IRREDUNDANCE IN THE QUEENS’ GRAPH

E.J. Cockayne

DMS-647-IR November 1993
IRREDUNDANCE IN THE QUEENS’ GRAPH

E.J. Cockayne

University of Victoria
Victoria, B.C.
Canada

Abstract

The vertices of the queens’ graph Q_n are the squares of an $n \times n$ chessboard and two squares are adjacent if a queen placed on one covers the other. Informally, a set I of queens on the board is irredundant if each queen in I covers a square (perhaps its own) which is not covered by any other queen in I. It is shown that the cardinality of any irredundant set of vertices of Q_n is at most $\lfloor 6n + 6 - 8 \sqrt{n + 3} \rfloor$ for $n \geq 6$. We also show that the bound is not exact since $IR(Q_8) \leq 23$.

1. Introduction

The lower (upper) domination numbers $\gamma(G), (\Gamma(G))$, independence numbers $i(G)$ ($\beta(G)$) and irredundance numbers $ir(G)$ ($IR(G)$) of a graph G are respectively the smallest (largest) cardinalities of minimal dominating, maximal independent and maximal irredundant vertex sets of G.

These six parameters are well-studied in the literature (see [3]) and satisfy the following chain of inequalities:

$$ir(G) \leq \gamma(G) \leq i(G) \leq \beta(G) \leq \Gamma(G) \leq IR(G).$$

In particular there has been considerable recent interest in the evaluation of these parameters for graphs defined from $n \times n$ chessboards ([2]). This is perhaps due to the fact that two of these problems, namely the determination of γ and i for the Queens’ graph
Q_n (defined in the following paragraph), have defied all efforts at solution for at least a hundred years (see [2]).

The Queens’ graph Q_n has the n^2 squares of the chessboard as its vertex set and two vertices are adjacent if a queen placed on one covers the other, i.e. if the two squares are on the same line (row, column or diagonal) of the board.

The survey paper ([2]) gives an excellent account of recent results on the six parameters for Q_n. Since that paper was written, Weakley ([5]) and Burger, Cockayne and Mynhardt ([1]) have established new values of $\gamma(Q_n)$.

This paper is concerned with the upper irredundance number $IR(Q_n)$. Informally, a set I of queens on the board is irredundant if each queen in I covers a square (perhaps its own) which is not covered by any other queen in I. Weakley ([5]) has shown $\Gamma(Q_n)$ (and hence $IR(Q_n)$) $\geq 2n-5$ and McCrae ([4]) has used computer techniques to generate examples which show this lower bound is not exact. In the present work we show that $IR(Q_n) \leq \lfloor 6n+6-8\sqrt{n+3} \rfloor$ and show that our bound is also not exact since $IR(Q_8) \leq 23$.

2. The Upper Bound for $IR(Q_n)$

The following notation and terminology will be required. The rows and columns are numbered in obvious matrix fashion. The sum-diagonal numbered k contains the squares (i, j) such that $(i + j) - (n + 1) = k$. The difference-diagonal numbered k contains the squares (i, j) satisfying $i - j = k$. There are $(2n-1)$ sum-diagonals (difference-diagonals) which are numbered $0, \pm 1, \pm 2, \ldots, \pm (n-1)$.

For a vertex v of Q_n, $r(v)$, $c(v)$, $d(v)$, $s(v)$ denote respectively the row, column, difference-diagonal and sum-diagonal which contain v. A set I of vertices of a graph G is irredundant if for each $v \in I$

$$N[v] - \bigcup_{u \in I \setminus \{v\}} N[u] \neq \emptyset.$$

Let I be an irredundant vertex set of Q_n, A be the set of isolated vertices of $G[I]$ where $|A| = \alpha \leq n$ (since $\beta(Q_n) = n$) and $X = \{x_1, \ldots, x_t\} = I - A$. Since I is irredundant, for each $i = 1, \ldots, t$, x_i is adjacent to $y_i \in V - I$ (a private neighbour of x_i) which is not
adjacent to any vertex of \(I - \{x_i\} \). Vertices \(x_i \) and \(y_i \) are on a line \(\ell_i \). Let \(\{y_1, \ldots, y_t\} = Y \), and \(Z = V - (I \cup Y) \). The private neighbour property implies that \(\ell_1, \ldots, \ell_t \) are distinct.
Define \(U = \{\ell_1, \ldots, \ell_t\} \).

We begin with a few simple propositions.

Proposition 1. If \(x_i, x_j \) (or \(y_i, y_j \)) are adjacent on a line \(\ell \), then \(\ell \notin U \).

Proof. If \(\{x_i, x_j\} \subseteq \ell \) and \(\{x_k, y_k\} \subseteq \ell \in U \), then one of \(i, j \) (say \(i \)) is distinct from \(k \).
Then \(\{x_i, x_k\} \subseteq \ell \) contradicting the private neighbour property of \(y_k \). (Similar proof for \(\{y_i, y_j\} \subseteq \ell \).)

Proposition 2. Let \(\ell \) be any line. If \(\{x_i, x_j\} \subseteq \ell \), then \(\{y_k, y_{\ell}\} \notin \ell \) and conversely.

Proof. Suppose \(\{x_i, x_j, y_k, y_{\ell}\} \subseteq \ell \). Clearly the private neighbour property is contradicted.

Proposition 3. Let \(\ell_i \) be the line defined by \(x_i, y_i \). Then none of the other six lines which contain \(x_i, y_i \) are in \(U \).

Proof. Suppose \(m \neq \ell_i \) contains \(x_i \) and \(m \in U \). Then for some \(j \), \(\{x_j, y_j, x_i\} \subseteq m \), contrary to the private neighbour property of \(y_j \). (Similar proof for \(y_i \in m \).)

Proposition 4. If \(v \in A \), then \(\{r(v), c(v), d(v), s(v)\} \cap U = \emptyset \).

Proof. Suppose \(v \in A \) is on line \(\ell \in U \). Then for some \(i \), \(\{x_i, y_i, v\} \subseteq \ell \), contrary to the private neighbour property.

Proposition 5. If \(v \in A \), then \(N(v) \subseteq Z \).

Proof. Vertex \(v \) is isolated in \(G[I] \) and is not adjacent to \(y \in Y \) (for otherwise \(y \) is not a private neighbour).

Proposition 6. For each \(i = 1, \ldots, t \), \(\ell_i - \{x_i, y_i\} \subseteq Z \).

Proof. Let \(w_i \in \ell_i - \{x_i, y_i\} \). If \(w_i = x \in I \), then both \(x \) and \(x_i \) are adjacent to \(y_i \).
If \(w_i = y_j \in Y \), then \(x_i \) is adjacent to both \(y_i \) and \(y_j \). In each case the private neighbour property is contradicted.
Now suppose that U contains r, c, s, d rows, columns, sum-diagonals and difference-diagonals respectively.

Proposition 7. If $r + \alpha \geq n - 4$ (or $c + \alpha \geq n - 4$), then $|I| \leq 3n$.

Proof. Since A is independent, the rows occupied by vertices of A are distinct and the r rows of U are distinct. Further by Proposition 4, these two sets of rows are disjoint. By Propositions 5 and 6, Z contains $(n - 2)$ elements of r rows of U and $(n - 1)$ elements from α additional rows. Since $|Z| = n^2 - 2t - \alpha$,

$$r(n - 2) + \alpha(n - 1) \leq n^2 - 2t - \alpha.$$

Therefore

$$2t \leq n^2 - (r + \alpha)n + 2r$$

$$\leq n^2 - (n - 4)n + 2r$$

$$= 4n + 2r.$$

Hence $|I| = t + \alpha \leq 2n + (r + \alpha) \leq 3n$.

We now establish the upper bound for $IR(Q_n)$.

Theorem 8. For $n \geq 6$, $IR(Q_n) \leq \lfloor 6n + 6 - 8\sqrt{n + 3} \rfloor$.

Proof. If $r + \alpha$ (or $c + \alpha$) $\geq n - 4$, then by Proposition 7, $|I| \leq 3n \leq 6n + 6 - 8\sqrt{n + 3}$ for $n \geq 6$. Hence assume $r + \alpha \leq n - 5$ and $c + \alpha \leq n - 5$. Assume, without loss of generality, that $d \leq s$ and re-label X, Y so that ℓ_1, \ldots, ℓ_s are sum-diagonals. Let r_1, \ldots, r_s (respectively r'_1, \ldots, r'_s) be the rows occupied by x_1, \ldots, x_s (y_1, \ldots, y_s). Note that there may be repetitions among r_1, \ldots, r_s and among r'_1, \ldots, r'_s, but no r_i is equal to an r'_j ($r_i \neq r'_j$ since x_i, y_i are on a sum-diagonal and $r_i = r'_j$ $(j \neq i)$ contradicts the private neighbour property).

Suppose L is the set of lines which are neither in U nor pass through any vertex of A. Let λ be the largest multiplicity of a row in the sequence r_1, \ldots, r_s. Then there are at least $\lceil s/\lambda \rceil$ distinct rows in the sequence. These rows are in L (by Proposition 3 and the fact that no vertex of A is adjacent to vertices of $X \cup Y$). Further the λ vertices of X which are
on the same row, occupy distinct columns and distinct difference-diagonals. These 2λ lines are also in L. Hence we have a set of lines $L_1 \subseteq L$ satisfying (using elementary calculus)

$$|L_1| = \left\lceil \frac{s}{\lambda} \right\rceil + 2\lambda \geq \frac{s}{\lambda} + 2\lambda \geq 2\sqrt{2s}.$$

Applying the same argument to the sequence r'_1, \ldots, r'_s, we obtain a set $L_2 \subseteq L$ with $|L_2| \geq 2\sqrt{2s}$ and $L_1 \cap L_2 = \emptyset$ (otherwise x_i, y_j are on same row, column or difference-diagonal which contradicts the private neighbour property). We conclude $|L| \geq 4\sqrt{2s}$.

The total number of lines is $6n - 2$. Hence

$$t + 4\alpha + 4\sqrt{2s} \leq 6n - 2$$

and

$$|I| = t + \alpha \leq 6n - 2 - 4\sqrt{2s} - 3\alpha.$$

Therefore

$$|I| \leq f_1(s) = 6n - 2 - 4\sqrt{2s}. \quad (1)$$

Moreover

$$|I| = (r + \alpha) + c + s + d \leq (n - 5) + (n - 5) + 2s.$$

Therefore

$$|I| \leq f_2(s) = (2n - 10) + 2s. \quad (2)$$

Hence

$$|I| \leq \max_{1 \leq s \leq 2n-3} \left(\min(f_1(s), f_2(s)) \right).$$

The maximum occurs where $f_1(s) = f_2(s)$.

Solving the quadratic for $\sqrt{2s}$, we find that the maximum occurs when $\sqrt{2s} = 2\sqrt{n + 3} - 2$ and so from (1)

$$|I| \leq 6n - 2 - 4(2\sqrt{n + 3} - 2)$$

$$= 6n + 6 - 8\sqrt{n + 3}.$$
3. An upper bound for $IR(Q_8)$

In this section we show that the bound of Section 2 is not exact. The bound for $IR(Q_8)$ is 27. However we prove

Theorem 9. $IR(Q_8) \leq 23$.

Proof. Suppose I is an irredundant set of 24 vertices of Q_8. Then $t = 24 - \alpha$ and $|Z| = 64 - 2t - \alpha = 16 + \alpha$. Suppose $\alpha \geq 2$ and $a_1, a_2 \in A$. By Proposition 5, $N(a_1) \cup N(a_2) \subseteq Z$ and the minimum degree of Q_8 is 21. Hence

$$|Z| \geq |N(a_1)| + |N(a_2)| - |N(a_1) \cap N(a_2)|$$

$$= 42 - |N(a_1) \cap N(a_2)|.$$

But for any n and non-adjacent $v_1, v_2 \in V(Q_n)$, $|N(v_1) \cap N(v_2)| \leq 12$, hence $|Z| = 16 + \alpha \geq 30$, which is impossible since $\alpha \leq \beta(Q_n) = 8$. We have shown that $\alpha = 0$ or 1.

Suppose U contains 4 or more lines which contain 8 squares (i.e. 4 or more rows, columns or major diagonals). Let four of these lines be ℓ_1, \ldots, ℓ_4 and $Z_i = \ell_i - \{x_i, y_i\}$. By Proposition 6, $\bigcup_{i=1}^{4} Z_i \subseteq Z$. Therefore

$$|Z| \geq \left| \bigcup_{i=1}^{4} Z_i \right| \geq \sum_{i=1}^{4} |Z_i| - \sum_{1 \leq i < j \leq 4} |Z_i \cap Z_j|$$

$$\geq 24 - 6 = 18.$$

Hence $16 + \alpha \geq 18$, a contradiction.

It follows (using $\alpha \in \{0, 1\}$) that U contains at least 20 lines from the set of sum-diagonals and difference-diagonals numbered $\pm 1, \ldots, \pm 6$.

Without losing generality, U contains at least 10 sum-diagonals from this list say s_1, \ldots, s_{10} and these are disjoint. By Proposition 6

$$|Z| \geq \sum_{i=1}^{10} |s_i - \{x_i, y_i\}| \geq 2(0 + 1 + 2 + 3 + 4) = 20.$$

Therefore $16 + \alpha \geq 20$, a contradiction which shows that there is no 24-vertex irredundant set. \blacksquare
Acknowledgements

The author gratefully acknowledges research support from the Canadian Natural Sciences and Engineering Research Council. He would also like to thank G. Grant, S.T. Hedetniemi, and A. McCrae for profitable and stimulating discussions concerning this work.

References

4. A. McCrae. (Private communication)