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ABSTRACT

New adaptive-filtering algorithms, also known as adaptation algorithms, are pro-

posed. The new algorithms can be broadly classified into two categories, namely,

steepest-descent and Newton-type adaptation algorithms. Several new methods have

been used to bring about improvements regarding the speed of convergence, steady-

state misalignment, robustness with respect to impulsive noise, re-adaptation capa-

bility, and computational load of the proposed algorithms.

In chapters 2, 3, and 8, several adaptation algorithms are developed that belong to

the steepest-descent family. The algorithms of chapters 2 and 3 use two error bounds

with the aim of reducing the computational load, achieving robust performance with

respect to impulsive noise, good tracking capability and significantly reduced steady-

state misalignment. The error bounds can be either prespecified or estimated using an

update formula that incorporates a modified variance estimator. Analyses pertaining

to the steady-state mean-square error (MSE) of some of these algorithms are also

presented. The algorithms in chapter 8 use a so-called iterative/shrinkage method

to obtain a variable step size by which improved convergence characteristics can be

achieved compared to those in other state-of-the-art competing algorithms.

Several adaptation algorithms that belong to the Newton family are developed

in chapters 4-6 with the aim of achieving robust performance with respect to impul-

sive noise, reduced steady-state misalignment, and good tracking capability without

compromising the initial speed of convergence. The algorithm in chapter 4 imposes

a bound on the L1 norm of the gain vector in the crosscorrelation update formula
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to achieve robust performance with respect to impulsive noise in stationary environ-

ments. In addition to that, a variable forgetting factor is also used to achieve good

tracking performance for applications in nonstationary environments. The algorithm

in chapter 5 is developed to achieve a reduced steady-state misalignment and improved

convergence speed and a reduced computational load. The algorithm in chapter 6 is

essentially an extension of the algorithm in chapter 5 designed to achieve robust per-

formance with respect to impulsive noise and reduced computational load. Analyses

concerning the asymptotic stability and steady-state MSE of these algorithms are

also presented.

An algorithm that minimizes Reny’s entropy of the error signal is developed in

chapter 7 with the aim of achieving faster convergence and reduced steady-state

misalignment compared to those in other algorithms of this family.

Simulation results are presented that demonstrate the superior convergence char-

acteristics of the proposed algorithms with respect to state-of-the-art competing al-

gorithms of the same family in network-echo cancelation, acoustic-echo cancelation,

system-identification, interference-cancelation, time-series prediction, and time-series

filtering applications. In addition, simulation results concerning system-identification

applications are also used to verify the accuracy of the MSE analyses presented.
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Chapter 1

Introduction

Adaptive filters are filters that tune their parameters as time advances to adapt their

performance according to some prespecified criterion. Adaptive filters that use the

mean square-error (MSE) criterion are the most popular in practice as the mathemat-

ical complexities involved are relatively easy to handle. The adaptation algorithms

involved start with an initial guess that is based on available information about the

system and then refine the guess in successive iterations such that each refinement

would improve the solution and eventually converge to the optimal Wiener solution

in some statistical sense [1, 2, 3]. Adaptive filters have a wide range of applications

including echo cancelation, equalization, noise cancelation, signal prediction, inter-

ference suppression, and beamforming [2, 3]. The performance of adaptive filters is

evaluated based one or more of the following factors [3]:

1. Convergence speed: This is a measure of the capability of the adaptive filter

to achieve fast convergence. It is proportional to the inverse of the number

of iterations required to yield a solution that is close enough to the Wiener

solution.

2. Excess MSE: This quantity is defined as the amount by which the steady-state

misalignment of the adaptive filter exceeds the minimum MSE produced by the

optimal Wiener filter.

3. Computational complexity: This is defined as the amount of computation re-

quired by the adaptive filter in one iteration which can be measured in terms

of the number of arithmetic operations or the CPU time required.
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4. Computational load: This is the product of the computational complexity and

the number of iterations required by the adaptive filter to converge.

5. Numerical robustness: An adaptive filter is said to be numerically robust when

its implementation using finite-word-length arithmetic remains stable indefi-

nitely even for ill-conditioned input signals.

Other measures of adaptive filters are robustness with respect to impulsive noise

and tracking capability. In applications where continuous operation is required, the

performance of the adaptive filter should not deteriorate due to perturbations brought

about by impulsive noise and also it should have good tracking.

Ideally, one would like to have an adaptive filter that is computationally efficient,

numerically robust with the highest convergence speed, and also yields the lowest

possible excess MSE. In addition, it should be easy to implement the adaptive filter

with low-cost, low-precision VLSI chips. In adaptive filters, as in any engineering

design problem, it is not possible to achieve all the desirable features simultaneously

and, in effect, trade-offs exist. For example, least-mean-squares (LMS) adaptive filters

are computationally simple and numerically robust but they have the drawback of

very slow convergence, especially when the input signal is colored [2, 3]. On the

other hand, recursive-least-squares (RLS) adaptive filters have fast convergence and

reduced excess MSE but they are computational complex and, in addition, they are

subject to serious numerical problems [2, 3]. These are the two families of algorithms

often used to illustrate the two extremes of the existing trade-off spectrum for the

design of adaptive filters. Over the years, steady research has been going on towards

improving the performance of adaptive filters with respect to different performance

measures. Our work is also aimed in that direction.

1.1 The State-of-the-Art

The general set up of an adaptive filter is illustrated in Fig. 1.1 where xk ∈ RM×1

denotes the input signal, yk = xT
kwk−1 ∈ R1×1 is the adaptive-filter output, dk ∈

R1×1 defines the desired signal, and k is the iteration number. The a priori error

signal is computed as ek = dk − yk and then used to form a time-varying objective

function which is optimized online with respect to the filter weights by using a suitable

algorithm commonly referred to as an adaptation algorithm. The objective functions

used in adaptive filters approximate the unknown mean-squared error (MSE) function
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Figure 1.1: Basic adaptive-filter configuration.

E[e2k] in various ways so that the adaptation algorithm yields a solution that is close

enough to the optimal Wiener solution. In this section, several classes of adaptation

algorithms are described.

1.1.1 Least-Mean-Squares Algorithms

The objective function E[e2k] of the optimal Wiener filter can be approximated by

using a time average of e2k, i.e.,

σ2
k = λσ2

k−1 + (1− λ)e2k (1.1)

with 0 ≤ λ < 1 [1]. The basic least-mean-squares (LMS) algorithm [1, 2, 3, 4]

uses (1.1) to approximate E[e2k]; however, it uses λ = 0 and, consequently, a simple

adaptation algorithm is achieved [1]. The adaptation formula of the LMS algorithm

is obtained by adding the negative of the gradient of the objective function in (1.1)

to the weight vector wk−1 ∈ RM×1, i.e.,

wk = wk−1 −
µ

2

∂e2k
∂wk−1

(1.2)

where µ is the step size that controls the stability, convergence speed, and steady-state

misalignment of the algorithm [1]. A larger value of µ yields faster convergence and

increased steady-state misalignment and, on the other hand, a smaller value yields a

slower convergence and reduced steady-state misalignment. To exploit the advantages

of both a smaller and larger step size, several variable step-size LMS algorithms have



4

been developed that keep the step size larger during transience and smaller during

steady state [5, 6, 7]. The step size µ in (1.2) for the algorithms in [5], [6], and [7] is

evaluated as

µk = αµk−1 + γe2k, (1.3)

µk = αµk−1 + γp2k (1.4)

with

pk = βpk−1 + (1− β)ekek−1, (1.5)

and

µk = µmax

(
1− exp−αzk

)
(1.6)

with

zk = fk − 3p2k (1.7a)

fk = βfk−1 + (1− β)e4k (1.7b)

pk = βpk−1 + (1− β)e2k, (1.7c)

respectively, where α, β, and γ are tuning parameters chosen in the range 0 to 1.

The variable step-size LMS algorithm in [6] is found to offer improved performance

for low signal-to-noise ratios (SNRs). Low computational complexity and numerical

robustness are the main advantages of LMS algorithms that make them most popular

especially for applications in wireless communications [1, 2, 3].

Another class of algorithms known as data-normalized algorithms offer improved

performance compared to the LMS algorithms at the cost of increased computational

cost. This class of algorithms uses the step size in (1.2) along with data normalization

as will be discussed in the next section.

1.1.2 Normalized Least-Mean-Squares Algorithms

The weight-vector update formula for the NLMS algorithm is obtained as

wk = wk−1 −
µ

2∥xk∥2
∂e2k

∂wk−1

(1.8)

with 0 < µ < 2 [1, 2, 3, 8, 9]. As can be seen, if the step size in (1.2) is made

proportional to the inverse of the power of the input signal xk we obtain the step
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size for the NLMS algorithm. In other words, like the LMS algorithms in [5, 6, 7]

the NLMS algorithm also minimizes the objective function in (1.1) and hence it is a

variable step size LMS algorithm. However, the computational complexity associated

with the NLMS algorithm is increased relative to that in the LMS algorithms in

[5, 6, 7]. Nonetheless, the NLMS algorithm based on (1.8) is commonly referred to

in the literature as the NLMS algorithm with constant step size µ. As in the case of

the LMS algorithm, improved performance can be achieved in the NLMS algorithm if

the step size µ in (1.8) is kept large during transience and small during steady state.

A nonparametric NLMS (NPNLMS) algorithm was reported in [10] that uses (1.8)

with a variable step size µ computed as

µk =

1− γ

σk

if |ek| > γ

0 otherwise
(1.9)

with γ =
√

σ2
v where σ2

v is the variance of the measurement noise, and parameter

σk is obtained from (1.1) with 0 < λ < 1. The NPNLMS algorithm in [10] offers

significant improvement as compared to the conventional NLMS algorithm.

The main drawback of the LMS and the NLMS algorithms is their poor con-

vergence speed for correlated input signals. In such situations, the affine projection

algorithm discussed below can be a viable alternative.

1.1.3 Affine Projection Algorithms

Affine-projection (AP) algorithms offer superior convergence performance relative

to LMS algorithms, especially for correlated input signals. However, they require

a significantly increased amount of computational effort [2, 3]. The weight-vector

update formula for the AP algorithm is

wk = wk−1 −
µ

2

∂J(ek)

∂wk−1

u1 (1.10)

where uT
1 = [1 0 · · · 0] is a vector of dimension L, J(ek) = eT

k (δI +XT
k Xk)

−1ek and

ek = dk − XT
k wk−1 ∈ RL×1 is the error signal vector [11]. Parameter L is known

as the projection order of the algorithm [3]. Matrix Xk ∈ RM×L is the input signal

matrix obtained as Xk = [xk xk−1 · · · xk−L+1].

Several variants of the basic AP algorithm have been developed and analyzed in
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the literature [12, 13, 14, 15, 16, 17, 18]. The most recent developments on this class

of algorithms can be found in [19, 20, 21, 22, 23, 24]. Improved performance can be

achieved in AP algorithms by using a variable step size µ, a variable regularization

parameter δ in J(ek), and a variable projection order L. The algorithms in [24, 25, 26]

use a variable L, the algorithm in [22] uses a variable regularization parameter δ, and

the algorithms in [19, 20, 23] use a variable step size µ. The algorithm in [23] is

designed exclusively for acoustic-echo-cancelation applications.

The step size µ in (1.10) for the variable step size AP (VSSAP) algorithm reported

in [20] is given by

µk = µmax
∥q̂k∥2

∥q̂k∥2 + C
(1.11)

where

q̂k = αq̂k−1 + (1− α)Xk(X
T
k Xk)

−1ek (1.12)

and C = L/(10SNR/10). The VSSAP algorithm also yields a reduced steady-state

misalignment for the same projection order compared to the AP algorithm [20].

An NLMS algorithm with variable step size is also possible [20] which is essentially

the same as the AP algorithm with L = 1.

In the next section, we discuss the constrained AP algorithms reported in [27].

1.1.4 Constrained Affine Projection Algorithms

Linearly constrained adaptive filters have several applications in signal processing

such as system identification, interference cancelation in direct-sequence code-division

multiple access (DS-CDMA) communication systems, and array antenna beamform-

ing [28, 29, 30, 31, 32, 33, 27]. The most widely used adaptation algorithms in such

applications are the constrained least-mean-squares (CLMS) and the generalized side-

lobe canceler least-mean squares (GSC-LMS) algorithms reported in [28] and [29],

respectively, due to the simplicity of LMS algorithms. Constrained normalized LMS

(CNLMS) and constrained binormalized data-reusing LMS (CBIDR-LMS) algorithms

that perform better than LMS algorithms, especially when the input signal is cor-

related, have been proposed in [32]. Variable step-size CNLMS and CBIDR-LMS

algorithms were proposed in [33] and [27], respectively. Later on constrained AP

(CAP) algorithms with a constant and variable step size were reported in [27] for

colored input signals.

The update formula for the CAP algorithm with a constant step size is obtained
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by using (1.10) as

wk = Z

[
wk−1 −

µ

2

∂J(ek)

∂wk−1

u1

]
+ F (1.13)

where J(ek) = eT
k (δI +XT

k ZXk)
−1ek,

Z = I −CT
(
CCT

)−1
C (1.14)

F = CT
(
CCT

)−1
f (1.15)

with C ∈ RN×M with N < M and f ∈ RN×1 are the constraint matrix and vector,

respectively; all other parameters are the same as in (1.10).

In the next section, we discuss the set-membership (SM) filtering method based

on which several variable step-size adaptation algorithms have been developed [3].

1.1.5 Set-Membership Algorithms

Conventional SM adaptive-filtering schemes estimate the weight vector w that would

cause the magnitude of the output error

e = d−wTx (1.16)

to be less than or equal to a prespecified bound γ ∈ R+ for all possible input-desired

signal pairs (x, d) [3, 34]. The set of all possible input-desired signal pairs (x, d) is

commonly referred to as the data space and is denoted as S. The output error based

on the SM adaptive-filtering (SMF) criterion in (1.16) must satisfy the condition

|e|2 ≤ γ2 ∀ (x, d) ∈ S (1.17)

The set of all possible vectors w that satisfy (1.17) whenever (x, d) ∈ S, designated

as Θ, is referred to as the feasibility or solution set and can be expressed as

Θ = ∩(x, d)∈S{w ∈ RM : |d−wTx| ≤ γ} (1.18)

If the adaptive filter is trained with k input-desired data pairs {xi, di}ki=1, then the

set containing all vectors w for which the associated output error at iteration k is

consistent with (1.17) is called the constraint or observation set. It is given by

Hk = {w ∈ RM : |dk −wTxk| ≤ γ} (1.19)
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The intersection of the constraint sets Hk over all iterations i = 1, 2, . . . , k is called

the exact membership set and is given by

Ψk = ∩k
i=1Hi (1.20)

Evidently, the feasibility set Θ is a subset of the exact membership set Ψk in any

given iteration.

Based on this approach several set-membership adaptation algorithms have been

developed in [19, 34, 35]. The set-membership NLMS (SMNLMS) reported in [34]

uses the update formula in (1.8) where the step size is computed as

µk =

1− γ

|ek|
if |ek| > γ

0 otherwise
(1.21)

with γ =
√

5σ2
v . Another set-membership LMS type adaptation algorithm was re-

ported in [36] where the weight vector in (1.8) is projected onto an adaptive convex

set Ak in such a way that the projected weight vector is closer to that of the unknown

system. The convex set Ak at iteration k is obtained by using the optimal bounding

ellipsoid algorithm in [37] and it yields robust performance even when the input signal

lacks persistent excitation and the perturbations in the unknown system are small.

However, this algorithm cannot operate in real time, i.e., a subloop is required to get

the convex set Ak. Similarly in [38] a gradient projection optimal bounding ellipsoid

algorithm is reported for channel equalization applications where the equalizer pa-

rameters are computed by projecting the gradient estimate onto a set that is updated

using a priori information on the instantaneous error magnitude and is shown to offer

robust performance when the input signal lacks persistent excitation. The SMNLMS

algorithm yields a significantly reduced steady-state misalignment compared to the

NLMS algorithm for the same convergence speed and also it requires reduced compu-

tational load. Similarly, the set-membership AP (SMAP) algorithm reported in [19]

uses the update formula in (1.10) with the size µ given by (1.21). This algorithm was

referred to as the SMAP algorithm in [19] but was later referred to as the simplified

SMAP algorithm in [39]. For the sake of consistency with the more recent publica-

tion on this algorithm, namely, [39], we will refer to this algorithm as the simplified

SMAP (SSMAP) algorithm hereafter. The SSMAP algorithm yields reduced steady-

state misalignment relative to the AP algorithm for the same projection order. The
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algorithms reported in [25], [26] are variants of the SSMAP algorithm in [19]; the

algorithm in [25] yields improved convergence speed for sparse system-identification

applications and the algorithm in [26] yields a slightly improved steady-state mis-

alignment as compared to the SSMAP algorithm in [19, 39]. The set-membership

binormalized data-reusing LMS algorithm in [35] is an alternative implementation of

the SSMAP algorithm in [19] with a projection order of two. Some variants of the SM

algorithms that estimate the error bound γ during the learning stage are reported in

[40, 41, 42].

In the next section, we discuss the class of linearly constrained SM algorithms.

1.1.6 Linearly Constrained Set-Membership Algorithms

Like the SM criterion, the linearly constrained SM criterion satisfies the condition in

(1.17) in addition to the constraint

Cw = f ∀ (x, d) ∈ S (1.22)

where C ∈ RN×M with N < M and f ∈ RN×1 are the constrained matrix and vector,

respectively, and S denotes the data space [27]. The solution set is expressed as

Θ = ∩(x, d)∈S{w ∈ RM : |d−wTx| ≤ γ and Cw = f} (1.23)

which contains all the w that satisfy (1.17) and (1.22) [27]. The constraint set at

iteration k is given by

Hk = {w ∈ RM : |dk −wTxk| ≤ γ and Cw = f} (1.24)

The intersection of the constraint sets Hk over all iterations i = 1, 2, . . . , k is given

by

Ψk = ∩k
i=1Hi (1.25)

Evidently, the feasibility set Θ is a subset of the exact membership set Ψk in any

given iteration.

Using µk given by (1.21) in (1.13), the update formula of the set-membership CAP

(SMCAP) algorithm in [27] is obtained. The CAP and SMCAP algorithms reported

in [27] achieve a higher convergence speed and similar misalignment as compared to

those of the CLMS and CNLMS algorithms.
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The algorithms we discussed so far belong to the steepest-descent family. When

the input signal is highly colored or bandlimited, LMS algorithms as well as other

algorithms of the steepest-descent family converge slowly and the capability of such

algorithms in tracking nonstationarities deteriorates. In such situations, more sophis-

ticated algorithms that belong to the Newton family are preferred.

In the next two sections, the two most important Newton-type adaptation algo-

rithms, namely, the recursive least-squares (RLS) and quasi-Newton (QN) algorithms

are discussed.

1.1.7 Recursive Least-Squares Algorithms

RLS algorithms are different from the algorithms based on the MSE criterion in the

sense that they do not use (1.1) to estimate E[e2k]. These algorithms optimize the

objection function [1, 2, 3]

J =
k∑

i=1

λk−i(di −wT
k xi)

2 (1.26)

to obtain the weight vector at iteration k as

wk = R−1
k pk (1.27)

where Rk and pk denote the autocorrelation matrix and crosscorrelation vector, re-

spectively, defined as

Rk = λRk−1 + xkx
T
k (1.28)

and

pk = λpk−1 + xkdk (1.29)

RLS algorithms offer the fastest convergence and the lowest steady-state misalign-

ment relative to other types of algorithms. However, the computational complexity

of these algorithms is of order M2, denoted as O(M2), which is much more than that

of LMS, NLMS, and AP algorithms which have computational complexity of O(M).

Some fast RLS (FRLS) algorithms with computational complexities of O(M) can be

found in [43, 44, 45, 46, 47]. RLS algorithms based on the QR decomposition (QRD)

of Rk can be found in [47]. The computational complexity of these algorithms is of

O(M2). Some fast QRD (FQRD) algorithms with computational complexity ofO(M)
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can be found in [48, 49, 50, 51, 52, 53, 54]. FRLS and FQRD algorithms suffer from

increased numerical instability problems due to their inheritance of the numerical

instability problems of their parent RLS and QRD algorithms, respectively, and the

simplifications used to obtain these algorithms [49]. However, the FQRD algorithm

reported in [49] offers numerically stable operation in low-precision implementations

and in the absence of persistent excitation. The numerical instability problem as-

sociated with the conventional RLS algorithm is discussed in [55, 56] and in [56] an

upper bound on the relative precision to assure the bounded-input bounded-output

(BIBO) stability of the algorithm in stationary and nonstationary environments is

derived. Formulas for choosing the forgetting factor to avoid explosive divergence for

a given precision in the conventional RLS algorithm are given in [56]. However, these

formulas were derived on the assumption that the input signal is persistently exciting.

Furthermore, the input-signal statistics must be known a priori in order to use these

formulas. Consequently, a prudent strategy for the derivation of fast Newton-type

algorithms would be to start with a parent algorithm that is inherently stable. A

viable alternative to achieve numerically robust fast QN algorithms would be to use

the quasi-Newton (QN) algorithms reported in [57, 58], which offer better numeri-

cal robustness than RLS algorithms. The LMS-Newton (LMSN) algorithms reported

in [59] offer better convergence performance than the conventional RLS algorithm.

Improved versions of the LMSN algorithms are reported in [60]. In addition to the

numerical instability problems, RLS algorithms suffer from a reduced re-adaptation

capability and high sensitivity to impulsive noise.

Known approaches for improving the performance of adaptive filters in impulsive-

noise environments involve the use of nonlinear clipping [61, 62], robust statistics

[63, 64, 65], or order statistics. The common step in the adaptive filters reported

in [61, 62, 63, 64, 65] is to detect the presence of impulsive noise by comparing the

magnitude of the error signal with the value of a threshold parameter which is a scalar

multiple of the variance of the error signal and then either stop or reduce the learning

rate of the adaptive filter. The adaptation algorithms in [61, 65] use the Huber

mixed-norm M-estimate objective function [66] and the algorithms in [63, 64] use the

Hampel three-part redescending M-estimate objective function [66]. The nonlinear

recursive least-squares (NRLS) algorithm in [62] uses nonlinear clipping to control the

learning rate and offers better performance in impulsive-noise environments than the

conventional RLS algorithm. The recursive least-mean (RLM) algorithm reported in

[63] offers faster convergence and better robustness than the NRLS algorithm. The
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RLM algorithm uses the autocorrelation matrix

Rk = λRk−1 + q(ek)xkx
T
k (1.30)

and the crosscorrelation vector

pk = λpk−1 + q(ek)xkdk (1.31)

to obtain the weight vector wk in (1.27) where q(ek) is given by

q(ek) =



1 for 0 < |ek| ≤ ξ
ξ

|ek|
for ξ < |ek| ≤ ∆1(

1− ∆2

|ek|

)
ξ

∆1 −∆2

for ∆1 < |ek| ≤ ∆2

0 otherwise

(1.32)

Parameters ξ, ∆1, and ∆2 are chosen as 1.96σ̂e,k, 2.24σ̂e,k, and 2.576σ̂e,k, respectively,

where σ̂2
e,k is an estimate of the variance of the a priori error signal ek. Variance σ̂

2
e,k

is estimated as

σ̂2
e,k = λσ̂2

e,k−1 + c1(1− λ)med(ak) (1.33)

where med denotes the median operation, ak =
[
e2k e2k−1 · · · e2k−P+1

]
is a vector of

dimension P , 0 < λ < 1 is the forgetting factor, and c1 = 1.483[1 + 5/(P − 1)] is

the finite-sample correction factor alluded to in [66]. A fast RLM algorithm that

has a computational complexity of O(M) is reported in [67]. For an impulsive-

noise corrupted ek, q(ek) is expected to assume a zero value that would prevent

adaptations in (1.30) and (1.31) and hence an impulsive noise-corrupted ek would

have no consequence on wk in (1.27). However, an impulsive noise-corrupted xk

does not necessarily cause an impulsive noise corrupted ek = dk − wT
k−1xk since

the impulsive noise component in xk can be filtered out if wk−1 has an amplitude

spectrum that resembles the amplitude response of a lowpass filter.

Another RLS algorithm that bounds the L2 norm of the difference of the weight

vector ∥wk−wk−1∥2 by an upper bound δ to suppress the effect of the impulsive noise

corrupted desired or input signal in the weight vector update formula was reported

in [68]. This algorithm has a computational complexity of O(M). Actually in [68],

the instantaneous power of the scaled error signal is lowpass filtered and then used to
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switch the step size of the algorithm between two levels one of which suppresses the

error signal corrupted by impulsive noise during the adaptation of the weight vector.

The robust algorithms in [63, 67, 68] belong to the RLS family and hence they

converge significantly faster than algorithms of the steepest-descent family [3].

1.1.8 Quasi-Newton Algorithms

The quasi-Newton (QN) algorithms in [57, 58, 69] use the weight-vector update for-

mula

wk = wk−1 −
µ

2
Sk−1

∂e2k
∂wk−1

(1.34)

where Sk−1 ∈ RM×M is a positive definite matrix. As can be seen, using Sk−1 = I in

(1.34) results in (1.2). In other words, like LMS algorithms, QN algorithms use the

objective function e2k to obtain the weight vector update formula in (1.34). However,

the search direction in the QN algorithms is modified by using a positive-definite

matrix that is not equal to the identity matrix, i.e., Sk−1 ̸= I. The gradient of e2k,

i.e., ∂e2k/∂wk−1, is used in the rank-one update formula [70] to obtain Sk−1 for the QN

algorithms in [57, 58, 69]. QN algorithms were found to be numerically more robust in

fixed- and floating-point arithmetic implementations for ill-conditioned input signals

compared to the RLS algorithm described in [57, 58, 69]. However, QN algorithms

are not robust with respect to impulsive noise. The QN algorithm in [64] uses the

weight-vector update formula

wk = wk−1 −
µ

2
Sk−1

∂J(ek)

∂wk−1

(1.35)

where the objective function J(ek) is given by

J(ek) =



e2k for 0 < |ek| ≤ ξ

2ξ|ek| − ξ2 for ξ < |ek| ≤ ∆1

ξ(∆2 +∆1)− ξ2 + ξ
(|ek| −∆2)

2

∆1 −∆2

for ∆1 < |ek| ≤ ∆2

ξ(∆2 +∆1)− ξ2 otherwise

(1.36)

The gradient of J(ek), i.e., ∂J(ek)/∂wk−1, is used in the self-scaling variable matrix

update formula in [71] to obtain Sk−1 in (1.35). Parameters ξ, ∆1, and ∆2 are set to

the same values as in the RLM algorithm. For an impulsive-noise corrupted ek, the
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objective function J(ek) assumes the value for the range |ek| > ∆2 in (1.36) where the

gradient ∂J(ek)/∂wk−1 assumes a zero value and, therefore, no update is performed

in (1.35). In this way, robust performance with respect to impulsive noise is achieved

in the QN algorithm described in [64].

A constrained version of the QN algorithm described in [58], referred to as the

constrained QN (CQN) algorithm, can be found in [72]. A fast QN (FQN) algorithm

that has a computational complexity of O(M) was reported in [73].

1.1.9 Minimum Error-Entropy Algorithms

The minimum error-entropy criterion was proposed in [74, 75] as an alternative to

the MSE criterion. Since the MSE criterion takes into account only the second-order

statistics of a signal it yields optimal performance for applications where signals

can be modeled in terms of Gaussian distributions. In other applications, improved

performance can be achieved by using the minimum error-entropy criterion as it uses

higher-order statistics [74, 75]. Based on this criterion, the stochastic minimum error-

entropy (MEE), minimum-error entropy with self-adjusting step size (VMEE), and

the normalized minimum-error entropy (NMEE) algorithms were proposed in [76],

[77], and [78], respectively. The operation of the MEE algorithms is based on the

minimization problem

minimize E2(e) = −log
∫∞
−∞ f 2

e (e) de
w

(1.37)

where E2(e) is Renyi’s entropy [79] of random error signal e with probability den-

sity function fe(e) [79]. Using the Parzen window with a Gaussian kernel κσ(e) for

estimating fe(e), the optimization problem in (1.37) can be expressed as

minimize E2(e) = − log V (e)
w (1.38)

where

V (e) =
1

N2

N∑
j=1

N∑
i=1

κσ
√
2(ej − ei) (1.39)

V (e) is known as the information potential (IP) function of the error signal. The

minimization problem in (1.38) is equivalent to maximizing the IP function in (1.39)

since log V (e) is a monotonically increasing function. For a real-time implementation,
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a stochastic IP function

Vk(e) ≈
1

L

k−1∑
i=k−L

κσ
√
2(ek − ei) (1.40)

is maximized by using the update equation

wk = wk−1 + µ
∂Vk(e)

∂w
(1.41)

where µ is the step size. An algorithm based on this updating formula is referred to

as the MEE algorithm in [76].

If the IP function in (1.39) or (1.40) is a δ-distributed random variable, i.e., it

achieves its maximum value if ek = 0 for all k, then V (e) ≤ V (0) where V (0) =

1/σ
√
2π is the upper bound on the achievable V (e). Therefore, the maximization of

Vk(e) in (1.40) is equivalent to solving the optimization problem

minimize ∥V (0)− Vk(e)∥2
w (1.42)

The weight update equation that solves the problem in (1.42) is referred to as the

VMEE recursion formula in [77] and it is given by

wk = wk−1 + η∗
∂Vk(e)

∂w
(1.43)

where η∗ = µ[V (0) − Vk(e)] is the variable step size. The NMEE algorithm in [78],

on the other hand, solves the optimization problem

minimize||wk −wk−1||2
w (1.44)

subject to the constraint

V (ep,k)− V (0) = 0

by using the weight update formula

wk = wk−1 + µ
ek∇V (ep,k)

∇V (ep,k)Txk

(1.45)
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where ek = dk −wT
k−1xk is the a priori error

∇V (ep,k) =
1

2Lσ2

k−1∑
i=k−L

(ep,k − ep,i)κσ(ep,k − ep,i) (xk − xi) (1.46)

and ep,i = di−wT
k xi is the a posteriori error for k−L ≤ i ≤ k. The update equation in

(1.45) requires ep,i in every iteration and to avoid this added complexity, the authors

in [78] proposed replacing ep,i by ei = di −wT
k−1xi for k − L ≤ i ≤ k.

The VMEE and the conventional NMEE algorithms yield faster convergence than

the MEE algorithm for the same misadjustment level [78]. The kernel size and step

size need to be adjusted as the input power changes in both the MEE and the VMEE

algorithms [78]. The conventional NMEE algorithm is less sensitive to the kernel size

and input signal power and, therefore, yields improved performance compared to the

MEE and the VMEE algorithms [78].

In the next section, we describe the so-called iterative shrinkage method which

has been used for signal denoisng applications [80, 81]. This method can also be used

to develop adaptation algorithms as will be demonstrated in chapter 8.

1.1.10 Iterative Shrinkage Method

Suppose the observed signal ok is obtained as

ok = sk + vk (1.47)

where sk is the signal of interest and vk is a contaminating white Gaussian noise

signal. If we wish to recover sk from ok, we have to filter out the noise signal vk.

Since vk is a white Gaussian noise signal, we cannot recover sk from ok by using a

digital filter as the spectrum of vk is spread over the entire frequency spectrum of sk.

In the iterative shrinkage method, the solution of the minimization problem

minimize t∥bk∥1 + ∥Dbk − ok∥2
bk

(1.48)

where D is a matrix whose columns form an orthonormal basis and t is a threshold

parameter is used to obtain the signal of interest as ôk = DTbopt. For an appropriate

value of t, ôk can be very close to sk. The choice of t depends on the statistical

characteristics of signal sk.
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1.2 Original Contributions

The goal of this work has been to develop adaptation algorithms that (1) are robust

with respect to impulsive noise, (2) yield reduced steady-state misalignment, (3) have

high convergence speed, (4) have good tracking, and (5) entail reduced computational

load. Several improved adaptation algorithms have been proposed as detailed below.

In chapter 2, we propose a robust set-membership affine projection (RSMAP)

adaptation algorithm [82] that uses two error bounds. The RSMAP algorithm has two

variants: one with a fixed threshold and the other with a variable threshold. The two

algorithms offer similar performance and both of them offer more robust performance

with respect to impulsive noise without sacrificing the convergence speed and track-

ing capability compared to the affine projection (AP) and simplified set-membership

affine projection (SSMAP) algorithms reported in [11] and [19], respectively. In ad-

dition, they offer significantly reduced steady-state misalignment compared to the

AP and SSMAP algorithms. The performance of SSMAP algorithms depends on the

proper choice of the error bound [19] which in some applications cannot be prespecified

accurately. The RSMAP algorithm with variable threshold eliminates this problem

as it estimates the error bound during the learning process. These features of the

proposed RSMAP algorithm are demonstrated in network-echo-path and acoustic-

echo-path-identification applications for various levels of signal-to-noise ratio (SNR)

and projection order. In addition, a practical acoustic-echo-cancelation application is

considered to demonstrate the superior performance of the proposed RSMAP algo-

rithms. An approximate steady-state MSE analysis is also described which is verified

using simulation results obtained in a system-identification application.

In chapter 3, we propose a constrained robust set-membership affine projection

(PCSMAP) algorithm [83]. Like the proposed RSMAP algorithm, the CRSMAP al-

gorithm also works with two error bounds by which it yields a significantly reduced

steady-state misalignment without compromising the convergence speed and track-

ing capability and at the same time it yields robust performance with respect to

impulsive noise. These features of the RCSMAP algorithm are demonstrated by us-

ing simulation results in a linear-phase plant-identification application, a constrained

time-series filtering application, and interference suppression in a DS-CDMA mobile

communication system.

In chapter 4, we propose a novel robust recursive least-squares (PRRLS) adap-

tation algorithm that entails bounding the L1 norm of the cross-correlation vector
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by a time-varying upper bound which in effect bounds the L1 norm of the input-

signal autocorrelation matrix and the L2 norm of the weight vector [84]. The PRRLS

algorithm has two variants: one for stationary environments and the other for non-

stationary environments. Both of these algorithms bound the L1 norm of the cross-

correlation vector for an impulsive-noise-corrupted desired signal and thereby achieve

robust performance with respect to impulsive noise. The algorithm for nonstation-

ary environments also uses a time-varying forgetting factor that effectively tracks the

nonstationarities of the unknown system. These features of the proposed algorithm

are demonstrated by using simulation results in a system-identification application.

In chapter 5, we apply certain modifications to the known QN algorithm (KQN)

reported in [57, 58] which lead to improved convergence speed and steady-state mis-

alignment without sacrificing the most essential features of the KQN algorithm, i.e.,

numerical robustness as observed in [58]. Like the KQN algorithm, the proposed QN

(PQN) algorithm [85] also uses the classical rank-one update formula [71] to obtain

the inverse of the Hessian matrix. However, unlike the KQN algorithm, the PQN al-

gorithm does not omit certain steps of the basic classical QN optimization algorithm

[70]. The PQN algorithm performs data selective adaptation in the weight-vector

update formula and the inverse of the Hessian matrix. It yields a reduced steady-

state misalignment in both fixed- and floating-point implementations and converges

much faster than the KQN algorithm for medium and high SNRs. A stability analysis

shows that the PQN algorithm is asymptotically stable. A steady-state MSE analysis

is also presented for the PQN algorithm which is then verified using simulation results

obtained in a system-identification application.

In Chapter 6, we propose a robust QN (PRQN) adaptation algorithm [86] as an

alternative to the known robust QN (KRQN) algorithm reported in [64]. The PRQN

algorithm has two variants: one with fixed threshold and the other with variable

threshold. The PRQN algorithm with variable threshold can be applied where the

error bounds cannot be prespecified. The performance of the two algorithms is similar.

The asymptotic stability of the PRQN algorithm is established. Expressions for the

steady-state MSE for the cases of stationary and nonstationary environments are

derived by using an energy-conservation relation reported in [87]. Like the RSMAP

algorithm proposed in chapter 2, the PRQN algorithm also uses two error bounds,

one of which increases if the amplitude of the error signal is increased. Therefore,

we would get a large error bound for an impulsive-noise-corrupted error signal which

would suppress the effect of impulsive noise in the learning process. The other error
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bound controls the initial convergence speed and tracking capability. In this way, a

robust performance with respect to impulsive noise is achieved while retaining the

fast initial convergence speed and good tracking capability. The PRQN algorithm

also yields a reduced steady-state misalignment as compared to the KQN and KRQN

algorithms. Simulation results in system-identification applications in stationary as

well as nonstationary environments are used to demonstrate the superior convergence

characteristics of the PRQN algorithm as compared to the KQN and the KRQN

algorithms.

In chapter 7, we propose a new normalized minimum-error entropy (PNMEE)

adaptation algorithm [88] as an alternative to the stochastic minimum-error entropy

(MEE), normalized MEE (NMEE), and self-scaling variable step size MEE (VMEE)

algorithms reported in [89], [78], and [77], respectively. The proposed NMEE algo-

rithm offers fast convergence and reduced steady-state misalignment as compared to

the MEE, NMEE, and VMEE algorithms by using extensive simulation results.

In chapter 8, we propose a family of so-called shrinkage adaptation algorithms.

The step size used in these algorithms is obtained by minimizing the power of the

noise-free a posteriori error signal by solving a one-dimensional minimization problem.

Information about the noise-free a priori error signal is obtained by using the itera-

tive shrinkage method described in [80, 81]. Based on this method, a shrinkage AP

(SHAP) algorithm, a shrinkage NLMS (SHNLMS) algorithm, and a shrinkage LMS

(SHLMS) algorithm are proposed [90]. The superior convergence characteristics of the

proposed algorithms with respect to other competing algorithms are demonstrated by

using simulation results in system identification and echo-cancelation applications.

Finally, in chapter 9, we draw conclusions and make recommendations for future

research.
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Chapter 2

Robust Set-Membership Affine

Projection Adaptation Algorithm

2.1 Introduction

Performance analyses of the affine projection (AP) and simplified set-membership AP

(SSMAP) algorithms are presented in [20] and [39], respectively. The analysis pre-

sented in [20] shows that the convergence speed of the AP algorithm increases as the

projection order is increased, at the expense of increased steady-state misalignment.

The same conclusion was also drawn for the SSMAP algorithm in [39]. However,

by using a variable step size, the SSMAP algorithm yields reduced steady-state mis-

alignment relative to that of the AP algorithm for the same projection order [19].

The prespecified error bound in the SSMAP algorithm is usually chosen as
√
5σv,

where σ2
v is the variance of the measurement noise, in order to achieve a good balance

between convergence speed and computational effort [19, 25, 26, 39]. In practice,

however, it may not be possible to accurately specify the error bound in the SSMAP

algorithm. In addition, as for the AP algorithm, the performance of the SSMAP algo-

rithm is affected by outliers in the error signal samples that can be brought about by

impulsive-noise interference. It is, therefore, of interest to develop a SMAP algorithm

whose (1) performance remains largely insensitive to outliers brought about by im-

pulsive noise, (2) sensitivity of the steady-state misalignment on the projection order

is significantly reduced, (3) re-adaptation capability is preserved, and (4) sensitivity

of the convergence performance on the proper choice of error bound is significantly

reduced.
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In this chapter, we develop a new SMAP adaptation algorithm that uses two

error bounds [82]. Both of the error bounds are estimated by using the power of

the error signal during the learning stage. One of the two error bounds yields faster

convergence and good re-adaptation capability whereas the other yields a reduced

steady-state misalignment and suppresses impulsive-noise interference.

2.2 Robust Set-Membership Affine Projection

Algorithm

The proposed robust SMAP (RSMAP) algorithm performs weight adaptation at it-

eration k such that the updated weight vector belongs to the constraint sets at the

L most recent iterations, i.e., wk ∈ ΨL
k in (1.20). Whenever the weight vector wk−1

is not a member of ΨL
k , an update is performed by solving the optimization problem

[82]
minimize ∥wk −wk−1∥2

wk

subject to : dk −XT
k wk = gk (2.1)

where dk ∈ RL×1 is the desired signal vector, gk ∈ RL×1 is the error-bound vector,

Xk ∈ RM×L is the input signal matrix, i.e., Xk = [xk xk−1 · · · xk−L+1]. The solution

of the problem in (2.1) results in the update formula

wk =

wk−1 +Xk(X
T
k Xk)

−1
(ek − gk) if |ek| > γ

wk−1 otherwise
(2.2)

where ek = dk − xT
kwk−1 is the a priori error, ek = [ek ϵk−1 · · · ϵk−L+1]

T , and ϵk−i =

dk−i−xT
k−iwk−1 is the a posteriori error at iteration k−1. Choosing the error bound

vector gk in (2.2) as

gT
k = γ

[
ek
|ek|

ϵk−1

|ek|
· · · ϵk−L+1

|ek|

]
(2.3)

leads to the update formula

wk = wk−1 + αkXk(X
T
k Xk)

−1
ek (2.4)
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where

αk =

1− γ

|ek|
if |ek| > γ

0 otherwise
(2.5)

For this error bound, if |ek| > gk(1), we obtain |ϵk−i| > gk(i) for i = 2, . . . , L where

gk(i) denotes the ith element of vector gk.

In the SSMAP adaptation algorithm, the error-bound vector gk is chosen as gk =

[γsign(ek) ϵk−1 · · · ϵk−L+1]
T by which the recursion formula in (2.2) simplifies to

wk = wk−1 + αkXk(X
T
k Xk)

−1
eku1 (2.6)

where αk is defined in (2.5) and u1 = [1 0 · · · 0]T [19]. Using projection order L = 2

and the closed-form inverse of XT
k Xk in (2.6), the weight-vector update formula

becomes identical to that of the SM binormalized data-reusing LMS-II adaptation

algorithm in [35]. The AP algorithm (APA) used in [20], on the other hand, uses the

update formula

wk = wk−1 + µXk(X
T
k Xk)

−1
ek (2.7)

where µ is a fixed step size and 0 < µ < 1. As can be seen, the proposed RSMAP

algorithm based on (2.4) can be considered as a variable step-size AP algorithm in

which the step size αk varies in the range zero to unity.

Two versions of the proposed RSMAP algorithm are possible, one with fixed and

the other with variable threshold, as detailed below. These will be referred to as the

RSMAP1 and RSMAP2 algorithms, respectively.

2.2.1 RSMAP1 Algorithm

In the proposed RSMAP1 algorithm, factor γ in the error-bound vector in (2.3) is

chosen as

γk =

∥ek∥∞ − νθk if ∥ek∥∞ > θk

γc otherwise
(2.8)

where 0 < ν ≪ 1, γc =
√
5σ2

v [19] and θk is chosen to be less than γc in order to

assure that the algorithm will work with error bound ∥ek∥∞−νθk during steady state

and also for an impulsive-noise corrupted ek. Extensive simulations have shown that

a suitable value for θk can be obtained as θk = Qσ1,k where 1.86 ≤ Q ≤ 1.98. The

value Q = 1.88 was found to lead to improved computational efficiency. The variance
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of the error signal, σ2
1,k, is obtained as

C = median(ck) (2.9)

σ2
1,k = λσ2

1,k−1 + (1− λ)C (2.10)

where ck = [e2k + ϵ e2k−1 + ϵ · · · e2k−P+1 + ϵ] ∈ R1×P and ϵ is a very small positive

scalar of the order of 10−12 whereas λ = 1 − 1/(c1M) is the forgetting factor and c1

is an integer. Eqs. (2.8)–(2.10) yield error bound γk which is then used in (2.5) to

obtain αk which is then used in (2.4) to obtain the weight vector wk.

2.2.2 RSMAP2 Algorithm

The RSMAP2 algorithm uses all of the equations of the RSMAP1 algorithm, i.e.,

(2.8) to (2.10), along with

ηk = βηk−1 + (1− β)min

(
ηk−1,

|d2k − y2k|
d2k

)
(2.11)

σ2
2,k = λσ2

2,k−1 + (1− λ)min(σ2
2,k−1, σ

2
1,k) (2.12)

where ηk is a parameter used to control the switching between error bounds γc and

∥ek∥∞−νθk, σ
2
2,k is the variance of the error signal, β = 1−1/(c2M) is the forgetting

factor used to obtain the threshold

γ2
c = γ2

c,0 +Υ[1 + sign(1− ηk)]σ
2
2,k (2.13)

where Υ is a tuning constant and γ2
c,0 is an approximate estimate of the noise variance,

σ2
v . If no information is available about the noise variance, a zero value can be assigned

to γ2
c,0. In short, the RSMAP2 algorithm uses Eqs. (2.9)–(2.10) to obtain σ1,k and, in

turn, evaluates θk = 1.88σ1,k; it then uses Eqs. (2.11)–(2.13) to obtain γc and (2.8)

to obtain γ. With γ known, Eq. (2.5) yields αk which is then used in (2.4) to obtain

the new weight vector wk. The estimate γc in (2.13) is different from that used in the

SMLMS family in [91], [92]. Several algorithms of the LMS and least-squares families

that use the Hampel and Huber functions [66] to achieve robust performance with

respect to outliers have been proposed in [93, 94, 63, 64].
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2.2.3 Discussion

We have used the median of the error-squared signal samples over a finite window

for the evaluation of σ1,k in (2.10) in order to render the estimate of σ1,k robust with

respect to outliers for both the RSMAP1 and RSMAP2 algorithms. On the other

hand, σ2,k is used to estimate the error bound γc for the RSMAP2 algorithm. In

order to achieve robustness with respect to sudden system changes the estimator of

σ2,k uses the minimum of the previous and current values of σ1,k. Eq. (2.11) controls

how long γc in (2.13) would work with γc,0.

As reported in [39], with a small γk the SSMAP algorithm yields faster conver-

gence and increased steady-state misalignment; on the other hand, with a large γ it

yields slower convergence and reduced steady-sate misalignment. Under these circum-

stances, optimal performance can be achieved by using a small error bound during

transience and a large error bound during steady state. In the proposed RSMAP

algorithm, optimal performance is achieved by choosing the initial values of σ1,k, σ2,k,

and ηk to be large. In such a situation, during transience the algorithm would work

with error bound γ = γc which is significantly smaller than ∥ek∥∞ − νθk and as a

result, the transient state would decay at a fast rate. On the other hand, during

steady state the algorithm would work with error bound γ = ∥ek∥∞ − νθk as θk < γc

during steady state which would yield reduced steady-state misalignment. In addi-

tion, this choice of γk would work in the occurrence of impulsive noise to yield robust

performance with respect to outliers. In the presence of a sudden system disturbance,

θk would tend to grow and, therefore, error bound γ = γc would come into play. As

a result, the re-adaptation capability of the proposed algorithm would be retained.

Although a rough choice of the initial values of σ1,k, σ2,k, and ηk would work, sim-

ulation results have shown that the choices σ1,0 = 20E1/σ̂
2
v , σ2,0 = 20E2/σ̂

2
v , and

η0 = 20E3/σ̂
2
v , where σ̂2

v is a crude approximation of the noise variance, give good

results. Parameters E1, E2, E3, c1, c2 are integers which can be chosen in the range

1 to 8 based on simulation results. The proposed algorithms are more robust with

respect to the choice of tuning parameters for medium to high signal-to-noise ratios

(SNRs) as compared to low SNRs. Parameter Υ in the RSMAP2 algorithm is a con-

stant chosen to be 2.5. The regularization matrix δI, where I is the L × L identity

matrix and δ is a small constant, is added to the correlation matrix XT
k Xk in (2.4)

and (2.6), and (2.7) to assure its invertibility if the signal becomes ill-conditioned.

The value of δ should be very small of the order of 10−6 so that it does not noticeably
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influence the behavior of the algorithm.

The steady-state performance of the proposed algorithm is not influenced by the

tuning parameters as it is determined by parameter ν. Improved convergence speed

can be achieved by tuning the algorithm parameters as suggested. The convergence

speed could become sensitive to changes in the tuning parameters especially for low

SNRs and unknown systems of high order. However, no such problems have been

experienced for high SNRs and unknown systems of low to moderate orders. For

unknown systems of low order, say, 7 to 15, of the type commonly used in communi-

cation systems, the tuning parameters are easy to adjust and the performance of the

adaptive filter is quite robust even for relatively low SNRs.

In the RSMAP1 algorithm, σv is prespecified and hence it can be chosen to achieve

a good balance between convergence speed and computational savings. On the other

hand, the RSMAP2 algorithm can be used in applications where σv cannot be pre-

specified. In most other situations, the two versions of the proposed algorithm offer

similar performance.

2.3 Steady-State Analysis of RSMAP Algorithm

In this section, we provide a steady-state analysis of the proposed RSMAP algorithm.

The analysis is based on the framework of an energy-conservation relation described

in [20], [87] which was used to analyze several adaptation algorithms, for example,

in [95], [96], [97]. Since the formula in (2.4) is essentially the same as that in (2.7),

the steady-state analysis of the proposed RSMAP algorithm can be carried out by

replacing µ in (2.7) by αk given by (2.5) and then proceeding as in [20]. The update

equation in (2.4) can be expressed in terms of the weight-error vector ŵk = wopt−wk

as

ŵk = ŵk−1 − αkXk(δI +XT
k Xk)

−1
ek (2.14)

where wopt denotes the weight vector of the unknown system and δI is the regular-

ization matrix. Premultiplying both sides in (2.14) by the input signal matrix, we

obtain

XT
k ŵk = XT

k ŵk−1 − αkX
T
k Xk(δI +XT

k Xk)
−1
ek (2.15)

Using the definition of the noise-free a posteriori error ϵf,k given by

ϵf,k = XT
k ŵk (2.16)
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and the noise-free a priori error ef,k given by

êf,k = XT
k ŵk−1 (2.17)

in (2.15), we obtain

ϵf,k = ef,k − αkX
T
k Xk(δI +XT

k Xk)
−1
ek (2.18)

Hence, we can write

αk(δI +XT
k Xk)

−1ek =
(
XT

k Xk

)−1
(ef,k − ϵf,k) (2.19)

Substituting (2.19) into (2.14), we get

ŵk +Xk

(
XT

k Xk

)−1
ef,k = ŵk−1 +Xk

(
XT

k Xk

)−1
ϵf,k (2.20)

By taking the square of the L2 norm on both sides of the above equation after some

manipulation, we obtain the following energy conservation relation [20]

∥ŵk∥2 + eT
f,k

(
XT

k Xk

)−1
ef,k = ∥ŵk−1∥2 + ϵTf,k

(
XT

k Xk

)−1
ϵf,k (2.21)

Taking the expectation on both sides of (2.21), we obtain

E
[
∥ŵk∥2

]
+ E

[
eT
f,k

(
XT

k Xk

)−1
ef,k

]
=E

[
∥ŵk−1∥2

]
+

E
[
ϵTf,k

(
XT

k Xk

)−1
ϵf,k

]
(2.22)

At steady state, we have E
[
∥ŵk∥2

]
= E

[
∥ŵk−1∥2

]
and hence the above relation

assumes the form

E
[
eT
f,k

(
XT

k Xk

)−1
ef,k

]
= E

[
ϵTf,k

(
XT

k Xk

)−1
ϵf,k

]
(2.23)
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Substituting (2.18) into (2.23), we obtain

E
[
eT
f,k

(
XT

k Xk

)−1
ef,k

]
= E

[
eT
f,k

(
XT

k Xk

)−1
eT
f,k (2.24)

−αke
T
f,k

(
δI +XT

k Xk

)−1
ek − αke

T
k

(
δI +XT

k Xk

)−1
ef,k

+α2
ke

T
k

(
δI +XT

k Xk

)−1 (
XT

k Xk

) (
δI +XT

k Xk

)−1
ek

]
Using the definition of the input-signal correlation matrix, i.e., Rk = XT

k Xk, and

assuming that Sk =
(
δI +XT

k Xk

)−1 ≈ R−1
k for δ ≪ 1, (2.24) can be simplified to

E
[
α2
ke

T
kSkek

]
= E

[
αke

T
f,kSkek

]
+ E

[
αke

T
kSkef,k

]
(2.25)

At steady state ∥ek∥∞ ≈ |ek| and |ek|/σ1,k → 1. Since γk = ∥ek∥∞ −νθk at steady

state, then for a small value of ν (2.5) yields

αk ≈ 1.88ν (2.26)

Thus by using a deterministic value for αk, (2.25) simplifies to

αkE
[
eT
kSkek

]
= E

[
eT
f,kSkek

]
+ E

[
eT
kSkef,k

]
(2.27)

Now substituting

ek = ef,k + vk (2.28)

into (2.27), we obtain

αkE
[
(ef,k + vk)

TSk(ef,k + vk)
]
= 2E

[
eT
f,kSk(ef,k + vk)

]
(2.29)

Considering the noise signal vk to be white as well as statistically independent of the

input signal and neglecting the dependency of ef,k on vk, the expression in (2.29) can

be further simplified to

αkE
[
eT
f,kSkef,k

]
+ αkE

[
vT
k Skvk

]
= 2E

[
eT
f,kSkef,k

]
(2.30)

Applying the trace operation to both sides of (2.30), we obtain

E
{
tr
[
ef,ke

T
f,kSk

]}
=

αk

2− αk

E
{
tr
[
vkv

T
k Sk

]}
(2.31)
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Now assuming that Sk is statistically independent of both the a priori error at steady

state and the noise signal, we obtain

tr
{
E
[
ef,ke

T
f,k

]
E [Sk]

}
=

αk

2− αk

tr
{
E
[
vkv

T
k

]
E [Sk]

}
(2.32)

This result is used in the next subsection to derive an expression for the excess MSE

in the RSMAP algorithm.

2.3.1 Excess MSE in RSMAP Algorithm

In order to derive an expression for the excess MSE in the proposed RSMAP algo-

rithm, we have to deduce an expression for the noise-free error covariance E
[
ef,ke

T
f,k

]
.

The noise-free a posteriori error ϵf,k in (2.16) can also be expressed as

ϵf,k = ef,k − αkek = (1− αk)ef,k − αkvk (2.33)

Now following the steps in [20], we obtain

E
[
ef,ke

T
f,k

]
= E

[
e2f,k
]
U1 + E[α2

k]σ
2
vU2 (2.34)

where U1 and U2 are diagonal matrices given by

U1 =


1

(1− αk)
2

. . .

(1− αk)
2(L−1)

 (2.35)

and

U2 =


0

1
. . .

1 + · · ·+ (1− αk)
2L

 (2.36)

respectively. Since the step size αk is very small at steady state, we obtain α2
kσ

2
vU2 ≈ 0

and U1 ≈ I. Consequently, (2.34) assumes the form

E
[
ef,ke

T
f,k

]
= E

[
e2f,k
]
U1 (2.37)
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Using (2.37) in (2.32), we obtain

E
[
e2f,k
]
=

αk

2− αk

σ2
v

tr {E [Sk]}
tr {U1E [Sk]}

(2.38)

For a sufficiently small αk, we can assume that U1 ≈ I and in this case (2.38) yields

the excess MSE as

EMSE =
αk

2− αk

σ2
v (2.39)

As can be seen, the excess MSE is independent of the projection order.

2.3.2 Verification of EMSE

In this subsection, we examine the accuracy of the expression for the EMSE given in

(2.39) in a system-identification application. The unknown system in this experiment

was a 16th-order finite-duration impulse response (FIR) filter with a cut-off frequency

of 0.3, which was designed using MATLAB command wopt = fir1(M − 1, 0.3). The

weight vector of the unknown system was normalized to have unity power. An infinite-

duration impulse response (IIR) filter with a pole at 0.95 was used to produce a

colored input signal from a zero-mean white Gaussian noise signal with a variance of

unity. The desired signal was contaminated with a zero-mean white Gaussian noise

signal with variance σ2
v = 10−4. The expected steady-state MSE was obtained as

MSE = σ2
v + EMSE where EMSE is given in Eqn. (2.39). The parameters for the

proposed RSMAP1 algorithm were set to c1 = 1, E1 = 1, w0 = 0, γc =
√
5σ2

v for all

L. The parameters for the proposed RSMAP2 algorithm were set to κ = 2.5, w0 = 0,

E2 = E3 = 1 for all L and c2 = 2 and 3 for L = [2, 4] and L = [6, 8], respectively.

The relative error between the expected and actual MSE defined as

Relative error =
Expected MSE− Actual MSE

Expected MSE
100

with fixed and variable thresholds for different values of L and ν is plotted in Figs. 2.1–

2.2. As can be seen, the formula in (2.39) provides a fairly accurate estimate of the

expected MSE for values of ν in the range ν = (0, 0.5]. It should be mentioned that

a reduced ν does not affect the convergence speed or the tracking capability and at

the same time for values of ν in the range (0, 0.2], the steady-state MSE does not

increase noticeably as L is increased as can be seen in Figs. 2.1–2.2.

The above analysis can be used to select appropriate values for parameters ν and
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Figure 2.1: Relative error between expected and experimental MSE: RSMAP algo-
rithm with fixed threshold.

2.4 Simulation Results

In this section, we compare the performance of the two versions of the RSMAP

algorithm with that of some known AP and SMAP algorithms through extensive

simulations. Two applications, namely, a system-identification application and an

acoustic-echo-cancelation application, were considered.

2.4.1 System Identification Application

In the first set of experimental results, the performance of the RSMAP1 and RSMAP2

algorithms is compared with that of the conventional AP, SSMAP, and SM propor-

tionate AP (SMPAP) algorithms reported in [11], [19], and [25], respectively, for a

system-identification application. A network echo path of length M = 96 with the

impulse response illustrated in Fig. 2.3 was chosen as the unknown system. A col-
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Figure 2.2: Relative error between expected and experimental MSE: RSMAP algo-
rithm with variable threshold.

ored input signal for the adaptive filter was generated by filtering a zero-mean white

Gaussian noise signal with power 10 by using an IIR filter with transfer function [98]

H(z) =
1 + 0.5z−1 + 0.81z−2

1− 0.59z−1 + 0.4z−2
(2.40)

The eigenvalue spread ratio of the colored input signal of 10000 samples was obtained

as 462 by using the ensemble average of the autocorrelation matrix given by (1.28)

over 1000 independent trials with λ = 1− 2−15 and R0 = 10−4I. The impulsive noise

was modeled as ϕk = ωkχk where ωk is a Bernoulli process with P (ωk = 1) = p = 0.01

and χk is a zero-mean Gaussian signal with variance σ2
χ = 104σ2

y where σ
2
y is the power

of the uncorrupted output signal [68]. The weight vector was initialized as w = 0 in

all algorithms and all experiments. In addition, the error bound, γ for the SSMAP

and SMPAP algorithms and γc for the RSMAP1 algorithm were set to
√

5σ2
v in all

experiments. Unless otherwise stated, the parameters of the RSMAP algorithms were

chosen as c1 = 1, P = 15, ν = 0.05, c2 = 1, E1 = 2, E2 = 2, and E3 = 2.

The measurement noise, vk, added to the desired signal was also a Gaussian noise

signal with a zero mean and variance σ2
v = 10−3. The SNR was 30 dB. The impulse
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Figure 2.3: Impulse response of a network echo path.

response of the echo path was multiplied by −1 at iteration 104 to investigate the

re-adaptation capability of the algorithms. Impulsive noise was added to the desired

signal at iterations 5000 and 15, 000. The learning curves obtained averaged over

1000 independent trials for L = 8 are illustrated in Fig. 2.4. As can be seen, the pro-

posed RSMAP algorithms yield significantly reduced steady-state misalignment and

improved robustness with respect to impulsive noise for the same initial convergence

speed when compared to the other algorithms. The evolution of the averaged step

size αk for the SSMAP, SMPAP, and the proposed RSMAP algorithms is illustrated

in Fig. 2.5. As can be seen, the proposed algorithms yield lower values of αk dur-

ing steady state, namely, 0.004, compared to 0.0834 and 0.0823 in the SSMAP and

SMPAP algorithms, respectively. As a result, a much reduced steady-state misalign-

ment is achieved in the proposed algorithms. In addition, since αk returns back to

high values during sudden system changes, the proposed algorithms preserve their

re-adaptation capability.

To examine the effect of projection order on the performance of the proposed

algorithms, we repeated the same experiment with the variance of the measurement

noise changed to σ2
v = 10−6 which corresponds to a SNR of 60 dB for values of
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Figure 2.4: Learning curves with L = 8, in all algorithms.

L = 2, 4, 6, and 8. In this experiment, the parameters of the RSMAP algorithms

were chosen as E1 = E2 = E3 = 1 and impulsive noise was added to the desired

signal at iteration 25, 000. Parameter c1 was set to 6, 3, 2, and 1 to obtain the plots

in Figs. 2.6–2.9, respectively, and c2 was chosen to be equal to c1. The learning

curves obtained in 1000 independent trials are illustrated in Figs. 2.6–2.9. As can

be seen, as the projection order is increased, the convergence speed of the AP and

SSMAP algorithms is increased at the cost of increased steady-state misalignment

which is consistent with the analysis presented in [20] and [39]. On the other hand,

the proposed algorithms yield significantly reduced steady-state misalignment relative

to that in the AP and SSMAP algorithms especially when the projection order is large.

The numerical values of the steady-state MSE in dB for the AP, SSMAP, RSMAP1,

and RSMAP2 algorithms for L = 2 and L = 8 are given in Table 2.1. As can be

seen, the use of the proposed algorithms leads to a reduction in the steady-state

misalignment in the range of 4.0 to 7.9 dB relative to the AP algorithm and 0.4 to

6.8 dB relative the SSMAP algorithm depending on the value of L. In addition,

the proposed RSMAP algorithms offer improved robustness with respect to impulsive
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Table 2.1: Numerical Values of the Steady-State MSE, dB

L AP SSMAP RSMAP1 RSMAP2
2 −54.6 −58.2 −58.6 −58.9
8 −51.9 −53.0 −59.8 −59.8

noise.

2.4.2 Acoustic-Echo-Cancelation Application

In the second set of experimental results, the performance of the RSMAP algorithms

is compared with that of the competing algorithms for the case of an acoustic-echo-

cancelation application. In such an application, the length of the acoustic echo path

is significantly larger than the length of the network echo path and the adaptive filter

requires thousands of weights to successfully cancel the acoustic echo signal. The

impulse response of the acoustic echo path assumed is illustrated in Fig. 2.10. Only

the first 512 samples were used to produce the echo signal. An IIR filter with transfer

function

H(z) =
1

z4 − 0.95z3 − 0.19z2 − 0.09z + 0.5
(2.41)
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Figure 2.6: Learning curves with L = 2 in all algorithms.

was used to bandlimit a zero-mean white Gaussian noise signal with variance one that

served as the input signal for the adaptive filters. The input signal would thus be

more correlated than that used in the system-identification application. The eigen-

value spread ratio of this colored input signal of 10000 samples was obtained as 8971

by using the ensemble average of the autocorrelation matrix given by (1.28) over 1000

independent trials with λ = 1 − 2−15 and R0 = 10−4I. The measurement noise was

a zero-mean white Gaussian noise signal with variance 10−2 with impulsive noise at

iterations 25, 000 and 75, 000. The impulse response of the echo path was multiplied

by −1 at iteration 50, 000. The parameters for the proposed RSMAP algorithms

were set to E1 = E2 = E3 = 5 and L = 8 in all subsequent tests. The learning

curves obtained by using the AP, SSMAP, SMPAP, RSMAP1, and RSMAP2 algo-

rithms for 103 independent trials are illustrated in Fig. 2.11. As can be seen, the

RSMAP algorithms yield a significant reduction in the steady-state misalignment for

the same convergence speed compared to the other algorithms while retaining their

re-adaptation capability. The proposed algorithms also exhibit robust performance

with respect to impulsive noise.

Next we repeated the same experiment with real speech signals as the input signals.

Twenty speech signals were recorded and each was then used as the input signal in a
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Figure 2.7: Learning curves with L = 4, in all algorithms.

given trial. The desired signal and each speech signal were contaminated with a zero-

mean white Gaussian noise signal with a variance of 10−4. In order to obtain a smooth

learning curve, the misalignment was evaluated as 20 log10
(
∥wopt −wk∥2 / ∥wopt∥2

)
where wopt is the impulse response shown in Fig. 2.10. The learning curves obtained

in 20 independent trials are illustrated in Figs. 2.12–2.13. The plots of Fig. 2.12

correspond to the case where no impulsive noise was added to the desired signal.

The plots of Fig. 2.13 correspond to the case where impulsive noise of duration 100T

was added to the desired signal at iterations 50, 000 and 150, 000, where T is the

sampling period, and the impulse response of the echo path was multiplied by −1 at

iteration 100, 000. As can be seen in Figs. 2.12 and 2.13 the RSMAP1 and RSMAP2

algorithms yield reduced steady-state misalignment for the same convergence speed

as compared to the other algorithms. In addition, the RSMAP1 and RSMAP2 al-

gorithms are more robust with respect to a long burst of impulsive noise and offer

similar re-adaptation relative to the other algorithms. The RSMAP2 algorithm yields

slightly more misalignment compared to the RSMAP1 algorithm due to the fact that

the latter algorithm starts with a much lower error bound than the former. The long

burst of impulsive noise simulates cross-talk and intersymbol interference situations

commonly found in two-way telephone and communication systems.
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2.5 Conclusions

A set-membership AP adaptation algorithm that achieves robustness through the

use of two error bounds has been proposed. Through a steady-state analysis, an

approximate formula for the expected MSE has been derived for the proposed algo-

rithm, which gives relatively accurate values of the actual MSE. This formula can

be used to estimate appropriate values for parameters ν and L. On the other hand,

extensive simulation results have shown that the guidelines presented for the choice of

parameters σ1,0, σ2,0, λ, β, η0 work quite well in practice. The two versions of the pro-

posed algorithm were applied to system-identification and acoustic-echo-cancelation

applications. The simulation results obtained show that the RSMAP1 and RSMAP2

algorithms perform much better than the conventional AP, SSMAP, and SMPAP

algorithms in terms of steady-state misalignment and robustness with respect to im-

pulsive noise without compromising the initial convergence speed and re-adaptation

capability.

In the next chapter we describe a constrained version of the proposed RSMAP

algorithm.
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Figure 2.10: Impulse response of acoustic echo path.
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Chapter 3

Robust Constrained

Set-Membership Affine Projection

Adaptation Algorithm

3.1 Introduction

We have seen in table 2.1 that the AP and SMAP adaptation algorithms yield in-

creased misalignment for an increased projection order although a fast convergence

can be achieved. Since the constrained affine projection (CAP) and constrained SM

affine projection (CSMAP) algorithms reported in [27] are essentially constrained ver-

sions of the AP and SMAP algorithms, respectively, they also yield increased steady-

state misalignment for an increased projection order. In addition, the performance

of these algorithms is also affected by impulsive-noise interference.

In this chapter, a constrained robust SMAP is proposed [83], referred to here-

after as the PCSMAP algorithm, that solves the problem of increased steady-state

misalignment brought about by an increased projection order and performs well in

impulsive-noise environments. Like the RSMAP algorithm, the PCSMAP algorithm

uses two error bounds. One of the error bounds yields faster convergence and good

re-adaptation capability whereas the other reduces the influence of impulsive noise

and yields a reduced steady-state misalignment without compromising the conver-

gence speed. Switching between the two error bounds is achieved by comparing the

absolute value of the error signal with a threshold. A simple variance estimator for the

error signal is used to determine this threshold. Simulation results show that the pro-
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posed PCSMAP algorithm outperforms the CNLMS, CAP, and CSMAP algorithms

in linear-phase plant identification, sinusoid filtering, and interference suppression in

direct-sequence code division multiple access (DS-CDMA) communication systems

applications.

3.2 Proposed Constrained SMAP Algorithm

The PCSMAP algorithm performs weight adaptation such that the updated weight

vector belongs to the constraint set in (1.24) at the L most recent iterations, i.e.,

wk ∈ ΨL
k . Whenever the weight vector wk is not a member of ΨL

k , an update is

performed by solving the optimization problem [83]

minimize Jwk
= ∥wk −wk−1∥2

wk

(3.1)

subject to the constraints

Cwk = f (3.2)

dk −XT
k wk = gk (3.3)

where dk ∈ RL×1 is the desired signal vector, gk ∈ RL×1 is the error-bound vector,

Xk ∈ RM×L is the input signal matrix, C ∈ RN×M with N < M is the constraint

matrix, and f ∈ RN×1 is the constraint vector. The error vector is obtained as

ek = [ek ϵk−1 · · · ϵk−L+1]
T where ek = dk − xT

kwk−1 is the a priori error and ϵk−i =

dk−i − xT
k−iwk−1 is the a posteriori error. We choose the error-bound vector as

gk = γ

[
ek
|ek|

ϵk−1

|ek|
· · · ϵk−L+1

|ek|

]T
(3.4)

With this choice of the error bound vector, the solution of the problem in (3.1) yields

the weight-vector update formula

wk = Z
[
wk + αkXk(X

T
k ZXk)

−1
ek

]
+ F (3.5)
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where

αk =

1− γ

|ek|
if |ek| > γ

0 otherwise
(3.6)

and

Z = I −CT
(
CCT

)−1
C (3.7)

F =CT
(
CCT

)−1
f (3.8)

Note that if |ek| > gk(1), we obtain |ϵk−i| > gk(i) for i = 2, . . . , L where gk(i) denotes

the ith element of vector gk.

The error-bound vector in [27] is chosen as gk = [γsign(ek) ϵk−1 · · · ϵk−L+1]
T

which results in a weight-vector update formula

wk = Z
[
wk−1 + αkXk(X

T
k ZXk)

−1
eku1

]
+ F (3.9)

where u1 = [1 0 · · · 0]T and ek = dk −XT
k wk−1; on the other hand, αk, Z, and F

are defined in (3.6), (3.7), and (3.8), respectively. A regularization matrix δI with

0 < δ ≪ 1 is added to XT
k ZXk in (3.5) and (3.9) in order to enable the computation

of the inverse of XT
k ZXk for ill-conditioned problems.

The error-bound γ in (3.4) in the PCSMAP algorithm is obtained as [83]

γ =

∥ek∥∞ − νθk if ∥ek∥∞ > θk

γc otherwise
(3.10)

where 0 < ν ≪ 1, θk = Qσe,k with Q chosen such that Qσe,k < γc in steady state.

The variance of the error signal is estimated as

σ2
e,k=λσ2

e,k−1 + (1− λ)median(e2k, . . . , e
2
k−P+1) (3.11)

where 0 < λ < 1 is the forgetting factor. If the initial value σ2
e,0 in (3.11) is chosen

to be large, we obtain ∥ek∥∞ < θk during transience and, therefore, the algorithm

will work with the error bound γ = γc, which leads to a faster convergence. However,

since σ2
e,k ≈ σ2

v holds true in steady sate, we obtain ∥ek∥∞ > θk and as a result the

algorithm would work with error bound ∥ek∥∞−νθk which leads to a reduced steady-

state misalignment. In addition, error bound ∥ek∥∞ − νθk suppresses the impulsive
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noise-corrupted error signal. Under sudden system disturbances, the estimate σ2
e,k in

(3.11) tends to grow in which case the algorithm would again work with error bound

γc, which leads to fast re-adaptation.

3.3 Simulation Results

In this section the performance of the PCSMAP algorithm is compared with that

of the constrained NLMS (CNLMS) algorithm [32], the CAP [27], and the CSMAP

algorithm [27] in several experiments as detailed below.

3.3.1 Linear-Phase Plant Identification Application

In this experiment, the unknown system was an FIR filter with length M = 57.

The input signal was a zero-mean Gaussian noise signal with variance 10−4 and was

colored by an IIR filter with transfer function [19]

H(z) =
1

1− 0.95z−1 − 0.19z−2 − 0.09z−3 + 0.5z−4
(3.12)

The eigenvalue spread ratio of the colored input signal of 10000 samples was obtained

as 2738 by using the ensemble average of the autocorrelation matrix given by (1.28)

over 1000 independent trials with λ = 1 − 2−15 and R0 = 10−4I. The constraint

matrix was chosen as

C = [I 0 − J ] (3.13)

where I is the identity matrix of dimension [(M − 1)/2, (M − 1)/2], vector 0 is of

dimension (M − 1)/2, matrix J is of dimension [(M − 1)/2, (M − 1)/2] whose rows

are obtained by flipping the rows of I from left to right. The constraint vector f of

dimension (M − 1)/2 is chosen as a zero vector. With this choice of C and f , the

weight-vector updates in each iteration would maintain a linear phase. The learning

curves obtained in 1000 independent trials by using the CNLMS, CAP, CSMAP and

the PCSMAP algorithms are illustrated in Fig. 3.1. As can be seen, the PCSMAP

algorithm yields a significantly reduced steady-state misalignment as compared to the

other algorithms. In order to investigate the robustness of the PCSMAP algorithm

with respect to impulsive noise and re-adaptation capability, we repeated the same

experiment except that all FIR filter coefficients were multiplied by −1 at iteration

1500. The impulsive noise added to the desired signal was modeled as ϕk = ωkχk
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Figure 3.1: Learning curves in linear-phase plant identification application without
impulsive noise using L = 8, σ2

e,0 = 100, λ = 0.95, Q = 1.88 ν = 0.05, γc =
√
5σ2

v ,
P = 15.

where ωk is a Bernoulli process with P (ωk = 1) = 0.001 and χk is a zero-mean

Gaussian signal with variance σ2
χ = 1, 000σ2

y where σ
2
y is the power of the uncorrupted

output signal. The learning curves obtained in 1000 independent trials by using the

CNLMS, CAP, CSMAP, and PCSMAP algorithms are illustrated in Fig. 3.2. As can

be seen, the PCSMAP algorithm performs much better than the other algorithms.

Constraining the phase would be useful in applications where error due to phase of

the error signal becomes more prominent than the error due to the amplitude of the

error signal.

3.3.2 Sinusoid Filtering with Minimum Variance Application

In this experiment, the weight-vector update is constrained to pass only the frequency

components of 0.1 rad/sec and 0.25 rad/sec of the signal [99]

x(k) = a[sin(0.3kπ) + sin(0.325kπ) + sin(0.7kπ)] + n(k) (3.14)
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Figure 3.2: Learning curves in linear-phase plant identification application with im-
pulsive noise using L = 8, σ2

e,0 = 100, λ = 0.95, Q = 1.88 ν = 0.05, γc =
√
5σ2

v ,
P = 15.

where a = 1, n(k) is a white Gaussian noise signal with a variance 10−6 at the output

of adaptive filter. The constraint matrix and constraint vector in this case become

[99]

C =


1 cos(0.2π) · · · cos[(M − 1)0.2π]

1 cos(0.5π) · · · cos[(M − 1)0.5π]

0 sin(0.2π) · · · sin[(M − 1)0.2π]

0 sin(0.5π) · · · sin[(M − 1)0.5π]

 (3.15)

and

fT = [1 1 0 0] (3.16)

respectively. The desired signal becomes zero. The amplitude a in (3.14) is switched

to −1 at iteration 2000 to check the re-adaptation capability of the algorithms. The

mean output error (MOE) curves obtained in 1000 independent trials are illustrated

in Fig. 3.3. As can be seen, the PCSMAP algorithm yields a reduced steady-state

misalignment as compared to the other algorithms.
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Figure 3.3: Learning curves in time-series filtering application with L = 8, M = 14,
σ2
e,0 = 10, λ = 0.95, ν = 0.05, Q = 1.88, γc =

√
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v , P = 2.

3.3.3 Interference Suppression in DS-CDMA Systems

Application

The received signal in DS-CDMA systems with K users can be expressed in matrix

form as [32]

xk = SAbk + vk (3.17)

where S = [s1 s2 · · · sK ] is the spreading matrix of size [M,K], A = diag[A1 A2

· · · AK ] is the amplitude of the user signals, the entries of vector bk of size [K, 1] are

information bits {1,−1}, and vk is a white Gaussian noise sequence with a variance

10−2. The amplitude A1 of the desired user was set to unity and the amplitudes

of the interfering users were set to 3. The constraint matrix and constraint vector

in this application become C = sT1 and f = 1, respectively. The spreading code

si for each user Ai was taken to be a random unit-norm vector. The MOE curves

obtained in 1000 independent trials are illustrated in Fig. 3.4. As can be seen, the

PCSMAP algorithm yields a reduced steady-state misalignment as compared to the

other algorithms.
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Figure 3.4: Learning curves in DS-CDMA interference suppression application. The
parameters for the PCSMAP algorithm were: L = 1, M = 32, K = 20, λ = 0.995,
σ2
e,0 = 10, γc = 1.1, Q = 0.925, δ = 10−6, ν = 0.1, P = 15. The CAP and CSMAP

algorithms use the same L, P , M , δ. The CSMAP algorithm uses γ = 1.1.

3.4 Conclusions

A new robust set-membership CAP adaptation algorithm was developed. The pro-

posed algorithm uses two error bounds. The switching of the two error bounds is ob-

tained by using a variance estimator for the error signal. With these two error bounds,

improved robustness with respect to impulsive noise, a significantly reduced steady-

state misalignment, and slightly improved re-adaptation capability can be achieved

by using the proposed CSMAP algorithm as compared to using the NCLMS, CAP,

and SMCAP algorithms.

In the next three chapters, we discuss several improved Newton-type adaptation

algorithms.
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Chapter 4

Robust Recursive Least-Squares

Adaptation Algorithm for

Impulsive-Noise Environments

4.1 Introduction

Robustness in adaptive filters in impulsive-noise environments is achieved in a number

of ways [2]. In [63, 64, 67], adaptive-filter robustness is considered as insensitivity to

impulsive noise and in [68] it is deemed to be the capability of an adaptive filter to

reconverge to the steady-state solution at the same rate of convergence as before the

disturbance. The robust algorithms in [63, 64] use the Hampel three-part redescending

M-estimate objective function and that in [67] uses the Huber two-part M-estimate

objective function. In [63, 64, 67], the median absolute deviation (MAD) [66] is used

to estimate the variance of the error signal in order to determine appropriate threshold

values that are used to control the learning rate for an impulsive-noise-corrupted error

signal. In [68], the instantaneous power of the scaled error signal is lowpass filtered

and then used to switch the step size of the algorithm between two levels, one of

which suppresses the error signal corrupted by impulsive noise during the adaptation

of the weight vector.

In this chapter, we propose a new robust RLS (RRLS) adaptation algorithm that

yields an optimal solution of the scaled least-squares objective function [84]. The

proposed algorithm is robust with respect to impulsive noise as well as long bursts of

impulsive noise in the sense that it converges back to the steady state much faster than
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during the initial convergence. The proposed algorithm also tracks sudden system

disturbances. Simulation results show that the proposed algorithm achieves improved

robustness and better re-adaptation capability as compared to the conventional RLS

and recursive least-M estimate (RLM) algorithms reported in [63].

4.2 Proposed Robust RLS Algorithm

Two slightly different versions of the proposed RRLS algorithm are possible as de-

tailed below, one for stationary and the other for nonstationary environments.

4.2.1 RRLS Algorithm for Stationary Environments

Scaled least-squares algorithms obtain the optimal weight vector wk at iteration k by

solving the optimization problem

minimize
∑k

i=1 qi(di −wT
k xi)

2

wk
(4.1)

where di is the desired signal, xi is the input signal vector, and qi is a nonnegative

scalar at iteration i. Each of vectors wk and xi is of dimension M . The solution

of (4.1) is achieved by solving the normal equations which are obtained by setting

the gradient of the objective function in (4.1) with respect to wk to zero. The input

signal autocorrelation matrix, Rk, and crosscorrelation vector, pk, at iteration k are

given by

Rk = λfRk−1 + δkxkx
T
k (4.2)

pk = λfpk−1 + δkxkdk (4.3)

where Rk and pk are of dimensions [M,M ] and M , respectively, and 0 ≪ λf < 1.

Parameter λf is a prespecified fixed forgetting factor and δk is a nonnegative scalar.

The normal equations of the problem in (4.1) can be expressed in matrix form as

Rkwk = pk (4.4)

Using the matrix inversion lemma [3]-[2] in (4.2), we obtain the update equation
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of the inverse of the autocorrelation matrix as

Sk =
1

λf

Sk−1 −
1

λf

δk
+ xT

kSk−1xk

Sk−1xkx
T
kSk−1

 (4.5)

Now using (4.5) in (4.4), the update equation of the weight vector is obtained as

wk = wk−1 +
1

λf

δk
+ xT

kSk−1xk

Sk−1xkek (4.6)

where

ek = dk −wT
k−1xk (4.7)

is the a priori error.

In impulsive-noise environments, the L1 norm of the gain vector, i.e., pk − λpk−1,

given by

∥pk − λpk−1∥1 = ∥δkxkdk∥1 (4.8)

undergoes a sudden increase when dk or xk are corrupted by impulsive noise. As

a result, the L1 norm of pk is also increased which would, in turn, increase the L1

norm of wk in (4.4). The effect of impulsive noise on (4.3) can be suppressed by

imposing a time-varying upper bound γk on the L1 norm of the gain vector in (4.8).

In other words, we choose δk such that the update of the crosscorrelation vector in

(4.3) satisfies the condition

∥pk − λpk−1∥1 ≤ γk (4.9)

Parameter γk is chosen as

γk =

∣∣∣∣νdkek

∣∣∣∣ (4.10)

where 0 < ν ≤ 1 for all k on the basis of extensive simulations. The condition in

(4.9) is satisfied if δk is chosen as

δk =
ν

∥xkek∥1
(4.11)

As can be seen, δk can be greater than unity which would affect the convergence
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performance of the adaptive filter. To circumvent this problem, we use

δk = min

(
1,

ν

∥xkek∥1

)
(4.12)

With δk = 1, the update equations in (4.5) and (4.6) become identical with those of

the conventional RLS adaptation algorithm. The value of δk given by (4.12) will also

bound the L1 norm of the gain matrix, i.e., Rk − λRk−1, given by

∥Rk − λRk−1∥1 =
∥∥δkxkx

T
k

∥∥
1

=min

(
∥xk∥∞∥xk∥1,

ν

|ek|
∥xk∥∞

)
(4.13)

As can be seen, for an impulsive-noise corrupted ek, the L1 norm of the gain matrix

would be significantly reduced. Since the probability that δk = 1 during the transient

state is high and the convergence of the RLS algorithm is fast, the initial convergence

of the proposed RRLS algorithm would also be fast. In addition, the proposed RRLS

algorithm would work with δk = 1 during steady state as the amplitude of the error

signal, ek, becomes quite low during steady state. Consequently, the steady-state mis-

alignment of the proposed RRLS algorithm would be similar to that of conventional

RLS adaptation algorithms. However, when an impulsive noise-corrupted ek occurs,

we obtain |dk| ≈ |ek| and δk = ν/ ∥xkek∥1 which would force the L1 norm of the gain

vector in (4.8) and the L1 norm of the gain matrix in (4.13) to be bounded by γk ≈ ν

and ∥xk∥∞ ν/|ek|, respectively. As a result, the L1 norm of the weight vector wk in

(4.4) would also remain bounded as discussed below.

The L1 norm of the differential-weight vector of the conventional RLS algorithm

given by

△wk = wk −wk−1 (4.14)

is obtained as

∥△wk∥1 =
|ek| ∥Sk−1xk∥1

∥λ+ xkSk−1xT
k ∥1

(4.15)

by using (4.6) in (4.14) with δk = 1. As can be seen, the L1 norm of the differential-

weight vector in the conventional RLS algorithm increases abruptly for an impulsive

noise corrupted ek. Similarly, the L1 norm of the differential-weight vector in the

proposed RRLS algorithm for the case of an impulsive noise corrupted error signal,
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ek, is obtained by using (4.11) and (4.6) in (4.14) as

∥△wk∥1 =
ν ∥Sk−1xk∥1

∥xk∥1 ∥λ+ δkxkSk−1xT
k ∥1

(4.16)

As can be seen, the L1 norm given by (4.16) would be much less than that in (4.15)

since ek cannot perturb Sk−1. Although δk would become less than one in such a

situation, its effect is significantly reduced by ∥xk∥1 in (4.16). In addition, ∥xk∥1
would significantly reduce the effect of an impulsive-noise corrupted xk on ∥△wk∥1
in (4.16) compared to that in (4.15). It should also be noted that the duration of xk

and ek would have no effect on (4.16). In other words, the proposed RRLS algorithm

would exhibit robust performance with respect to a long burst of impulsive noise.

Using the well known vector-norm inequality

1√
M

∥△wk∥1 ≤ ∥△wk∥2 ≤ ∥△wk∥1 (4.17)

and (4.16), we note that the L2 norm of the differential-weight vector would also

remain bounded and hence the L2 norm of wk in the proposed RRLS algorithm

would also be robust with respect to the amplitude and duration of the impulsive-

noise corrupted ek.

4.2.2 RRLS Algorithm for Nonstationary Environments

The above RRLS algorithm, like other RLS algorithms, cannot track sudden system

disturbances as λf is chosen to be very close to unity in order to achieve a reduced

steady-state misalignment. To overcome this problem, we use time-varying parame-

ters λk and δk defined as

λk =max

[
0.1,min

(
λf ,

θ1,kx
T
kSk−1xk

θ2,k − θ1,k + θ1,kxT
kSk−1xk

)]
(4.18)

δk = 1− λk (4.19)

In (4.18), θ1,k should be greater than θ2,k in order to render the proposed RRLS

algorithm applicable to nonstationary environments. Suitable values for θ1,k and θ2,k

that were found to give good results in practice are θ1,k = 2.24σ1,e and θ2,k = σ2,e.

Constant 2.24 is an empirical constant which is chosen to ensure that the probability



55

that λk ̸= λf is of the order of 0.001. This would ensure that under sudden system

disturbances, λk would be reduced momentarily and then be quickly returned to the

value λf in order to maintain the re-adaptation capability of the algorithm. The

variances of the error signal, σ2
1,e and σ2

2,e, in iteration k are estimated as

σ2
1,k = βσ2

1,k−1 + (1− β)min
[
σ2
1,k−1,median(gk)

]
(4.20)

σ2
2,k = ςσ2

2,k−1 + (1− ς)median(gk) (4.21)

where gT
k =

[
e2k + ϵ, . . . , e2k−P+1 + ϵ

]
is a vector of dimension P , ϵ ≈ 0 is a very small

positive scalar, and 0 < β < 1 and 0 < ς < 1. Parameters β and ς are referred to as

memory factors in the literature. In the proposed algorithm, we use λk and δk given

in (4.18) and (4.19), respectively, only when
√
min(gk) > 4σ1,k. Otherwise, we use

λf and δk as given in (4.12).

If σ2
1,0 is chosen to be very large, then we would get

√
min(gk) < 4σ1,k during

the transient state and, therefore, the algorithm would work with λf and δk as given

in (4.12). As a result, the transient state would die out quickly in which case σ2
k ≈

σ2
v at steady state. On the other hand, for sudden system disturbances, we would

get
√
min(gk) ≫ 4σ1,k in which case the algorithm would work with λk and δk

given in (4.18) and (4.19), respectively. In such a situation, λk momentarily becomes

significantly less than λf as θ2,k ≫ θ1,k and shortly afterwards λk becomes equal to

λf as θ2,k becomes less than θ1,k. As a result, improved re-adaptation capability is

achieved in nonstationary environments.

4.2.3 Discussion

The two versions of the proposed algorithm essentially solve the minimization problem

minimize Jwk
=
∑k

i=1 δi
∏k

j=i+1 λj(di −wT
k xi)

2 + 0.5
(∏k

i=1 λi

)
wT

k R0wk

wk

(4.22)

and they can be implemented in terms of the algorithm summarized in Table 4.1

[84].

For stationary environments, the proposed algorithm entails 3M2+4M +5 multi-

plications and 2M2+2M +2 additions per iteration where M is the dimension of the

weight vector. On the other hand, for nonstationary environments, 3M2 + 4M + 13

multiplications and 2M2 + 2M + 5 additions per iteration are required. The conven-
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Table 4.1: Proposed RRLS Algorithm

Given dk and xk choose P , λf , S0 = ϵ−1I, and compute
ek = dk −wT

k−1xk

tk = Sk−1xk

τk = xT
k tk

τ̃k =
λk

δk
+ τk

t̃k =
1

τ̃k
tk

Sk =
1

λk

(
Sk−1 − t̃kt

T
k

)
wk = wk−1 + ekt̃k

For applications in stationary environments, compute
λk = λf

∥xk∥1 = ∥xk−1∥1 + |xk| − |xk−M |

δk = min

(
1,

ν

∥xk∥1|ek|

)
For applications in nonstationary environments, compute

gk =
[
e2k + ϵ, gT

k−1(1, 1 : P − 1)
]T

C = median(gk)
σ2
1,k = βσ2

1,k−1 + (1− β)min(σ2
1,k−1, C)

σ2
2,k = ςσ2

2,k−1 + (1− ς)C
if
√
min(gk) > 4σ1,k let

λk = max

[
0.1,min

(
λf ,

θ1,kτk
θ2,k − θ1,k + θ1,kτk

)]
δk = 1− λk

else let
λk = λf

δk = min

(
1,

ν

∥xk∥1|ek|

)
end
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tional RLS algorithm requires 3M2+4M+2 multiplications and 2M2+2M additions

whereas the RLM algorithm requires 3M2+4M+11 multiplications and 2M2+2M+2

additions. Evidently, for values of M greater than 5, the computational complexity

of the proposed RRLS algorithm is similar to that of the RLS and RLM algorithms.

4.3 Simulation Results

In this section, the proposed RRLS (PRRLS) algorithm is compared with the con-

ventional RLS algorithm and the RLM algorithm [63] in terms of robustness and its

capability in tracking abrupt disturbances.

The first experiment deals with a system identification application in a stationary

environment. The weight vector of the unknown system, wopt, was obtained using

MATLAB commands h = fir1(M − 1, ωn) and wopt = h/norm(h, 2) with M = 37

and ωn = 0.3. The input signal was a zero-mean white Gaussian noise signal with

unity variance and it was colored by an IIR filter with a single pole at 0.95. The

eigenvalue spread ratio of the colored input signal of 10000 samples was obtained

as 837 by using the ensemble average of the autocorrelation matrix given by (1.28)

over 1000 independent trials with λ = 1 − 2−15 and R0 = 10−4I. The measurement

noise added to the desired signal was a zero-mean white Gaussian noise signal with

variances σ2
v = 10−3 and 10−6 to achieve signal-to-noise ratios (SNRs) of 30 and 60 dB,

respectively. The impulsive noise was generated as ϕk = ωkχk where ωk is a Bernoulli

process with the probability that ωk = 1 is equal to p = 0.001, i.e., P (ωk = 1) = 0.001,

and χk is a zero-mean Gaussian signal with variance σ2
χ = 10, 000σ2

y where σ2
y is the

power of the uncorrupted output signal [68]. Parameter ν was set to unity for the

PRRLS algorithm. The learning curves obtained in 1000 independent trials by using

the conventional RLS and RLM algorithms and the PRRLS algorithm are illustrated

in Figs. 4.1–4.2. As can be seen, the RLS and RLM algorithms are not robust

with respect to a long burst of impulsive noise whereas the PRRLS algorithm is not

affected by the impulsive noise.

In the second experiment, we repeated the first experiment with an identical

experimental setup except that M was set to 17 and the impulsive noise was added

to the adaptive-filter input signal rather than the desired signal. The eigenvalue

spread ratio of the colored input signal of 10000 samples was obtained as 498 by

using the ensemble average of the autocorrelation matrix given by (1.28) over 1000

independent trials with λ = 1−2−15 and R0 = 10−4I. Due to the reduction in M , the
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Figure 4.1: Learning curves with SNR = 30 dB, λf = 0.999999, S0 = ϵ−1I with
ϵ = 10−12, p = 0.001, and w0 = 0 in all algorithms. The parameters for the RLM
algorithm were L = 5, λσ = 0.95, ξ = 1.960σe, △1 = 2.240σe, △2 = 2.576σe as
suggested in [63]. Impulsive noise of duration 3TS was added to the desired signal at
iterations 800, 1300, 1800 where Ts is the sampling period.

eigenvalue spread ratio is reduced in this experiment. Parameter ν was set to 0.1 for

the PRRLS algorithm. The learning curves obtained are illustrated in Figs. 4.3–4.4.

As can be seen, the PRRLS algorithm performs much better than the other algo-

rithms in terms of steady-state misalignment and robustness with respect to impulsive

noise.

The third experiment dealt with a system identification application in a nonsta-

tionary environment. The initial algorithm parameters were the same as those in the

first experiment except that the order of the unknown system was increased to 63

and the variances of the measurement noise were changed to 10−4 and 10−7 to achieve

SNRs of 40 and 70 dB, respectively. The eigenvalue spread ratio of the colored input

signal of 10000 samples was obtained by using the ensemble average of the autocor-

relation matrix given by (1.28) over 1000 independent trials with λ = 1 − 2−15 and

R0 = 10−4I as 1081. The impulse response of the FIR filter was suddenly multiplied

by −1 at iteration 1500. The re-adaptation capability of the robust algorithms in
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Figure 4.2: Learning curves with SNR = 60 dB, λf = 0.999999, S0 = ϵ−1I with
ϵ = 10−12, p = 0.001, and w0 = 0 in all algorithms. The parameters for the RLM
algorithm were L = 5, λσ = 0.95, ξ = 1.960σe, △1 = 2.240σe, △2 = 2.576σe as
suggested in [63]. Impulsive noise of duration 3TS was added to the desired signal at
iterations 800, 1300, 1800 where Ts is the sampling period.

[63, 64, 68, 67] was examined using a similar setting. Parameter ν was set to unity

for the PRRLS algorithm. The learning curves obtained in 1000 independent trials

by using the conventional RLS and RLM algorithms and the PRRLS algorithm are

illustrated in Figs. 4.5–4.6.

As can be seen, the RLS and RLM algorithms cannot track sudden system changes

whereas the PRRLS algorithm handles sudden system changes successfully and at the

same time maintains its robustness with respect to impulsive noise.

4.4 Conclusions

A new robust RLS adaptation algorithm that performs well in impulsive noise envi-

ronments has been proposed. The new algorithm uses the L1 norm of the gain factor

of the crosscorrelation vector to achieve robust performance against impulsive noise.

In addition, the proposed algorithm uses a modified variance estimator to compute a
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Figure 4.3: Learning curves with SNR = 30 dB, λf = 0.999999, S0 = ϵ−1I with
ϵ = 10−12, p = 0.001, and w0 = 0 in all algorithms. The parameters for the RLM
algorithm were L = 5, λσ = 0.95, ξ = 1.960σe, △1 = 2.240σe, △2 = 2.576σe as
suggested in [63]. Impulsive noise of duration 3TS was added to the input signal at
iterations 800, 1300, 1800 where Ts is the sampling period.

threshold that is used to obtain a variable forgetting factor λk which offers improved

re-adaptation capability. Simulation results show that the proposed algorithm is ro-

bust against impulsive noise and offers better re-adaptation capability compared to

the conventional RLS and RLM algorithms.

In the next chapter, we describe an improved quasi-Newton adaptation algorithm.
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Figure 4.4: Learning curves with SNR = 60 dB, λf = 0.999999, S0 = ϵ−1I with
ϵ = 10−12, p = 0.001, and w0 = 0 in all algorithms. The parameters for the RLM
algorithm were L = 5, λσ = 0.95, ξ = 1.960σe, △1 = 2.240σe, △2 = 2.576σe as
suggested in [63]. Impulsive noise of duration 3TS was added to the input signal at
iterations 800, 1300, 1800 where Ts is the sampling period.
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Figure 4.5: Learning curves with SNR = 40 dB, P = 5, σ1,0 = σ2,0 = 1000, β =
0.99, ς = 0.95, for the PRRLS algorithm. Impulsive noise of duration 3TS was added
to the desired signal at iterations 700, 1200, 2500. The initial algorithm parameters
were set to λf = 0.999999, S0 = ϵ−1I with ϵ = 10−4, and w0 = 0 in all algorithms.
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Figure 4.6: Learning curves with SNR = 70 dB, P = 5, σ1,0 = σ2,0 = 1000, β =
0.99, ς = 0.95, for the PRRLS algorithm. Impulsive noise of duration 3TS was added
to the desired signal at iterations 700, 1200, 2500. The initial algorithm parameters
were set to λf = 0.999999, S0 = ϵ−1I with ϵ = 10−4, and w0 = 0 in all algorithms.



64

Chapter 5

Improved Quasi-Newton

Adaptation Algorithm

5.1 Introduction

The conventional recursive least-squares (CRLS) algorithm converges much faster

than algorithms of the steepest-descent family [3]. However, it can become unstable

and offers poor performance in tracking abrupt system disturbances especially if a

large forgetting factor is used. The known quasi-Newton (KQN) algorithm reported

in [57, 58] offers better numerical robustness whereas the LMS-Newton (LMSN) al-

gorithms reported in [59] offer better convergence performance than the CRLS algo-

rithm. The numerical robustness of the quasi-Newton (QN) algorithm reported in

[57, 58] is achieved by using a biased estimate of the autocorrelation matrix, which can

reduce the tracking capability of the algorithm relative to that of the RLS algorithm

[64].

In this chapter, we propose an improved version of the QN algorithm reported in

[57, 58] that incorporates data-selective adaptation [85]. The proposed QN (PQN)

algorithm takes fewer weight updates to converge and yields a reduced steady-state

misalignment relative to the KQN algorithm in [57, 58]. These features of the new

algorithm are demonstrated through MATLAB simulations in stationary and non-

stationary environments. Simulations also show that the PQN algorithm, like the

KQN algorithm, is quite robust with respect to roundoff errors in fixed-precision

implementations.
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5.2 Proposed Quasi-Newton Algorithm

The objective of the proposed adaptation algorithm is to generate a series of weight

vectors that would eventually solve the optimization problem

minimizeE[(dk −wTxk)
2]

w (5.1)

recursively where E[·] is the expected value of [·], xk is a vector of dimension M

representing the input signal, dk is the desired signal, and w is the weight vector

which is also of dimension M . An approximate solution of the problem in (5.1) can

be obtained by using the weight-vector update equation

wk = wk−1 + 2µkSk−1xkek (5.2)

where µk is the step size, Sk−1 is a positive definite matrix of size M ×M , and

ek = dk − yk (5.3)

is the a priori error for the output signal yk = wT
k−1xk. If Sk−1 in (5.2) is chosen as

the M × M identity matrix, then the update equation in (5.2) would minimize the

objective function

Jwk−1
= (dk −wT

k−1xk)
2 (5.4)

with respect to the steepest-descent direction and a series of updates would eventually

yield an approximate solution of the problem in (5.1). Other choices of Sk−1 would

entail different search directions but would serve the same purpose as long as Sk−1

remains positive definite. In order to use an approximation to the Newton direction

Sk−1 in (5.2), we obtain Sk−1 by using the gradient of Jwk−1
in (5.4) in the rank-one

update formula of the classical QN optimization algorithm [70] given by

Sk = Sk−1 −
(δk − Sk−1ρk)(δk − Sk−1ρk)

T

(δk − Sk−1ρk)Tρk

(5.5)

where

δk = wk −wk−1 (5.6)

and

ρk =
∂e2k+1

∂wk

− ∂e2k
∂wk−1

(5.7)
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This formula satisfies the Fletcher quasi-Newton condition Skρk = δk [71]. From

(5.3), we note that ek+1 requires future data xk+1 and dk+1. To circumvent this

problem, we use the a posteriori error

ϵk = dk − xT
kwk (5.8)

in place of ek+1 in (5.7). As a first step in the proposed algorithm, we obtain a value

of the step size µk in (5.2) by solving the optimization problem

minimize
(
|dk − xT

kwk| − γ
)

µk ∈ R+
(5.9)

where γ is a prespecified error bound. The solution of this problem can be obtained

as

µk = αk
1

2τk
(5.10)

where τk = xT
kSk−1xk and

αk =

1− γ

|ek|
if |ek| > γ

0 otherwise
(5.11)

In effect, the step size µk is chosen to force the equality |ϵk| = γ whenever |ek| > γ.

Since µk in (5.10) forces ϵk to assume the value of the prespecified error bound, i.e.,

ϵk = γ sign(ek) (5.12)

we obtain ∇ϵ2k = 0 and hence from (5.7), we have

ρk = 2ekxk (5.13)

Vector δk, which is linearly dependent on Sk−1xk, can be obtained by using (5.2)

and (5.6). Since the equality in (5.12) is satisfied for each update, we can use the a

posteriori error to obtain δk as

δk = 2γ · sign(ek)Sk−1xk (5.14)

instead of the a priori error used in the known QN algorithm reported in [57, 58].

Now substituting ρk and δk given by (5.13) and (5.14) in (5.5), we obtain an update
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Table 5.1: PQN Algorithm

Initialize w0 = 0 and S0 = I.

Choose γ.

Input dk, xk and compute

ek = dk −wT
k−1xk

if |ek| > γ

αk = 1− γ

|ek|

tk = Sk−1xk

τk = xT
k tk

gk = αktk

Sk = Sk−1 −
gkt

T
k

τk

wk = wk−1 +
1

τk
ekgk

end

equation for matrix Sk for the proposed QN algorithm as

Sk = Sk−1 − αk
Sk−1xkx

T
kSk−1

xT
kSk−1xk

(5.15)

Substituting µk given by (5.10) in (5.2), we obtain the corresponding weight-vector

update equation as

wk = wk−1 + αk
Sk−1xk

xT
kSk−1xk

ek (5.16)

Updates are applied to wk−1 and Sk−1 only if the a priori error exceeds the prespeci-

fied error bound γ as is done in the basic QN optimization algorithm [70]. Otherwise,

no updates are applied. The PQN algorithm [85] can be implemented as detailed in

Table 5.1.
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The crosscorrelation vector of the PQN algorithm can be defined as

pk = pk−1 +
αk

τp,k
dkxk (5.17)

where τp,k = (1 − αk)τk. If we apply the matrix inversion lemma given in [2, 3] to

(5.15), we obtain the input-signal autocorrelation matrix as

Rk = Rk−1 +
αk

τp,k
xkx

T
k (5.18)

Using (5.3) in (5.16), straightforward manipulation yields

wk =wk−1 +
αk

τp,k
dkSk−1xk −

αk

τk
Sk−1xkx

T
kwk−1

− α2
k

τp,k
dkSk−1xk (5.19)

Using the normal equation

Rk−1wk−1 = pk−1

in (5.19) and simplifying the expression obtained, we have

wk =

(
Sk−1 −

αk

τk
Sk−1xkx

T
kSk−1

)(
pk−1 +

αk

τp,k
dkxk

)
(5.20)

Now using (5.15) and (5.17) in (5.20), we obtain

Rkwk = pk (5.21)

which comprises the normal equations of the objective function

Jwk
=

k∑
i=1

αi

τp,i
(di −wT

k xi)
2 +

1

2
wT

k R0wk (5.22)

where τp,i = (1−αi)x
T
i Si−1xi. Hence the weight-vector update equation of the PQN

algorithm in (5.16) minimizes the objective function in (5.22).

As can be seen, the objective function of the PQN algorithm is similar to that

of the weighted LS or LMSN algorithm [59]. The updating formulas for the KQN
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algorithm are

Sk =Sk−1 +
[µk − 1]

τk
Sk−1xkx

T
kSk−1 (5.23)

wk =wk−1 + 2µkekSk−1xk (5.24)

where

µk =
1

2τk
(5.25)

The objective function of the KQN algorithm, on the other hand, assumes the form

Jwk
=

k∑
i=1

[1− µi]

[
di − µix

T
i wi−1

1− µi

− xT
i wk

]2
+

1

2
wT

k R0wk (5.26)

where µi = 1/(2xT
i Si−1xi). It turns out that in the KQN algorithm the value of

µk − 1 in the estimator in (5.23) approaches zero, as can be verified by examining

Fig. 4 in [58]. As a result, the adaptation of Sk will stop after a certain number of

iterations regardless of the value of ∥δk∥ whereas the basic QN optimization algo-

rithm as reported in [70] suggests that the adaptation of Sk should continue until the

value of ∥δk∥ becomes sufficiently small. Consequently, the steady-state value of the

misalignment and the speed of convergence will be affected.

An unbiased estimate of the inverse of the input-signal autocorrelation matrix

cannot be obtained by using the rank-one update formula given in (5.5). However,

the undesired consequences of using a biased estimate in the adaptation of the weight

vector can be avoided by using a convergence factor µ in (5.2) [3]. The autocorrelation

matrix in (5.18) can be expressed as

Rk = R0 +
k∑

i=1

αi

τp,i
xix

T
i (5.27)

As can be seen, the update formula for Rk is a weighted sum of the outer product

xix
T
i and the weights depend on the input-signal statistics and the a priori error

signal. Taking the expectation of both sides in (5.27) and invoking the assumption

that τ and xix
T
i are statistically independent, we obtain

E[Rk] = R0 +Rx,x

k∑
i=1

E

(
αi

τp,i

)
(5.28)
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Figure 5.1: Evolution of α/τp.

An expression for the expectation of αi/τp,i is difficult to deduce but an approxi-

mate value can be obtained in terms of its time average based on simulation. In such

an experiment, the error bound can be chosen as γ =
√

5σ2
v where σ2

v is the variance

of the measurement noise. The evolution of α/τp for a white Gaussian input signal

with zero mean and unit variance assuming a variance of the measurement noise, σv,

of 10−4 is illustrated in Fig. 5.1. This was determined by averaging the ensemble of

α/τp in 100 runs in a 36th-order system identification application.

Note that since αi = 0 for |ei| < γ and τp,i > 0 as Si is positive definite (see

Theorem 1 below), we have αi/τp,i = 0 for |ei| < γ. Since gk = αktk, the value of tk

does not need to be specified if |ek| < γ.

As can be seen in Fig. 5.1, the time average is a positive quantity and, therefore,

on the average a significant improvement can be brought about in the estimate of Rk

with respect to R0. The effect of using a biased estimate on the weight vector will,

therefore, be less pronounced in the proposed algorithm as the quantity αk in the step

size µk in (5.10) approaches zero at steady state. Since αi ⊂ [0, 1) and τp,i > 0 for all

i, the weights used in (5.22) and (5.27) are nonnegative. Therefore, if R0 is positive
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definite it is straightforward to show that the estimate in (5.18), i.e., the Hessian of

(5.1), would remain positive definite indefinitely.

The temporal behavior of α/τp in (5.22) can also be observed in Fig. 5.1. Since

τp,i > 0 and it is also bounded due to the fact that Sk is bounded (see Theorem 2

below), α/τp can approach zero only when αi ≈ 0, i.e., when an approximate solution

of the problem in (5.1) is achieved. During transience, αi ≈ 1 and during steady

state, αi ≈ 0; therefore, α/τp is large during transience and becomes small at steady

state.

The stability of Newton-type algorithms in general depends on the positive def-

initeness of Sk [58, 59]. Furthermore, Sk must be bounded for a bounded input

signal. Otherwise, the bounded-input bounded-output (BIBO) stability of the algo-

rithm cannot be assured. The formula in (5.16) could also lead to a biased solution

for an unbounded Sk. Both of these requirements are satisfied in the PQN algorithm

according to the following theorems.

Theorem 1. If Sk−1 is a symmetric positive definite matrix, then Sk is also a sym-

metric positive definite matrix for all k > 0.

Proof: Since Sk−1 is a real symmetric matrix, we can express Sk−1 as

Sk−1 =UΛUT

=
(
UΛ1/2UT

) (
UΛ1/2UT

)
=S

1/2
k−1S

1/2
k−1 (5.29)

where U is a unitary matrix such that UTU = UUT = I. If we let u = S
1/2
k−1xk and

v = S
1/2
k−1z, then for any nonzero vector z ∈ RM , the relation in (5.15) can be used

to obtain

zTSkz = zTSk−1z − αk ·
zTSk−1xkx

T
kSk−1z

xT
kSk−1xk

= zTSk−1z − αk ·
(
zTSk−1xk

)2
xT
kSk−1xk
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Substituting (5.29) and the definitions of u and v in the above equation, we obtain

zTSkz = vTv − αk ·
(
vTu

)2
uTu

= ∥v∥2 − αk ·
∥v∥2∥u∥2 cos2 θ

∥u∥2

= ∥v∥2 − αk · ∥v∥2(0.5 + 0.5 cos 2θ)

Since 0 < αk < 1, the lowest possible value of the right-hand side in the above

equation will occur when θ = 0 and, therefore,

zTSkz > ∥v∥2(1− αk) > 0 (5.30)

for any z ∈ RM×1. Hence the estimate in (5.15) is positive definite for all k > 0. The

symmetry of Sk can be easily demonstrated by noting the symmetry of Sk−1.

Theorem 2. The estimate of Sk in (5.15) is always bounded in the sense that the

quadratic factor xT
kSkxk is bounded provided that the input signal is bounded.

Proof: If we premultiply both sides in (5.15) by xT
k and postmultiply them by xk,

we obtain

xT
kSkxk = xT

kSk−1xk(1− αk) (5.31)

Since 0 < (1− αk) < 1 holds true for each adaptation, we have

xT
kSkxk < xT

kSk−1xk (5.32)

Therefore, we conclude that if the input signal is bounded, then Sk is also bounded.

Based on the above two theorems, the stability of the PQN algorithm can be estab-

lished as discussed in the next section.

5.3 Stability Analysis

For purposes of analysis, we assume that the desired response for the adaptive filter

is generated as

dk = xT
kwopt (5.33)

wherewopt is the weight vector of an FIR filter. We establish the convergence behavior

of the proposed QN algorithm by examining the behavior of the weight-error vector



73

defined as

ŵk = wopt −wk (5.34)

Using (5.33) and (5.34), the error signal in (5.3) can be expressed as

ek = xT
k ŵk−1 (5.35)

Subtracting wopt from both sides of (5.16) and using the above relations, we obtain

ŵk =

(
I− αk

Sk−1xkx
T
k

xT
kSk−1xk

)
ŵk−1

=Pkŵk−1 (5.36)

Global asymptotic convergence of the weight-error vector can be assured if and only if

E[Pk] is time-invariant and its eigenvalues are strictly inside the unit circle. However,

certain strong independence assumptions have to be made to obtain a time-invariant

description of a system such as that represented by (5.36). As an alternative, condi-

tions for convergence with probability 1 can be achieved using a system based on ŵk

rather than E[ŵk]. A similar approach has been used to demonstrate the stability

of other algorithms, such as, for example, the known QN algorithm in [58] and the

constrained affine projection algorithm in [27]. Since we have seen in Theorems 1 and

2 that the matrices Sk and Rk remain positive definite and bounded indefinitely , the

following theorem can be established [58].

Theorem 3. If the input signal is persistently exciting, then the system in (5.36) is

stable and asymptotically stable and, consequently, the proposed QN algorithm is also

stable and asymptotically stable.

Proof. Since matrices Sk and Rk are bounded and invertible according to Lemma 1

in [58], an equivalent system of equations for ŵk in (5.36) (in the Lyapunov sense)

can be obtained as

ŵk = R
1/2
k ŵk (5.37)

where Rk = R
T/2
k R

1/2
k . If the system represented by (5.37) is stable or unstable, then

the system represented by (5.36) is also stable or unstable, as appropriate. Taking

the Euclidian norm of both sides of (5.37), we obtain

∥∥ŵk

∥∥2 = ŵT
k Rkŵk (5.38)
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Substituting ŵk given by (5.36) in (5.38), we get

∥∥ŵk

∥∥2 = ŵT
k−1P

T
k RkPkŵk−1 (5.39)

On the other hand, substituting Rk given by (5.18) in (5.39), we have

∥∥ŵk

∥∥2 = ŵT
k−1P

T
k Rk−1Pkŵk−1 +

αk

(1− αk)τk
· ŵT

k−1P
T
k xkx

T
kPkŵk−1 (5.40)

It is easy to verify that

P T
k Rk−1Pk = Rk−1 − (2− αk)

αk

τk
xkx

T
k (5.41)

and

P T
k xkx

T
kPk = (1− αk)

2xkx
T
k (5.42)

Now if we use (5.41) and (5.42) in (5.40) and then use (5.38), we have

∥∥ŵk

∥∥2 = ∥∥ŵk−1

∥∥2 − αk

τk
ŵT

k−1xkx
T
k ŵk−1 (5.43)

Since αk ⊂ (0, 1) and τk > 0 for all k, we obtain

∥∥ŵk

∥∥2 ≤ ∥∥ŵk−1

∥∥2 (5.44)

The left-hand side in (5.44) would be equal to the right-hand side in an interval

[k1, k2] if and only if xk remains orthogonal to ŵk−1 for all k ∈ [k1, k2]. However, in

such a situation we would obtain ŵk = ŵk−1 for all k ∈ [k1, k2] in (5.36). Therefore,∥∥ŵk

∥∥2 =
∥∥ŵk−1

∥∥2 would hold true if and only if ŵk1 = ŵk1+1 = · · · = ŵk2 = ŵ.

However, if the input signal is persistently exciting, then there is an infinite number of

sets Si = {xk1,i, . . .xk2,i} with M ≤ k2,i − k1,i < M ′ such that each set Si completely

spans ℜM for some finite value of M ′ > 0 [58, 35]. Thus it would be impossible for

ŵk−1 to be orthogonal to xk for all xk ∈ Si and as a result
∥∥ŵk

∥∥2 < ∥∥ŵk−1

∥∥2 which

proves that the system in (5.36) and, in turn, the proposed QN algorithm is stable.

As the number of sets is infinite, it follows that
∥∥ŵk

∥∥2 → 0 for k → ∞ and, therefore,

the system in (5.36) and the proposed QN algorithm are stable and asymptotically

stable.
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5.4 MSE Analysis of Proposed QN Algorithm

In this section, we examine the performance of the PQN algorithm in terms of the

mean square-error (MSE) after initial convergence in stationary and nonstationary en-

vironments. The update formula for the weight vector in the PQN algorithm is similar

to that of the LMS-Newton algorithm given in Eq. (29) in [59]. The difference resides

in the estimation of the inverse of the autocorrelation matrix and the reduction factor,

q. The KQN algorithm uses q = 1 instead of a prespecified fixed reduction factor q

and the PQN algorithm uses a variable reduction factor q = αk = [0, 1). However, the

steady-state MSE of the PQN algorithm depends on the steady-state value of αk = p,

not on its transient value. As reported in [59], the steady-state mean-square error

given in Eqs. (40) and (46) of [59] for stationary and nonstationary environments,

respectively, is independent of the way the inverse of the autocorrelation matrix is

estimated and hence it will not be different for other Newton-type algorithms as long

as (1) they use a weight-vector update equation of the type given in [59], (2) they use

an approximate Newton direction, and (3) the assumptions made in [59] hold true.

This conclusion is corroborated in [58] where the expression for the steady-state MSE

in the KQN algorithm is shown to be identical with that of the LMSN algorithms.

As can be verified, using q = 1 in Eq. (46) of [59], Eq. (22) of [58] can be obtained.

Since the PQN algorithm follows an approximate Newton direction, employs a similar

step size, and uses the same update equations for the weight vector, the formulas for

the excess mean-square error are the same as those in Eqs. (40) and (46) in [59].

For stationary environments, the excess mean-square error for the PQN algorithm is

given by

Jex,PQN =
p

2− p
Jmin (5.45)

where Jmin is the minimum mean-squared error and p is the value of αk as k → ∞.

For the case of the KQN algorithm, this becomes Jex,QN = Jmin. As p ≪ 1 at steady

state, we have Jex,PQN < Jex,KQN . In addition, we have Jex,PQN < Jex,LMS−Newton for

a prespecified q.

If the weights of the unknown plant change according to the update formula

wo,k = wo,k−1 + νk (5.46)
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the excess mean-square error is given by

Jex,PQN =
1

2− p

(
pJmin +

σ2
xσ

2
νM

2

p

)
(5.47)

where σ2
x is the variance of the input signal and σ2

ν is the variance of the elements of

ν. As can be seen, the second term in the parenthesis is inversely proportional to p

and, therefore, αk should not be allowed to become too small.

The optimal value of the reduction factor, qo, that minimizes the excess mean-

square error is given in Eq. (47) of [59]. As can be easily verified, it is difficult to

determine the optimal reduction factor as parameter a in Eq. (47) of [59] is unknown

a priori. Since the derivation of qo involves certain assumptions, there is no guar-

antee that the minimum excess mean-square error will be obtained with qo [59]. To

circumvent these problems, a small positive constant ϵ can be added to αk to be used

in the weight update formula for nonstationary environments so that αk→∞ ≈ ϵ.

A numerical value for p is difficult to obtain if the input signal is colored. However,

for a white Gaussian input signal an approximate range of p can be obtained as

2Q

(
γ

σv

)
≤ p ≤ 2Q

(
γ√

2σ2
v + γ2

)
(5.48)

where σ2
v is the variance of the noise signal added to the desired signal and Q(·) is

the complementary Gaussian cumulative distribution function [35]. The maximum

reduction in the number of weight updates can be obtained by using the Chebyshev

equality

Pr(|ek| < γ)max = 1− Pr(|ek| > γ) = 1− σ2
v

γ2
(5.49)

where σ2
v is the minimum value of σ2

e and γ2 is chosen as an integer multiple of σ2
v ,

i.e., γ2 = kσ2
v with k = 1, 2, . . . , L.

The number of updates, convergence speed, and steady-state MSE depend on the

value of parameter γ. From (5.49), a larger value of γ would reduce the number of

updates. From (5.48), on the other hand, we note that a larger γ would reduce p,

and according to (5.45) a reduced steady-state misalignment would be achieved in

stationary environments. However, in such a case the convergence speed of the algo-

rithm would be compromised. A smaller value of γ, on the other hand, would increase

the number of updates and p and, therefore, an increased steady-state misalignment

would result in the case of stationary environments. The convergence speed of the al-
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gorithm in this case would be improved. Similar conclusions about the influence of γ

on the number of updates, convergence speed, and steady-state MSE were also drawn

in [35]. However, such conclusions cannot be deduced for nonstationary environments

as the relation in (5.47) is nonlinear. In nonstationary environments, a reduced error

bound would improve the tracking capability of the algorithm because the algorithm

would continue to carry out updates after convergence. Experimentation has shown

that good performance can be achieved in stationary and nonstationary environments

by choosing integer k in γ in the range of 1 to 5 in the first case and 1 to 3 in the

second case.

As far as stability is concerned, the proposed algorithm is inherently stable as the

a posteriori error is forced to be equal to the prespecified error bound, γ, whenever

an update is made. A rough approximation of the variance of the measurement noise

would be enough to choose the error bound. In certain engineering applications,

the measurement noise has an upper bound [100] and in such applications the PQN

algorithm can be readily applied.

5.5 Simulation Results

In order to evaluate the performance of the proposed QN algorithm several experi-

ments were carried out as detailed below.

In the first experiment, an adaptive filter was used to identify a 36th-order low-

pass FIR filter with a cutoff frequency of 0.3ωs, where ωs is the sampling frequency,

using normalized coefficients to assure that the total power is unity. The input sig-

nal was a sinusoid of amplitude 1 and frequency of ωs/16 and was contaminated by

a Gaussian noise signal of zero mean and variance 0.1. The contaminating Gaus-

sian noise signal was colored using a 10th-order lowpass FIR filter with a cutoff

frequency of 0.5ωs. A sinusoidal signal was chosen because it causes the input sig-

nal to be severely ill-conditioned. With such a system identification problem, the

convergence behavior of Newton-type algorithms can be better understood as their

convergence speed would be low enough to facilitate comparison. The measure-

ment noise added to the desired signal was white Gaussian with zero mean and

variance of 10−2, 10−6, 10−10, and 10−14 to achieve signal-to-noise ratios (SNRs) of

20, 60, 100, and 140 dB, respectively. The prespecified error bound was chosen as

γ =
√

5σ2
v where σ2

v is the variance of the measurement noise. The initial weight

vector was assumed to be the zero vector and the estimate of the inverse of the
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Figure 5.2: Learning curves in a stationary environment with SNR = 20 dB.

autocorrelation matrix was assumed to be the identity matrix in all experiments in

the PQN as well as the KQN algorithms. The tolerance factor ς used in the fixed-

point implementations was ς = 10−3 [57]. The learning curves obtained for different

SNRs from 1000 independent trials by using the PQN and the KQN algorithms in a

stationary environment are illustrated Figs. 5.2–5.5.

The number of iterations required for convergence, the steady-state misalignment,

the number of weight updates required by the PQN and KQN algorithms in the above

experiment in 3000 iterations, and the reductions in the number of updates achieved

are given in Table 5.2.

The second experiment was identical to the first experiment except that a non-

stationarity was introduced in the filter taps hk according to the first-order Markov

model

hk = hk−1 + νk (5.50)

where the entries of ν were the samples of a white Gaussian noise sequence with

zero mean and variance equal to 10−8, 10−12, 10−14, and 10−18. The prespecified error

bound in nonstationary environments was chosen as γ =
√
3σ2

v . With a smaller error
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Figure 5.3: Learning curves in a stationary environment with SNR = 60 dB.

bound, the number of adaptations is increased and, therefore, the tracking of the

changes in hk as given in (5.50) improves after reaching steady state. The learning

curves for different SNRs obtained from 1000 independent trials by using the PQN

and KQN algorithms in a nonstationary environment are illustrated Figs. 5.6–5.9.

The number of iterations to converge, the steady-state misalignment, and the num-

ber of weight updates required by the PQN and KQN algorithms in 3000 iterations

and the reductions achieved are given in Table 5.3.

As can be seen in Figs. 5.2–5.5 and Figs. 5.6–5.9 and Tables 5.2 and 5.3, the PQN

algorithm yields reduced misalignment while requiring fewer iterations to converge

than the KQN algorithm for stationary and nonstationary environments. As in the

KQN algorithm, the learning curves at steady-state in the PQN algorithm are not

noisy. The improvement in the steady-state misalignment becomes more prominent

for high SNRs in the PQN algorithm because in the KQN algorithm adaptation of the

inverse of the autocorrelation matrix stops prior to reaching steady state. Tables 5.2

and 5.3 also show that the required numbers of weight updates in the PQN algorithm

are only a fraction of those required by the KQN algorithm.
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Figure 5.4: Learning curves in a stationary environment with SNR = 100 dB.

In the third and fourth experiments, we verified the formulas in (5.45) and (5.47)

for the excess MSE for different system orders and different values of the error bound.

The input signal was white Gaussian noise with zero mean and variance 0.1. The

limiting values of p for the error bound γ =
√

kσ2
v for k = 1, . . . , 10, were obtained

using (5.48). The results presented in Tables 5.4–5.7 are the outcome of an ensemble

of 100 runs where pmin and pmax are the limiting values of p and σ2
v and M denote the

variance of the measurement noise and system order, respectively. As can be seen in

Tables 5.4–5.7, the excess MSE obtained from simulation lies within the range of the

excess MSE obtained by using pmin and pmax in (5.45) for stationary environments

as expected. In addition, the excess MSE reduces as the error bound is increased as

discussed in the Sec. 6.4.

The fourth experiment was the same as the third except that a nonstationarity

was introduced as in the second experiment. The results obtained are given in Tables

5.8–5.11 where σ2
ν is the variance of the Gaussian noise added to the weight vector.

In nonstationary environments, the excess MSE obtained by simulation may not be

within the range of the excess MSE obtained by using (5.47) since this formula remains
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Figure 5.5: Learning curves in a stationary environment with SNR = 140 dB.

nonlinear at steady state. However, the simulation results obtained are very close to

the theoretical results.

The final experiment was carried out to demonstrate the robustness of the pro-

posed algorithm in the case of a fixed-point implementation. The system to be iden-

tified was the same as that used in the first experiment. Here the input signal was

a zero-mean white Gaussian noise with a variance of unity and was colored using an

10th-order lowpass FIR filter with a cutoff frequency of 0.5ωs. The error bound was

chosen as γ =
√

5σ2
v where σ2

v is the variance of the measurement noise. Fixed-point

arithmetic was assumed using a word length of 20 bits with no scaling or rescuing

procedures and overflow was handled using saturation arithmetic. The error signal,

error bound, and the desired signal were quantized and the learning curves were not

smoothed. The learning curves obtained by using the PQN and KQN algorithms in

100 trials with σ2
v = 10−4 and 10−8, and SNRs of 40 and 80 dB are illustrated in

Fig. 5.10. These results are consistent with the results obtained with floating-point

arithmetic. Furthermore, Fig. 5.10 shows that when implemented in fixed-point arith-

metic the PQN algorithm is as robust as the KQN algorithm.
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Table 5.2: Comparison of Proposed with Known QN Algorithm

SNR 20 dB 60 dB 100 dB 140 dB
Algorithm PQN KQN PQN KQN PQN KQN PQN KQN
Iterations 120 120 130 130 120 700 100 3000
to converge

Weight updates 207 3000 229 3000 225 3000 228 3000
Reduction, % 93 - 92 - 92 - 92 -
Steady-state −19.3 −16.9 −59.3 −56.9 −99.3 −96.6 −139.4 −114.8

misalignment, dB

Table 5.3: Comparison of Proposed with Known QN Algorithm

SNR 20 dB 60 dB 100 dB 140 dB
Algorithm PQN KQN PQN KQN PQN KQN PQN KQN
Iterations 120 120 130 200 130 860 200 3000
to converge

Weight updates 505 3000 450 3000 685 3000 874 3000
Reduction, % 83 - 85 - 77 - 71 -
Steady-state −18.4 −16.7 −59.0 −56.8 −97.3 −96.0 −137.5 −118.3

misalignment, dB

5.6 Conclusions

An improved QN adaptation algorithm that incorporates data selective adaptation

for the weight vector and the inverse of the autocorrelation matrix has been proposed.

The proposed algorithm was developed on the basis of the framework of classical QN

optimization algorithms and in this way an improved estimator of the autocorrelation

matrix was deduced. Analysis has shown that the PQN algorithm should perform

better than the KQN algorithm in terms of convergence speed and steady-state mis-

alignment. This expectation has been substantiated by simulations that have shown

that when compared with the KQN algorithm, the PQN algorithm requires fewer

iterations to converge, fewer weight updates, and yields reduced steady-state mis-

alignment in stationary as well as nonstationary environments. In addition, analyti-

cal results obtained by using closed-form formulas for the steady-state misalignment

agree well with those obtained by simulations. The PQN algorithm was also found

to be as robust as the KQN algorithm in the case of fixed-point implementations.

In the next chapter, we describe a robust version of the PQN algorithm for appli-

cations that entail impulsive noise.
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Figure 5.6: Learning curves in a nonstationary environment with SNR = 20 dB.

Table 5.4: Excess MSE in dB in Proposed QN Algorithm
M = 36, σ2

v = 10−4

Error bound Eq. (5.45) Simulation Eq. (5.45)
k pmin pmax

1 −39.2 −38.4 −38.5
2 −39.6 −39.0 −38.8
3 −39.8 −39.2 −38.9
4 −39.9 −39.5 −38.9
5 −39.9 −39.6 −39.0
6 −39.9 −39.7 −39.0
7 −39.9 −39.6 −39.0
8 −39.9 −39.5 −39.1
9 −39.9 −39.4 −39.1
10 −39.9 −39.2 −39.1
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Figure 5.7: Learning curves in a nonstationary environment with SNR = 60 dB.

Table 5.5: Excess MSE in dB in Proposed QN Algorithm
M = 36, σ2

v = 10−8

Error bound Eq. (5.45) Simulation Eq. (5.45)
k pmin pmax

1 −79.2 −78.2 −78.5
2 −79.6 −78.7 −78.8
3 −79.8 −79.0 −78.9
4 −79.9 −79.2 −78.9
5 −79.9 −79.3 −79.0
6 −79.9 −79.5 −79.0
7 −79.9 −79.5 −79.0
8 −79.9 −79.4 −79.1
9 −79.9 −79.2 −79.1
10 −79.9 −79.0 −79.1
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Figure 5.8: Learning curves in a nonstationary environment with SNR = 100 dB.

Table 5.6: Excess MSE in dB in Proposed QN Algorithm
M = 56, σ2

v = 10−4

Error bound Eq. (5.45) Simulation Eq. (5.45)
k pmin pmax

1 −39.2 −38.4 −38.5
2 −39.6 −38.9 −38.8
3 −39.8 −39.1 −38.9
4 −39.9 −39.2 −38.9
5 −39.9 −39.2 −39.0
6 −39.9 −39.2 −39.0
7 −39.9 −39.1 −39.0
8 −39.9 −39.1 −39.1
9 −39.9 −38.9 −39.1
10 −39.9 −38.7 −39.1
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Figure 5.9: Learning curves in a nonstationary environment with SNR = 140 dB.

Table 5.7: Excess MSE in dB in Proposed QN Algorithm
M = 56, σ2

v = 10−8

Error bound Eq. (5.45) Simulation Eq. (5.45)
k pmin pmax

1 −79.2 −78.2 −78.5
2 −79.6 −78.8 −78.8
3 −79.8 −79.1 −78.9
4 −79.9 −79.3 −78.9
5 −79.9 −79.4 −79.0
6 −79.9 −79.5 −79.0
7 −79.9 −79.4 −79.0
8 −79.9 −79.2 −79.1
9 −79.9 −79.0 −79.1
10 −79.9 −78.8 −79.1
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Table 5.8: Excess MSE in dB in Proposed QN Algorithm
M = 36, σ2

v = 10−4, σ2
ν = 10−8

Error bound Eq. (5.47) Simulation Eq. (5.47)
k pmin pmax

1 −37.3 −37.8 −37.6
2 −37.0 −38.1 −37.5
3 −36.8 −38.1 −37.5
4 −36.8 −38.1 −37.4
5 −36.7 −38.0 −37.4
6 −36.7 −37.8 −37.4
7 −36.7 −37.6 −37.4
8 −36.7 −37.4 −37.3
9 −36.7 −37.2 −37.3
10 −36.7 −37.0 −37.3

Table 5.9: Excess MSE in dB in Proposed QN Algorithm
M = 36, σ2

v = 10−8, σ2
ν = 10−14

Error bound Eq. (5.47) Simulation Eq. (5.47)
k pmin pmax

1 −77.6 −78.2 −78.0
2 −77.3 −78.7 −77.9
3 −77.1 −78.9 −77.8
4 −77.0 −79.1 −77.8
5 −77.0 −79.2 −77.7
6 −77.0 −79.3 −77.7
7 −77.0 −79.3 −77.7
8 −76.9 −79.3 −77.7
9 −76.9 −79.1 −77.7
10 −76.9 −79.0 −77.7
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Table 5.10: Excess MSE in dB in Proposed QN Algorithm
M = 56, σ2

v = 10−4, σ2
ν = 10−8

Error bound Eq. (5.47) Simulation Eq. (5.47)
k pmin pmax

1 −36.8 −37.1 −37.2
2 −36.6 −37.1 −37.1
3 −36.5 −37.1 −37.0
4 −36.4 −37.0 −37.0
5 −36.4 −36.9 −37.0
6 −36.3 −36.7 −36.9
7 −36.3 −36.7 −36.9
8 −36.3 −36.6 −36.9
9 −36.3 −36.2 −36.9
10 −36.3 −36.0 −36.9

Table 5.11: Excess MSE in dB in Proposed QN Algorithm
M = 56, σ2

v = 10−8, σ2
ν = 10−14

Error bound Eq. (5.47) Simulation Eq. (5.47)
k pmin pmax

1 −77.6 −78.3 −78.0
2 −77.3 −78.8 −77.9
3 −77.1 −79.0 −77.8
4 −77.0 −79.2 −77.8
5 −77.0 −79.2 −77.7
6 −77.0 −79.3 −77.7
7 −77.0 −79.2 −77.7
8 −76.9 −79.1 −77.7
9 −76.9 −78.9 −77.7
10 −76.9 −78.7 −77.7
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Figure 5.10: Learning curve for a fixed-point implementation.
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Chapter 6

Robust Quasi-Newton Adaptation

Algorithms

6.1 Introduction

Both of the known quasi-Newton (KQN) algorithms proposed in [58] and the pro-

posed QN (PQN) algorithm in Table 5.1 are not robust with respect to impulsive

noise. In this chapter, we propose two new robust QN (RQN) algorithms that are

robust with respect to impulsive noise and perform data selective adaptation in up-

dating the inverse of the autocorrelation matrix and the weight vector [86]. The new

algorithms are essentially enhancements of the algorithms described in chapter 5 [85]

for applications that entail impulsive noise. Like the RSMAP and PCSMAP algo-

rithms, the proposed RQN algorithms use two error bounds. One of the error bounds

yields faster convergence and good re-adaptation capability whereas the other re-

duces the influence of impulsive noise and yields a reduced steady-state misalignment

without affecting the convergence speed. Switching between the two error bounds

is achieved by comparing the absolute value of the error signal with a threshold. A

simple variance estimator for the error signal is used to determine the threshold. The

new algorithms are also asymptotically stable. A mean-square error (MSE) analysis

based on the recently proposed energy conservation relation is carried out. Simulation

results concerning the steady-state MSE in a system identification application match

quite well the analytical steady-state MSE. Furthermore, simulation results show

that the proposed algorithms offer improved performance relative to the KQN [58]

and robust QN (RQN) [64] algorithms in terms of convergence speed, re-adaptation
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capability, computational efficiency, and robustness with respect to impulsive noise.

6.2 Proposed Robust Quasi-Newton Algorithms

Two slightly different RQN algorithms are possible one using a fixed threshold and

the other using a variable threshold as detailed below.

6.2.1 RQN Algorithm with Fixed Threshold

The update equations for matrix Sk and the corresponding weight vector wk for

the PQN algorithm given by (5.15) and (5.16), respectively, are rewritten here for

convenience as

Sk = Sk−1 − αk
Sk−1xkx

T
kSk−1

xT
kSk−1xk

(6.1)

and

wk = wk−1 + αk
Sk−1xk

xT
kSk−1xk

ek (6.2)

where xk is the input-signal vector and

αk =

1− γ

|ek|
if |ek| > γ

0 otherwise
(6.3)

Parameter γ in (6.3) is the prespecified error bound and ek is the noisy a priori error

signal given by

ek = dk −wT
k−1xk (6.4)

In order to achieve robust performance against impulsive noise, we choose this error

bound as

γ =

|ek| − νθk if |ek| > θk

γc otherwise
(6.5)

where γc is a prespecified error bound chosen as
√
5σv where σ

2
v is the variance of the

measurement noise, ν such that 0 < ν ≪ 1 is a scalar, and θk is a threshold parameter

which is estimated as

θk = 1.98σk (6.6)



92

where

σ2
k = λσ2

k−1 + (1− λ)min(gk) (6.7)

with λ ⊂ (0, 1), gk = [e2k+ϵ · · · e2k−P+1+ϵ] is a vector of size P , and ϵ is a small scalar.

Whenever |ek| < γ, no update is applied. Consequently, the amount of computation

as well as the required storage are significantly reduced since Sk is not evaluated

in every iteration. A similar weight vector update strategy has been used in set-

membership adaptation algorithms [19, 35, 27] but the mathematical framework of

those algorithms is very different from that of the proposed RQN algorithm. The

estimator in (6.7) is robust to outliers. Under the assumption that the probability

distribution of ek is Gaussian, the above choice of θk would ensure that impulsive

noise can be suppressed with a probability of just over 0.95. A large σ2
0 would cause

|ek| to be less than θk during the transient state and, therefore, the algorithm would

work with error bound γc which would increase the initial rate of convergence. For

a sudden system disturbance, θk would also be very large in which case we obtain

γc < |ek| < θk and thus the algorithm would again use error bound γc and, therefore,

the tracking capability of the algorithm would be retained. For an impulsive noise-

corrupted error signal, θk would not increase in which case the error bound would be

θk = |ek| − νθk and this would suppress the impulsive noise.

6.2.2 RQN Algorithm with Variable Threshold

The RQN algorithm with variable threshold is essentially the same as the RQN al-

gorithm with fixed threshold except that the error bound γc in (6.5) is estimated

as

ξk = βξk−1 + (1− β)min

(
ξk−1,

|d2k − y2k|
d2k

)
(6.8)

σ̂2
k = βσ̂2

k−1 + (1− β)min(σ̂2
k−1, σ

2
k) (6.9)

γc,k =
√

ξkγc,0 + 1.12 [1 + sign(1− ξk)] σ̂k (6.10)

where γc,0 is a rough estimate of σv and ξ0 ≫ 1. During steady state, we obtain ξk ≈ 0

and σ̂2
k ≈ σ2

v and hence γc,k would be 2.24σv, thereby resulting in reduced steady-state

misalignment. In the transient state, ξk ≈ ξ0 and, therefore, the algorithm would use

γc,k =
√
ξkγc,0 and this would yield faster convergence. The parameters in (6.8) and

(6.9) are robust to outliers as each is based on the minimum value of its two most
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recent values. On the other hand, the variance is estimated as

σ2
k = λσ2

k−1 + (1− λ)median(gk) (6.11)

For Gaussian signals, the median of the squares of the signal samples in the variance

estimator usually gives a more accurate estimate of the variance of the signal than

the instantaneous values of the squares of the signal samples. The use of the median

operation in adaptive filters was introduced by Zou et al. in [63] and was later used

by other researchers, e.g., in [68].

A variable threshold γc is useful in applications where the noise variance σ2
v is

unknown.

6.2.3 Discussion

In the proposed algorithms, we obtain 0 ≤ αk < 1 for both values of γ in (6.5)

and hence the estimate in (5.15) would remain positive definite indefinitely if Sk is

initialized with a positive definite matrix [85]. The RLS-type robust algorithms in

[67] and [68] are implemented using a fast transversal filter implementation [3] to

reduce their computational complexity from order M2 denoted as O(M2) to O(M)

and, therefore, both algorithms would inherit the problems associated with the RLS

algorithms of order M2. Moreover, the Huber function used in [67] does not have

a closed-form solution and hence the solution obtained can be suboptimal and, in

addition, its tracking capability can be compromised [68]. The solution obtained

in [68] can also be suboptimal [68]. The adaptation algorithm in [68] is robust in

the sense that it returns to the true solution without losing its initial convergence

speed after being subjected to impulsive noise. The proposed RQN algorithms are

also robust with respect to impulsive noise in the sense that they return to the true

solution faster than the initial convergence. The known QN and RQN algorithms

do not employ a variable step size. However, the known RQN algorithm requires an

additional amount of computation of O(M log2(M)) per iteration as compared to the

known QN algorithm and the proposed QN algorithm with fixed threshold.

The known RQN algorithm in [64] uses the update equations

Sk = λSk−1 +

[
1

q(ek)τk
− λ

]
Sk−1xkx

T
kSk−1

xT
kSk−1xk

(6.12)

wk =wk−1 + q(ek)Skxkek (6.13)



94

where q(ek)Skxk = Sk−1xk/τk, τk = xT
kSk−1xk, λ > 1 is the forgetting factor, and

q(ek) = (1/ek)∂h(ek)/∂ek is the gradient of the Hampel three-part redescending M-

estimate function h(ek) [63, 64]. For an impulsive-noise corrupted ek, q(ek) assumes

a value of zero in which case we obtain wk = wk−1. However, Sk ̸= Sk−1 although

in [64] it is assumed that Sk = Sk−1. Applying the matrix-inversion lemma [3] to

(6.12), we obtain the input-signal autocorrelation matrix as

Rk =
1

λ

(
Rk−1 −

1

τk
xkx

T
k

)
+ q(ek)xkx

T
k (6.14)

As can be seen, the update equation of the autocorrelation matrix forgets the present

and past input signal vectors in which case its positive definiteness can be lost in

low-precision implementations [56, 55]. Therefore, the RQN algorithm would exhibit

explosive divergence with λ ≫ 1; on the other hand, with λ ≈ 1 it could lose its

tracking capability. It is important to note that the absence of explosive divergence

is the main feature of the QN algorithm as reported in [58].

For the proposed RQN algorithms, we obtain αk ⊂ (0, 1) for the error bounds given

in (6.5) in each adaptation and, therefore, the Theorems 1 and 2 in the chapter 5 can

be readily applied to the proposed RQN algorithms. As a result, as per Theorem 3

of chapter 5, the proposed RQN algorithms are stable and asymptotically stable.

6.3 MSE Analysis of Proposed RQN

Algorithms

In this section, we analyze the MSE behavior of the proposed RQN algorithms in

stationary and nonstationary environments. It should be mentioned that as in the

KQN and PQN algorithms, the excess MSE (EMSE) expressions in (5.45) and (5.47)

which are actually derived for the LMS-Newton algorithms in [59] still hold true for

the proposed RQN algorithms for the reasons discussed in section 5.4. However,

the approach used in [59] for deriving the EMSE involves certain assumptions [59].

In this section, we use the framework of the energy conservation relation recently

proposed in [20], [87] for analyzing steady-state performance of adaptive filters as it

involves no assumptions. As a result, the energy conservation relation has become

the most popular approach nowadays and has been effectively used to analyze several

adaptation algorithms in [95], [96], [97].
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6.3.1 Excess MSE in Stationary Environments

The weight-vector update equation in (6.2) can be expressed in terms of weight-error

vector ŵk = wo −wk as

ŵk = ŵk−1 −
αk

τk
Sk−1xkek (6.15)

where wo denotes the weight vector of the unknown system and τk = xT
kSk−1xk.

Premultiplying both sides of (6.15) by input-signal vector xk, we obtain

xT
k ŵk = xT

k ŵk−1 − αkek (6.16)

Now, we can define the noiseless a priori and noiseless a posteriori errors as

ef,k = xT
k ŵk−1 (6.17)

and

ϵf,k = xT
k ŵk (6.18)

respectively. Using (6.17) and (6.18) in (6.16) yields

ϵf,k = ef,k − αkek (6.19)

Now if we use (6.19) in (6.15), we obtain

ŵk +
ef,k
τk

Sk−1xk = ŵk−1 +
ϵf,k
τk

Sk−1xk (6.20)

If we take the square of the weighted L2 norm on both sides of (6.20) and do some

manipulation, we obtain

∥ŵk∥2Rk−1
+

e2f,k
τk

= ∥ŵk−1∥2Rk−1
+

ϵ2f,k
τk

(6.21)

where Rk is a positive definite matrix which is obtained by taking of the inverse of

Sk given by (5.15) as

Rk = Rk−1 +
αk

(1− αk)τk
xkx

T
k (6.22)

which according to Theorem 1 in section (5.2) would remain a positive define matrix

indefinitely if initialized with a positive definite matrix. The energy conservation
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relation can now be obtained by taking the expectation on both sides of (6.21) as

E
[
∥ŵk∥2Rk−1

]
+ E

[
e2f,k
τk

]
= E

[
∥ŵk−1∥2Rk−1

]
+ E

[
ϵ2f,k
τk

]
(6.23)

As can be seen, no assumption has been made in deriving the energy conserva-

tion relation for the proposed RQN algorithms. Now at steady-state we obtain

E
[
∥ŵk∥2Rk−1

]
= E

[
∥ŵk−1∥2Rk−1

]
and, therefore, the energy conservation relation

becomes

E

[
e2f,k
τk

]
= E

[
ϵ2f,k
τk

]
(6.24)

Using (6.19) in (6.24), we obtain

2E

[
αkef,kek

τk

]
= E

[
α2
ke

2
k

τk

]
(6.25)

The noisy a priori error in (6.4) can be expressed in terms of the noiseless a priori

error in (6.17) as

ek = ef,k + vk (6.26)

where vk is the measurement noise. Therefore, (6.25) can be expressed as in terms of

(6.26) as

2E

[
αke

2
f,k

τk

]
+ 2E

[
αkef,kvk

τk

]
= E

[
α2
ke

2
f,k

τk

]
+ E

[
α2
kv

2
k

τk

]
+ 2E

[
α2
kef,kvk
τk

]
(6.27)

Since in practice the measurement noise vk is independent and identically distributed

with respect to the input-desired signal pairs and has a zero mean, we obtain

2E

[
αke

2
f,k

τk

]
= E

[
α2
ke

2
f,k

τk

]
+ E

[
α2
k

τk

]
σ2
v (6.28)

where σ2
v is the variance of the measurement noise. Note that no assumption was made

in reaching (6.28). However, in order to proceed further, we make the assumptions

that (1) τk is independent of parameter αk and (2) any dependency of τk on ef,k can

be neglected, which are valid during steady-state of the adaptive filter. In addition,

at steady state σ1,k/|ek| → 1 and γ = |ek| − νθk and hence for a small value of ν,

(6.3) yields

αk ≈ 1.98ν (6.29)
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Thus (6.28) simplifies to

E
[
e2f,k
]
=

αk

2− αk

σ2
v (6.30)

Therefore, the EMSE of the proposed RQN algorithms in stationary environment

becomes

EMSE =
αk

2− αk

σ2
v (6.31)

As can be seen, if we replace αk by a constant p, known as reduction factor, as was

done in section 5.4, we obtain (5.45).

6.3.2 Excess MSE in Nonstationary Environments

A nonstationary unknown system is modeled as

wo,k = wo,k−1 + ϕk (6.32)

where the optimal weight-vector wo,k is represented by a first-order Markov model

[101] and the elements of ϕk are zero-mean white Gaussian noise samples with variance

σ2
ϕ. The weight-vector update equation in (6.2) for the system model in (6.32) can

be expressed in terms of the weight error vector as

ŵk = ŵk−1 −
αk

τk
Sk−1xkek − ϕk (6.33)

where

ŵk = wo,k−1 −wk (6.34)

and

ŵk−1 = wo,k−1 −wk−1 (6.35)

Premultiplying both sides of (6.33) by xT
k , we obtain

xT
k ŵk = xT

k ŵk−1 − αkek − xT
kϕk (6.36)

The relations in (6.17) and (6.18) hold true for the model in (6.32). Therefore, using

(6.17) and (6.18) in (6.36), we obtain

ϵf,k = ef,k − αkek − xT
kϕk (6.37)
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Now using (6.37) in (6.33), we obtain

ŵk +
ef,k
τk

Sk−1xk = ŵk−1 +
ϵf,k
τk

Sk−1xk +
xT
kϕk

τk
Sk−1xk − ϕk (6.38)

If we take the weighted L2 norm on both sides of (6.38), we obtain

∥ŵk∥2Rk−1
+

e2f,k
τk

= ∥ŵk−1∥2Rk−1
+

ϵ2f,k
τk

+ 2
ef,kx

T
kϕk

τk
− 2ŵT

k−1Rk−1ϕk

+ ∥ϕk∥2Rk−1
− xT

kϕkϕ
T
kxk

τk
(6.39)

Taking the expectation on both sides, we obtain the energy conversation relation for

the system (6.32) as

E
[
∥ŵk∥2Rk−1

]
+ E

[
e2f,k
τk

]
=E

[
∥ŵk−1∥2Rk−1

]
+ E

[
ϵ2f,k
τk

]
+ 2E

[
xT
k ŵk−1ϕ

T
kxk

τk

]
−2E

[
ŵT

k−1Rk−1ϕk

]
+ E

[
∥ϕk∥2Rk−1

]
−E

[
xT
kϕkϕ

T
kxk

τk

]
(6.40)

Since vector ϕk in (6.40) is independent of the weight-error vector ŵk−1 and xk and it

is obtained from the samples of a zero-mean white Gaussian noise signal, the energy

conversation relation in (6.40) simplifies to

E
[
∥ŵk∥2Rk−1

]
+ E

[
e2f,k
τk

]
=E

[
∥ŵk−1∥2Rk−1

]
+ E

[
ϵ2f,k
τk

]
+ E

[
∥ϕk∥2Rk−1

]
−E

[
xT
kϕkϕ

T
kxk

τk

]
(6.41)

Note that no assumption has been made to obtain the simplified energy conversation

relation in (6.41). During steady state, we obtain E
[
∥ŵk∥2Rk−1

]
= E

[
∥ŵk−1∥2Rk−1

]
and, therefore, the energy conservation relation assumes the form

E

[
e2f,k
τk

]
= E

[
ϵ2f,k
τk

]
+ E

[
∥ϕk∥2Rk−1

]
− E

[
xT
kϕkϕ

T
kxk

τk

]
(6.42)

Since ϕk is an independent zero-mean white Gaussian noise signal, some straight-

forward simplifications can be made on the relation obtained by using ϵf,k given by
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(6.37) in (6.42), which result in

2E

[
αkekef,k

τk

]
= E

[
α2
ke

2
k

τk

]
+ E

[
∥ϕk∥2Rk−1

]
(6.43)

Since the measurement noise in (6.26) is an independent white Gaussian noise signal,

(6.26) and (6.43) give

2E

[
αke

2
f,k

τk

]
= E

[
α2
ke

2
f,k

τk

]
+ E

[
α2
k

τk

]
σ2
v + E

[
∥ϕk∥2Rk−1

]
(6.44)

Invoking assumptions (1) and (2) in section 6.3.1 and (6.29), we obtain

E
[
e2f,k
]
=

αk

2− αk

σ2
v +

E[τk]E
[
∥ϕk∥2Rk−1

]
2αk − α2

k

(6.45)

The values of E[τk] and E
[
∥ϕk∥2Rk−1

]
can be obtained as

E[τk] = E[xT
kSk−1xk] = tr{Sk−1E[xkx

T
k ]} = tr{Sk−1R} ≈ M (6.46)

and

E
[
∥ϕk∥2Rk−1

]
= E

[
ϕT

kRk−1ϕk

]
= tr{Rk−1E

[
ϕkϕ

T
k

]
} ≈ Mσ2

xσ
2
ϕ (6.47)

Using (6.46) and (6.47) in (6.45), we obtain

EMSE =
αk

2− αk

σ2
v +

M2σ2
xσ

2
ϕ

2αk − α2
k

(6.48)

As can be seen, if we replace αk by constant p as in section 5.4, we obtain (5.47).

6.4 Practical Considerations

In low-cost fixed-point hardware implementations, the accumulation of roundoff er-

rors can cause Sk to lose its positive definiteness. This problem can be eliminated

by periodically reinitializing Sk using the identity matrix. This is also done in the

QN algorithm in [58] whenever xT
kSk−1xk < 10−3 for the case of a fixed-point im-

plementation and also in the classical optimization context. However, very frequent
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reinitializations could slow the convergence of the algorithm. A compromise number

of reinitializations can be achieved by reinitializing Sk whenever |ek| > 2.576σk in

which case the probability of reinitialization in a given iteration assumes the value of

0.01. Reinitialization of other parameters is not required.

The variance estimator of the error signal in (6.7) should be initialized with a large

value to ensure that the probability that γ = γc in the transient state is increased.

With γ = γc, the transient state of the adaptive filter would die out quickly. Although

a rough choice of σ2
0 would work, we have used σ2

0 = c1M/σ2
v where 0 < c1 < 1 is

a positive constant. This choice yields good results. The forgetting factor in (6.7)

and (6.9) are chosen as λ = 1 − 1/(c2M) and β = 1 − 1/(c3M), respectively, where

c2 > (1/M) and c3 > (1/M) are positive scalars [68]. The length P of vector gk should

be sufficiently greater than the duration of the impulsive noise. A reduced ν would

yield a reduced steady-state misalignment and improved robustness with respect to

impulsive noise. On the other hand, increased values of γc and θk would reduce the

number of updates and yield a reduced steady-state misalignment. However, the

convergence speed would be compromised in such a situation.

6.5 Simulation Results

In order to evaluate the performance of the proposed RQN with fixed γc (PRQN-I)

and the proposed RQN with variable γc (PRQN-II) algorithms, a system identification

application was considered as detailed below. For the sake of comparison, simulations

were carried out with the known QN (KQN) and the known RQN (KRQN) algorithms

described in [58] and [64], respectively.

In the first experiment, the adaptive filter was used to identify a 36th-order lowpass

FIR filter with a normalized cutoff frequency of 0.3. No additive white Gaussian noise

was added to the coefficients of the FIR filter. The input signal was generated by

filtering a white Gaussian noise signal with zero mean and unity variance through

an FIR filter with a single pole at 0.95. The eigenvalue spread ratio of the colored

input signal of 10000 samples was obtained by using the ensemble average of the

autocorrelation matrix given by (1.28) over 1000 independent trials with λ = 1−2−15

and R0 = 10−4I as 839. The measurement noise added to the desired signal was

a white Gaussian noise signal with zero mean and variances of 10−3 and 10−6 to

achieve SNRs of 30 and 60 dB, respectively. The impulse response of the FIR filter

was suddenly multiplied by −1 at iteration 2000 to check the tracking capability of
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the algorithm. Impulsive noise of duration Ts where Ts is the sampling duration was

added to the desired signal at iterations 1000, 1300, and 3300 using a Bernoulli trial

with probability 0.001 [102]. The updates in the KRQN algorithm were carried out

only when q(ek) ̸= 0. We have explored two options in the implementation of the

KRQN algorithm, first using

Sk = λSk−1 +

{[
1− λq(ek)τk

q(ek)τ 2k

]
Sk−1xk

}
xT
kSk−1 (6.49)

and then using (6.12) for the evaluation of Sk. Although (6.12) and (6.49) are

equivalent, it turns out that the implementation of (6.49) is subject to numerical

ill-conditioning, which can cause instability as demonstrated in the second experi-

ment. On the other hand, the implementation of (6.12) was found to be more ro-

bust although it requires increased computational effort. We have used (6.12) in our

implementation of the KRON algorithm. The learning curves obtained from 1000

independent trials by using the KQN, KRQN, PRQN-I and PRQN-II algorithms are

illustrated in Figs. 6.1 to 6.2. As can be seen, algorithms PRQN-I and PRQN-II offer

similar performance; both are robust with respect to impulsive noise and yield signif-

icantly reduced steady-state misalignment. As may be expected, the KQN algorithm

is seriously compromised by impulsive noise both in terms of robustness and track-

ing capability. The total number of updates required by the PRQN-I and PRQN-II

algorithms were 1333 and 1414 for SNR of 30 dB, and 1353 and 1271, for SNR of

60 dB, respectively, as compared to 4000 in the other algorithms. Note that two

systems were identified in this experiment, one before iteration 2000 and the other

after iteration 2000. Otherwise, the number of updates would have been reduced by

half.

The second experiment was identical to the first experiment except that the ele-

ments of the weight vector of the FIR filter were contaminated by an additive zero-

mean white Gaussian noise signal as per (6.32). The algorithm parameters were set

to identical values in all algorithms as in the first experiment except that ν was set to

0.3 in the PRQN-I and PRQN-II algorithms. We have used (6.49) in our implemen-

tation of the KRON algorithm. The learning curves obtained in 1000 independent

trials are illustrated in Figs. 6.3–6.4. As can be seen, the PRQN-I and PRQN-II

algorithms offer robust performance with respect to impulsive noise, reduced steady-

state misalignment, and fast tracking compared to the other algorithms. In the KQN

algorithm, the convergence speed is compromised when impulsive noise is encountered
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Figure 6.1: Learning curves for proposed and competing algorithms. S0 = I and
w0 = 0 in all algorithms. Parameters for the PRQN-I algorithm: ν = 0.5, P = 1,
c1 = 1, c2 = 4. Parameters for the PRQN-II algorithm: ν = 0.5, P = 15, ξ0 = 10,
σ̂2
0 = 10, c3 = 2. Parameters for the KRQN algorithm were set as suggested in [64].

as in the first experiment. The KRQN algorithm, on the other hand, like the RLS

algorithm, exhibits explosive divergence [8,9,10] and reduced re-adaptation capability.

The number of weight-vector updates in the PRQN-I and PRQN-II algorithms were

1016 and 2238 for SNR of 30 dB, and 921 and 2008 for SNR of 60 dB, respectively,

as compared to 4000 in the other algorithms.

In the third and fourth experiments, we verified the accuracy of the expression of

EMSE in Eqs. (6.31) and (6.48), respectively. In these two experiments, the order

of the FIR filter was set to 24 and its coefficients were not multiplied by −1 at

iteration 2000 as we only wanted to check the accuracy of (6.31) and (6.48). The

algorithm parameters in these two experiments were set to the same values as in the

first experiment.

In the third experiment, we used the relation MSE = σ2
v +EMSE where EMSE is

given in (6.31) to obtain the theoretical steady-state MSEs of the proposed algorithms

as given in Table 6.1. As can be seen, the theoretical values match reasonably well

the experimental values.

In the fourth experiment, the elements of the weight vector of the FIR filter
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Figure 6.2: Learning curves for proposed and competing algorithms. S0 = I, and
w0 = 0 in all algorithms. Parameters for the PRQN-I algorithm: ν = 0.5, P = 1,
c1 = 1, c2 = 4. Parameters for the PRQN-II algorithm: ν = 0.5, P = 15, ξ0 = 10,
σ̂2
0 = 10, c3 = 2. Parameters for the KRQN algorithm were set as suggested in [64].

were contaminated by a zero-mean white Gaussian noise signal as per (6.32). The

theoretical steady-state MSEs of the proposed algorithms were obtained by using

(6.48) in the relation MSE = σ2
v +EMSE and are given in Table. 6.2. As can be seen,

the theoretical values match reasonably well the experimental values.

6.6 Conclusions

Two new robust quasi-Newton adaptation algorithms have been developed on the

basis of the mathematical framework of the basic classical QN optimization algo-

rithm, which lead to an improved estimate of the inverse of the Hessian. Like the

data-selective QN algorithm we described in chapter 5, the proposed RQN algorithms

incorporate data selective adaptation which significantly reduces the number of adap-

tations required. An MSE analysis for the proposed RQN algorithms was presented.

Like the PQN algorithm described in chapter 5, the proposed RQN algorithms are

also asymptotically stable. Simulation results obtained in the case of a system iden-

tification application demonstrate that the proposed RQN algorithms converge much
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Figure 6.3: Learning curves for proposed and competing algorithms. The variance of
the additive white Gaussian noise signal was σ2

ϕ = 10−9.

faster than the known QN algorithm reported in [58] for medium and high SNRs. On

the other hand, the known QN is not robust against impulsive noise and the known

RQN algorithm reported in [64] has reduced tracking capability. Simulation results

obtained also demonstrate that the theoretical steady-state MSE of the proposed

RQN algorithms matches reasonably well the experimental steady-state MSE.

In the next chapter, we propose an adaptation algorithm based on the minimum-

error entropy criterion.
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Figure 6.4: Learning curves for proposed and competing algorithms. Parameter λ for
the KRQN algorithm was set to λ = 1/0.99999. The variance of the additive white
Gaussian noise signal was σ2

ϕ = 10−13.

Table 6.1: Steady-State MSE in dB in Proposed RQN Algorithms
M = 24, σ2

v = 10−3

ν PRQN-I PRQN-II Eq. (6.31)
0.05 −29.7 −29.6 −29.8
0.10 −29.8 −29.7 −29.5
0.15 −29.8 −29.7 −29.3
0.20 −29.7 −29.6 −29.0
0.25 −29.7 −29.6 −28.8
0.30 −29.6 −29.5 −28.5
0.35 −29.4 −29.3 −28.2
0.40 −29.4 −29.3 −27.8
0.45 −29.2 −29.1 −27.7
0.50 −29.2 −29.1 −27.0
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Table 6.2: Steady-State MSE in dB in Proposed RQN Algorithms
M = 24, σ2

v = 10−4, σ2
ϕ = 10−12

ν PRQN-I PRQN-II Eq. (6.50)
0.05 −39.7 −39.6 −39.8
0.10 −39.8 −39.7 −39.6
0.15 −39.8 −39.6 −39.3
0.20 −39.6 −39.6 −39.0
0.25 −39.6 −39.5 −38.8
0.30 −39.5 −39.4 −38.5
0.35 −39.5 −39.4 −38.2
0.40 −39.3 −39.2 −37.8
0.45 −39.2 −39.1 −37.4
0.50 −39.2 −39.0 −37.0
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Chapter 7

A New Normalized

Minimum-Error Entropy

Algorithm

7.1 Introduction

The algorithms described so far use the mean-square error (MSE) criterion which

is suitable for applications where signals can be modeled in terms of Gaussian dis-

tributions. In other applications, improved performance can be achieved by using

algorithms that are based on the minimum error-entropy (MEE) criterion such as

those described in [74, 75].

In this chapter, we propose a new normalized minimum error-entropy (NMEE)

algorithm [88] that is computationally simple and yields faster convergence and lower

misadjustment than the stochastic MEE algorithm and the self-adjusting step size

MEE (VMEE) algorithms reported in [76] and [77], respectively. The proposed

NMEE algorithm is computationally simpler than the conventional NMEE algorithm

reported in [78]. As in the conventional NMEE algorithm, the performance of the

proposed NMEE algorithm is not influenced by the kernel size and the power of the

input signal and, therefore, yields better performance as compared to the MEE and

the VMEE algorithms.
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7.2 Proposed NMEE Algorithm

An adaptive filter using Renyi’s entropy [79] as an optimization criterion is illustrated

in Fig. 7.1 where xk, dk, and ek are the input, desired, and error signals, respectively.

The a priori error signal at k-th iteration is given by

ek = dk − xT
kwk−1 (7.1)

where wk−1 is the weight-vector at iteration k − 1. The proposed NMEE algorithm

+w
k−1

x
k

d
k

e
k

Unknown 

system

Renyi’s 

entropy

−

Figure 7.1: MEE adaptive-filter configuration.

is derived by solving the optimization problem

minimize ∥wk −wk−1∥2
w (7.2)

subject to the constraint

V (0)− V (ep,k) = 0

where w is the weight vector,

V (ep,k) =
1

L

k−1∑
i=k−L

κσ(ep,k − ep,i) (7.3)
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is the stochastic a posteriori information potential (IP) function (1.40), V (0) =

1/σ
√
2π is the upper bound of V (e), and ep,i = di − wT

k xi is the a posteriori er-

ror signal for k − L ≤ i ≤ k. By using the Lagrange multiplier method, the above

optimization problem can be solved by minimizing the objective function

Jwk
= ||wk −wk−1||2 + λ[V (0)− V (ep,k)] (7.4)

The gradient of (7.4) with respect to wk becomes

∇Jwk
= 2[wk −wk−1]− λ

∂V (ep,k)

∂wk

(7.5)

Setting the gradient to zero, we get

wk = wk−1 +
λ

2

∂V (ep,k)

∂wk

(7.6)

The partial derivative of (7.3) with respect to wk becomes

∇V (ep,k) = c
k−1∑

i=k−L

νk,ixk,i (7.7)

where c = 1/(2Lσ2), νk,i = (ep,k − ep,i)κσ(ep,k − ep,i) and xk,i = xk − xi. From (7.6)

and (7.7), we get

wk = wk−1 + λ
c

2

k−1∑
i=k−L

νk,ixk,i (7.8)

The a posteriori error ep,i for k − L ≤ i ≤ k corresponding to the updated weight

vector in (7.8) can be obtained as

ep,i = di −wT
k−1xi − λ

c

2

(
k−1∑

i=k−L

νk,ix
T
k,i

)
xi

= ea,i −
λ

2
∇V (ep,k)

Txi for k − L ≤ i ≤ k (7.9)
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where ei = di − wT
k−1xi for k − L ≤ i ≤ k are the a priori errors. From (7.3) and

(7.9), we obtain the a posteriori IP function as

V (ep,k) =
1

L

k−1∑
i=k−L

κσ

[
ea,k −

λ

2
∇V (ep,k)

Txk,i − ea,i

]

=
1

L

k−1∑
i=k−L

κσ(ui,k) (7.10)

where

ui,k = ea,k − ea,i − (λ/2)∇V (ep,k)
Txk,i

for i = k − L, . . . , k − 1. The a posteriori IP function in (7.10) is equal to V (0)

if
∑i=k−1

i=k−L u
2
i,k = 0 as the Gaussian kernel is always positive. As can be seen, the

solution of
∑i=k−1

i=k−L u
2
i,k = 0 yields two λ which can be imaginary. Therefore, we use

the λ that minimizes
∑i=k−1

i=k−L u
2
i,k in (7.10), which is obtained by setting the derivative

of
∑i=k−1

i=k−L u
2
i,k with respect to λ to zero i.e.,

∑i=k−1
i=k−L

[
∇V (ep,k)

Txk,i

]
ui,k = 0. For a

small L and small kernel size, ∇V (ep,k)
Txk,i can be assumed to be uniform and in

such a case the Lagrange multiplier can be obtained by solving
∑i=k−1

i=k−L ui,k = 0 as

[88]

λ =
2∑k−1

i=k−L (∇V (ep,k)Txk,i)

k−1∑
i=k−L

(ea,k − ea,i) (7.11)

Now from (7.11) and (7.6), the recursion formula assumes the form

wk = wk−1 +
∇Vk(ep,k)

∑k−1
i=k−L(ea,k − ea,i)

∇V (ep,k)T
∑k−1

i=k−L xk,i

(7.12)

As we can see in (7.12), the input data and the corresponding error signal ei from

iterations i = k − L to k − 1 are reused at every iteration k and, therefore, the

recursion formula in (7.12) gives better performance in the case of a colored input

signal [88]. From (7.7) and (7.12), we obtain

wk = wk−1 +

∑k−1
i=k−L νk,ixk,i

∑k−1
i=k−L(ea,k − ea,i)(∑k−1

i=k−L νk,ixk,i

)T (∑k−1
i=k−L xk,i

) (7.13)

For a sufficiently small kernel size and window length, the above updating formula

can be simplified further because the scaling factor νk,i can be assumed to be uniform
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over the Parzen window. Therefore, it can be factored out from the numerator and

denominator in (7.13) to obtain

wk = wk−1 +
x̄k,i

x̄T
k,ix̄k,i

ēa,k,i (7.14)

where x̄k,i =
∑k−1

i=k−L xk,i, and ēa,k,i =
∑k−1

i=k−L(ea,k − ea,i). The recursion formula in

(7.14) significantly reduces the computational complexity of the algorithm.

In order to control the steady-state misalignment in the NMEE algorithm, a step

size µ can be introduced in (7.14). However, the fastest convergence rate can be

obtained with µ = 1. The proposed NMEE algorithm will converge for values of µ in

the range 0 < µ < 2.

7.3 Simulation Results

In order to compare the performance of the proposed NMEE (PNMEE) algorithm

with that of the MEE, VMEE, and NLMS algorithms, we applied these algorithms

in a plant identification problem and a chaotic time-series prediction problem. We

have considered a plant with an impulse response given by

hT = [0.1 0.2 0.3 0.4 0.5 0.4 0.3 0.2 0.1]

In the first experiment, the input signal was Gaussian noise with unit power (1p).

The step sizes of the MEE and the VMEE algorithms were chosen to be as large as

possible to achieve the fastest convergence without degrading the robustness of the

algorithms. The weight-error power curves for the MEE, VMEE, NLMS, and the

PNMEE algorithms are plotted in Fig. 7.2. As can be seen, the PNMEE algorithm

leads to faster convergence compared to the MEE, VMEE, and NLMS algorithms.

In the second experiment, we have used a Gaussian input signal with the power

level increased by a factor of ten (10p) and the step sizes of the MEE and the VMEE

algorithms were selected to be 5 times smaller than the values in the first experiment

to assure the robustness of the algorithm. The weight-error power curves for the

MEE, VMEE, NLMS, and the PNMEE algorithms are illustrated in Fig. 7.3. As

can be seen, changes in the power of the input signal cause the convergence speed

of the MEE and the VMEE algorithms to change significantly whereas that of the

NLMS and the PNMEE algorithm do not change very much. The residual error
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Figure 7.2: Convergence of weight-error power.

after 2000 iterations and the required number of iterations to converge for the various

algorithms are given in Table 7.1. As can be seen, the PNMEE algorithm yields the

lowest final residual error and the fastest convergence as compared to those of the

other algorithms.

Table 7.1: Comparison of MEE Algorithms for White Input

MEE VMEE NLMS PNMEE

Res. 1.115× 10−25 1.888× 10−29 2.221× 10−14 3.741× 10−32

Iter., 1p 450 200 200 90

Res. 1.944× 10−7 2.675× 10−31 2.211× 10−28 3.833× 10−32

Iter., 10p 1550 950 280 100

In the third experiment, we repeated the first experiment except that the input

signal was colored by a system with poles at (−0.3,−0.7). The weight-error power

curves obtained by using the MEE, VMEE, NLMS, and the PNMEE algorithms

are illustrated in Fig. 7.4. As can be seen, the PNMEE algorithm requires fewer

iterations than the other algorithms to converge. Note also that small fluctuations in

the weight-error power are present at steady state in the case of the MEE algorithm.

The final misadjustment of the algorithms are shown in Table 7.2. As can be seen,
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Table 7.2: Final Misadjustments for Colored Input, 1p

MEE VMEE NLMS PNMEE

Res. 2.343× 10−8 1.389× 10−11 1.033× 10−7 3.474× 10−32

the PNMEE algorithm yields the lowest final residual error.

In the fourth experiment, we repeated the second experiment except that the

input signal was colored by a system with poles at (−0.3,−0.7). The weight-error

power curves for the MEE, VMEE and the PNMEE algorithms for different kernel

sizes are plotted in Fig. 7.5. As can be seen, the convergence speed of the algorithms

increases with an increase in the kernel size which corroborates the observation in

[103]. The misadjustments after 3000 iterations are given in Table 7.3 which shows

Table 7.3: Final Misadjustments for Colored Input, 10p

kernel size MEE VMEE PNMEE

0.4 1.061× 10−3 1.129× 10−3 2.960× 10−32

0.7 4.937× 10−4 1.720× 10−5 3.192× 10−32

that the PNMEE algorithm yields the lowest residual error.

In the fifth experiment, we used an FIR filter of length 6 to predict a Mackey-
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Glass time series [77, 89] with delay parameter τ = 30. The window length and the

kernel size were set to 50 and 0.01, respectively. The mean-squared error curves for

the MEE, VMEE, and the PNMEE algorithms are shown in Fig. 7.6. As can be seen,

the PNMEE algorithm offers faster convergence as compared to the MEE and the

VMEE algorithms.

7.4 Conclusions

A new NMEE algorithm with a significantly reduced computational complexity has

been proposed. The new algorithm offers faster convergence, lower misadjustment,

and better tracking than the MEE and the VMEE algorithms. Furthermore, its per-

formance does not depend on the power of the input signal. With data reusing, the

proposed algorithm yields significantly lower final residual error and faster conver-

gence than those of the MEE, NLMS, and VMEE algorithms for the case of a colored

input signal.

In the next chapter, we describe a family of iterative-shrinkage adaptation algo-

rithms.
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Chapter 8

A Family of Shrinkage Adaptation

Algorithms

8.1 Introduction

In affine-projection (AP) algorithms (see section 1.1.3), information about the vari-

ance of the measurement noise is required to be available a priori for the successful

operation of the set-membership AP (SMAP) algorithm, variable step size AP (VS-

SAP) algorithm, variable regularization AP algorithm, and the variable reuse time

AP algorithm reported in [19], [21], [22], and [24], respectively. The algorithms in

[19, 21] use a variable step size and the algorithm in [22] uses a variable regularization

parameter both of which are obtained by using the noisy error signal. Due to the

presence of noise in the error signal, the variable parameters in [19, 21, 22] can fail

to reach the desired values in some applications. Hence, improved performance can

be achieved if a noise-free error signal is used to obtain a variable step size in the

conventional AP algorithm [11].

In this chapter, we propose a family of shrinkage adaptation algorithms, namely,

the shrinkage AP (SHAP), shrinkage NLMS (SHNLMS), and shrinkage LMS (SHLMS)

algorithms [90]. We apply the iterative-shrinkage/threshold methods described in

[80, 81] to obtain a variable step size in the conventional AP algorithm, which is

actually a solution of the L1 − L2 minimization problem used in signal denoising

applications. We have used the iterative-shrinkage/threshold method to obtain a

noise-free a priori error signal whose average power is used to obtain the variable

step size. In this way, the variable step size can reach a lower value during steady
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state leading to a reduced steady-state misalignment. The variable step size actually

minimizes the energy of the noise-free a posteriori error signal. The SHAP algo-

rithm yields a significantly reduced steady-state misalignment while preserving the

fast convergence of the AP algorithm. Unlike the SMAP and VSSAP algorithms in

[19] and [21], respectively, the SHAP algorithm uses the noise-free error signal to

obtain a variable step size that reaches a much lower value during steady state. The

same is true for the SHNLMS and SHLMS algorithms. Simulation results in a sys-

tem identification application and an acoustic-echo cancelation application are used

to demonstrate the superior performance of the proposed algorithms as compared to

that of the variable step size LMS (VLMS) algorithm, non-parametric normalized

LMS (NPNLMS) algorithm, conventional AP algorithm, SMAP algorithm, VSSAP

algorithm, and the SMNLMS algorithm reported in [6], [10], [11], [19], [21], and [34].

8.2 Shrinkage Affine-Projection Algorithm

In the case of a system identification adaptive-filtering application, the desired signal

samples dk are obtained as

dk = xT
kwopt + vk (8.1)

where wopt ∈ RM×1 is the impulse response of the unknown system, xk ∈ RM×1 is

the input-signal vector, and vk is the measurement noise signal. The conventional AP

algorithm uses the weight-vector update equation

wk = wk−1 + µXk(X
T
k Xk)

−1ek (8.2)

where µ is the step size, Xk ∈ RM×L is the input-signal matrix which is obtained

as Xk = [xk xk−1 · · · xk−L+1], and ek ∈ RL×1 is the a priori error-signal vector.

Parameter L is known as the projection order of the AP algorithm. The a priori

error vector ek for the AP algorithm is obtained as

ek = ef,k + vk (8.3)

where

ef,k = XT
k (wopt −wk−1) (8.4)
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is the noise-free a priori error vector and vk = [vk vk−1 · · · vk−L+1]
T contains the

measurement noise signal samples. Similarly, the a posteriori error vector can be

expressed as

ϵk = ϵf,k + vk (8.5)

where

ϵf,k = XT
k (wopt −wk) (8.6)

is the noise-free a posteriori error vector. The update equation in (8.2) yields the

noise-free a posteriori error vector as

ϵf,k = (1− µ)ef,k − µvk (8.7)

Taking the expectation of the square of the L2 norm of ϵf,k in (8.7), we obtain

E
[
∥ϵf,k∥2

]
= (1− µ)2E

[
∥ef,k∥2

]
+ µ2E

[
∥vk∥2

]
(8.8)

To achieve wk = wopt at steady state, we require that E [∥ϵf,k∥2] = 0. Unfortunately,

as can be seen from (8.8), in such a situation µ would become imaginary. In other

words, there is no real µ that would force the equality E [∥ϵf,k∥2] = 0. However,

we can minimize E [∥ϵf,k∥2] with respect to µ and the optimal value of µ can be

obtained by setting the gradient of E [∥ϵf,k∥2] with respect to µ to zero. In this way,

the optimal value of µ can be obtained as

µopt =
E [∥ef,k∥2]

E [∥ef,k∥2] + E [∥vk∥2]
(8.9)

As can be seen, the step size µopt would lie in the range (0, 1). Since E [∥ef,k∥2] is a
measure of the excess mean-square error (EMSE) of the conventional AP algorithm

[20], using (8.9) in (8.2) the minimum EMSE can be achieved.

One obvious difficulty in computing the step size in (8.9) is to obtain E [∥ef,k∥2].
Although the time average of the squares of ef,k i.e.,

σ2
e,f,k = λσ2

e,f,k−1 + (1− λ)∥ef,k∥2 (8.10)

where 0 ≪ λ < 1 is the forgetting factor, can be used to replace the statistical mean

E [∥ef,k∥2] in (8.9), the problem cannot be solved as ef,k is unknown. An easy solution

would be to recover ef,k from the noisy a priori error vector ek in (8.3). Once we
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recover ef,k from ek, we can use it in (8.10) to obtain an estimate of E [∥ef,k∥2]. On

the other hand, we can obtain E [∥vk∥2] = Lσ2
v , where L is the projection order. With

both E [∥ef,k∥2] and E [∥vk∥2] known, the step size in (8.9) can be easily computed.

Since the norm of ef,k is used in (8.10), µopt cannot approach zero unless the adaptive

filter reaches steady state.

8.2.1 Shrinkage Denoising Method

In this subsection, we discuss the recovery of ef,k from the noisy a priori error vector

ek. We consider the minimization problem

argmin (t∥ak∥1 + 0.5∥Dak − ek∥2)
ak

(8.11)

where D ∈ RL×L is an orthonormal matrix and t is a threshold parameter. This

type of optimization problem is used to solve image denoising problems [80, 81]. The

solution of the minimization problem in (8.11) can be obtained in a straightforward

way as

ak = sign(ao,k)⊙max (|ao,k| − t, 0) (8.12)

where ao,k = DTek [80, 81] and ⊙ denotes the element-wise product. With an appro-

priate threshold t, the minimization problem in (8.11) essentially aims at recovering

ef,k from ek in (8.3). With ak in (8.12) known, we obtain an estimate of ef,k in (8.4)

as êf,k = Dak. The estimate êf,k can now be used in (8.10) to obtain an estimate

of E [∥ef,k∥2] to be used in (8.9). In the next subsection, we determine the threshold

parameter t.

8.2.2 Choice of Threshold Parameter

The elements of vk can be chosen to be samples of a zero-mean white Gaussian noise

signal with variance σ2
v and, therefore, from (8.3) we obtain

E
[
∥ek∥2

]
= E

[
∥ef,k∥2

]
+ Lσ2

v (8.13)

As can be seen from (8.13), the threshold parameter should be chosen as t =
√

Lσ2
v .

With such a choice, (8.12) would shrink all of the elements of |ak| towards zero by

the amount t. Each shrinkage operation would bring significant reduction in the noise

component vk from the a priori error vector ek in (8.3). As a result, we would obtain
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êf,k = Dak ≈ ef,k. Therefore, the update equations for the shrinkage AP algorithm

become [90]

ao,k =DTek (8.14)

ak = sign(ao,k)⊙max (|ao,k| − t, 0) (8.15)

êf,k =Dak (8.16)

σ2
e,f,k = λσ2

e,f,k−1 + (1− λ)∥êf,k∥2 (8.17)

µk =
σ2
e,f,k

σ2
e,f,k + Lσ2

v

(8.18)

wk =wk−1 + µkXk(X
T
k Xk)

−1ek (8.19)

A different orthonormal matrix D would yield different performance as will be shown

in the simulation results. Since the identity matrix is also an orthonormal matrix,

using D = I and L = 1 we obtain the shrinkage NLMS algorithm.

It should be mentioned that E [∥ef,k∥2] can be obtained directly from (8.13) as

E [∥ef,k∥2] = E [∥ek∥2]− Lσ2
v and it can then be used in (8.9) to obtain µ. However,

since we have to use the time average of ∥ek∥2 instead of its statistical average, i.e.,

E [∥ek∥2], in (8.9) and the relation in (8.13) does not hold true for the time average,

the algorithm would lose its performance in such situations and can become unstable

as µ can assume values outside the range (1, 0).

The energy of the a posteriori error signal in (8.5) for the shrinkage AP algorithm

becomes

E[∥ϵk∥2] =
(E[∥vk∥2])2

E [∥ef,k∥2] + E [∥vk∥2]
(8.20)

which is less than E[∥vk∥2]. Note that ϵf,k in (8.6) is not independent of vk as can be

seen from (8.1)–(8.3). As a result, a relation such as that of (8.13) cannot be obtained

by using (8.5). Hence, we can obtain E[∥ϵk∥2] < E[∥vk∥2] even though E [∥ϵf,k∥2] is
a positive quantity for all L. Using L = 1 in (8.14)–(8.19), we obtain the SHNLMS

algorithm. For the NPNLMS algorithm in [10], the energy of the a posteriori error

signal becomes E[ϵ2k] = pE[v2k] + (1 − p)E[e2k] > E[v2k] where p is the probability of

update. In adaptive filter theory, E [∥ef,k∥2] ̸= 0 for µ ̸= 0 and, therefore, from (8.20)

we obtain E[ϵ2k] < E[v2k] for the SHNLMS algorithm. A similar statement applies

to the SHAP algorithm when compared with the AP algorithm designed for speech

signals in [23]. In the next section, we describe the shrinkage LMS algorithm.
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8.3 Shrinkage LMS Algorithm

The update formula for the conventional LMS algorithm is

wk = wk−1 + µekxk (8.21)

where µ is the step size. The noise-free a posteriori error signal for the conventional

LMS algorithm becomes

ϵf,k = (1− µxT
kxk)ef,k − µxT

kxkvk (8.22)

Taking the expectation of the square of the noise-free a posteriori error signal in

(8.22), we obtain

E[ϵ2f,k] = E[(1− µxT
kxk)

2e2f,k] + µ2E[(xT
kxk)

2]E[v2k] (8.23)

where we assume that vk is independent and identically distributed Gaussian noise

signal with zero mean. In order to proceed further, we neglect the dependency of ef,k

on the input signal xk as the amplitudes of ef,k become quite small during steady

state. Equation (8.23) can now be simplified as

E[ϵ2f,k] =E[1− 2µxT
kxk + µ2(xT

kxk)
2]E[e2f,k]

+µ2E[(xT
kxk)

2]E[v2k] (8.24)

Setting the derivative of E[ϵ2f,k] with respect to µ to zero, we obtain

µ =
1

E[∥xk∥2]
E[e2f,k]

E[e2f,k] + σ2
v

(8.25)

where we assume E[(xT
kxk)

2] = E[xT
kxk]

2 in order to obtain a simple expression for

µ. Since the a priori error signal ek is a scalar quantity, ef,k can be recovered from ek

by using the shrinkage method in a trivial way as êf,k = sign(ek)max(|ek|−t, 0) where

t is the threshold parameter. Following the discussion in section 8.2.2, we see that the

threshold parameter t should be chosen as t = σv where σ
2
v is the variance of the noise

signal. However, since the dependency of ef,k on the input signal xk was neglected

in deriving (8.25), the step size in (8.25) does not assure the minimization of E[ϵ2f,k].

As a result, fine tuning of the threshold parameter t around σv could yield improved
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performance. From our extensive simulation results we found out that t =
√
Qσ2

v

with Q = 1 to 4 works well. Based on these principles, the shrinkage LMS algorithm

becomes

êf,k = sign(ek)⊙max (|ek| − t, 0) (8.26)

σ2
e,f,k = λσ2

e,f,k−1 + (1− λ)ê2f,k (8.27)

µk =
q

E[∥xk∥2]
σ2
e,f,k

σ2
e,f,k + σ2

v

(8.28)

wk =wk−1 + µkxkek (8.29)

where we have used the time average in place of the statistical average E[e2f,k] in

(8.25) and q ∈ (0, 1) as discussed in the next section. In practice, we assume that

E[∥xk∥2] is known a priori as we can preset the input signal statistics in many

practical applications. For a zero-mean white Gaussian input signal, E[∥xk∥2] can
easily be obtained as Mσ2

x where σ2
x is the variance of the input signal. It should

be mentioned that information about E[∥xk∥2] is required to be known for stable

operation for the conventional LMS algorithm as discussed below.

8.3.1 Stability of Shrinkage LMS Algorithm

The update formula for the LMS algorithm in (8.21) can be expressed in terms of

weight-error vector ŵk = wopt −wk as

ŵk =
(
I − µxkx

T
k

)
ŵk−1 − µkxkvk (8.30)

Taking the expectation on both sides of (8.30), we obtain the evolution of ŵk as

E[ŵk] = [I − µR]E[ŵk−1] (8.31)

whereR = E[xkx
T
k ] is the correlation matrix. The evolution of the mean weight-error

vector in (8.31) is governed by the modes of matrix G = [I − µR]. Thus a necessary

and sufficient condition for stability of the evolution of E[ŵk] of the LMS algorithm

is that the matrix G be stable, i.e., all of its eigenvalues are required to be inside the

unit circle [3]. This is equivalent to the condition

0 < µ <
2

λmax(R)
(8.32)
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where λmax(R) is the maximum eigenvalue of R [3]. For stability of E[∥ŵk∥2], the
step size of the LMS algorithm should satisfy the condition [3]

0 < µ <
2

2λmax(R) +
∑M

i=1 λi

(8.33)

where λi is the ith eigenvalue of R. However, in practice the step size should not be

chosen close to the upper bound in (8.33) as the steps in computing µ involve certain

approximations and assumptions [3]. If M is assumed to be large and E[xk] = 0, we

have E[∥xk∥2] ≈ tr{E[xkx
T
k ]} = tr{R} =

∑M
i=1 λi. Therefore, the step size in (8.28)

for the proposed algorithm lies in the range

0 < µk <
q∑M

i=1 λi

(8.34)

with q ∈ (0, 1) which clearly satisfies the stability condition of the LMS algorithm

given in (8.32) and (8.33). Therefore, the step size in (8.28) for the proposed shrinkage

LMS algorithm assures stability in terms of the evolution of E[ŵk] and E[∥ŵk∥2].

8.4 Discussion

A difficulty associated with the implementation of shrinkage algorithms has to do

with the availability of information about the noise variance.

Some recent applications of adaptive-filtering, which include adaptive mobile net-

works, source localization, environment monitoring, etc, have emerged recently [104,

105, 106, 107, 108], which require a set of sensors distributed over a region and each

sensor requires an adaptive filter. Two topologies, namely, fusion and network topolo-

gies, are used for distributed computing. In the fusion topology, the central sensor

can be used to obtain the noise variance and then transmit the information to all

the other sensors. In the network topology, each sensor can be used to estimate the

noise variance during the communication interval with the neighboring sensors. In

acoustic-echo cancelation applications, on the other hand, the noise variance can be

estimated during off periods in the speech signal.

Since the proposed shrinkage algorithms are actually variants of the basic LMS,

NLMS, and AP algorithms, they are very reliable. The increased computational

complexity associated with (8.14), (8.16), and (8.17) for the SHAP algorithm is of

order O(L2) which remains at a marginal level for a small value of L. Therefore,
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the proposed algorithms can be applied in many recent engineering applications of

adaptive filters.

8.5 Simulation Results

In this section, the performance of the proposed algorithms is demonstrated in two

adaptive filtering applications. The proposed SHAP algorithm is compared with

the NLMS, AP, SMAP [19], and VSSAP [21] algorithms. The proposed SHNLMS

algorithm is compared with the NLMS, NPNLMS [10], and SMNLMS [34] algorithms.

The proposed SHLMS algorithm is compared with the conventional LMS and VLMS

[6] algorithms. Regularization matrix δI with δ = 10−8 was added in all experiments

and in all AP type algorithms to matrix XT
k Xk in (8.2) to assure its invertibility.

The initial weight vector w0 was set to the zero vector in all algorithms and in

all experiments. The error bound for the SM algorithms was set to γ =
√
5σ2

v

[34, 19] in all experiments. Unless otherwise stated, the orthonormal matrix D,

forgetting factor λ, and σe,f,0 for the SHAP algorithm were chosen as the discrete

cosine transform matrix, 0.90, and 0, respectively, in all experiments. The learning

curves were obtained by averaging the mean-square error (MSE) or the mean-square

deviation (MSD), defined as MSD = 20 log10 (∥wopt −wk∥/∥wopt∥), over 1000 trials

in each experiment.

8.5.1 System-Identification Application

A series of experiments were carried out in a system-identification application where

the unknown system was an FIR filter which was obtained as wopt = fir1(M − 1, 0.3)

using MATLAB, where M is the filter order. The elements of the weight vector wopt

were normalized so that wopt has unit norm.

In the first experiment, the order of the unknown system was set to 27 and the

input signal was a zero-mean white Gaussian noise signal with unity variance. The

input signal was colored by an IIR filter with transfer function [19]

H(z) =
1

z4 − 0.95z3 − 0.19z2 − 0.09z + 0.5
(8.35)

and the measurement noise added to the desired signal was also a white Gaussian

noise signal with zero mean and variance of σ2
v = 10−2. The eigenvalue spread ratio of
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the colored input signal of 10000 samples was obtained as 1531 by using the ensemble

average of the autocorrelation matrix given by (1.28) over 1000 independent trials

with λ = 1 − 2−15 and R0 = 10−4I. The projection order L was set to 2 in all

AP-type algorithms. The learning curves obtained are illustrated in Fig. 8.1. As
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Figure 8.1: Learning curves with L = 2, t =
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v .

can be seen, the proposed SHAP algorithm yields a significantly reduced steady-state

misalignment for the same convergence speed as compare to the other algorithms.

In the second experiment, the order of the unknown system and projection order

were changed to 37 and 4, respectively. In addition, the variance of the measurement

noise was changed to 10−4. The eigenvalue spread ratio of the colored input signal of

10000 samples was obtained as 1974 by using the ensemble average of the autocor-

relation matrix given by (1.28) over 1000 independent trials with λ = 1 − 2−15 and

R0 = 10−4I. The learning curves obtained are illustrated in Fig. 8.2. As can be seen,

the proposed SHAP algorithm yields a significantly reduced steady-state misalign-

ment as compared to the other algorithms. The NLMS algorithm yields a reduced

stead-state misalignment as compared to the AP and SMAP algorithm due to their

increased projection order.

In the third experiment, we reduced the degree of the correlation of the input
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signal of the adaptive filter by using an IIR filter with a single pole at 0.95 to filter

the zero-mean unity-variance Gaussian signal. The eigenvalue spread ratio of the

colored input signal of 10000 samples was obtained as 1276 by using the ensemble

average of the autocorrelation matrix given by (1.28) over 1000 independent trials

with λ = 1− 2−15 and R0 = 10−4I. The order of the unknown system was set to 111

and the variance of the measurement noise was set to 10−3. The projection order was

set to L = 6 in all algorithms. The learning curves obtained are illustrated in Fig. 8.3.

As can be seen, the SHAP algorithm yields much reduced steady-state misalignment

as compared to the other AP algorithms for the same convergence speed.

In the fourth experiment, we have repeated the third experiment with M = 63,

L = 3, and the variance of the measurement noise was set to 0.0316. The eigenvalue

spread ratio of the colored input signal of 10000 samples was obtained as 1081 by

using the ensemble average of the autocorrelation matrix given by (1.28) over 1000

independent trials with λ = 1− 2−15 and R0 = 10−4I. The learning curves obtained

are illustrated in Fig. 8.4. As can be seen, the SHAP algorithm yields a reduced

steady-state misalignment as compared to the other AP algorithms for the same

convergence speed.
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In the fifth experiment, we investigated the effect of using different orthonormal

matrices D on the convergence characteristics of the SHAP algorithm. We repeated

the first experiment with L = 8 and λ = 0.93 using the AP algorithm and the SHAP

algorithm with D as the identity matrix (SHAP-I), DCT matrix (SHAP-DCT), and

Daubechies wavelet matrix (SHAP-WT). The MSD curves are illustrated in Fig. 8.5.

As can be seen, the SHAP-DCT, and SHAP-WT algorithms perfrom better than the

AP and SHAP-I algorithms. Since the amplitude of the error signal during steady

state becomes very small, different D’s would yield similar reduction in the elements

of ek and, as a result, similar noise removal. Consequently, different D’s would result

in similar values of µk in (8.18) and similar steady-state misalignment during steady

state.

In the sixth experiment, we examined the performance of the SHAP algorithm

with L = 1 (SHNLMS) and that of the NLMS, SMNLMS [34], and NPNLMS [10]

algorithms. The order of the unknown system was set to 63. The input signal was

obtained by filtering a zero-mean unity-variance white Gaussian noise signal by an IIR

filter with a pole at 0.9. The variance of the measurement noise was set to 10−3. The

parameters for the NPNLMS algorithm were set to λ = 1−1/(6M), δ = 10−8, σ̂2
e = 0.
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Parameter λ in (8.17) was set to 0.99. The MSD curves obtained are illustrated in

Fig. 8.6. As can be seen, the NPNLMS and SHNLMS algorithms offer similar but

improved performance as compared to the other algorithms.

Next we carried out two experiments using the SHLMS algorithm with M = 31

and fc = 0.4. In both experiments the measurement noise was a zero-mean white

Gaussian noise signal with variance 10−3. In the seventh experiment, the input signal

was a zero-mean white Gaussian noise signal with variance 1. The MSD curves

obtained by using the LMS and the SHLMS algorithms are illustrated in Fig. 8.7. As

can be seen, the proposed SHLMS algorithm yields a reduced misalignment for the

same convergence speed and a fast convergence for similar misalignment. In the eighth

experiment, we used M = 16, fc = 0.4, and the same input signal except that it was

correlated by using an IIR filter with a single pole at 0.9. The MSD curves obtained by

using the LMS, SHLMS, and the variable step size LMS (VLMS) algorithm reported

in [6] are illustrated in Fig. 8.8. The parameters for the VLMS algorithm were set

to µmin = 0.00001, µmax = 0.001, α = 0.999, β = 0.992, γ = 0.001, and q/E[∥xk∥2]
for the SHLMS algorithm was set to 1/300. As can be seen, the proposed SHLMS

algorithm converges faster than the other algorithms and at the same time it yields
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a reduced steady-state misalignment.

8.5.2 Acoustic Echo-Cancelation Application

In this section, an acoustic-echo cancelation application is considered. The length of

the acoustic channel was set to 1024. The loudspeaker was set to introduce a gain

of 103 to the speech signal and the speech signal was contaminated with a zero-mean

white Gaussian noise signal with variance 10−2. The variance of the measurement

noise added to the desired signal was set to 10−2. The MSD curves obtained by using

the NLMS, AP, VSSAP, and SHAP algorithms are illustrated in Fig. 8.9. As can be

seen, the SHAP algorithm yields a reduced steady-state misalignment for the same

convergence speed as compared to the VSSAP algorithm, and a faster convergence

for similar steady-state misalignment as compared to the AP algorithm.

8.5.3 Identification of an IIR Filter

In this section, results obtained using a first-order IIR filter as the unknown system

are presented. Four experiments were carried out with the pole of the IIR filter set
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to ρ = 0.5, 0.7, 0.85, and 0.9, and the length of the FIR filter set to M=27, 37, 111,

and 63, respectively. The learning curves obtained are illustrated in Figs. 8.10–8.13,

respectively. As can be seen, the SHAP algorithm outperforms the other algorithms

for the same convergence speed but the SMAP algorithm is sensitive to the fact that

an IIR filter cannot be modeled exactly by an FIR filter. This is because the error

bound γ =
√
5σv in the SMAP algorithm performs well only when exact modeling of

the unknown system in terms of an FIR filter is possible.

8.6 Conclusions

A family of shrinkage adaptation algorithms, namely, the shrinkage AP, shrinkage

NLMS, and shrinkage LMS algorithms were proposed based on the framework of

iterative shrinkage/threshold method. In view of their advantages, the proposed

shrinkage algorithms can provide improved solutions in many recent adaptive-filtering

applications. The proposed algorithms were applied to system-identification and

echo-cancelation applications. The simulation results obtained show that the SHAP

algorithm performs much better than the conventional AP, SMAP, and VSSAP algo-
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rithms in terms of steady-state misalignment and convergence speed. The SHNLMS

algorithm offers a reduced steady-state misalignment as compared to the NLMS and

SMNLMS algorithms. The SHLMS algorithm, on the other hand, offers faster con-

vergence and a reduced steady-state misalignment as compared to the LMS and the

VLMS algorithms.

The next chapter summarizes the conclusions of this dissertation and outlines

some future research directions in the area of adaptive filtering.
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Chapter 9

Conclusions and Recommendations

for Future Research

9.1 Introduction

Several adaptation algorithms that offer improved performance in terms of robust-

ness with respect to impulsive noise, tracking capability, convergence speed, steady-

state misalignment, and computational load were proposed. The new algorithms are

based on the set-membership affine projection (SMAP), constrained set-membership

affine projection (CSMAP), recursive least-squares (RLS), quasi-Newton (QN), and

minimum-error-entropy (MEE) adaptation algorithms. Stability and steady-state

mean square-error (MSE) analyses were carried out. Extensive MATALB simulation

results for a variety of applications were used to demonstrate the improved perfor-

mance of the proposed algorithms and to verify the accuracy of the analytical results

presented.

9.2 Conclusions

In chapter 2, a robust SMAP (RSMAP) algorithm was described that yields a sig-

nificantly reduced steady-state misalignment, robust performance with respect to

impulsive noise, and improved convergence speed as well as re-adaptation capability

compared to those of the affine projection (AP) and SMAP algorithms. Two versions

of the RSMAP algorithm were described. A steady-state MSE analysis of the pro-

posed RSMAP algorithms was also carried out. Simulation results in acoustic-echo
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and network-echo cancelation applications showed that the RSMAP algorithms offer

robust performance with respect to impulsive noise while retaining good tracking as

compared to the AP, SMAP, and SMPAP algorithms. The steady-state MSE values

obtained in a system-identification application matched quite well the values obtained

using the derived expression for the steady-state MSE.

In chapter 3, a constrained version of the RSMAP algorithm was described that

also yields a significantly reduced steady-state misalignment, robust performance with

respect to impulsive noise, good convergence speed and re-adaptation capability com-

pared to the CAP and CSMAP algorithms. Simulation results in linear-phase system-

identification, time-series-filtering, and interference suppression applications showed

that the proposed constrained SMAP (PCSMAP) algorithm offers a significantly re-

duced steady-state misalignment as compared to the conventional constrained AP

and constrained SMAP algorithms.

In chapter 4, a new robust recursive least-square (RRLS) adaptation algorithm

was proposed. The proposed RRLS (PRRLS) algorithm has two variants: one with

a fixed forgetting factor and the other with a time-varying forgetting factor. The

RRLS adaptation algorithm with a fixed forgetting factor was developed for appli-

cations in stationary environments. On the other hand, the PRRLS algorithm with

a time-varying forgetting factor was developed for applications in nonstationary en-

vironments. Simulation results in a system-identification application in stationary

environments showed that the PRRLS algorithm offers robust performance with re-

spect to impulsive noise as compared to the conventional RLS and recursive least-

mean (RLM) adaptation algorithms. For nonstationary environments, on the other

hand, the proposed robust RLS algorithm offers robust performance with respect to

impulsive noise as well as good tracking.

In chapter 5, an improved QN adaptation algorithm based on the classical QN

optimization algorithm was introduced. The proposed QN (PQN) algorithm offers

improved performance relative to that achieved with the known quasi-Newton (KQN)

adaptation algorithm. Analyses have shown that the PQN algorithm is asymptoti-

cally stable and, furthermore, it yields a reduced steady-state misalignment relative

to the known QN adaptation algorithm. Simulation results in a system-identification

application showed that the PQN algorithm offers superior convergence speed as com-

pared to the KQN algorithm for medium and high SNRs in a system-identification

application. In addition, the PQN algorithm yields a reduced steady-state misalign-

ment for low, medium, and high SNRs, which is as expected from the steady-state
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MSE analysis. The steady-state MSEs obtained from the simulation results match

quite well those obtained from the analytical expression of the steady-state MSE in

both stationary and nonstationary environments.

In chapter 6, a robust version of the PQN (PRQN) algorithm for applications in

impulsive noise environments was developed. Robustness with respect to impulsive

noise is achieved by using two error bounds as was done in chapter 2. Switching

between the two error bounds is done by using a variance estimator. For applications

where the error bound cannot be easily estimated, a modified variance estimator can

be used. Analysis shows that the PRQN is asymptotically stable. A steady-state

MSE analysis of the PRQN algorithm was also carried out by using the energy-

conservation principle described in [87]. Simulation results in a system-identification

application showed that the PRQN algorithm yields robust performance with respect

to impulsive noise and better tracking compared to the KQN and KRQN algorithms

both in stationary and nonstationary environments. The steady-state MSEs obtained

from the simulations match reasonably well the steady-state MSEs obtained using the

analytical expression of the steady-state MSE of the PRQN algorithms.

In chapter 7, we developed a new normalized minimum-error entropy (PNMEE)

algorithm. Like the stochastic minimum-error entropy (MEE), variable step size

MEE (VMEE), and normalized MEE (NMEE) adaptation algorithms, the PNMEE

algorithm is based on the minimum-error entropy criterion. The PNMEE algorithm

has a reduced computational complexity and offers better performance than the MEE,

VMEE, and NMEE algorithms. Simulation results in system-identification and signal-

prediction applications showed that the PNMEE algorithm converges much faster

than the MEE, NLMS, VMEE, NMEE algorithms and at the same time it yields a

reduced steady-state misalignment. In addition, the convergence speed of the PNMEE

algorithm does not depend on the input-signal power as is the case in the MEE and

VMEE algorithms.

In chapter 8, a family of adaptation algorithms based on the iterative/shrinkage

method [80, 81] has been proposed. The algorithms developed were the shrinkage

LMS (SHLMS), shrinkage NLMS (SHNLMS), shrinkage AP (SHAP) adaptation algo-

rithms and they were found to offer better performance compared to other competing

algorithms. Simulation results in system-identification and acoustic-echo-cancelation

applications showed that the proposed SHLMS, SHNLMS, and SHAP algorithms yield

significantly reduced steady-state misalignments compared to the {LMS, VSSLMS},
{NLMS, SMNLMS, NPLMS}, and {AP, SMAP, VSSAP} algorithms, respectively,
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for the same convergence speed. Simulation results also showed that the steady-state

MSEs of the SHAP algorithm do not depend on value of the projection order L.

For applications that entail impulsive noise, the PRQN algorithm in chapter 7

offers better performance compared to the RSMAP, PRRLS, and PQN, algorithms

developed in chapters 2, 4, and 5, respectively. However, the computational com-

plexity of the PRQN algorithm is larger than that of the RSMAP algorithm. On the

other hand, the PRRLS algorithm in chapter 4 is easier to implement compared to

the PRQN algorithm. However, the computation load of the PQN and PRQN algo-

rithms is less than that of the PRRLS algorithm. For applications that do not entail

impulsive noise, the SHAP algorithm of chapter 8 would outperform the RSMAP al-

gorithm of chapter 2. In addition, the implementation of the SHAP algorithm is easier

compared to that of the RSMAP algorithm. However, the computational load of the

RSMAP algorithm is less than that of the SHAP algorithm. Finally, the SHLMS

algorithm has computational complexity of the order of O(M) which is lower than

those of all the other algorithms proposed.

9.3 Recommendations for Future Research

Further research on adaptation algorithms would be worthwhile on several fronts as

detailed below.

The steady-state MSE analyses of the RSMAP, PQN, and PRQN algorithms in

chapters 2, 5, and 6 involve certain simplifying assumptions and hence are approxi-

mate. A possible future effort would be to derive more exact formulas for the steady-

state MSE without using the simplifying assumptions. Also it would be worthwhile to

carry out a transient analysis for the RSMAP, PQN, and PRQN algorithms. Analyses

pertaining to the steady-state MSE and transient behavior of the PRRLS algorithm

of chapter 4 and of the SHLMS, SHNLMS, and SHAP algorithms of chapter 8 would

be worthwhile to pursue.

The PRRLS adaptation algorithm in chapter 4 bounds the L1 norm of the cross-

correlation vector. It would also be interesting to bound other norms in order to

obtain a robust RLS algorithm with respect to impulsive noise.

It should also be possible to apply the error-bound estimation technique of chapter

2 to the algorithms of chapter 8. If this could be done, then the algorithms of chapter

8 could be used in applications where information about the noise variance is not

easy to obtain.
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A constrained version of the SHLMS, SHNLMS, and SHAP algorithms could be

developed following the approach used to develop a constrained version of the RSMAP

algorithm of chapter 2, as was done in chapter 3.

The SHLMS, SHNLMS, and SHAP algorithms in chapter 8 are not robust with

respect to impulsive noise. Therefore, there is considerable scope in developing robust

versions of these algorithms for applications that entail impulsive noise.

The iterative/shrinkage method used in chapter 8 can also be used to develop

shrinkage RLS and QN algorithms. This method is based on an L1–L2 minimization

problem and, therefore, the solution obtained is very sparse. The iterative/shrinkage

method was used to obtain a noise-free error signal in chapter 8. However, it can

also be used to obtain a noise-free gain vector which would also be very sparse. By

using a sparse gain vector, partial-update SHLMS, SHNLMS, and SHAP algorithms

could be obtained. Algorithms of this type are useful in acoustic-echo-cancelation

applications. The iterative/shrinkage method can also be used to obtain block LMS,

NLMS, and AP algorithms [2] using a similar approach to that used to obtain the

algorithms of chapter 8.
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