions with lower *chl* concentrations (Fig. 3.11 (g) and (h)).

Influence of the Fraser River plume on the OC3M algorithm is visible on both May 1st and 3rd (Fig. 3.11 (c) through (f)), with the algorithm deviating from ferry *chl* measurements at the eastern side of the Strait. This is the time of year with increased Fraser River discharge (Fig. 3.2), and is typically found to have the highest sediment concentrations from the Fraser River into the Strait (Milliman 1980, Kostaschuk et al. 1989, Johannessen et al. 2006). The movement of the plume is, to some degree, visible in how the ferry and OC3M *chl* diverge. For instance, the May 1st transect shows the Fraser River exclusion border (shaded region) lining up with the divergence, while the May 3rd image shows a more westerly divergence at approximately -123.38° longitude. The possible influence of the plume is also visible in the May 3rd transect (Fig. 3.11(f)) with the *chl* concentrations dropping from 25 mg m$^{-3}$ to approximately 15 mg m$^{-3}$ around the Fraser River plume region. This suggests that the Fraser River discharge is influencing phytoplankton distribution.
Figure 3.11: Temporal series of OC3M chl images using the MUMM atmospheric correction. The ferry path is shown on each satellite image as a white line and the Fraser River exclusion region is represented by the shaded box on each transect graph.
dynamics in the southern portions of the Strait. During lower flow conditions of the Fraser River, in late summer to early winter, the exclusion zone may not need to be applied. This is demonstrated in the August 19th transect (Fig. 3.11(h)) in which no divergence in the transect related to the Fraser River was observed.

Although limited influence from the Fraser River plume was observed in the August 19th image, a consistent offset was observed throughout the transect (Fig. 3.11(h)) that does not appear to be related to the Fraser River discharge. A similar offset was found in the August 12th image (not shown) over a similar range of longitudes. This offset may be related to higher particulate concentrations measured by Johannessen et al. (2006) in autumn that does not appear to be associated with the Fraser River. By December/January the surface layer of higher particle concentrations dissipates (Johannessen et al. 2006), which is possibly why the March 20th image shows improved chl agreement between the ferry and OC3M algorithm. Note that the March transect is limited to the Strait’s westerly area because of the timing of the ferry in relation to the MODIS Aqua pass and spatially limiting measurements to more open portions of the Strait.

In addition to turbidity influences on the OC3M algorithm, a difficulty with using the spatial average of the $\varepsilon(748, 869)$ from the SWIR atmospheric correction is that atmospheric properties can vary between areas of the Strait. This atmospheric variability is possibly the reason for the large chl errors with the August 19th image and transect in the central portion of the Strait (Fig. 3.11(g) and (h)). This is likely related to an inability to differentiate atmospheric variability between the two areas using the SWIR atmospheric correction. As shown in Fig. 3.8, the August 19th image had much lower Rayleigh-corrected reflectance with a median $\rho_{rc}(869)$ of 0.0015 compared to a median $\rho_{rc}(869)$ of 0.0053 in the May 3rd image. With the substantially lower Rayleigh-corrected reflectance in the August 19th, the signal-to-noise ratio of the SWIR bands makes the identification of spatial $\varepsilon(748, 869)$ variability difficult.
Some of the larger chl estimation errors in the 0 to 2 mg m$^{-3}$ range (Fig. 3.10) are associated with the August 19th image.

An additional issue encountered was striping within chl estimates of the May 3rd image. This is possibly related to detector calibration differences between the blue and green bands, which are enhanced in the image because of the relatively low reflectance in the blue wavelengths due to absorption from higher chl concentrations (3.1 to 26.0 mg m$^{-3}$) (Table 3.1).

3.5 Discussion

The combination of the NIR atmospheric correction and OC3M algorithm was moderately effective for estimating chl in the Strait, resulting in an adjusted r^2 of 0.589 and a slope close to one. However, with chl concentrations in the Strait reaching as high as 30 mg m$^{-3}$ (Harrison et al. 1983, Li et al. 2000) and varying particulate concentrations from terrestrial sources (Johannessen et al. 2005), the accuracy of the atmospheric correction is diminished. This is shown by the inability of the NIR atmospheric correction to estimate chl concentrations > 21 mg m$^{-3}$. Further, as shown in Fig. 3.7(a), the NIR atmospheric correction algorithm was not able to estimate the $\varepsilon(748, 869)$ in the central portion where the highest chl concentrations occurred (Fig. 3.11(e)). A possible solution to this issue is to modify the relationship between chl and particulate scattering used by the NIR iterative atmospheric correction to adapt it to bloom conditions in the Strait.

As well as influencing NIR water reflectance, attenuation related to turbidity from the Fraser River was shown to significantly impact the effectiveness of the OC3M algorithm. Although a predefined exclusion region was used to evaluate the Fraser River influence on the OC3M algorithm, a more effective method may be to use a turbidity index, such as the one identified by Shi and Wang (2007). This index uses the SWIR bands to estimate the significance of water reflectance in the NIR bands.
A threshold value of the index may be useful for identifying regions of the Strait that are have high turbidity and that should not be evaluated by the OC3M algorithm.

Just as NIR water reflectance can cause difficulties with the NIR correction, atmospheric constituents typically found in coastal environments can cause the overcorrection of the 412 and 443 nm bands. While identified in all three atmospheric correction algorithms, the overcorrection and the resultant negative reflectance was most prevalent in the NIR and MUMM correction. The 412 nm band is important to semi-analytical algorithms (Carder et al. 1999, Maritorena et al. 2002); therefore, it is critical to isolate the causes of this overcorrection. One possible cause, as identified by Ahmad et al. (2007), is the absorption from atmospheric nitrogen dioxide (NO$_2$). In the study area, specifically the Lower Fraser Valley, there is substantial urban development resulting in a higher amount of atmospheric NO$_2$ production (Pisano et al. 1997). Thus, future studies of ocean colour in the Strait may benefit from the NO$_2$ correction of the 412 and 443 nm bands.

In addition to the possible absorption from NO$_2$, the presence of absorbing aerosols from dust events and urban environments can cause the overcorrection of the 412 and 443 nm bands (Li et al. 2003a, Schollaert et al. 2003). Absorbing aerosols are not detected well by the standard NIR atmospheric correction algorithms (Bailey and Werdell 2006). Although detection and correction algorithms to address these aerosols exist (Nobileau and Antoine 2005, Ransibrahmanakul and Stumpf 2006), they are based on case 1 water assumptions and are therefore not likely to be effective in the Strait of Georgia. An alternative is to use an absorbing aerosols detection algorithm that utilizes MODIS’s SWIR bands (Shi and Wang 2007). However, the authors identified the ineffectiveness of the algorithm in turbid waters. Since there is limited knowledge regarding the presence and properties of absorbing aerosols in the Strait of Georgia, it is unclear if an absorbing aerosol algorithm is necessary. A locally available sunphotometer on Saturna Island may be helpful in identifying
the presence and optical properties of absorbing aerosols in the Strait (Bokoye et al. 2001).

In conjunction with addressing atmospheric correction issues, chl estimates may be further improved by using algorithms more applicable to phytoplankton communities found in the Strait of Georgia. As identified in past studies, the absorption properties of the bloom phytoplankton communities in the Strait are significantly influenced by pigment packaging effects (Stuart et al. 1998). Using a more community specific chl algorithm that better represents the specific absorption properties of phytoplankton communities in the Strait, such as the one identified by Alvain et al. (2006), may reduce the chl underestimation at higher concentrations with the MUMM and SWIR corrected OC3M chl estimates (Fig. 3.5 and 3.9). Although the chl estimates may approach a one-to-one relationship compared to measured concentrations with a community specific algorithm, an offset is still expected resulting from CDOM absorption (Chapter 2).

Furthermore, the spatial extent of the ferry route, which was limited to the southern portion, reduces the range of conditions sampled in the Strait. With the Fraser River plume and associated particulate dominating the southern Strait, this region represents the most turbid waters found in the Strait (Johannessen et al. 2006). The central portion is typically less turbid and the OC3M algorithm should be more effective in this area, given accurate atmospheric correction of the image. As Fig. 3.11(g) shows, the atmosphere properties can vary between the central and southern portions of the Strait and may require a separate interpretation the of ε(748, 869) in each region.

3.6 Conclusion

The study objective was to evaluate the use of a NIR, SWIR, and MUMM atmospheric correction to estimate chl concentrations in the Strait of Georgia surface
waters. To accomplish this, estimated chl concentrations from the empirical OC3M and semi-analytical modified GSM01 algorithms were evaluated against ferry chl measurements. Spatial and temporal patterns within the MUMM corrected OC3M chl images and the corresponding ferry transects were discussed.

The combination of the NIR atmospheric correction and OC3M algorithm provided chl estimates for 75% of the pixels in the study, showed a consistent overestimation of chl concentrations, and was limited to pixels with chl concentrations < 21 mg m$^{-3}$. The NIR correction and modified GSM01 approach was not able to estimate chl concentrations for any pixels in this study due to consistent negative reflectance in the 412 nm band.

Similar to the NIR correction, the use of the modified GSM01 algorithm was ineffective with the SWIR and MUMM atmospheric corrections due to negative reflectance in the 412 nm band. The overcorrection and noise within the 412 nm band may have been the main reason for the poor performance of the modified GSM01 algorithm. The negative reflectance may be alleviated with an NO$_2$ absorption correction or accounting for absorbing aerosols.

Atmospherically correcting with SWIR bands was not as effective as using the NIR bands because of the limited number of pixels (21%) that had chl estimates using the OC3M algorithm. While the SWIR atmospheric correction did not have as significant of a negative reflectance issue with the 412 nm band, there was considerable noise within the water-leaving reflectance and the OC3M images. Comparison between the ferry and OC3M chl concentrations from the SWIR corrected images showed over- and underestimation of chl at lower and higher concentrations, respectively. The SWIR correction with the modified GSM01 algorithm was only able to estimate chl concentrations for 11 pixels. Much of the difficulty with using SWIR atmospheric correction may have been associated with the low signal-to-noise ratio in the SWIR bands (Wang 2007).
Using a combined MUMM and SWIR approach proved to be effective in the greatest range of conditions, as demonstrated by the relatively high percentage of pixels (89%) that had estimated \textit{chl} concentrations. In addition, the consistent \textit{chl} overestimation found with the NIR correction was removed and the relationship between the OC3M \textit{chl} and ferry \textit{chl} was closer to recent evaluations of the algorithm in the Strait using \textit{in situ} radiometric measurements (Chapter 2).

Limiting \textit{chl} evaluations to pixels outside a predefined region around the Fraser River improved \textit{chl} estimates for all three atmospheric correction approaches. In two May images, the MUMM correction with the OC3M algorithm was insensitive to \textit{chl} fluctuations and estimates were not effective within the Fraser River excluded region. This exclusion region did not appear to have a significant impact outside the freshet periods. However, higher particulate concentrations found throughout the Strait during late summer seems to cause an overestimation of \textit{chl} with the OC3M algorithm.

Although the combined MUMM correction and OC3M algorithm was generally effective outside the more turbid portions of the Strait, spatial averaging of aerosol properties estimated by the SWIR atmospheric correction may not be effective at characterizing the aerosol properties for all regions of the Strait. The August 19th image showed that atmospheric properties may vary between the southern and central portions of the Strait, thus resulting in overestimated \textit{chl} concentrations in the central portions of the Strait. Difficulties in estimating the aerosol properties in the centre of the Strait may have been related to the limited sensitivity of the SWIR bands and the low aerosol reflectance on that day.

The MUMM atmospheric correction in conjunction with the spatially averaged SWIR aerosol properties was the most effective atmospheric correction in the range of conditions found in this study. MUMM corrected images with the OC3M algorithm were effective at identifying spatial and temporal patterns in surface \textit{chl} concent-
trations throughout the Strait. This effectiveness is further improved by limiting the algorithm to pixels outside the immediate vicinity of the Fraser River discharge during freshet conditions.
Chapter 4

Conclusions

The goal of this research was to evaluate remote-sensing techniques for estimating chlorophyll-a (chl) in the Strait of Georgia using MODIS Aqua imagery. To meet this goal, two major objectives were addressed:

1. Evaluate chl algorithms using ship-based measurements.

2. Evaluate atmospheric correction methods with chl algorithms for MODIS Aqua imagery.

As an additional component to these objectives, spatial-temporal chl patterns within MODIS imagery were assessed. The first objective was accomplished in Chapter 2 using ship-based radiometric and biophysical measurements collected in April and July of 2006. This data set allowed for the evaluation of the algorithms with limited considerations of atmospheric properties. The second objective was met in Chapter 3 using MODIS Aqua imagery and chl measurements from an unattended flow-through fluorometer installed on a BC Ferry ship.

From the ship-based measurements, absorption from chromophoric dissolved organic matter (CDOM) was found to generally be higher than the estimated phytoplankton absorption based on the Devred et al. (2006) Vancouver Island phytoplankton absorption model at 443 nm. Consequently, surface waters of the Strait can generally be classified as a CDOM-dominant case 2 waters (Prieur and Sathyendranath
However, there is no information on particulate absorption properties in the Strait and the proposed classification corresponds to waters away from the Fraser River plume. Surface waters closer to the plume are likely suspended-particulate dominant case 2 waters. Regardless of the dominant optical constituent, the surface waters of the Strait are classified as case 2 waters. For this reason, to accurately estimate chl it is important to evaluate and possibly modify algorithms that are based on open-ocean case 1 waters (IOCCG 2000).

In Chapter 2, the empirical OC3M and semi-analytical Garver-Siegel-Maritorena model version 1 (GSM01) were evaluated using ship-based biophysical and radiometric measurements modelled to MODIS Aqua bands. Additionally, a modified version of the GSM01 algorithm was evaluated with a different model for CDOM absorption and a re-interpretation of phytoplankton absorption at 443 nm.

The ship-based radiometric and chl measurements showed that the OC3M algorithm could not be indiscriminately used throughout the Strait (\(r^2 = 0.345\)), due to the influence of turbidity from the Fraser River on the algorithm. When stations in the immediate vicinity of the Fraser River discharge were excluded, the OC3M algorithm was moderately effective with \(r^2 = 0.552\).

Similar to the OC3M algorithm, the indiscriminate application of the standard and modified GSM01 algorithm was ineffective at estimating chl concentrations with \(r^2 = 0.001\) and 0.022, respectively. Although both GSM01 algorithms were not effective at estimating chl concentrations, they provided statistically significant estimates of CDOM absorption (\(r^2 = 0.584\) and 0.620, respectively) and TSS concentrations (\(r^2 = 0.866\) and 0.935, respectively). By limiting chl estimates to waters with combined CDOM/particulate absorption lower than 0.8 m\(^{-1}\), which represent waters under the influence of the Fraser River, the modified GSM01 algorithm produced statistically significant chl estimates (\(r^2 = 0.690\)).
Further improvement to the GSM01 chl estimates was obtained by re-interpreting phytoplankton absorption coefficients using a two-component phytoplankton model developed by Devred et al. (2006) from Vancouver Island samples. This resulted in an $r^2 = 0.702$ and a slope closer to one. Although the linear relationship improved with the two-component model, the root-mean-squared-error was increased. The reason for this increase is not well understood and may require further investigation of the particle absorption properties in these waters.

In summary, semi-analytical algorithms, such as the GSM01, provide statistically significant chl estimates for waters under limited influence of the Fraser River discharge. However, due to the nature of these algorithms, their effectiveness is dependent upon the accurate characterization of the absorption and backscattering properties of the optically significant water constituents, which is not always available. Furthermore, the GSM01 effectiveness is contingent upon the accurate atmospheric correction of the shorter blue wavelengths within satellite imagery. As found with imagery of coastal waters, the overcorrection of the shorter blue wavelengths is a common issue (Bailey and Werdell 2006). This means that the GSM01 effectiveness found in Chapter 2 may not hold when used in conjunction with atmospheric corrected satellite imagery of the Strait. This was investigated in Chapter 3 by evaluating different atmospheric correction methods using chl measurements from an unattended fluorometer.

In Chapter 3, the standard near infrared (NIR) correction, a shortwave infrared (SWIR) correction, and a combined SWIR/NIR correction, which was an adaptation of a method developed by Management Unit of the North Sea Mathematical Models (MUMM), were evaluated. To evaluate each of these atmospheric correction methods, the OC3M algorithm and the modified GSM01 algorithm limited to CDOM/particulate absorption less than 0.8 m$^{-1}$ were used.
The standard NIR atmospheric correction was successful under limited circumstances. As expected, under turbid and high chl concentration waters the NIR atmospheric correction occasionally failed. Also, an overestimation of chl concentrations was found with the OC3M algorithm compared to ferry measurements. This overestimation is likely related to the overcorrection of the blue wavelengths in relation to green because of the NIR reflectance from particulate associated with both the phytoplankton cellular structures and the Fraser River plume. By limiting the evaluations to points outside the immediate vicinity of the Fraser River discharge, the NIR correction with the OC3M algorithm had an adjusted $r^2 = 0.759$, was limited $chl < 21 \text{ mg m}^{-3}$, and estimated concentrations for 63% of the study pixels. For future study, the bio-optical model used by the iterative NIR correction (Patt et al. 2003) maybe adapted to better represent optical characteristics of suspended particles found at higher chl concentrations.

The SWIR atmospheric correction method, implemented in SeaDAS 5.1.3, was not as effective as the NIR correction. The OC3M algorithm estimated chl concentrations for a very limited number of pixels (21%), much less than the NIR correction, and the statistical relationship with ferry measurements was not as good as with the NIR correction (adjusted $r^2 = 0.514$).

Using an adapted MUMM correction method, with the spatial characterization of the aerosol properties from the SWIR correction combined with the MUMM correction method, was more effective than the NIR or SWIR correction methods. The MUMM correction with the OC3M algorithm was able to estimate chl concentrations over the greatest number of pixels and had a lower root-mean-squared-error compared to the NIR-OC3M combination. While the adapted MUMM method was able to atmospherically correct a greater number of pixels (89%), the OC3M algorithm was not effective in the more turbid regions around the Fraser River. As was found with ship-based measurements, the exclusion of points within 4 km of the shal-
lower portions of the Fraser River discharge improved the statistical relationship with an adjusted $r^2 = 0.702$ and was able to estimate chl concentrations for 84% of pixels outside of the Fraser River excluded region.

The adapted MUMM atmospheric correction method has two significant caveats for its general use with Strait of Georgia MODIS imagery. The first caveat is that it is based on the assumption that atmospheric aerosols have limited spatial variability. The second caveat is that the signal-to-noise ratio (SNR) of the SWIR bands on the MODIS Aqua sensor may not be appropriate for accurately estimating aerosol properties in all images. If the Rayleigh corrected reflectance in the SWIR bands is too low, the aerosol properties can be difficult to identify. This difficulty in identifying the aerosol properties and the resulting impact on chl estimation was demonstrated with an image of the Strait on August 19, 2006. The OC3M image showed overestimated chl concentrations in the central portions of the Strait. This overestimation was possibly related to atmospheric variability between the central and southern portions of the Strait, which was difficult to discern with the lower Rayleigh-corrected reflectance found in the MODIS image.

Although the Fraser River influence on the OC3M algorithm was evaluated with a fixed region around the Fraser River excluded from the analysis, movement of the Fraser River plume from wind and tidal activity may cause the fixed region approach to be ineffective. To improve reliability of the OC3M algorithm, a turbid water algorithm may be used to mask turbid waters from evaluation with the OC3M algorithm. These algorithms may also better identify the limited influence of the Fraser River plume during autumn/winter conditions and identify general turbidity in the central portion of the Strait found in other studies during autumn (Johannessen et al. 2006).

A common issue with the adapted MUMM correction, as well as the NIR and SWIR correction methods, was the overcorrection of the 412 nm reflectance in the
Strait. As the modified GSM01 algorithm is dependent upon the accurate atmospheric correction of the 412 nm band, the algorithm was ineffective with all three atmospheric correction methods. The overcorrection of the 412 nm band is a prevalent issue in atmospherically corrected coastal imagery (Bailey and Werdell 2006) and may be alleviated with a NO₂ correction (Ahmad et al. 2007) or the detection of absorbing aerosols (Nobileau and Antoine 2005, Shi and Wang 2007) possibly discharged from the urbanized Lower Mainland. Future research may study the seasonal variability in absorbing aerosols and NO₂ concentrations in conjunction with ocean-colour imagery of the Strait of Georgia.

In addition to the overcorrection issue with the atmospheric correction methods, results of the chl algorithms may be improved by compensating for the bi-directional reflectance distribution function (BRDF) of the water column. As discussed in Chapter 1, remote-sensing reflectance has a angular dependence that is associated with the scattering phase function of the water column. By adjusting to the exact water-leaving radiance (Eq. (1.16)), which has a consistent geometry, the angular dependency can be remove. However, to adjust to exact water-leaving radiance an accurate BRDF that is dependent on the water column inherent optical properties is needed. Future studies may evaluate several different BRDFs identified for both CDOM-dominant and suspended-particulate dominant waters (Loisel and Morel 2001, Morel et al. 2002, Albert and Mobley 2003, Lee et al. 2004, Park and Ruddick 2005).

Furthermore, future studies in the Strait may also look at the use of other MODIS Aqua bands designed for land use that maybe effective in the turbid waters of the Strait. These additional bands in the visible and NIR wavelengths have resolutions of 250 and 500 m and past studies have looked at using them to monitor water quality (Hu et al. 2004, Franz et al. 2006).

As well as identifying directions for future studies, the major contribution of this research was detailed analysis of using freely available MODIS imagery for estimat-
ing chl concentrations in the Strait of Georgia. In relation to chl algorithms, the OC3M algorithm was identified as being effective at estimating chl concentrations in less turbid waters and the use of a semi-analytical algorithm, such as the modified GSM01 algorithm, is more likely effective than the OC3M algorithm given accurate atmospheric correction of the 412 nm band. For atmospheric correction methods, the adapted MUMM correction was shown to be more effective than the standard NIR correction and can be used to provide imagery for distinguishing spatial-temporal chl patterns in the Strait of Georgia. The combination of the OC3M algorithm with the adapted MUMM correction can provide accurate images of chl concentrations in the surface waters of the Strait.
Bibliography

Babin, M., Morel, A., Fournier-Sicre, V., Fell, F., Stramski, D., 2003a. Light scatter-
ing properties of marine particles in coastal and open ocean waters as related to the particle mass concentration. Limnology and Oceanography 48 (2), 843–859.

Li, M., Gargett, A., Denman, K., 2000. What determines seasonal and interannual variability of phytoplankton and zooplankton in strongly estuarine systems? Application to the semi-enclosed estuary of Strait of Georgia and Juan de Fuca Strait. Estuarine, Coastal and Shelf Science 50 (4), 467–488.

Radiometric measurements and data analysis protocols. Tech. rep., Goddard Space Flight Center NASA.

Discrimination of diatoms from other phytoplankton using ocean-colour data. Marine Ecology Progress Series 272, 59–68.

Appendix A

Moderate Resolution Imaging

Spectroradiometer (MODIS) Aqua

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a multi-spectral Earth imaging sensor with 36 spectral bands ranging from 0.4 to 14.4 \(\mu m \). The first MODIS sensor was launched with NASA’s Terra satellite and has been operating since December 1999. In addition to the Terra satellite, a second MODIS sensor was launched with NASA’s Aqua satellite and has been operating since May 2002. Although both MODIS sensors have ocean-colour bands, the MODIS Aqua sensor is currently the main platform for ocean-colour imagery because of radiometric calibration and stability issues with the MODIS Terra sensor (Franz et al. 2007). The MODIS Aqua sensor continues and expands on the heritage of the Coastal Zone Color Scanner (CZCS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) by providing improved signal-to-noise ratios for the ocean-colour bands and improve placement of band centres (Esaïas et al. 1998). Although the MODIS Aqua has 9 ocean-colour bands with 1 km resolution at nadir, the sensor also has additional bands at 500 and 250 m resolution that were originally designed for land and atmospheric remote sensing. An expanded list of bands used with MODIS high resolution (HIRES) ocean-colour processing is provided in the table below (Franz et al. 2006).
Table A.1: Expanded list of MODIS bands used for high resolution (HIRES) ocean-colour image processing (Franz et al. 2006).

<table>
<thead>
<tr>
<th>Band Number</th>
<th>Wavelength (nm)</th>
<th>Spatial Resolution (m)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>412</td>
<td>1000</td>
<td>Standard ocean-colour band</td>
</tr>
<tr>
<td>9</td>
<td>443</td>
<td>1000</td>
<td>Standard ocean-colour band</td>
</tr>
<tr>
<td>3</td>
<td>469</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>488</td>
<td>1000</td>
<td>Standard ocean-colour band</td>
</tr>
<tr>
<td>11</td>
<td>531</td>
<td>1000</td>
<td>Standard ocean-colour band</td>
</tr>
<tr>
<td>12</td>
<td>551</td>
<td>1000</td>
<td>Standard ocean-colour band</td>
</tr>
<tr>
<td>4</td>
<td>555</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>645</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>667</td>
<td>1000</td>
<td>Standard ocean-colour band</td>
</tr>
<tr>
<td>14</td>
<td>678</td>
<td>1000</td>
<td>Standard ocean-colour band</td>
</tr>
<tr>
<td>15</td>
<td>748</td>
<td>1000</td>
<td>Standard ocean-colour band</td>
</tr>
<tr>
<td>2</td>
<td>859</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>869</td>
<td>1000</td>
<td>Standard ocean-colour band</td>
</tr>
<tr>
<td>5</td>
<td>1240</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1640</td>
<td>500</td>
<td>Not functional on MODIS Aqua</td>
</tr>
<tr>
<td>7</td>
<td>2130</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B

Ship Measured Stations

<table>
<thead>
<tr>
<th>Station</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>48.91667</td>
<td>123.25417</td>
</tr>
<tr>
<td>S1-1</td>
<td>48.96667</td>
<td>123.21667</td>
</tr>
<tr>
<td>S1-2</td>
<td>48.95500</td>
<td>123.26833</td>
</tr>
<tr>
<td>S2-1</td>
<td>48.98000</td>
<td>123.48750</td>
</tr>
<tr>
<td>S2-2</td>
<td>49.02500</td>
<td>123.42500</td>
</tr>
<tr>
<td>S2-3</td>
<td>49.08333</td>
<td>123.35000</td>
</tr>
<tr>
<td>S2-4</td>
<td>49.05000</td>
<td>123.51667</td>
</tr>
<tr>
<td>S2-5</td>
<td>49.06667</td>
<td>123.43333</td>
</tr>
<tr>
<td>S3</td>
<td>49.12500</td>
<td>123.55833</td>
</tr>
<tr>
<td>S3-1</td>
<td>49.15000</td>
<td>123.43333</td>
</tr>
<tr>
<td>S3-2</td>
<td>49.20000</td>
<td>123.30833</td>
</tr>
<tr>
<td>S3-3</td>
<td>49.16667</td>
<td>123.50000</td>
</tr>
<tr>
<td>S4-1</td>
<td>49.25000</td>
<td>123.74833</td>
</tr>
<tr>
<td>S4-2</td>
<td>49.23333</td>
<td>123.58333</td>
</tr>
<tr>
<td>S4-3</td>
<td>49.25000</td>
<td>123.38333</td>
</tr>
<tr>
<td>S4-4</td>
<td>49.26667</td>
<td>123.66667</td>
</tr>
<tr>
<td>S4-5</td>
<td>49.26667</td>
<td>123.50000</td>
</tr>
<tr>
<td>S5</td>
<td>49.35833</td>
<td>123.85000</td>
</tr>
<tr>
<td>S5-1</td>
<td>49.36117</td>
<td>123.69033</td>
</tr>
<tr>
<td>S5-2</td>
<td>49.42417</td>
<td>124.03333</td>
</tr>
<tr>
<td>S5-3</td>
<td>49.55000</td>
<td>124.10000</td>
</tr>
<tr>
<td>S5-4</td>
<td>49.41667</td>
<td>123.90000</td>
</tr>
<tr>
<td>S6</td>
<td>49.40333</td>
<td>124.33633</td>
</tr>
<tr>
<td>S6-1</td>
<td>49.50000</td>
<td>124.50000</td>
</tr>
<tr>
<td>S6-2</td>
<td>49.63667</td>
<td>124.64583</td>
</tr>
<tr>
<td>S6-3</td>
<td>49.58333</td>
<td>124.50000</td>
</tr>
<tr>
<td>S6-4</td>
<td>49.43333</td>
<td>124.43333</td>
</tr>
</tbody>
</table>
Appendix C

Remote-Sensing Reflectance Measurements
All April 2006 Spectra

\[n = 29 \]

All July 2006 Spectra

\[n = 42 \]
Appendix D

Chromophoric Dissolved Organic Matter Measurements

<table>
<thead>
<tr>
<th>Date</th>
<th>Station</th>
<th>$a_{cdom}(443)$ (m$^{-1}$)</th>
<th>Mean (m$^{-1}$)</th>
<th>Std. (m$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20060425</td>
<td>S1-1</td>
<td>0.4111</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>20060425</td>
<td>S1-2</td>
<td>0.6535</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>20060425</td>
<td>S1</td>
<td>0.4595</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>20060425</td>
<td>blank1</td>
<td>0.0461</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>20060426</td>
<td>S2-3</td>
<td>0.7823</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>20060426</td>
<td>S2-2</td>
<td>0.3424 0.3202 0.2903</td>
<td>0.3176</td>
<td>0.0261</td>
</tr>
<tr>
<td>20060426</td>
<td>S2-1</td>
<td>0.2994</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>20060426</td>
<td>blank2</td>
<td>0.0865 0.1235 0.0264</td>
<td>0.0788</td>
<td>0.0490</td>
</tr>
<tr>
<td>20060427</td>
<td>S3</td>
<td>0.1944</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>20060427</td>
<td>S3-1</td>
<td>0.3636</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>20060427</td>
<td>S3-2</td>
<td>0.7845 0.7313 0.5448</td>
<td>0.6869</td>
<td>0.1259</td>
</tr>
<tr>
<td>20060427</td>
<td>blank3</td>
<td>0.0472 0.0661 0.0049</td>
<td>0.0394</td>
<td>0.0313</td>
</tr>
<tr>
<td>20060428</td>
<td>S4-3</td>
<td>0.3783</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>20060428</td>
<td>S4-2</td>
<td>0.2156</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>20060428</td>
<td>S4-1</td>
<td>0.2511 0.1937 0.1839</td>
<td>0.2095</td>
<td>0.0363</td>
</tr>
<tr>
<td>20060428</td>
<td>blank4</td>
<td>0.0423 0.0978 0.1174</td>
<td>0.0858</td>
<td>0.0390</td>
</tr>
<tr>
<td>Date</td>
<td>Station</td>
<td>(a_{cdom}(443)) (m(^{-1}))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060712</td>
<td>S1-1</td>
<td>0.4012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060712</td>
<td>S1-2</td>
<td>0.3845</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060712</td>
<td>S1</td>
<td>0.3146</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060712</td>
<td>blank0712</td>
<td>0.0253</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060713</td>
<td>S2-5</td>
<td>0.3048</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060713</td>
<td>S2-4</td>
<td>0.3767</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060713</td>
<td>S2-3</td>
<td>0.3149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060713</td>
<td>S2-2</td>
<td>0.2865</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060713</td>
<td>S2-1</td>
<td>0.2676</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060713</td>
<td>blank0713</td>
<td>0.0272</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060714</td>
<td>S3</td>
<td>0.3899</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060714</td>
<td>S3-1</td>
<td>0.3512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060714</td>
<td>S3-2</td>
<td>0.3255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060714</td>
<td>S3-3</td>
<td>0.3015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060714</td>
<td>blank0714</td>
<td>0.0621</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060715</td>
<td>S4-5</td>
<td>0.3057</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060715</td>
<td>S4-4</td>
<td>0.2941</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060715</td>
<td>S4-3</td>
<td>0.3567</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060715</td>
<td>S4-2</td>
<td>0.3230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060715</td>
<td>S4-1</td>
<td>0.2202</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060715</td>
<td>blank0715</td>
<td>0.0211</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060716</td>
<td>S6</td>
<td>0.3700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060716</td>
<td>S6-1</td>
<td>0.2545</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060716</td>
<td>S6-2</td>
<td>0.2628</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060716</td>
<td>S6-3</td>
<td>0.2362</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060716</td>
<td>S6-4</td>
<td>0.3383</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060716</td>
<td>blank0716</td>
<td>0.0275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060717</td>
<td>S5</td>
<td>0.4019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060717</td>
<td>S5-1</td>
<td>0.2792</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060717</td>
<td>S5-2</td>
<td>0.4035</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060717</td>
<td>S5-3</td>
<td>0.4658</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060717</td>
<td>S5-4</td>
<td>0.3593</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060717</td>
<td>blank0717</td>
<td>0.0329</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Note: The blank samples are also plotted and are represented by the spectra with the lowest absorption ~ 400 nm
Appendix E

Chlorophyll-a Measurements

<table>
<thead>
<tr>
<th>Date (YYYYMMDD)</th>
<th>Station</th>
<th>Sample (mg m$^{-3}$)</th>
<th>Mean (mg m$^{-3}$)</th>
<th>Std. (mg m$^{-3}$)</th>
<th>Vol. (l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20060425</td>
<td>S1-1</td>
<td>3.55 5.19 3.53</td>
<td>4.09</td>
<td>0.95</td>
<td>1.0</td>
</tr>
<tr>
<td>20060425</td>
<td>S1-2</td>
<td>3.10 5.11 3.59</td>
<td>3.93</td>
<td>1.05</td>
<td>1.0</td>
</tr>
<tr>
<td>20060425</td>
<td>S1</td>
<td>5.13 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060425</td>
<td>Blank0425</td>
<td>0.00 0.00 0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.0</td>
</tr>
<tr>
<td>20060426</td>
<td>S2-3</td>
<td>2.16 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060426</td>
<td>S2-2</td>
<td>0.36 0.35 0.39</td>
<td>0.37</td>
<td>0.02</td>
<td>2.5</td>
</tr>
<tr>
<td>20060426</td>
<td>S2-2 (Cast 2)</td>
<td>0.76 0.72 0.71</td>
<td>0.73</td>
<td>0.03</td>
<td>2.5</td>
</tr>
<tr>
<td>20060426</td>
<td>S2-1</td>
<td>0.58 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>3.0</td>
</tr>
<tr>
<td>20060426</td>
<td>Blank0426</td>
<td>0.00 0.00 0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.0</td>
</tr>
<tr>
<td>20060427</td>
<td>S3</td>
<td>0.65 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>3.0</td>
</tr>
<tr>
<td>20060427</td>
<td>S3-1</td>
<td>1.83 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>3.0</td>
</tr>
<tr>
<td>20060427</td>
<td>S3-2</td>
<td>3.74 1.64 4.53</td>
<td>3.30</td>
<td>1.49</td>
<td>1.0</td>
</tr>
<tr>
<td>20060427</td>
<td>S3-2 (Cast 2)</td>
<td>6.64 2.24 8.39</td>
<td>5.76</td>
<td>3.17</td>
<td>1.0</td>
</tr>
<tr>
<td>20060427</td>
<td>Blank0427</td>
<td>0.00 0.00 0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.0</td>
</tr>
<tr>
<td>20060428</td>
<td>S4-3</td>
<td>1.45 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060428</td>
<td>S4-2</td>
<td>2.86 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060428</td>
<td>S4-1</td>
<td>2.50 0.82 1.43</td>
<td>1.58</td>
<td>0.85</td>
<td>1.0</td>
</tr>
<tr>
<td>20060428</td>
<td>S4-4</td>
<td>2.08 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060428</td>
<td>Blank0428</td>
<td>0.00 0.00 0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.0</td>
</tr>
<tr>
<td>Date</td>
<td>Station</td>
<td>Sample (mg m(^{-3}))</td>
<td>Mean (mg m(^{-3}))</td>
<td>Std. (mg m(^{-3}))</td>
<td>Vol. (l)</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>20060712</td>
<td>S1-1</td>
<td>3.94 6.20 5.06</td>
<td>5.07</td>
<td>1.13</td>
<td>1.0</td>
</tr>
<tr>
<td>20060712</td>
<td>S1-2</td>
<td>5.11 4.59 5.90</td>
<td>5.20</td>
<td>0.66</td>
<td>1.0</td>
</tr>
<tr>
<td>20060712</td>
<td>S1</td>
<td>2.96 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060712</td>
<td>S1 (Lab Dup.)</td>
<td>2.95 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060712</td>
<td>Blank0712</td>
<td>0.00 0.00 0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.0</td>
</tr>
<tr>
<td>20060713</td>
<td>S2-1</td>
<td>2.34 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060713</td>
<td>S2-2</td>
<td>8.46 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060713</td>
<td>S2-3</td>
<td>0.32 0.49 0.37</td>
<td>0.39</td>
<td>0.09</td>
<td>1.0</td>
</tr>
<tr>
<td>20060713</td>
<td>S2-4</td>
<td>6.87 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060713</td>
<td>S2-5</td>
<td>4.36 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060713</td>
<td>Blank0713</td>
<td>0.00 0.00 0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.0</td>
</tr>
<tr>
<td>20060714</td>
<td>S3</td>
<td>5.02 5.31 9.01</td>
<td>6.45</td>
<td>2.22</td>
<td>1.0</td>
</tr>
<tr>
<td>20060714</td>
<td>S3-1</td>
<td>6.17 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060714</td>
<td>S3-2</td>
<td>1.31 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060714</td>
<td>S3-2 (Lab Dup.)</td>
<td>1.30 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060714</td>
<td>S3-3</td>
<td>6.03 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060714</td>
<td>Blank0714</td>
<td>0.00 0.00 0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.0</td>
</tr>
<tr>
<td>20060715</td>
<td>S4-1</td>
<td>2.53 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060715</td>
<td>S4-2</td>
<td>6.46 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060715</td>
<td>S4-3</td>
<td>1.13 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060715</td>
<td>S4-4</td>
<td>1.93 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060715</td>
<td>S4-5</td>
<td>3.44 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060715</td>
<td>Blank0715</td>
<td>0.00 0.00 0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.0</td>
</tr>
<tr>
<td>20060716</td>
<td>S6</td>
<td>1.98 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060716</td>
<td>S6-1</td>
<td>1.01 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060716</td>
<td>S6-2</td>
<td>1.85 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>2.0</td>
</tr>
<tr>
<td>20060716</td>
<td>S6-3</td>
<td>1.49 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>2.0</td>
</tr>
<tr>
<td>20060716</td>
<td>S6-4</td>
<td>2.22 1.73 2.58</td>
<td>2.18</td>
<td>0.43</td>
<td>1.0</td>
</tr>
<tr>
<td>20060716</td>
<td>Blank0716</td>
<td>0.00 0.00 0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.0</td>
</tr>
<tr>
<td>20060717</td>
<td>S5</td>
<td>2.92 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060717</td>
<td>S5-1</td>
<td>4.67 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060717</td>
<td>S5-2</td>
<td>3.44 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060717</td>
<td>S5-3</td>
<td>3.44 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060717</td>
<td>S5-3 (Lab Dup.)</td>
<td>3.47 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060717</td>
<td>S5-4</td>
<td>3.18 2.37 3.08</td>
<td>2.88</td>
<td>0.44</td>
<td>1.0</td>
</tr>
<tr>
<td>20060717</td>
<td>Blank0717</td>
<td>0.00 0.00 0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Appendix F

Total Suspended Solids Measurements

<table>
<thead>
<tr>
<th>Date (YYYYMMDD)</th>
<th>Station</th>
<th>Sample (g m(^{-3}))</th>
<th>Mean (g m(^{-3}))</th>
<th>Std. (g m(^{-3}))</th>
<th>Vol. (l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20060425</td>
<td>S1</td>
<td>5.78</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060425</td>
<td>S1-1</td>
<td>3.95</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060425</td>
<td>S1-2</td>
<td>5.33</td>
<td>5.88</td>
<td>5.23</td>
<td>0.35</td>
</tr>
<tr>
<td>20060425</td>
<td>S1-2 (Cast 2)</td>
<td>6.08</td>
<td>5.49</td>
<td>5.24</td>
<td>0.43</td>
</tr>
<tr>
<td>20060425</td>
<td>Blank0425</td>
<td>0.04</td>
<td>0.08</td>
<td>0.06</td>
<td>0.02</td>
</tr>
<tr>
<td>20060426</td>
<td>S2-1</td>
<td>1.14</td>
<td>NA</td>
<td>NA</td>
<td>3.0</td>
</tr>
<tr>
<td>20060426</td>
<td>S2-2</td>
<td>5.55</td>
<td>1.15</td>
<td>1.24</td>
<td>2.65</td>
</tr>
<tr>
<td>20060426</td>
<td>S2-3</td>
<td>7.57</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060426</td>
<td>Blank0426</td>
<td>0.05</td>
<td>0.08</td>
<td>0.10</td>
<td>0.03</td>
</tr>
<tr>
<td>20060427</td>
<td>S3-1</td>
<td>4.30</td>
<td>NA</td>
<td>NA</td>
<td>1.9</td>
</tr>
<tr>
<td>20060427</td>
<td>S3-2</td>
<td>12.21</td>
<td>11.93</td>
<td>11.52</td>
<td>11.88</td>
</tr>
<tr>
<td>20060427</td>
<td>S3</td>
<td>1.49</td>
<td>NA</td>
<td>NA</td>
<td>3.0</td>
</tr>
<tr>
<td>20060427</td>
<td>Blank0427</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.00</td>
</tr>
<tr>
<td>20060428</td>
<td>S4-1</td>
<td>3.19</td>
<td>2.41</td>
<td>2.40</td>
<td>2.67</td>
</tr>
<tr>
<td>20060428</td>
<td>S4-2</td>
<td>3.30</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060428</td>
<td>S4-3</td>
<td>3.46</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060428</td>
<td>S4-4</td>
<td>3.47</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060428</td>
<td>Blank0428</td>
<td>0.08</td>
<td>0.02</td>
<td>0.09</td>
<td>0.06</td>
</tr>
<tr>
<td>Date</td>
<td>Station</td>
<td>Sample (g m⁻³)</td>
<td>Mean (g m⁻³)</td>
<td>Std. (g m⁻³)</td>
<td>Vol. (l)</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>----------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------</td>
</tr>
<tr>
<td>YYYYMMDD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060712</td>
<td>S1-1</td>
<td>2.44 1.24 0.91</td>
<td>1.53</td>
<td>0.80</td>
<td>1.0</td>
</tr>
<tr>
<td>20060712</td>
<td>S1-2</td>
<td>2.43 2.10 1.60</td>
<td>2.04</td>
<td>0.42</td>
<td>1.0</td>
</tr>
<tr>
<td>20060712</td>
<td>S1</td>
<td>2.01 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060712</td>
<td>Blank0712</td>
<td>0.15 0.10 0.11</td>
<td>0.12</td>
<td>0.03</td>
<td>2.0</td>
</tr>
<tr>
<td>20060713</td>
<td>S2-1</td>
<td>2.49 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060713</td>
<td>S2-2</td>
<td>2.79 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060713</td>
<td>S2-3</td>
<td>4.34 20.76 20.61</td>
<td>15.24</td>
<td>9.44</td>
<td>1.0</td>
</tr>
<tr>
<td>20060713</td>
<td>S2-4</td>
<td>2.83 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060713</td>
<td>S2-5</td>
<td>5.98 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060713</td>
<td>Blank0713</td>
<td>0.26 0.11 0.12</td>
<td>0.17</td>
<td>0.08</td>
<td>2.0</td>
</tr>
<tr>
<td>20060714</td>
<td>S3</td>
<td>3.73 3.82 4.11</td>
<td>3.89</td>
<td>0.20</td>
<td>1.0</td>
</tr>
<tr>
<td>20060714</td>
<td>S3-1</td>
<td>3.22 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060714</td>
<td>S3-2</td>
<td>6.72 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060714</td>
<td>S3-3</td>
<td>2.75 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060714</td>
<td>Blank0714</td>
<td>0.13 0.17 0.16</td>
<td>0.15</td>
<td>0.02</td>
<td>2.0</td>
</tr>
<tr>
<td>20060715</td>
<td>S4-1</td>
<td>3.04 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060715</td>
<td>S4-2</td>
<td>2.87 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060715</td>
<td>S4-3</td>
<td>1.55 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>2.0</td>
</tr>
<tr>
<td>20060715</td>
<td>S4-4</td>
<td>1.76 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>2.0</td>
</tr>
<tr>
<td>20060715</td>
<td>S4-5</td>
<td>3.06 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060715</td>
<td>Blank0715</td>
<td>0.14 0.10 0.14</td>
<td>0.13</td>
<td>0.02</td>
<td>2.0</td>
</tr>
<tr>
<td>20060716</td>
<td>S6</td>
<td>2.90 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060716</td>
<td>S6-1</td>
<td>2.50 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060716</td>
<td>S6-2</td>
<td>1.78 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>2.0</td>
</tr>
<tr>
<td>20060716</td>
<td>S6-3</td>
<td>2.74 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>2.0</td>
</tr>
<tr>
<td>20060716</td>
<td>S6-4</td>
<td>2.44 2.33 3.06</td>
<td>2.61</td>
<td>0.39</td>
<td>1.0</td>
</tr>
<tr>
<td>20060716</td>
<td>Blank0716</td>
<td>0.13 0.18 0.17</td>
<td>0.16</td>
<td>0.02</td>
<td>2.0</td>
</tr>
<tr>
<td>20060717</td>
<td>S5</td>
<td>2.50 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060717</td>
<td>S5-1</td>
<td>2.84 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060717</td>
<td>S5-2</td>
<td>14.17 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060717</td>
<td>S5-3</td>
<td>2.77 NA NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
</tr>
<tr>
<td>20060717</td>
<td>S5-4</td>
<td>2.17 1.66 2.42</td>
<td>2.08</td>
<td>0.39</td>
<td>1.0</td>
</tr>
<tr>
<td>20060717</td>
<td>Blank0717</td>
<td>0.12 0.16 0.15</td>
<td>0.15</td>
<td>0.02</td>
<td>2.0</td>
</tr>
</tbody>
</table>
University of Victoria

Partial Copyright License

I hereby grant the right to lend my thesis to users of the University of Victoria Library, and to make single copies only for such users or in response to a request from the Library of any other university, or similar institution, on its behalf or for one of its users. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by me or a member of the University designated by me. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Title of Thesis: Remote Sensing Chlorophyll-a in the Strait of Georgia.

Author: ________________________________

Nicholas M. Komick

December 10, 2007