Import Controls under the National Aquatic Animal Health Program (NAAHP): A Preliminary Assessment on Trade and Opportunities for Nova Scotia Fisheries

Ivan Katsevman, MPA Candidate
School of Public Administration, University of Victoria

31 December 2013

Client: Jean-Willy Ileka
Senior Regulatory Economist
Canadian Food Inspection Agency (CFIA)

Supervisor: Dr. Evert Lindquist, Director and Professor
School of Public Administration, University of Victoria

Second Reader: Dr. Kimberly Speers, Senior Instructor
School of Public Administration, University of Victoria

Chair: Dr. Lynne Siemens, Assistant Professor and MACD Graduate Coordinator
School of Public Administration, University of Victoria
ACKNOWLEDGEMENTS

I would like to take a moment and express sincere gratitude to a number of people without whom this project wouldn’t have proceeded forward.

I would like to thank my supervisor, Evert Lindquist, for agreeing to become my supervisor, and of course, for being so patient and supportive. As well, I would like to explicitly note here that Evert was very generous with his time throughout this whole process, and I will forever be very grateful to him for that.

I am equally indebted to my client, Jean-Willy Ileka, for everything that he has done for me, starting from when he decided to hire me as a summer student for his team. As well, I would like to thank Kim Speers for all her guidance with regards to the Master’s Research Project requirements, as well as for agreeing to be a second reader. Also, I would like to thank Lynne Siemens for agreeing to Chair of the oral defence session. And last, but certainly not least, I would like to express an utmost gratitude to Judy Selina, Graduate Administrative Assistant, for being the best supporting staff a student could ever wish for. Judy, thank you so much for taking care of me, and for always being willing to help.

And as for non-UVIC people, I would also like to express my sincere appreciation and gratitude to my family and friends. Their support certainly meant a lot.
EXECUTIVE SUMMARY

This report assesses the impact of the implementation of the import control section of the National Aquatic Animal Health Program (NAAHP) on Nova Scotia fisheries, in terms of trade. NAAHP is a science-based regulatory program co-delivered by the Canadian Food Inspection Agency (CFIA) and the Department of Fisheries and Oceans (DFO). Import control makes up one of its pillars. NAAHP is a new intervention by the federal government introduced in order to meet Canada’s international obligations as a member of the World Organization for Animal Health (OIE).

Effective December 10, 2010, reporting of specified aquatic animal diseases to CFIA by the relevant parties, such as fisherpeople and laboratories, is mandatory, depending on their level of severity. Effective December 10, 2011, import permits are required for imports of specified crustaceans, molluscs, and finfish species – aquatic animals that could be affected by these diseases. Imports of specified aquatic animal species would be allowed entry into Canada only if they would be certified as free of listed diseases.

During the consultation period prior to NAAHP regulations came into force, the Governments of Canada and Nova Scotia agreed to assess the impact of the import control section of NAAHP on the Nova Scotia fisheries sector. This project is to assess the economic impact of the import control section of NAAHP on Nova Scotia fisheries, in terms of trade. This report was guided by the following research question: How will the import control section of NAAHP likely impact the Nova Scotia fisheries, in terms of trade?

The methodology for answering this research question will involve a literature review and a qualitative assessment of the impact of the import control section of NAAHP on trade for Nova Scotia fisheries. This assessment will be carried out using a Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis looking at various domestic economic indicators (ex. GDP, number of establishments, etc.) and international trade statistics for the Nova Scotia fisheries.

The data sections (Nova Scotia Profile: Domestic Statistics and Nova Scotia Fisheries Profile: International Trade Statistics) quantify the importance of the Nova Scotia Fisheries sector and international trade to the province of Nova Scotia. The domestic statistics section will use various domestic economic indicators, demonstrates the significance of the Fisheries sector to Nova Scotia. The international trade section affirms the importance of the international trade, quantifying the link between the imports and exports through the import content of exports.

The Strengths, Weaknesses, Opportunities, and Threats assessment is a preliminary impact of the implementation of NAAHP:

- **Strengths:** Maintaining Nova Scotia fisheries sector’s dominant position and rankings in comparison to other provinces, as well as maintaining market access for Nova Scotia’s Fisheries exports.
• **Weaknesses:** Costs of new import permits could be passed to customers. Challenges for Nova Scotia-based importers of aquatic animals due to developing countries’ short-term and medium-term challenges in meeting NAAHP’s regulatory standards.

• **Opportunities:** Consistent with international aquatic animal health measures policy trends. Improved marketability and quality of fish and seafood imports.

• **Threats:** Possible adjustment-related challenges for Nova Scotia importers. Losses of market access should there be a unilateral declaration of exports ban by one or more of Canada’s trading partners.

This report also notes that there is insufficient data needed to provide accurate and up-to-date information about the sector for the Governments of Canada and Nova Scotia. To bridge the gap, the following three options were identified:

• **Option 1:** Find a better way to co-ordinate existing resources

• **Option 2:** Commissioning research to close the data and literature gaps

• **Option 3:** Better analysis of data

These options were evaluated in the context of their benefits, costs, effectiveness, and feasibility for CFIA and Nova Scotia.

While Option 3 is the recommended option, Options 1 and 2 would have to already have been put in place in. Pursuing Option 3 would take advantage of new streams of data and result in better research, leading to more informed decision making and policy planning. Subsequently, the report proceeds with the Implementation Plan for this option.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... 2

EXECUTIVE SUMMARY ... 3

1. INTRODUCTION ... 7

2. BACKGROUND .. 9
 2.1 National Aquatic Animal Health Program .. 9
 2.2 Background on Client Organizations ... 10
 2.3 State of Understanding of the Nova Scotia Fisheries 11
 2.4 Opportunities and Risks for the Nova Scotia Fisheries 11
 2.5 The Focus of this Study: From Background to Approach 12

3. METHODOLOGY AND METHODS .. 13
 3.1 Literature Review ... 13
 3.2 Sources of Data ... 14
 3.3 Organizing Findings: Analytic Framework ... 14
 3.4 Future Assessment: SWOT Analysis ... 14
 3.5 Strengths and Limitations of Methodology .. 14

4. LITERATURE REVIEW AND CONCEPTUAL FRAMEWORK 16
 4.1 The import content of exports concept .. 16
 4.2 Canada’s import content of exports .. 18
 4.3 Non-Canadian import content of exports .. 18
 4.4 Need for an improved trade statistics methodology 19
 4.5 Impact of food safety and animal health measures on trade 20
 4.6 Influencing Exports and Imports of Fish Products: Economic Considerations ... 22
 4.7 Impact of currency exchange rates on imported intermediary inputs and prices of Fish and seafood exports ... 22
 4.8 International aquatic animals health governance structure 23
 4.8 Policy developments concerning aquatic animal health regulatory frameworks in other countries ... 23
 4.9 Aquatic animal health regulatory frameworks and policy in other countries 23
 4.10 Introducing aquatic animal health regulations: economic considerations ... 24
 4.11 Differences in the availability of information on the economic impact of diseases in aquaculture and wild-based aquatic animals ... 26
 4.12 Conclusion: drawing it together with an analytic framework 27

5. NOVA SCOTIA FISHERIES: DOMESTIC SECTOR PROFILE 29
 5.1 Fishing, Hunting, and Trapping Sector ... 29
 5.2 Seafood Product Processing and Packaging Sector 33
 5.3 Summary of Nova Scotia Fisheries: Domestic Sector Profile 38
6. NOVA SCOTIA FISHERIES: INTERNATIONAL TRADE PROFILE 39
6.1 International Trade Data by the North American Industry Classification System ... 39
6.2 International Trade Data by HS Codes .. 43
6.3 International Trade Data by DFO Statistics 44
6.4 International Trade Data by Import Content of Exports 46
6.5 Conclusion to Nova Scotia Fisheries: International Trade Statistics 48

7. LOOKING AT THE FUTURE: A SWOT ANALYSIS OF NOVA SCOTIA FISHERIES .. 50
7.1 Strengths .. 50
7.2 Weaknesses .. 50
7.3 Opportunities .. 51
7.4 Threats ... 53
7.5 Summary: Conclusions of the SWOT Analysis 54

8. DISCUSSION: FINDINGS IN PERSPECTIVE 56
8.1 Summary of Findings .. 56
8.2 Cross-cutting themes ... 58
8.3 Implications for designing options .. 59

9. OPTIONS AND RECOMMENDATIONS .. 60

10. IMPLEMENTATION PLAN .. 64

11. CONCLUSION .. 65

REFERENCES ... 66

APPENDICES .. 77
Appendix A – History and Uses of SWOT .. 77
Appendix B - Type of Employer Establishments – NAICS 1141 78
Appendix C - Type of Employer Establishments – NAICS 3117 79
Appendix D – Canada’s Wild-Capture Fish and Seafood Exports 80
Appendix E – Aquatic Animal Health Governance Structure – Global to Local ... 81
1. INTRODUCTION

On December 22, 2010, the Regulations Amending the Health of Animals Regulations were published into Canada Gazette II. This report will assess the impact of the implementation of the import control section of the National Aquatic Animal Health Program (NAAHP) on Nova Scotia Fisheries in terms of trade. Import controls were part of these amendments which made the NAAHP fully operational. During the consultation period between the pre-publication in Gazette I and the publication, the federal government and Nova Scotia agreed to work on an assessment of the impact of the import control section of these regulations on Nova Scotia fisheries sector (Government of Canada, 2010). Subsequently, it was determined that this assessment could be carried out by a summer student.

My main client is the Economic Affairs Unit within the Canadian Food Inspection Agency (CFIA). The Economic Affairs Unit conducts economic analysis of proposed regulations and other initiatives falling under the CFIA domain. Therefore, assessment of the introduction of a new regulation, the import control section of NAAHP falls under the purview of my client. Also, this assessment involved working closely with scientists and other specialists from the Animal Import/Export Division of the Animal Health Directorate, responsible for the day-to-day management of NAAHP operations.

The other clients are from the Business Development and Economics Division in the Industry Development and Business Services Branch of the Nova Scotia Department of Agriculture and the Marine Advisory and Coastal Advisory Services Section of the Marine Division within the Nova Scotia Department of Fisheries and Aquaculture. The Business Development and Economics Division provides professional economic analysis and expert business development support to the Nova Scotia agri-food and seafood industries. The Marine Advisory and Coastal Advisory Services Section provides research, analysis, advice, legislative administration, policy/strategy development and inter-governmental issues on all aspects of marine commercial fisheries and coastal issues from the provincial perspective and jurisdiction.

The purpose of this project is to assess the economic impact of the import control section of NAAHP on Nova Scotia fisheries, in terms of trade. The research question guiding this study is: How will the import control section of NAAHP impact the Nova Scotia fisheries in terms of trade? The methodology for answering this research question will mostly come through a qualitative assessment of the impact of the import control section of NAAHP on trade for Nova Scotia fisheries. Whenever available and where applicable, a quantitative assessment was conducted, using measurable and quantifiable data. This will provide more detailed and evidence-based understanding of the impacts of the implementation of the import control section of NAAHP on Nova Scotia fisheries, from the trade angle. In accordance to input received from the Nova Scotia officials, the assessment will focus on wild/capture fisheries segment of Nova Scotia Fisheries sector due to its relative importance and market share. Therefore, while aquaculture will be discussed and mentioned throughout the report, it would not be a focus of this report due to its relatively small market share and economic significance to Nova Scotia.
The assessment will be carried out using a Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis framework. Traditionally, SWOT analysis is used as a strategic planning tool to assess the competitiveness of a particular sector, industry, and/or organization (Bryson, 1988, p. 76). Here, it will be used to assess the impact of implementing a specific regulation, the import control section of NAAHP. This will be done through looking at various domestic economic indicators (ex. GDP, number of establishments, etc.) and international trade statistics for the Nova Scotia fisheries. Subsequently, that data would help form the basis for the assessment of the impact of the implementation of the import control section of NAAHP on the Nova Scotia fisheries. Such assessment can only be preliminary. For a more comprehensive and complete assessment, other approaches such as a Cost-Benefit Analysis (CBA) would be more appropriate. However, such analysis would be possible only ex post as more information and data related to the imported fish and aquatic animal diseases comes available.

This report begins with the Introduction, Background, and Methodology sections. The findings are reported in the Literature Review section and Domestic and International statistics for Nova Scotia Fisheries (Sections 5 and 6). Afterwards, the reader will be introduced to the assessment data and information through the domestic and international statistics sections for the Nova Scotia Fisheries. Those sections will be followed by the SWOT analysis section, putting together successive sections and analyzing all of the findings. Options for filling the data gaps are set out in Section 9, along with the implementation plan for the recommended option. A conclusion summarizes key findings and suggests further avenues of research.
2. BACKGROUND

This section contains the background information about the National Aquatic Animal Health Program (NAAHP), some details on the clients and their roles and responsibilities in connection to this assessment.

2.1 National Aquatic Animal Health Program (NAAHP)

The National Aquatic Animal Health Program (NAAHP) is a science-based regulatory program co-delivered by the Canadian Food Inspection Agency (CFIA) and the Department of Fisheries and Oceans (DFO). CFIA provides the overall program lead and “is responsible for the disease surveillance/monitoring protocols and control measures for reportable diseases.” Meanwhile, “DFO is responsible for diagnostic research and the provision of scientific advice, and delivery and oversight of the National Aquatic Animal Health Laboratory System (NAAHLS).” NAAHP was announced by the federal government in 2005. As part of the NAAHP implementation plan, CFIA received $32 million in new funding for the first five years, until 2010, and $7.5 million in ongoing annual funding thereafter. DFO received $26.9 million in new funding over the same five-year period, followed by the $3.9 million in subsequent years (CFIA, 2011).

Import control measures are some of the regulations introduced under the NAAHP. They are the focus of this report. Effective December 10, 2011, a year after the registration of Regulations Amending the Health of Animals Regulations in Canada Gazette, import permits are required for imports of specified crustaceans, molluscs, and finfish species – aquatic animals that could be affected by these diseases. Imports of specified aquatic animal species would be allowed entry into Canada only if they would be certified as free of listed diseases (in Schedules VII and VIII). Other measures include mandatory reporting of specified aquatic animal diseases to CFIA, upon discovery, by fisherpeople and others who might come across such information. Additionally, CFIA plans to hold consultations with stakeholders regarding developing regulations governing the inter-provincial movement of these aquatic animals.

NAAHP’s authority comes through amendments to the Health of Animals Regulations, published in Canada Gazette, under the authority of the Health of Animals Act. These were introduced to establish a new national regulatory framework for crustaceans, molluscs, and finfish species of aquatic animals. This was an intervention by the federal government into an area previously not subject to such regulations. However, the federal government is not starting from scratch because the intervention is modelled on a national regulatory framework for terrestrial animals (CFIA, 2011).

These regulations allow Canada to maintain international standards for national aquatic animal disease management, and thus fulfil its obligations to the World Organization for Animal Health (OIE). The OIE has 175 member countries and functions as the international standard-setting body for the World Trade Organization (WTO) Agreement on the Application of Sanitary and Phytosanitary Measures (SPS Agreement), as applied to animal health. The WTO recognizes CFIA as Canada’s Competent Authority for
animal health and, therefore, “this regulatory intervention allows Canada to meet international trade standards and prevent the loss of aquatic resources due to the introduction or spread of disease and to ensure access to international markets for Canadian exports” (Government of Canada, 2010).

Developing this new national aquatic animal health regulatory framework is consistent with practice in other jurisdictions, including developed and developing countries. These new regulations will help Canada maintain or increase market access for its fish and seafood exports: “Increasingly stringent international standards are driving seafood importing nations to require Canada to certify health (disease) status, not just food safety, of live aquatic animals and their products” (Government of Canada, 2010). The absence of these regulations would prevent Canada from meeting the OIE standards, and would prevent expanding and even maintaining current levels of market access for its exports.

2.2 Background on Client Organizations

The Canadian Food Inspection Agency (CFIA) is “Canada's largest science-based regulatory agency”. It “is dedicated to safeguarding food, animal, and plant health, which enhances the health and well-being of Canada's people, environment, and economy”. Overall, “the CFIA bases its activities on science, effective risk management, commitment to service and efficiency, and collaboration with domestic and international organizations that share its objectives” (CFIA, 2013). This project was carried out primarily for the Economic Affairs Unit of the Regulatory, Legislative, and Economic Affairs Division of CFIA’s Domestic Policy Directorate.

The Economic Affairs Unit conducts economic analysis of proposed regulations and other initiatives falling under the CFIA domain. Assessment of the introduction of a new regulation, such as the import control section of NAAHP, falls under the purview of the Economic Affairs Unit. This assessment also involved working closely with scientists and other specialists from the Animal Import/Export Division of the Animal Health Directorate. The Animal Import/Export Division is responsible for managing NAAHP’s day-to-day operations.

The mandate of Nova Scotia Department of Agriculture is to support the “development of competitive, sustainable and profitable agriculture and agri-business industries that contribute to the economic, environmental and social prosperity of Nova Scotia” (Nova Scotia Department of Agriculture, 2013). The client is comes from the Business Development and Economics Division in the Industry Development and Business Services, which provides professional economic analysis and expert business development support to the Nova Scotia agri-food and seafood industries. The NAAHP file was assigned to the Division due to its mandate for providing economic analysis and business development support to the Nova Scotia seafood industries.

The responsibility of the Nova Scotia Department of Fisheries and Aquaculture “is to manage, promote, support and develop the fishing, aquaculture and seafood processing industries of this province” (Nova Scotia Department of Fisheries and Aquaculture,
2.3 State of Understanding of the Nova Scotia Fisheries

At the time of the writing of this report, the significance of the Fisheries sector, especially of its exports, was generally known to Nova Scotia, the federal government, stakeholders, and the general public.

When entering into the agreement with the federal government concerning carrying out an assessment of the impact of the introduction of the import control section of NAAHP, the significance of fish and seafood exports was very well known to Nova Scotia as well as the link between imports and exports, through the use of imported inputs in fish and seafood processing. However, even though the use of imported fish and seafood inputs in domestic processing and value-adding activities was recognized, it has not been quantified. And, while the importance of exports to Nova Scotia has been widely stated, the importance of imports has not been indicated (Nova Scotia Department of Fisheries and Aquaculture, 2011).

There were no academic studies concerning the impact of the introduction of aquatic animal health regulations on trade. That necessitated broadening the literature review scope to looking at the entire Sanitary and Phyto-Sanitary Standards (SPS) and Technical Barriers to Trade (TBT) measures on trade. Also, little was known about the potential impact of new aquatic animal health regulations on maintaining market access for exports, or the impact of imported inputs in mitigating the commonly understood negative effect of the Canadian dollar’s appreciation on exports, or the economic impact of disease outbreaks as a result of imported aquatic species.

In short, to assess the impact of the implementation of NAAHP on Nova Scotia fisheries requires obtaining more data and information, along with an analytical framework to put all of that together and carry out the assessment. To that end, SWOT was chosen as a tool for undertaking an assessment.

2.4 Opportunities and Risks for the Nova Scotia Fisheries

Although Nova Scotia fisheries sector’s domestic economic performance and international trade statistics data was available, it was insufficient to estimate the preliminary impact of the introduction of the import control section of NAAHP. An exploratory assessment was needed to inform policy planning.

The SWOT analysis framework (Strengths, Weaknesses, Opportunities, and Threats) was chosen as a framework assessing of the impact of introducing a new regulation from the sector competitiveness perspective. This includes looking at potential benefits of NAAHP, such as maintaining market access for Nova Scotia Fisheries exports. Strengths
and Weaknesses will be used to assess internal factors, while Opportunities and Threats were used to assess external factors. SWOT framework allows assessing the preliminary impact of implementing the import control section NAAHP on Nova Scotia Fisheries from the perspective of fisheries sector’s competitiveness. On the whole, the SWOT analysis will provide the conceptual framework that will establish and demonstrate the link between Nova Scotia’s participation in international trade with maintaining sector competitiveness. For more information about the SWOT analysis and its uses, please refer to Appendix A.

Two examples of SWOT analysis were identified, which were used to assess the implementation of the Hazard Analysis Critical Control Point (HACCP), a national food safety regulatory framework, in Madagascar and the United Arab Emirates, respectively (Gilabert, Sarter, and Sarter, 2010; Al-Kandari, and Jukes, 2011). However, in both cases SWOT was used to assess structures and context for the implementation of a specified regulation, rather than the impact of its implementation.

The SWOT is not the only tool available to assess the competitiveness. Porter’s Five Forces Strategic Framework was initially considered to be utilized as the framework for carrying out the assessment, but it was determined to be less appropriate in comparison to SWOT. The Porter Framework is typically used “for identifying the sources of competitive advantage in a relevant market”, and determining the likelihood of sustainable profitability for a particular industry or line of business through five factors: the threat of substitutes, the threat of entry, the power of buyers, the power of suppliers, and the intensity of rivalry (Harris, McGuigan, & Moyer, 1999, p. 423). Even though the competitiveness of an industry or a particular line of business is assessed, this is done at the firm level, from the micro-level perspective. This does not fit the context of this assessment, as it involves looking at the impact from the macro and sectoral perspective. Also, unlike SWOT analysis, Porter’s Five Forces Model does not directly assess the regulatory environment and other external factors. Without taking into account external developments and context, the type of analysis necessary to assess the impact of the import control portion of NAAHP for Nova Scotia fisheries would not be possible.

2.5 The Focus of this Study: From Background to Approach

In order to determine the potential impact of the import control section of NAAHP on the Nova Scotia Fisheries sector, it is necessary to conduct a literature review of what was done in other jurisdictions, and a profile of the sector’s domestic economic performance and international trade data. Once the needed data and information is gathered, it is important to have an analytical framework to put in an assessment to organize and link this data, and another framework (SWOT) to assess the implementation going forward.
3. METHODOLOGY AND METHODS

This report uses a mixed-method approach. The qualitative methodology included a literature review and data obtained from several publications and databases. This research was carried out exclusively by the author. However, decisions on strategy and approaches utilized in this research were taken in consultation with the main client from the CFIA, as well as other CFIA and Nova Scotia colleagues. Below is the summary figure, describing what the report does.

Figure 1: Summary Figure of the Report

Literature Review
Domestic and International Trade Data
Analytic Framework
SWOT
Answer to Research Question: Determining the Preliminary Impact of the Import Control section of NAAHP on Nova Scotia Fisheries in terms of trade
Option 1
Option 2
Option 3

3.1 Literature Review

The literature review was carried out using a variety of sources, relying predominantly on the academic and grey literature. The intent was to find data and information that would be helpful in assessing the impact of the import control section of NAAHP on Nova Scotia fisheries, in terms of trade. Academic literature was primarily utilized to build and develop conceptual foundation for this assessment, as well as to access a detailed research into all of the relevant themes. These themes included aquatic animal health policy developments in other jurisdictions, import content of exports concept, impact of aquatic animal health regulations, and international aquatic animal health governance structure. No academic literature directly assessing the impact of introducing new aquatic animal health regulations on trade was found, so the scope was broadened to examine the impact of the entire Sanitary and Phyto-Sanitary Standards (SPS) and Technical Barriers to Trade (TBT) measures on trade. Academic literature was sourced from the University of Victoria library and Google Scholar databases.

Grey literature was primarily accessed in order to get the actual data and statistics, which would form the quantitative foundation for the SWOT analysis. These included statistical publications by governments and non-governmental organizations, such as think-tanks. However, that information on some topics, most notably, the import content of exports, was obtained from both academic and grey literature publications.
3.2 Sources of Data

Academic literature was accessed through the use of University of Victoria databases and Google Scholar. These resources were searched mostly by keywords and/or by the author. Some publications were discovered as a result of browsing through the references of other documents. When coming across the source that was considered to be relevant, the examination would typically begin with the abstract. If warranted, a more detailed and in-depth examination would follow.

Grey literature was also accessed on the basis of relevance to the research question. The searching approach was not unlike the approach taken towards finding sources from the academic literature, as a keyword search was utilized. Government publications included reports from departmental web-sites, as well as public sector organizations, such as Statistics Canada.

Some government documents were internal and, at the time of the writing of this report, not publicly available. One example is A Business Case in Support of a National Aquatic Animal Health Program, a document produced by the Department of Fisheries and Oceans (DFO) in 2002, which made the case for the establishment of NAAHP (DFO, 2002). Another internal document was market assessment of Nova Scotia Fisheries, carried out by the Nova Scotia Department of Fisheries and Aquaculture in part through asking the industry to complete a questionnaire (Nova Scotia Department of Fisheries and Aquaculture, 2011).

Some data was obtained upon request. For example, some international trade figures for Nova Scotia and Canada were obtained through an e-mail request to the Atlantic Provinces Economic Council (APEC).

3.3 Organizing Findings: Analytic Framework

The analytical framework, to be introduced in the sub-section 4.12, was developed based on the findings flowing from the literature review. The framework is based on the sources of data that would form the conceptual foundation and basis for the analysis that will be carried out in this report.

3.4 Future Assessment: SWOT Analysis

The preliminary assessment of the implementation of the import control section of NAAHP on trade for Nova Scotia fisheries sector will be carried out using the SWOT methodological framework.

3.5 Strengths and Limitations of Methodology

A mixed-method methodology was utilized in this report. The qualitative methodology included a literature review, domestic and international trade data, analytic framework, and SWOT. This multi-approach method enabled the author to produce a preliminary
assessment of impact of the implementation of the import control section of NAAHP on Nova Scotia Fisheries, and thus, answer the research question.

However, the qualitative aspect of this assessment makes the assessment exploratory. As noted in Section 1.0, too little data and insufficient detailed risk assessment precluded the use of CBA, which would lead to a more comprehensive and quantitative assessment. The Options and Conclusion sections (Sections 9 and 10, respectively) identify strategies for overcoming this limitation in the future.
4. LITERATURE REVIEW AND CONCEPTUAL FRAMEWORK

This section begins with an extensive examination of the literature on trade, specifically, at the links between exports and imports, which provides the conceptual foundations on which the fisheries sector. These links are fundamental in establishing the appropriate context of the NAAHP.

The literature review will start by examining the “import content of export” concept, critical for understanding the basis of international trade. It will be followed with the examination of the Canadian and non-Canadian import content of exports publications. We then turn to the literature on the impact of food safety and animal health regulations on trade for developed and developing countries. That will be followed by looking at the economic considerations influencing exports and imports of fish products, such as the effect of currency exchange rates on imported intermediary inputs and prices of fish and seafood products. The international aquatic animal health governance structure will be examined, as well as policy developments concerning aquatic animal health regulatory frameworks in other countries and economic considerations behind their introduction. The literature review closes by examining the availability of information on the economic impact of diseases in aquaculture and wild-based aquatic animals.

4.1 The Import Content of Exports Concept

Three publications provide the conceptual foundation and a basis for understanding the links between imports and exports, where imports function as facilitators and enablers of exports (Krugman, 1993; Hummels et al., 2001; Reimer, 2011). What follows considers each in turn in more detail.

Krugman (1993) states that “International trade is not about competition, it is about mutually beneficial exchange. Even more fundamentally, (...) imports, not exports, are the purpose of trade. That is, what a country gains from trade is the ability to import things it wants” (p. 24). This establishes conceptual foundation regarding the importance of imports, which will be utilized in the context of assessing the impact of the import control section of NAAHP on Nova Scotia, through the sectoral competitiveness lenses.

Hummels et al. (2001) is the first publication to propose a new methodology for quantifying a continuum (below) that links imports to exports. They sought to reflect the new globalization-driven reality of fragmented production, which is said not to be adequately captured through conventional calculation methodologies for trade statistics. These globalization-driven changes in methods of productions are described in the context of a vertical specialization concept. Hummels et al. (2001) observed that “Production processes increasingly involve a sequential, vertical trading chain stretching across many countries, with each country specializing in particular stages of a good’s production sequence” (p. 75). As such, their study focuses on documenting the use of intermediary imported inputs in producing goods that are subsequently exported, and their implications in trade growth. They find increased uses of imported inputs in exported goods since 1970. They also find vertical specialization and value-adding
activities to be significant factors in the growth of exports in recent years. These findings provide theoretical and empirical support to Mr. Krugman’s observations about the importance of imports.

Hummels et al. (2001) illustrated the import-export continuum with this diagram:

Figure 2: Import-Export Continuum

![Diagram](image)

Source: (Hummels et al. 2001).

The “Country 1 produces an intermediate good and exports it to Country 2. Country 2 combines the imported intermediates with capital and labor (value-added), and domestically produced intermediate inputs to produce a final good (gross output). Finally, Country 2 exports some of the final good to Country 3” (Hummels et al, 2001, p. 78). Hummels et al. (2001) is widely regarded in the literature as the first instance when the link between imports and exports is quantified.

Reimer (2011) expands the knowledge of the import-export continuum by providing “the first estimates in the literature of the domestic factor content of exports, and the foreign factor content of imports” (p. 181). The import content of export data was not provided as the aggregate/cumulative figure, but instead split into two categories: labour and capital.

Overall, the concepts developed by Krugman (1993), Hummels et al. (2001), and Reimer (2011) help establish a continuum between imports and exports, and lead to an awareness of importance of imports in country’s exports. The import content of export concept is
still in its early stages of utilization, only recently appearing as statistical tool in trade-related publications, such as Statistics Canada reports (see below). All together, the above three publications demonstrate the importance of imports to exports in general, and in Nova Scotia’s case, the importance of imports to fish and seafood exports in the fisheries sector.

4.2 Canada’s Import Content of Exports

Cameron (1999) was Statistics Canada’s first publication to explicitly refer to the import content of export concept, quantifying the link between imports to exports. However, it did not further delve into the import content of exports.

The first Statistics Canada publication to extensively focus on the subject was Cameron and Cross (1999), followed by Cross (2002). Gross and Ghanem (2003) was Canada’s first publication to provide the import content of exports data on the provincial level. Meanwhile, Cross and Ghanem (2005) was Statistics Canada’s first import content of exports-related publication to provide estimates for the fish sector specifically. According to Cross and Ghanem (2005), fish processors, along with fruits, vegetables, and sugar processors, had “the highest import content, reflecting limitations on domestic supply” (p. 25). Finally, Canada’s most recent data on the import content of export is from 2008, and provided by the Department of Foreign Affairs and International Trade (2013).

As for the Nova Scotia-based publications, the most recent publication on the import content of export is Nova Scotia Department of Economic and Rural Development and Tourism (2013). While its level of detail is not as high as other sources, it does provide figures demonstrating the importance of imports to Nova Scotia’s exports, which is very useful for this report. The second most recent Nova Scotia-based publication is by APEC (2011). Using Statistics Canada’s Input-Output tables, APEC (2011) estimated the import content of exports, value-added as share of GDP, and value added as share of total exports figures for Nova Scotia, the other Atlantic provinces, and Canada as a whole.

Armstrong (2011) is another recent Canada-based publication on the import content of exports, as well as other related international trade indicators.

4.3 Non-Canadian Import Content of Exports

Examples of non-Canadian publications include official publications by the United States and France. In the United States, directed by the US Congress, the National Research Council, National Academy of Sciences (NRC, 2006), produced the Analyzing the U.S. Content of Imports and the Foreign Content of Exports. This detailed study contains US data and a diagram linking imports to exports developed by HIY (2001). This study also identifies challenges in connection to generating the needed data. The French government published a similar document Reinterpreting the contribution of foreign trade to growth, which provides the import content of export data for France, supported by mathematical calculations along with describing challenges associated with collecting
and analyzing the necessary data. An alternative diagram linking imports to exports is provided (de Vallerin, 2006).

Studies on import content of export for specific countries have been published by international organizations. For example, the Organization for Economic Co-operation and Development (OECD) published studies by Germany and Netherlands statistics departments (Loschky and Ritter, 2006; Jaarsma, 2004). Both studies provide detailed statistical overview, along with discussing measurement challenges. The OECD supplied cumulative and non-country specific studies on the import content of exports. The

OECD Science, Technology and Industry Scoreboard 2011 Report contains trade data and analysis for its 29 member countries for 1995 and 2005. It finds that “Smaller economies tend to have higher shares of imports embodied in their exports” (OECD, 2011). This should be relevant for Canada, which is generally treated and regarded as an export-dependent small open economy (Srour, p. 297, 2010). Regarding fish, the Food and Agriculture Organization reported the use of imports in exports: “Many countries that are exporters of fish also import fish. This can be done to source raw material for the processing industry” (FAO, 2010a, p. 5).

4.4 Need for an improved trade statistics methodology

Canadian and non-Canadian publications have recognized the need for an improved methodology by pointing out the limitations of only publishing stand-alone export and import data and limiting analysis of trade statistics to long-existing ratios, such as Export-to-GDP ratio:

Export-to-GDP ratio is a measure of the reliance of economies on exports. It is not, however, the most reliable measure of the contribution of exports to GDP. This is because export costs include imported material used in the production process that does not contribute to domestic income. (Byrd and Généreux, 2004, p. 4)

Similar concerns were identified by the International Monetary Fund:

Official trade statistics are measured in gross terms, which include both intermediate inputs and final goods. Given the rising import content in exports, aggregate trade data are increasingly affected by intermediate goods trade flows that cross borders several times. (Bayoumi, 2011, p. 11)

The adequacy and reliability of linking gross export data with GDP ratios were also questioned by the European Central Bank on the grounds of higher import content of exports: “in the presence of declining domestic value-added per unit of exports, the link between export growth and overall GDP growth may be weakened” (Bunda, di Mauro, and Rüffer, 2008, p. 15). These publications call for a new trade data methodology to obtain a more accurate data, as limitations of conventional trade data methodologies have been shown not to reflect the proliferation of vertical specialization and multi-fragmented production across countries. Indeed, there is a growing literature on the need for a new trade data methodology, to take account of multi-country production processes of goods.
Other publications focus on developing improvements in methodology originally proposed by Hummels et al. (2001), to obtain more accurate import content of exports statistics. Degain and Maurer (2010), Daudin et al. (2011), and Miroudot and Yamano (2011) proposed methodologies that would take into account today’s realities of global value chains and their resultant increased intra-firm and intermediate goods trade. Meng et al. (2011) and de Vries et al. (2011) made the case for factor decomposition techniques in order to improve calculations on the sector and product levels. Amador and Cabral (2009) “propose a relative measure of vertical specialization-based trade that combines information from Input-Output matrices and international trade data” (p. 268).

A similar methodology was proposed earlier by Koopman et al. (2008) for countries engaging in “significant amounts of processing exports”, such as China, Mexico, and Vietnam. It involves creating a new mathematical formula that includes input-output tables as well as the “information from detailed trade statistics (which records processing and normal exports/imports separately)” (p. 26). Koopman et al. (2008) apply that methodology to China. They find variances in the import content of exports among sectors in China. Sectors requiring high-skilled labour tend to have lower domestic content in their exports in comparison to low-skill labour sectors. Also, foreign firms (or their local subsidiaries) tend to have lower share of domestic content in their exports in comparison to domestic/local firms.

The same methodology was applied to determine the import content of exports for Mexico (De La Cruz et al., 2011). Additionally, a study by the Congressional Budget Office (CBO) points out to another limitation of the input-output tables: they do not distinguish between domestically manufactured goods for export and domestically manufactured goods intended for domestic consumption. This matters in the case of China, because there are at least “two programs under which it exempts some imports from tariffs if those imports are used as inputs in the production of goods for export.” Therefore, tariffs can be used as another tool for controlling for variations in the import content of exports of the same good (CBO, 2008, p. 6). Clearly, import content of exports category is becoming an important statistical tool, needed to better capture the reality of today’s global trade flows.

4.5 Impact of Food Safety and Animal Health Measures on Trade

Having established a link between country’s imports and exports, and the significance of value-adding activities to trade, it is important to assess how the trade is impacted by introductions of new health-related regulations. There are few, if any, peer-reviewed articles focusing on assessing the impact of introducing aquatic animal health regulations on trade (ex. import controls measures). However, there is research with a broader scope, assessing the impact of the entire Sanitary and Phyto-Sanitary Standards (SPS) and Technical Barriers to Trade (TBT) measures. These articles tend to focus on food safety, such as the Hazard Analysis and Critical Control Points (HACCP), rather than on animal health. Still, assessing the impact of SPS and TBT regulations on food exports/imports may provide an indication and conceptual basis for assessing the impact of import control measures on live/unprocessed animals.
Beghin and Li (2011) found that SPS regulations introduced by developed countries tend to impede agri-food imports from developing countries, but not from developed countries (p. 12). This is consistent with Disdier et al. (2008) indicating that SPS and TBT measures tend to have a negative impact on agri-food products trade for developing countries, but not from developed countries (p. 348). Meanwhile, while pointing out to the same trade-impeding effects, Ganslandt and Markusen (2001) also demonstrated positive outcomes from the introduction of SPS and TBT measures. They refer to an improved product quality and safety as a result of these measures, which translates into an increased consumer confidence.

Chen and Song (2010) assess the short and long-run impacts of SPS regulations on exports of a developing country, China, from the food safety prospective. They found short run impacts to be negative and long run impacts to be positive for the agri-food sector. Also, small-scale enterprises spent more on resultant compliance costs, such as building renovations, technological innovation, and purchase of testing equipment, in comparison to medium and large-scale enterprises (p. 437). Huang et al. (2011) were even more specific, assessing the impact of SPS measures on China’s tea exports. Overall, they found “that China's tea exports have been significantly restricted when importing countries increase tea safety standards” (p. 11). They call for food-exporting countries to improve SPS measures and increase investments in food production and processing as a way of improving food safety and reputation.

Bao and Qiu (2010) found a negative impact of introducing TBT measures by developing countries on other developing countries. They found that TBT measures introduced by China produced trade-impeding effects on agri-food imports (p. 266). Similarly, introductions of SPS and TBT measures have been found to have trade-impeding effect on fish products specifically, negatively affecting exports by developing to developed countries (Greenhalgh, 2004, p. 3). These findings are consistent with the analysis by Kimball et al. (2005), quantifying the economic losses incurred by Mozambique, Kenya, Tanzania and Uganda between 1998-2002 as a result of EU restrictions on their fish exports. These restrictions were introduced as an emergency-response to the cholera outbreak through the SPS mechanism of the WTO. Negative and restrictive effects of aquatic animal health regulations introduced by developed countries on developing countries are also officially confirmed by FAO (FAO, 2010b, p. 3).

Caswell (2000) proposes economic approaches in determining the implementation costs of SPS-supported food safety measures, such as HACCP. This study references Caswell and Colatore (1999) assessing HACCP implementation costs for a select sample of US plants producing breaded fish products. Their results indicate willingness for US plants to adopt HACCP regulations beyond meeting the legal threshold, justified on the grounds of reduced liability and increased marketability. Overall, these studies demonstrate economic consequences and impacts of new import regulations, such as SPS and TBT, on exporting countries, in particular, developing countries. This leads to developing and forming an understanding of economic considerations as influential factors in trade, in particularly for fish and seafood sector.
4.6 Influencing Exports and Imports of Fish Products: Economic Considerations

Several publications identify economic considerations influencing fish and seafood exports and imports. Langenkamp and Love (2002) show that Australia experienced high prevalence (nearly 50%) of fish and seafood products imports, despite being a net exporter of fish and seafood products. They stated that “the producers of many wild caught (and some farmed) species find it more profitable to export than to sell on the domestic market. On the other hand, many Australian food wholesalers find it cheaper to import than to buy or process product locally” (p.16). Other causes included absence of high cross-sectoral productivity and limited wild fish stocks, which inhibit long-term growth prospects.

Curtotti et al. (2011) observe that Australia’s net exporter status changed with time; by 2010 it became a net importer of fish and seafood products, both in value and volume categories. Australia’s recent fish and seafood exports tended to be of high-value, while its fishery imports were of lower value (p.7).

4.7 Impact of Currency Exchange Rates on Imported Intermediary Inputs and Prices of Fish and Seafood Exports

Curtotti et al. (2011) describe the impact of the appreciation of the Australian dollar on exports and imports. This has made exports of Australia-produced fisheries products more expensive and thus, less competitive, in overseas markets, which resulted in decline of Australia’s exports. On the other hand, the Australian currency appreciation has resulted in decline of import prices, which made imports more attractive to consumers in the local market (p. 21). However, the import content of exports has been found to have a neutralizing effect on the impact of current appreciation on country’s exports.

In Singapore, Abeysinghe and Yeok (1998) found that lower prices of imported intermediary inputs can offset currency appreciation-led increases in export prices. Subsequently, these findings have been generalized by the European Central Bank (ECB) and the International Monetary Fund (IMF) (Bunda et al. 2008; Bayoumi, 2011). Both the ECB and IMF refer to globalization and increased prevalence of supply chains as catalysts behind the recent increases in the import content of exports. As well, a Statistics Canada report pointed out to the mitigating effect of the import content of exports on CPI and consumer prices, “A high intensity of imports in the context of a relatively high Canadian dollar and international competition, among other things, helped to reduce prices for some consumer goods” (Chaffe, 2009, p. 14). However, similarly to ECB and IMF, Statistics Canada’s findings were not also not sector specific.

The literature also sees resilience in the intermediate goods trade. According to Bems et al. (2011) during the 2008–2009 financial crises “trade in final goods fell by twice as much as trade in intermediate goods” (p. 308). This indicates that economic-driven considerations, such as changes in exchange rates of relevant currencies, behind export and import decisions, may affect the fish and seafood sector.
These studies and reports show the increased internationalization of the sector. It is thus important to take a look at international mechanisms and institutions that govern the area of aquatic animal health, and that create the framework, context, and rules for applicable and necessary regulations.

4.8 International Aquatic Animals Health Governance Structure

Brückner (2009) describes the duties and responsibilities of the World Organization for Animal Health (OIE), along with its source of legal authority and power within the international institutional framework. This includes link to the World Trade Organization (WTO)-led Agreement on Sanitary and Phytosanitary Standards (SPS). SPS empowered the OIE to serve “as the international reference organization for setting standards for the international trade in animals and animal products” (p. 142).

Thiermann (2005) focuses on inner workings of the OIE, utilized by members in decision-making for introducing and changing standards and rules. He states that countries will be able to maximize benefits of WTO membership and international trade only if they manage to achieve a full compliance with all applicable WTO and OIE rules. In the Canadian context, NAAHP was introduced as a catalyst for meeting Canada’s international obligations, and maintaining Canada’s market access.

Oidtmann et al. (2011) go beyond providing the institutional context by listing disease reporting initiatives, along with linking them to the biosecurity concept. Oidtmann et al. (2012) more recently examined the most recent publication on the international fish safety structures and institutions, incorporating various trade data. Ababouch (2006) focused the research on fish and fish products trade. While not directly mentioning OIE, he provided a thorough explanation of international institutional framework, including a description of the TBT agreement, and its rationale. Bokma (2006) makes a similar argument, but on the micro level, focusing on the operational side of aquatic animal health management. He provides the operational level description of the American aquatic animal health management system before switching to a more general discussion concerning the balancing act the regulatory animal health officials have to engage in. Bokma (2006) states that striving towards the safe trade of animals and animal products, based on international standards should not result in trade-hindering burdens (p. 87).

Overall, these sources point to the importance of establishing reasonable science-based technical standards, which would not result in unnecessary impediments to trade, in particular, for developing countries with a lesser technical capacity. Emphasis on science-based principles in developing aquatic animal health standards and regulatory framework is important and timely.

4.9 Aquatic Animal Health Regulatory Frameworks and Policy in Other Countries

The literature has increasingly examined the introductions and modification of aquatic animal health regulatory frameworks on national and local levels, particularly developed countries considered significant players in exports and imports of fish and seafood
products. Bernoth et al. (2008) assess Australia’s aquatic animal health framework, AQUAPLAN. Australia was the first country to introduce a national/federal regulatory framework for aquatic animal health. Overall, Bernoth et al. (2008) find “that significant benefits had been delivered to the industry” (p. 73). Berthe (2010) also refers to Australia’s gains in “comparative advantage, both in terms of production and trade” (p. 13) from being free of major aquatic diseases. Understanding Australia’s gains from the introduction of AQUAPLAN is helpful in assessing the impact of the implementation of the import control section of NAAHP on Nova Scotia Fisheries.

More detail is provided by Gaut (2000), which notes that a significant herpesvirus outbreak (the largest known fish disease outbreak) led to creation of AQUAPLAN. It describes the outbreak of the disease, while providing some estimates of the economic impact of the disease along with resultant policy developments. Crockford et al. (2005), Daszak et al. (2000), and Whittington et al. (2005) provide estimates of impact. To date, these estimates are the only figures of this kind, providing the economic impact loss data for wild/capture-based fisheries. Another analysis focuses on the origins of the disease, but not the economic component (Berthe, 2011). Additionally, Thorpe et al. (1997) assessed the impact of Australia’s responses to the herpesvirus outbreak on other industries involved in its aquatic animals sector. This study demonstrated interconnectedness within the sector.

Meanwhile, aquatic animal health regulations and policy initiatives have also occurred in other jurisdictions, such as the European Union. Oidtmann et al. (2010) describe and assess the impact of policy changes to aquatic animal health regulations within the European Union (EU), introduced through the European Commission Council Directive 2006/88/EC. While the Council Directive 2006/88/EC only applies to aquaculture rather than wild fisheries products, it provides better understanding of the economic impact of import control measures on trade involving fish and seafood products.

4.10 Introducing Aquatic Animal Health Regulations: Economic Considerations

The literature also considers the economic catalysts and driving forces behind the introduction of aquatic animal health regulations. Philip et al. (1999) communicate the necessity of a national-level approach towards developing aquatic animal health policies, based on economic considerations. Economic and Cost Benefit Analysis (CBA) were cited as important tools, which would help determine effectiveness of the approach. In Canada, A Business Case in Support of a National Aquatic Animal Health Program (DFO, 2002) used qualitative and quantitative analysis techniques, and economic data, such as production losses from disease outbreaks to provide the basis for the Government of Canada framework for aquatic animal health. Le Gall (2006) articulated a rationale for public investment in aquatic animal health on economic and socio-economic reasons. Fofana and Moran (2007) added rationale for public investments in aquatic animal disease surveillance and prevention initiatives, through demonstrating cost-effectiveness of preventative measures.
Economic benefits of preventative measures were addressed in the *Aquatic Animal Health Evidence Plan 2011/12* by the UK Department for Environment, Food and Rural Affairs (Department of Food, Environment and Rural Affairs, 2011, p. 2). In the United States, Baya et al. (2005) provided best practices example of stakeholder engagement concerning introduction of aquatic animal health measures on the state level. They focused on West Virginia, which offered free inspection services to salmonid producers in 2001 and 2002, as part of stakeholder outreach efforts. This led to a high degree of stakeholder acceptance because West Virginia demonstrated the benefits of a new regulation. While not focusing on import control measures, the article highlights best practices concerning stakeholder engagement and buy-in to new aquatic animal health regulations by emphasizing prevention of disease-related economic losses from possible disease outbreaks.

Economic losses caused by the loss of market access due to an absence of a national aquatic animal health regulatory framework were cited in the *Report on General Surveillance in Pacific oysters and Manila clams in British Columbia (Fall 2006-Spring 2009)* (Canadian Food Inspection Agency, 2009). The report specified losses in the excess of million dollars from the 2003 European Union (EU) measure, effectively banning Canada’s exports of molluscs to the EU (p. 8). Having concrete economic loss figures helps justify a regulatory regime.

Mumford et al. (2009) discuss mitigating economic losses from aquatic animal disease outbreaks by looking at insurance schemes from other sectors and jurisdictions. Heikkila (2011) approaches the issue from a broader perspective, through focusing on biosecurity. Conceptually, biosecurity goes beyond aquatic animal health by incorporating terrestrial animal health matters, along with environmental considerations. Heikkila (2011) reviews nearly 231 biosecurity-related studies and lists economic losses from broader biosecurity-related causes, including terrestrial animal diseases and alien species (p. 130). Drewe et al. (2011) provide best practices and recommendations, having assessed 99 articles examining 101 biosecurity-related surveillance programs, and note the importance of economic evaluation of such programs.

Some articles cite specific economic losses from disease outbreaks, including loss of market access as forms of economic consideration leading to developments in the aquatic animal health policy area. Bondad-Reantaso et al. (2005) provide the list of economic losses from aquatic disease outbreaks and national aquatic animal health policy developments. Their research is focused on aquatic animal health issues in Asia, justified on the grounds of Asia’s 90% market share of aquaculture, which is also the world’s fastest growing food-producing sector (p. 249). In addition to providing data on economic losses, Israngkura and Sae-Hae (2002) proposed a then new economic quantification methodology for calculating economic losses, which involves quantifying costs “at the farm level, at the national level, and via the farmer's investment decision in disease control” (p. 55). Mohan and Walker (2009) discussed determinants of success in implementing aquatic animal health regulations by stating that “International cooperation and productive alliances of governments, industry and the community will be required to
underpin the goal of profitable and environmentally sustainable aquaculture
development” (p. 143).

Overall, these studies show the trends in the aquatic animal health literature. There are
significantly more data and studies on aquatic animal diseases and their economic
impacts for aquaculture in comparison to wild/capture fisheries. All of these studies note
the importance of preventative measures in terms of their economic impact, which would
inform a SWOT analysis.

4.11 Differences in the Availability of Information on the Economic Impact of Diseases in
Aquaculture and Wild-based Aquatic Animals

Thrush et al. (2011) observe the differences in the availability of information on the
economic impact of diseases in aquaculture and wild-based aquatic animals, which can
explain the above-mentioned absence of data on economic impact of diseases for
wild/capture fisheries. They note that for aquaculture, the impact of diseases tends to be
described in monetary terms. However, the impact of diseases for wild-based aquatic
animals tends to be described in terms of changes in population, usually reductions.
Additionally, they note data collection challenges due to “the lack of reports from some
regions with developing countries with significant aquaculture or fishery production” (p.
1). Insufficient technological capabilities and under-reporting were cited among possible
causes for these data gaps. Still, available data for aquaculture-based economic impacts
can supplement the limited availability of such data for wild-based aquatic animals.

Cawthorn (2011) examines data collection challenges pertaining to aquatic animal
diseases in lobsters by noting “major challenges associated with evaluating infectious and
non-infectious diseases in marine environments” (p. 71). He notes this results in fewer
studies of the lobster population, despite their economic value, but attributes this to a low
number of lobster diseases, in comparison to other aquatic animals. Nova Scotia is
explicitly mentioned as the province where the majority of lobsters are harvested in
Canada. Similar conclusion can be found in Hill (2011) which, while recognizing the
economic importance of crustacean diseases, states that:

Although numerous infections have been observed in wild crustaceans, with a few
exceptions there is a paucity of evidence for outbreaks of clinical disease and
mortalities in the wild and no conclusive evidence yet for disease causing
significant population declines. (p. 1)

In connection to Atlantic Canada and wild salmon specifically, Gardner Pinfold (2011)
inform of the significance of the Atlantic salmon to the Maritimes economy. It assessed
the value of Atlantic salmon in terms of the economic impact towards the GDP and
employment, and found the economic impact of the wild salmon to be close to the
economic impact of aquaculture-based salmon. As well, the study communicated the
importance of various intervention measures taken up by public, private, and third
sectors. Gardner Pinfold (2011) quantifies the economic significance of wild Atlantic
salmon, which is very important for Nova Scotia fisheries sector, given the shortage of economic data for wild-based aquatic animals.

Overall, these sources point out to challenges related in quantification of economic data for wild-based aquatic animals. This helps provide reasons for less economic data for wild-based aquatic animals in comparison to aquaculture-based aquatic animals. However, despite less data, the certainty of economic losses due to the absence of various aquatic animal health-related regulations is effectively proven and demonstrated, which is helpful for assessing the future of the sector.

4.12 Conclusion: Drawing it Together with an Analytic Framework

The literature review examined a variety of topics relevant to answering the research question. As surprising as it may appear, there are no “smoking-gun” sources in the literature that answer the question directly. This is understandable, given that the first national aquatic animal health framework was established only in 1996. Similarly, the import content of export concept was only proposed in the literature in 2001 within the context of international trade and connection between imports and exports. Since the literature assessing the impact of import control portion of aquatic animal health regulations on trade was not available, it necessitated broadening the scope to SPS and TBT regulations. Additionally, obtaining more economic data in connection on aquatic animal diseases would help answer the research question, since prevention of economic losses from aquatic animal diseases was arguably one of the underlying and core reasons for enacting aquatic animal health regulations.

Figure 3 (see next page) sets out the conceptual framework, linking the major themes from this section, in the context of international trade flows. Additionally, Appendix E of this report contains a diagram of the international governance structure for aquatic animal health, starting from international organizations, and going all the way to the import control regulation of NAAHP.

Now that the theory and concepts guiding the report have been examined in the literature review, the next two sections will provide the key data and statistics as that the basis for a subsequent SWOT Analysis in order to assess the impact of the implementation of the import control section of NAAHP on Nova Scotia fisheries. Sections 5 and 6 will, respectively, examine Nova Scotia fisheries sector through the domestic performance and international trade lenses.
Figure 3: Conceptual Framework

- Domestic Sources
- Imported Sources
- Nova Scotia Fisheries Output
- Domestic Sales
- Barriers to Trade (Yes/No)
- Exports

Imported Inputs

Yes

NAAHP Import Control Measures (Aquatic animal health regulations) – Yes/No

No

Not allowed into Canada

Aquatic animal health measures in other countries

Economic Considerations (Price, Currency Exchange Rates)

Presence of aquatic animal diseases in exported products or elsewhere in Canada

Exports cannot proceed due to some of the factors outlined below
5. NOVA SCOTIA FISHERIES: DOMESTIC SECTOR PROFILE

This section will inform of fisheries sector’s economic performance and its significance to Nova Scotia’s economy through the use of quantifiable and commonly accepted economic indicators, such as Gross Domestic Product (GDP), number of businesses, profitability, production value, and employment levels. It will largely focus only on the two fishing-related sectors in accordance with the North American Industry Classification System (NAICS): Fishing, Hunting, and Trapping (NAICS 1141 - unprocessed), and Seafood Product Packaging and Processing (NAICS 3117 - processed), because of their economic significance to Nova Scotia. As indicated in Section 1, aquaculture was not a focus of the report, rather the focus was on the Fishing, Hunting, and Trapping, and Seafood Product Packaging and Processing sectors.

5.1 Fishing, Hunting, and Trapping Sector

In this sub-section, Nova Scotia’s domestic performance data for the Fishing, Hunting, and Trapping sector, consisting of wild capture fisheries-based and unprocessed products, is introduced using quantifiable economic indicators: GDP, Number of Establishments (Employer and Non-Employer), Profitability, Employment, and Value of Seafisheries Commercial Catches (by species).

Gross Domestic Product (GDP). In 2012, Nova Scotia’s GDP for the Fishing, Hunting, and Trapping sector was $458.8 million. 2 Newfoundland and Labrador ($252.4 million), British Columbia ($139.7 million), and New Brunswick ($128.9 million) were the runner-ups. Nova Scotia maintained the sector’s highest GDP among Canada’s provinces and territories since 2007 (the first available year for these statistics), when it was $335.2 million (Statistics Canada, 2013).

The $458.8 million Fishing, Hunting, and Trapping sector GDP represented 1.4% of Nova Scotia’s $32.5 billion total GDP. This put Nova Scotia second among the major fishing provinces in terms of the Fishing, Hunting, and Trapping sector GDP’s share of total provincial GDP. Prince Edward Island was first, with 2%. Newfoundland and Labrador was third, with 0.97%. New Brunswick was fourth, with 0.48%, and British Columbia was fifth, with 0.07% (Statistics Canada, 2013).

Number of Establishments (Employer and Non-Employer). In 2011, Nova Scotia led all provinces and territories in the number of establishments within the Fishing, Hunting, and Trapping sector, with 2,891 establishments, accounting for 30.1% of Canada’s total number of establishments within the sector.3 That put Nova Scotia far ahead of its runner

1 Certain data, such as GDP, is provided by Statistics Canada for the Fishing, Hunting, and Trapping sector as a whole, rather than just for the Fishing sector. “The contribution of fishing to the GDP of this category is estimated at 90% by Statistics Canada” (DFO, 2013a, p. 1).
2 GDP is in basic prices, in chained 2007 dollars
3 Data is taken “from Statistics Canada’s Canadian Business Patterns Database which offers statistical information based on the Business Register” (Industry Canada, 2012c).
ups, British Columbia and New Brunswick, with 1,659 (17.3%) and 1,539 (16.0%) establishments, respectively (Industry Canada, 2013a).

Nova Scotia’s 2,891 establishments within the Fishing, Hunting, and Trapping sector amounted to 5.4% of Nova Scotia’s total number of establishments. This put Nova Scotia second among provinces in terms of the Fishing, Hunting, and Trapping sector’s share of total establishments, after PEI’s 10.5%. Nova Scotia was followed by Newfoundland and Labrador (4.4%), New Brunswick (3.7%), and British Columbia (0.5%) (Industry Canada, 2013b).

Nova Scotia’s 2,891 establishments can be further broken down into two categories: employer and non-employer/indeterminate. In this context, employers are considered to be entities that employ individuals. Non-employer establishments are defined as owner operated entities that do not employ any individuals, as “the owners do not pay wages or salaries to themselves as an employee of the company.” However, “they may have work forces, which may consist of contracted workers, part-time employees, family members or business owners.” Indeterminate establishment is when “the employment type of an establishment cannot be determined” (Industry Canada, 2013a, Establishment by Employment Type and Region section, para. 2).

In 2011, Nova Scotia led other provinces and territories in the number of employer establishments, with 2,011, accounting for 40% of Canada’s total number of employer establishments within the Fishing, Hunting, and Trapping sector. This put Nova Scotia well ahead of its closest runner-ups, New Brunswick (1,312), and Quebec (703). However, Nova Scotia was third within the non-employer/indeterminate establishments category, with 880 establishments, behind British Columbia (1,350) and Newfoundland and Labrador (894), but ahead of Prince Edward Island (741) and New Brunswick (227) (Industry Canada, 2013a).

Nova Scotia’s 2011 employers within the Fishing, Hunting, and Trapping sector accounted for 6.7% of Nova Scotia’s 29,854 employers in all sectors (Industry Canada, 2013b). This put Nova Scotia first among major fishing provinces in terms of the Fishing, Hunting, and Trapping sector’s share of the total number of employers. PEI was second (5.7%), New Brunswick was third (5.1%), Newfoundland and Labrador was fourth (1.4%), and British Columbia was fifth (0.2%) (Industry Canada, 2013b).

Within the employer category, Nova Scotia led other provinces and territories in the number of micro (1-4 employees) and small establishments (5-99 employees). In 2011, Nova Scotia’s was home to 41% of Canada’s micro establishments (1,798 out of 4,363) and 30% of Canada’s small establishments (211 out of 692). New Brunswick and Quebec were close runner-ups with 1,185 and 595 micro establishments and 127 and 107 small establishments group, respectively. In terms of medium-sized establishments, Nova Scotia was second, with two establishments, behind Newfoundland and Labrador’s three establishments (Industry Canada, 2013a). Nova Scotia’s 1,798 micro establishments within the Fishing, Hunting, and Trapping sector represented 10.9% of all Nova Scotia’s establishments.

4 Based on data from Statistics Canada’s Business Register.
micro establishments. This was first among provinces. PEI was second (10.3%), and New Brunswick was third (8.4%) (Industry Canada, 2013b).

Profitability. According to Industry Canada’s SME Benchmarking Tool, in 2010, 83% of Nova Scotia’s small and medium-sized businesses (with Annual Revenues $30,000 - $5,000,000) within the Fishing (NAICS 1141) sector were profitable, representing a near 10 percentage point improvement from 74% in 2008. In 2010, Nova Scotia was closely behind Prince Edward Island (83.8%), and was slightly ahead of Quebec (82%), Newfoundland and Labrador (82%), and British Columbia (81%). As well, Nova Scotia led both the Atlantic Region (82%) and Canada as a whole (82%). However, Nova Scotia relatively considerably outperformed New Brunswick (77%). Nova Scotia also held similar ranking in 2008 and 2006. In 2008, Nova Scotia (74%) only trailed Quebec (75%), while barely topping New Brunswick (74%). However, Nova Scotia considerably outperformed Canada as a whole (69%), Atlantic Region (68%), British Columbia (69%), Prince Edward Island (68%), and Newfoundland and Labrador (60%). Nova Scotia also performed similarly well in 2006. Nova Scotia (73%) was trailing only Prince Edward Island (84%), and was ahead Canada as a whole (67%), Atlantic Region (67%), British Columbia (66%), New Brunswick (65%), Quebec (62%), and Newfoundland and Labrador (50%) (Industry Canada, 2013c).

Employment. Nova Scotia’s 13,721 Harvesters represented 3% of Nova Scotia’s 451,600 employees (total employment, seasonally adjusted) (Nova Scotia Department of Finance, 2013). In 2009, Nova Scotia led all provinces and territories in employment within the Fisheries Primary Sector (Harvesting), with 13,721, amounting to more than quarter of Canada’s 50,920 employees. Newfoundland and Labrador, New Brunswick, and British Columbia were behind with 11,636, 6,159, and 6,065 employees, respectively (N. Johnson, personal communication, March 9, 2012). This was consistent with 2008, when Nova Scotia also led Canada in the Fisheries Primary Sector (Harvesting) employment, with 13,883, more than a quarter of 52,107. Same as in 2009, Nova Scotia was followed by Newfoundland and Labrador, New Brunswick, and British Columbia, with 12,365, 6,292, and 5,985. Nova Scotia’s position and share within Canada was consistent from 2006-2008 (DFO, 2013a).

In 2008, Nova Scotia was first among the Atlantic provinces and Quebec in the “number of core and non-core fish harvesters” category, with 5,854 or 28% share. Newfoundland and Labrador and New Brunswick were closest runner-ups with 4,903 and 3,105, respectively. At the same time, Nova Scotia was second in the number of registered fishing vessels category, with 5,269, behind Newfoundland and Labrador’s 8,192 vessels (DFO, 2013a).

6 “A "Core enterprise" is defined as a fishing unit composed of a fish harvester (head of enterprise), registered vessel(s) and the licences he holds and which has been designated as such in 1996 under approved criteria. A "Non-Core enterprise" is defined as an enterprise which failed to meet these criteria in 1996” (DFO, 2013a).
Value of Seafisheries Commercial Catches (by species). In 2011, Nova Scotia was first among provinces and territories in value of seafisheries commercial catches, with $750 million, representing 36% of Atlantic Region and 41% of Canada’s figures. This put Nova Scotia significantly ahead of its runner-ups, Newfoundland and Labrador ($647 million), British Columbia ($279 million), New Brunswick ($176 million), Quebec ($149 million), and PEI ($110 million). Nova Scotia’s ranking has not changed from previous years, as it also led other provinces in the value of seafisheries commercial catches in 2010 and 2009 (DFO, 2013b).

Lobsters were the most significant species, worth $374 million, as they made up nearly half of Nova Scotia’s $750 million total commercial seafisheries catches. As well, Nova Scotia’s lobsters made up 60% of Atlantic Canada’s and Canada’s total value of lobsters ($620 million). Nova Scotia’s remaining top 5 species were Queen Crabs ($109 million), Scallops ($85 million), Shrimp ($54 million), and Haddock ($26 million). Altogether, Nova Scotia’s top 3 catches combined for 76% and top 5 catches combined for 83% share of all seafisheries catches (DFO, 2013b).

In 2011, in addition to lobsters, Nova Scotia was also Canada’s leading source of other major species (by value): scallops (90%, $84.9 million out of $94 million), haddock (99.5%, $25.9 million out of $26.1 million), herring (37.2%, $15.2 million out of $40.8 million), swordfish (98.9%, $10.5 million out of $10.6 million), and pollock (81%, $5.1 million out of $6.4 million) (DFO, 2013b).

In 2011, Nova Scotia was second among other provinces and territories in volume of commercial seafisheries catches, with 254,624 metric tonnes and 30% share of Canada’s total 850,533 metric tonnes. Newfoundland and Labrador led Canada with 283,826 metric tonnes and 33% share. Lobsters make up nearly half of Nova Scotia total value of commercial seafisheries catches, only make up 15% of total volume (DFO, 2013b).

This sub-section provided the domestic performance data for the Fishing, Hunting, and Trapping sector through the use of quantifiable economic indicators, such as GDP and Number of Establishments. Overall, these figures indicated the importance of the sector to Nova Scotia, as well as the province’s leading position and ranking in comparison to other provinces. For a summary of key statistics see Table 1 on the next page.

7 Officially, there is no commercial freshwater fishing in Nova Scotia, as freshwater fishing is limited to recreational fishing only. However, “there are catadromous and anadromous species that have a freshwater life cycle phase, such as American eels and gaspereau.” For statistical purposes, they are classified as marine species by DFO (personal communication, August 25, 2011).
Table 1: Nova Scotia Fisheries Sector Profile – Domestic Statistics

<table>
<thead>
<tr>
<th>Economic Indicator</th>
<th>Figure</th>
<th>Total</th>
<th>Percentage of Total Figure</th>
<th>Rank (among provinces)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP</td>
<td>$458.8 m</td>
<td>$32.5 billion (province)</td>
<td>1.4%</td>
<td>2nd</td>
</tr>
<tr>
<td>Number of Establishments (Out of Total Establishments within the sector in Canada)</td>
<td>2,891</td>
<td>9,594</td>
<td>30.1%</td>
<td>1st</td>
</tr>
<tr>
<td>Number of Establishments (out of Total Nova Scotia Establishments)</td>
<td>2,891</td>
<td>53,147</td>
<td>5.4%</td>
<td>2nd</td>
</tr>
<tr>
<td>Number of Employer Establishments (Out of Total Employer Establishments within the sector in Canada)</td>
<td>2,011</td>
<td>5,062</td>
<td>40%</td>
<td>1st</td>
</tr>
<tr>
<td>Number of Employer Establishments (out of Total Nova Scotia Employer Establishments)</td>
<td>2,011</td>
<td>29,854</td>
<td>6.7%</td>
<td>1st</td>
</tr>
<tr>
<td>Profitability (Percentage of profitable SMEs within the sector)</td>
<td>83%</td>
<td>Unknown</td>
<td>Unknown</td>
<td>2nd</td>
</tr>
<tr>
<td>Number of Harvesters (Out of Nova Scotia Total Employment – Seasonally Adjusted)</td>
<td>13,721</td>
<td>451,600</td>
<td>3%</td>
<td>Unknown</td>
</tr>
<tr>
<td>Number of Harvesters (In comparison to other provinces within the sector)</td>
<td>13,721</td>
<td>50,920</td>
<td>27%</td>
<td>1st</td>
</tr>
<tr>
<td>Number of core and non-core fish harvesters (Among Atlantic Provinces)</td>
<td>5,854</td>
<td>17,882</td>
<td>28%</td>
<td>1st</td>
</tr>
<tr>
<td>Value of Seafisheries Commercial Catches</td>
<td>$750 million</td>
<td>$2,107,402</td>
<td>41%</td>
<td>1st</td>
</tr>
<tr>
<td>Volume of Seafisheries Commercial Catches</td>
<td>254,624 metric tonnes</td>
<td>850,533 metric tonnes</td>
<td>30%</td>
<td>2nd</td>
</tr>
</tbody>
</table>

Sources: Data used in this table was taken from the Department of Fisheries and Oceans (DFO, 2013a) (DFO, 2013b), Industry Canada (Industry Canada, 2013a), and Statistics Canada (Statistics Canada, 2013).

5.2 Seafood Product Processing and Packaging Sector

This sub-section contains Nova Scotia’s domestic performance data for the Seafood Product Processing and Packaging sector, consisting of processed fish and seafood products. The data is brought forth through the use of quantifiable economic indicators: GDP, Number of Establishments (Employer and Non-Employer), Profitability, Employment, Production Value, Number of Licensed Seafood Processing Plants, and Narrowing Margins.
Gross Domestic Product (GDP). In 2012, Nova Scotia’s Seafood Product Processing and Packaging sector’s Gross Domestic Product (GDP) was $213 million. This made Nova Scotia third among Canada’s provinces, behind Newfoundland and Labrador, with $275 million GDP and New Brunswick’s $235 million figure (Statistics Canada, 2013). Nova Scotia’s $213 million GDP within the Seafood Product Processing and Packaging sector has accounted for 0.7% of the total provincial GDP (Statistics Canada, 2013).

Number of Establishments (employer and non-employer). In 2011, Nova Scotia led all provinces and territories in the number of establishments within the Seafood Product Preparation and Packaging sector, with 278 establishments, accounting for 31% of Canada’s total number of establishments. That put Nova Scotia far ahead of its runner ups, British Columbia and Newfoundland and Labrador, with 158 (17%) and 152 (17%) establishments, respectively (Industry Canada, 2013a).

Nova Scotia’s 278 establishments can be further broken down into two categories: employer and non-employer/indeterminate. In this context, employers are considered to be entities that employ individuals. Non-employer establishments are defined as owner operated entities that do not employ any individuals, as “the owners do not pay wages or salaries to themselves as an employee of the company.” However, “they may still have work forces, which may consist of contracted workers, part-time employees, family members or business owners.” Indeterminate establishment is when “the employment type of an establishment cannot be determined” (Industry Canada, 2013a, Establishment by Employment Type and Region section, para. 2).

In 2011, Nova Scotia led other provinces and territories in the number of employer establishments, with 216, accounting for 35.2% of Canada’s total number of employer establishments within the Seafood Packaging and Processing sector. Once again, its runner ups were far behind, with 90 (New Brunswick) and 89 (British Columbia) employer establishments, respectively. However, in terms of non-employer/indeterminate establishments, Nova Scotia was only third, with 62 establishments, behind Newfoundland and Labrador (71) and British Columbia (69) (Industry Canada, 2013d).

Nova Scotia’s 278 establishments within the Seafood Packaging and Processing sector represented 0.5% of all of Nova Scotia’s establishments. This tied Nova Scotia for second among the major fishing provinces within this category, with PEI. Newfoundland and Labrador was first, with 0.6%.

Within the employer category, Nova Scotia led other provinces and territories in the number of micro (1-4 employees) and small establishments (5-99 employees). In 2011,
Nova Scotia’s was home to 52% of Canada’s micro establishments (117 out of 240) and 31% of Canada’s small establishments (87 out of 284). However, in the Medium category (100-499 employees), Nova Scotia was only fourth, with 12 establishments, behind New Brunswick (27), Newfoundland and Labrador (24), and British Columbia (17). In the Large category (500+) employees, the only provinces with establishments were Newfoundland and Labrador (5), British Columbia (2), and PEI (1).

Nova Scotia also led Canada in another Number of Establishments category, Statistics Canada’s Annual Survey of Manufacturers and Logging (ASML), targeting “all businesses classified as manufacturers in Canada” (Statistics Canada, 2011). In 2010 (the most recent year available), Nova Scotia accounted for nearly a third of Canada’s 913 establishments and nearly a half of Atlantic Canada’s 619 establishments, within the Seafood Product Preparation and Packaging Sector, with 305 establishments. That put Nova Scotia far ahead of its runner-ups, British Columbia (150), Newfoundland and Labrador (144), and New Brunswick (112). This was consistent with 2004 (the first year of the ASML), when Nova Scotia’s 478 establishments also accounted for more than one third of Canada’s 1,295 establishments. However, between 2004 and 2010, the number of establishments has either decreased or stayed the same for all provinces and territories. Despite maintaining its top ranking, Nova Scotia recorded the biggest decline during the period, when it lost more than 100 establishments between 2004 and 2005, seeing its count drop from 478 to 368 (Statistics Canada, 2011).

As well, Nova Scotia led Canada in the number of establishments between 2000 and 2003, under the Annual Survey of Manufactures (ASM), ASML’s predecessor. ASM was different from ASML by targeting only “businesses with annual sales greater than or equal to $30,000” (Statistics Canada, 2005). In 2003, Nova Scotia’s 188 establishments accounted for more than quarter of all Canada’s establishments. That put Nova Scotia far ahead of its runner-ups, Newfoundland and Labrador (131), British Columbia (118), and New Brunswick (91). In 2000, Nova Scotia’s 205 establishments also accounted for more than quarter of Canada’s total, thereby placing it well ahead of Newfoundland and Labrador (131), British Columbia (118), and New Brunswick (91) (Statistics Canada, 2005). While the ASM methodology does not allow direct comparison with statistics obtained from the ASML, it can show Nova Scotia’s position and ranking in comparison to other provinces.

Employment. In 2011, Nova Scotia had the third highest number of employees, 6,647, within the Seafood Product Preparation and Packaging Sector. New Brunswick led Canada, with 8,461 employees, followed by Newfoundland and Labrador, with 8,444. Nova Scotia’s ranking did not change from 2004 (the first year of the data), when it was also third, with 6,955 employees, behind Newfoundland and Labrador (9,357) and New Brunswick (7,530) (Statistics Canada, 2011).

Profitability. According to Industry Canada’s SME Benchmarking Tool, in 2010, Nova Scotia was the second most profitable province within the Seafood Product Preparation and Packaging sector, as 70% of Nova Scotia’s small and medium-sized businesses (with Annual Revenues $30,000 - $5,000,000) were profitable. Nova Scotia was only trailing
Quebec’s 72%, but was ahead of New Brunswick (67%), British Columbia (62%), Newfoundland and Labrador (51%), and Prince Edward Island (47%). Also, Nova Scotia was first both regionally (62%) and nationally (64%). Nova’s Scotia’s 2010 statistics showed improvement from 2008, when Nova Scotia was third among province, with 62%, behind New Brunswick (69%) and Newfoundland and Labrador (66%), but ahead of British Columbia (44%), and Canada as a whole (61%). In 2006, Nova Scotia (67%) was second, only trailing New Brunswick (69%), and was ahead of both British Columbia (50%) and Newfoundland and Labrador (40%), and Canada as a whole (58%) (Industry Canada, 2013c).

Production Value. In 2006, the production value of processing and packaging activities for Nova Scotia Fisheries sector was around $1.1 billion. Approximately $975 million (89%) of the value-added output was exported. This marks a decline from 1999-2005, when export output was consistently at the $1.1 billion level. Due to geographic proximity, United States is Nova Scotia’s top export destination, accounting for 60% of exports. This represents a decline in the share of US-bound exports, from of 65% a decade ago. A more detailed export/import data will be provided in subsequent sections (Nova Scotia Department of Fisheries and Aquaculture, 2007a, p. 8).

Number of Licensed Seafood Processing Plants. In 2006, there were 223 licensed seafood processing plants, a drop from over 400 in the early 1990s. Out of 223 licensed plants, only 182 were operational, with 39 inactive and 2 did not provide sufficient information. Nova Scotia’s 182 operational plants were classified into four major categories: processing (106); shipping lobster (41); buyers and sellers (32); and, wholesale/retail trade (2). Processing was the only category where actual processing activities, as defined by applicable regulations took place (Nova Scotia Department of Fisheries and Aquaculture, 2007, p. 12).

In this context, processing activities referred to “cleaning, filleting, icing, packing, canning, freezing, smoking, salting, cooking, pickling, drying or preparing fish for market” (Nova Scotia Department of Fisheries and Aquaculture, 2007, p. 13). In 2006, 119 plants reported shellfish as the most dominant source of sales revenues, with the most plants listing lobsters as exclusive or most dominant source of sales revenue. There were 42 plants that reported groundfish as their leading source of sales revenue. These plants are involved in “shipping fresh and frozen product mainly to the U.S., or are producing saltfish for the U.S., Caribbean and European markets” (Nova Scotia Department of Fisheries and Aquaculture, 2007, p. 14). Among them, 16 plants were involved exporting pelagic species (herring, tuna and swordfish), and 5 plants focused on salmon processing, both in fresh and smoked form.

There are two main approaches for sourcing raw materials. The first approach involves obtaining the needed raw fish and other seafood inputs from local sources. The second approach involves importing the needed raw fish and other seafood inputs from outside of Canada. Two business models for locally sourcing raw materials are utilized by Nova Scotia processors: separation of harvesting and processing activities and integration of harvesting and processing activities into company’s operations. It should be noted that all
of these categories are not mutually-exclusive, as many plants employed more than one approach for sourcing raw materials.

Out of 102 plants reporting, as a result of the DFO’s 1978 fleet separation policy, 70 plants do not own vessels, and thus, obtain the needed raw fish and seafood inputs from independent harvesters through various business arrangements. This resulted “in intense competition for raw material and on-going cash flow constraints”, which discouraged collaboration and cooperation on policy and marketing issues (Nova Scotia Department of Fisheries and Aquaculture, 2007, p. i). Sixty out of 70 non-integrated plants reported obtaining raw materials from local sources. Only 12 plants reported dependence on imported raw fish and seafood inputs, while 8 of these plants were saltfish plants, with 20-50% share of imported inputs in final output.

The remaining 32 plants were part of businesses owning fishing vessels, which enables integration of harvesting and processing activities. They were grandfathered under the aforementioned DFO fleet separation policy. None reported obtaining raw fish and seafood materials from international sources. Also, integrated plants have shown to be the most successful (Nova Scotia Department of Fisheries and Aquaculture, 2007, p. 21).

Narrowing Margins. Nova Scotia’s seafood processing sector was observed to be experiencing difficulties on both the cost and revenue sides of the equation. On the cost side, production costs were increasing due to higher raw material and operating costs. On the revenue side, increased competitive pressures from low cost producers, greater market strength of buyers and distributors, and appreciation of the Canadian dollar against the US dollar has contributed to reductions in revenues. Particular attention should be paid to decline in value of the US dollar, given the Nova Scotia’s dependency on US fish and seafood exports, which despite slightly lessening from 80%-levels in 1990s, was still averaging 65-70% in recent years (see Table 2, next page).

This sub-section provided the domestic performance data for the Seafood Product Preparation and Packaging sector, which indicated sector’s significance to Nova Scotia, as well as its leading ranking in comparison to other provinces.

5.3 Summary of Nova Scotia Fisheries: Domestic Sector Profile

This section put forth domestic statistics for the Nova Scotia Fisheries sector, using the commonly accepted and quantifiable economic indicators, such as GDP, Number of Establishments, and Profitability. These statistics were split by two sub-sectors, in accordance to the North American Industry Classification System: Fishing, Hunting, and Trapping (unprocessed fish and seafood products), and Seafood Product Packaging and Processing (processed fish and seafood products).
Table 2: Seafood Product Processing and Packaging Sector (NAICS 3117)

<table>
<thead>
<tr>
<th>Economic Indicator</th>
<th>Figure</th>
<th>Total Figure for Nova Scotia or sector</th>
<th>Percentage of Total Figure for Nova Scotia or sector</th>
<th>Rank (among provinces)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP</td>
<td>$213 million</td>
<td>$32.5 billion</td>
<td>0.7%</td>
<td>Unknown</td>
</tr>
<tr>
<td>Number of Establishments(^{14}) (Out of Total Establishments within the sector in Canada)</td>
<td>278</td>
<td>891</td>
<td>31%</td>
<td>1(^{st})</td>
</tr>
<tr>
<td>Number of Establishments(^{15}) (out of Total Nova Scotia Establishments)</td>
<td>278</td>
<td>53,147</td>
<td>0.5%</td>
<td>2(^{nd})</td>
</tr>
<tr>
<td>Number of Employer Establishments</td>
<td>216</td>
<td>614</td>
<td>35.2%</td>
<td>1(^{st})</td>
</tr>
<tr>
<td>Number of Establishments(^{16})</td>
<td>305</td>
<td>913</td>
<td>33%</td>
<td>1(^{st})</td>
</tr>
<tr>
<td>Number of Employees</td>
<td>6,647</td>
<td>31,903</td>
<td>21%</td>
<td>3(^{rd})</td>
</tr>
<tr>
<td>Profitability</td>
<td>70%</td>
<td>N/A</td>
<td>N/A</td>
<td>2(^{nd})</td>
</tr>
</tbody>
</table>

Sources: Data taken from Industry Canada and Statistics Canada.

The data presented in this section indicated Nova Scotia Fisheries sector’s significance to the province, as well as Nova Scotia’s leading position in comparison to other provinces. However, these figures also showed that the Fishing, Hunting, and Trapping sub-sector is doing much better in comparison to the Seafood Product Packaging and Processing sub-sector. This section’s data and findings will form one basis for the SWOT Analysis (Section 7).

\(^{14}\) Statistics Canada’s Business Register
\(^{15}\) Statistics Canada’s Business Register
\(^{16}\) Statistics Canada’s Annual Survey of Manufacturers and Logging (ASML)
6. NOVA SCOTIA FISHERIES: INTERNATIONAL TRADE PROFILE

This section provides the international trade data for the Nova Scotia Fisheries sector. The international trade data will be used in the SWOT Analysis in the context of determining the significance of exports and imports to Nova Scotia fisheries, which will include looking at linkages between exports and imports, using the import content of exports concept. This data will be used to assess the impact of the implementation of the import control section of NAAHP on Nova Scotia fisheries. The international trade data will be reviewed under the four categories: North American Industry Classification System (NAICS), Harmonized System (HS) Codes, Department of Fisheries and Oceans (DFO), and Import Content of Exports.

6.1 International Trade Data by the North American Industry Classification System

In this sub-section, Nova Scotia’s international trade data for fish and seafood products is analyzed using the North American Industry Classification System (NAICS). Fish and seafood products are split into three NAICS classifications: Fishing (1141), Aquaculture (1125), and Seafood Product Preparation and Packaging (3117). The data comes from Industry Canada’s Trade Data web-site (Industry Canada, 2013a).

Fishing. In 2012, Nova Scotia led Canada in Fishing, with 56% of total exports within the NAICS 1141 category, out of $768 million. In 2012, Nova Scotia Fishing exports were valued at $433 million. British Columbia and New Brunswick were Nova Scotia’s distant runner-ups, with $175 million, and $89 million, respectively. Both Nova Scotia’s and Canada’s total Fishing exports declined from 2007, when they were $462 million and $818 million (Industry Canada, 2013a).

In 2012, Nova Scotia led other major fish and seafood provinces in terms of significance of Fishing exports (11%), determined by the share of Fishing exports of total provincial exports. Fishing exports made up 2.5% for Prince Edward Island (PEI), 0.60% for New Brunswick, 0.55% for British Columbia, 0.07% for Newfoundland and Labrador, and 0.02% for Quebec. Furthermore, Nova Scotia was the only province to have NAICS 1141 exports among the top 5 and only one of two provinces to have NAICS 1141 exports among the top 10 exports. Fishing exports were Nova Scotia’s third biggest exports within the NAICS category, after Tire Manufacturing ($1.03 billion) and Seafood Product Preparation and Packaging ($489 million). Meanwhile, Fishing exports are 8th in PEI, 13th in Newfoundland and Labrador and outside of top 25 in British Columbia.

In 2012, Nova Scotia’s Fishing imports amounted to $10 million. However, this constituted a major change from previous 10 years, when other than in 2011 ($11 million), the highest import figure was $7.8 million in 2004, with the imports steadily dropping between 2007 and 2010, from $2.4 million to $579,441. Canada’s total imports within the Fishing sector were $422 million in 2012.

Nova Scotia’s Canada-topping Fishing exports led to Nova Scotia’s Canada-leading trade balance in the Fishing category, amounting to $423 million. This put Nova Scotia
significantly ahead of a second-place British Columbia, with a trade balance of $124.3 million. Nova Scotia consistently led Canada in trade balance within Fishing sector since 2002. Canada’s overall trade balance within the Fishing category was $346 million. Therefore, it could be said that Nova Scotia’s $423 trade balance figure was directly responsible for Canada’s positive trade balance showing in 2012 (Industry Canada, 2013a) (see Table 3).

Table 3: Fishing (NAICS 1141)

<table>
<thead>
<tr>
<th>Exports</th>
<th>Share of Canada’s Total Fishing Exports</th>
<th>Rank Among Other Provincial Exports</th>
<th>Significance of Exports (Percentage of Total Provincial Exports)</th>
<th>Rank of Significance of Exports (among provinces)</th>
<th>Trade Balance</th>
<th>Rank of Trade Balance among provinces</th>
</tr>
</thead>
<tbody>
<tr>
<td>$433 million</td>
<td>56%</td>
<td>3rd</td>
<td>11%</td>
<td>1st</td>
<td>$423 million</td>
<td>1st</td>
</tr>
</tbody>
</table>

Seafood Product Preparation and Packaging. In 2012, Nova Scotia was third in Seafood Product Preparation and Packaging exports, with $489 million. Newfoundland and Labrador was first, with $754.4 million, New Brunswick was second, with $709 million, and British Columbia was fourth, with $452 million. Nova Scotia’s Seafood Product Preparation and Packaging exports declined from 2007, when they were valued at $503 million. This was not consistent with Canada’s overall performance, as total Seafood Product Preparation and Packaging exports rose from $2.7 billion in 2007 to $2.9 billion in 2012 (Industry Canada, 2013a).

However, in terms of share of Seafood Product Preparation and Packaging exports of total exports, Nova Scotia was second in 2012, at 12.8%, only behind Prince Edward Island’s 16.2%. Despite being nominally eclipsed Newfoundland and Labrador and New Brunswick, Nova Scotia was ahead of both in terms of share of NAICS 3117 exports. Newfoundland and Labrador’s share was 6.7% and New Brunswick’s share was 4.8%. Also, Nova Scotia was ahead of British Columbia (1.4%), and Quebec (0.4%). In 2012, Seafood Product Preparation and Packaging exports were second biggest exports for Nova Scotia, New Brunswick, and Prince Edward Island, fourth largest for Newfoundland and Labrador, and 12th largest for British Columbia.

In 2012, Nova Scotia was fourth largest importer within the Seafood Product Preparation and Packaging sector, with $145 million, ahead of New Brunswick ($117 million) and Newfoundland and Labrador ($12 million). Canada’s total imports were $2.2 billion. Nova Scotia’s trade balance was nearly $344 million, making it the third largest in Canada. Newfoundland and Labrador was first, with $743 million, and New Brunswick was second, with $592 million. Canada’s overall Trade Balance within the Seafood Product Preparation and Packaging sector was $729 million (see Table 4).
Table 4: Seafood Product Preparation and Packaging (NAICS 3117)

<table>
<thead>
<tr>
<th>Exports</th>
<th>Share of Canada’s Total Seafood Packaging Exports</th>
<th>Rank Among Other Provincial Exports</th>
<th>Significance of Exports (Percentage of Total Provincial Exports)</th>
<th>Rank of Significance of Exports (among provinces)</th>
<th>Trade Balance</th>
<th>Rank of Trade Balance among provinces</th>
</tr>
</thead>
<tbody>
<tr>
<td>$489 million</td>
<td>17%</td>
<td>2nd</td>
<td>12.8%</td>
<td>2nd</td>
<td>$344 million</td>
<td>3rd</td>
</tr>
</tbody>
</table>

Aquaculture. In 2012, Nova Scotia was fourth in Aquaculture exports, with $12 million. British Columbia led Canada with $299 million. New Brunswick was second, with $202 million, and Prince Edward Island was third, with $35 million (Industry Canada, 2013a). However, in terms of share of Aquaculture exports to total exports, Nova Scotia was fourth, with 0.3%, ahead of Newfoundland and Labrador’s 0.08% share. Prince Edward Island led Canada with 4%, followed by New Brunswick (1.4%) and British Columbia (0.94%).

Aquaculture exports are sixth biggest for Prince Edward Island, ninth for New Brunswick, twelfth for Newfoundland and Labrador, eighteenth biggest for British Columbia, and outside of top 25 for Nova Scotia. In 2012, Nova Scotia was eighths among provinces in aquaculture imports, with $137,913, ahead of Prince Edward Island ($49,627) and Newfoundland and Labrador ($3,924). New Brunswick was first, with $47 million, Ontario was second, with $25 million, and British Columbia was third, with $10 million (see Table 5).

Table 5: Aquaculture (NAICS 1125)

<table>
<thead>
<tr>
<th>Exports</th>
<th>Rank Among Other Provincial Exports</th>
<th>Significance of Exports (Percentage of Total Provincial Exports)</th>
<th>Rank of Significance of Exports (among provinces)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$12 million</td>
<td>4th</td>
<td>0.3%</td>
<td>4th</td>
</tr>
</tbody>
</table>

Combined Fishing and Seafood Product Preparation and Packaging Statistics. When NAICS Fishing and Seafood Product Preparation and Packaging export statistics are combined, Nova Scotia was first among provinces in 2012, with $922.3 million. New Brunswick was second, with $797.7 million, and Newfoundland and Labrador was third, with $762.4 million. They were followed by British Columbia ($627 million), Quebec ($261.2 million), and Prince Edward Island ($162.7 million) (Industry Canada, 2013a). Combined totals for Fishing and Seafood Product Preparation and Packaging exports accounted for nearly a quarter (24.19%) of Nova Scotia’s all exports, first among
provinces. Prince Edward Island was second (18.68%), and Newfoundland and Labrador was third (6.74%). For the display of key statistics mentioned above, see Table 6.

Table 6: Combined Fishing and Seafood Product Preparation and Packaging Statistics

<table>
<thead>
<tr>
<th>Total Exports</th>
<th>Rank among provinces</th>
<th>Percentage of Total Provincial Exports</th>
<th>Rank of Percentage of Total Provincial Exports among provinces</th>
</tr>
</thead>
<tbody>
<tr>
<td>$922.3 million</td>
<td>1<sup>st</sup></td>
<td>24.19%</td>
<td>1<sup>st</sup></td>
</tr>
</tbody>
</table>

Combined Fishing, Seafood Product Preparation and Packaging, and Aquaculture Statistics. When NAICS Fishing, Seafood Product Preparation and Packaging, and Aquaculture export statistics are combined, Nova Scotia was second among provinces in 2012, with $934 million, only trailing New Brunswick’s total $999 million figure. British Columbia and Newfoundland and Labrador rounded out the top four with $926 million and $771 million totals. Quebec and Prince Edward Island were distant fifth and sixth, with $261 million and $198 million (Industry Canada, 2013a).

Combined totals for Fishing, Seafood Product Preparation and Packaging, and Aquaculture exports accounted for quarter (24.5%) of Nova Scotia’s total exports, first among provinces. Prince Edward Island was close second (22.7%). Newfoundland and Labrador (6.8%), New Brunswick (6.8%), and British Columbia (2.9%) rounded out the top 5. For the display of key statistics mentioned above, please refer to Table 7.

Table 7: Combined Fishing, Seafood Product Preparation and Packaging, and Aquaculture Statistics

<table>
<thead>
<tr>
<th>Total Exports</th>
<th>Rank among provinces</th>
<th>Percentage of Total Provincial Exports</th>
<th>Rank of Percentage of Total Provincial Exports among provinces</th>
</tr>
</thead>
<tbody>
<tr>
<td>$934 million</td>
<td>2<sup>nd</sup></td>
<td>25%</td>
<td>1<sup>st</sup></td>
</tr>
</tbody>
</table>

This sub-section analyzed and presented the international trade data for Nova Scotia Fisheries, using the North American Industrial Classification System. The Fisheries sector was split into three sub-sectors: Fishing (unprocessed wild capture-based fish), Seafood Product Preparation and Packaging (processed), and Aquaculture (farm-based fish). On the whole, the data presented in this sub-section pointed to the significance of Fishing and Seafood Product Preparation and Packaging sectors to Nova Scotia, in terms of international trade figures. In particular, the Fishing sector’s export statistics were in leading position in comparison to other provinces.
In addition, this sub-section also presented combined international trade data statistics of the above sub-sectors. These combined figures affirm the importance of Fisheries-related exports to Nova Scotia by showing that Fisheries-related exports account for about a quarter of Nova Scotia’s total exports.

6.2 International Trade Data by HS Codes

This sub-section will assess Nova Scotia Fisheries international trade using the Harmonized System (HS) Codes system. The sector will be assessed by looking at Nova Scotia’s top 25 exports, by product groups (HS4 Codes) and products (HS6 Codes).

Top 25 Exports by Product Groups (HS4 Codes). In 2012, there were five fish and seafood-related product groups among Nova Scotia’s top 25 exports, using HS4 Codes. “Crustaceans - Whether In Shell Or Not, Live Fresh, Chilled Frozen Dried Salted Or In Brine; Smoked” were Nova Scotia’s second highest product group export, worth $572.7 million. They were followed by “Molluscs, Whether In Shell Or Live, Fresh, Chilled, Frozen Dried, Salted Or In Brine, Smoked Fit For” (4th, $104.5 million), “Fresh Or Chilled Fish (Excluding Fish Fillets)” (7th, $77 million), Fish (Incl. Fish Meal) - Dried, Salted, Smoked Or In Brine (15th, $48 million), and Frozen Fish (Excluding Fish Fillets) (21st, $30 million).

<table>
<thead>
<tr>
<th>Product</th>
<th>Value</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crustaceans - Whether In Shell Or Not, Live Fresh, Chilled Frozen Dried</td>
<td>$572.7 million</td>
<td>2nd</td>
</tr>
<tr>
<td>Salted Or In Brine; Smoked</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molluscs, Whether In Shell Or Live, Fresh, Chilled, Frozen Dried, Salted</td>
<td>$104.5 million</td>
<td>4th</td>
</tr>
<tr>
<td>Salted Or In Brine, Smoked Fit For</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fresh Or Chilled Fish (Excluding Fish Fillets)</td>
<td>$77.4 million</td>
<td>7th</td>
</tr>
<tr>
<td>Fish (Incl. Fish Meal) - Dried, Salted, Smoked Or In Brine</td>
<td>$47.6 million</td>
<td>15th</td>
</tr>
<tr>
<td>Frozen Fish (Excluding Fish Fillets)</td>
<td>$30.2 million</td>
<td>21st</td>
</tr>
<tr>
<td>Total</td>
<td>$832.4 million</td>
<td></td>
</tr>
<tr>
<td>Nova Scotia Total Exports</td>
<td>$3.9 billion</td>
<td></td>
</tr>
<tr>
<td>Percentage</td>
<td>22%</td>
<td></td>
</tr>
</tbody>
</table>

Top 25 Exports by Products (HS6 Codes). In 2012, there were six fish and seafood-related products among Nova Scotia’s top 25 exports by products (HS6 Codes). “Other Lobsters NES – Not Frozen” was Nova Scotia’s third highest exported and highest seafood exported product, worth $307 million. They were followed by “Crabs - Frozen” ($132 million) and “Cold water shrimps and prawns” ($76 million). The rest of seafood products were “Scallops – frozen, salted, dried or in brine” ($68 million), “Lobsters, (Homarus Spp) – Frozen” ($56 million), and “Scallops - Live, Fresh or Chilled” ($30 million) (Industry Canada, 2013b). In 2012, there were no fish and seafood products among Nova Scotia’s top 25 imports (Industry Canada, 2013b). For the display of key statistics mentioned above, see Table 9.

Table 9: Nova Scotia Top 25 Exports, By Products

<table>
<thead>
<tr>
<th>Product</th>
<th>Value</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Lobsters NES – Not Frozen</td>
<td>$307.3 million</td>
<td>3rd</td>
</tr>
<tr>
<td>Crabs – Frozen</td>
<td>$132 million</td>
<td>5th</td>
</tr>
<tr>
<td>Cold water shrimps and prawns</td>
<td>$75.8 million</td>
<td>7th</td>
</tr>
<tr>
<td>Scallops – frozen, salted, dried or in brine</td>
<td>$67.9 million</td>
<td>9th</td>
</tr>
<tr>
<td>Lobsters, (Homarus Spp) – Frozen</td>
<td>$55.7 million</td>
<td>12th</td>
</tr>
<tr>
<td>Scallops - Live, Fresh or Chilled</td>
<td>$30.3 million</td>
<td>23rd</td>
</tr>
<tr>
<td>Total</td>
<td>$669 million</td>
<td></td>
</tr>
<tr>
<td>Nova Scotia Total Exports</td>
<td>$3.9 billion</td>
<td></td>
</tr>
</tbody>
</table>

This sub-section looked at Nova Scotia Fisheries international trade statistics from the HS Codes perspective, on products basis, rather than sectoral basis. Both HS4 and HS6 categories indicate the importance of Fisheries-related exports to Nova Scotia.

6.3 International Trade Data by DFO Statistics

Total Exports and Imports. In 2012, Nova Scotia’s total fish and seafood commodities exports, from wild capture fisheries-based and aquaculture-based sources, were valued at $915.4 million, second among provinces, trailing only New Brunswick ($967.2 million). Nova Scotia has been second among provinces since 2008 (DFO, 2013c).

In 2012, Nova Scotia’s top three fish and seafood exports, by species, were: lobsters ($374 million), Snow Queen Crabs ($101 million), and scallops ($98 million). Lobsters accounted for 41% of exports, and were mostly exported in unprocessed form. Altogether, Nova Scotia’s top 3 exports accounted for 63% of all fish and seafood exports (DFO, 2013d).
In 2012, Nova Scotia’s fish and seafood imports were worth $155 million, fifth in Canada. British Columbia was first, with $835 million, followed by Ontario ($810 million), Quebec ($437 million), and New Brunswick ($309 million) (DFO, 2013d).

Wild Capture-based Fisheries Exports. Nova Scotia’s trade profile was significantly different when accounting only for wild capture fisheries-based exports, excluding aquaculture-based fish and seafood products. In 2011, Nova Scotia led other provinces and territories, and accounted for a quarter of Canada’s wild capture fisheries exports (25.3%), amounting to $899 million. Newfoundland and Labrador and New Brunswick rounded up the top three with $852 million and $674 million, respectively, while British Columbia was fourth, with $578 million (DFO, 2012).

In 2011, Nova Scotia’s share of wild capture fisheries exports out of total fish and seafood exports was 99.71%, second highest in Canada, after Quebec’s 99.8% and highest among major fish and seafood provinces. Newfoundland and Labrador was closely behind, with 99.1%, followed by New Brunswick, Prince Edward Island, and British Columbia, with 80.9%, 80.84%, and 63.4% (DFO, 2012).

Below is an illustration of Canada’s wild capture fisheries exports statistics.

![Canada's Wild Capture Fisheries Exports](image)

Source: Department of Fisheries and Oceans (DFO, 2012).

Overall, in 2011, Canada’s total wild capture fisheries-based exports were more than $3.5 billion, representing an increase from $3.4 billion in 2010. For more detailed information, please refer to Appendix D. For key statistics mentioned above, see Table 10 (next page).
Table 10: DFO Export/Import Statistics

<table>
<thead>
<tr>
<th>Total Nova Scotia Fishing Exports (Wild Capture and Aquaculture) + Rank</th>
<th>Wild Capture Exports + Rank</th>
<th>Percentage of Canada’s Total Wild Capture Exports + Rank</th>
<th>Share of Wild Capture Fisheries exports out of Total Fish and Seafood Exports + Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>$915.4 million (2nd)</td>
<td>$899.5 million (1st)</td>
<td>25.3% (1st)</td>
<td>99.71% (1st)</td>
</tr>
</tbody>
</table>

Source: Department of Fisheries and Oceans (DFO, 2012a).

This sub-section informed of Nova Scotia’s exports and imports using the Department Fisheries and Oceans (DFO) statistics. These DFO figures differentiated between total Fisheries exports (wild capture-based fisheries and aquaculture), and wild capture-based exports. International trade data for wild capture-based fish and seafood products demonstrate the importance of wild capture-based fisheries to Nova Scotia.

6.4 International Trade Data by Import Content of Exports

It is important to examine the links between Nova Scotia’s and Canada’s exports and imports statistics. As mentioned in Sections 3 and 4, quantifying the links between exports and imports would help in assessing the preliminary impact of the import control section of NAAHP on Nova Scotia, and thus, answer the research question.

On the surface, Canada’s economic indicators indicate the significance of trade, in particularly, for exports. In 2011, Canada’s Exports-to-GDP ratio was 31%, represented an improvement from 29.4% in the preceding year and 28.7% in 2009 (Department of Foreign Affairs and International Trade, 2013, p. 45). However, it was still below the 2007 and 2008 levels, when it reached 35% and 35.3%, as well as below the all-time highest 45.3% in 2000. Conceptually, Canada’s 2011 Exports-to-GDP figure indicated that almost one-third of Canada’s domestic output is exported, and thus, indicating the importance of exports for the Canadian economy.

The latest Exports-to-GDP figure for Nova Scotia is from 2007, estimated at 21.6%, which represented a slight decline from 21.8% in 1997 (the first year available). For the period between 1997 and 2007, Nova Scotia had the highest Exports-to-GDP ratio in 2000, amounting to 26.2% (APEC, 2011, p. 98). However, Exports-to-GDP ratio is not considered to be the most reliable measure of the reliance of economies on exports. Export statistics are presented as gross figures, which include the total value of exported products and services. As a result, the value of imported intermediary inputs is included in export figures. The share of imported inputs in a product or service is conceptually called “import content of exports”. Meanwhile, GDP only includes the economic value of domestic activities and processed utilized during the course of production and creation of a given product and/or service. Therefore, a more accurate measure is Value-added-

17 First among major fish producing provinces. Second overall (after Quebec, which is not considered to be a major fish-producing province).
Exports-to-GDP ratio, which only includes the economic value of domestic production processes of the exported product/service (Byrd and Généreux, 2004, p. 4).

Canada’s most recent value-added exports-to-GDP data is for 2007, estimated at 20.4%, representing a slight decrease from 21.3% in 1997, and 21.5% in 1986. The corresponding value-added exports-to-GDP figure for Nova Scotia is 12.8%, representing a slight increase from 11.5% in 1997. Nova Scotia’s highest Value-added Exports-to-GDP data was 15.2% in 2000 and has been in steady decline since 2003, falling from by 2 percentage points, from 14.8% to 12.8% in 2007. Overall, the changes observed in Value-added Exports-to-GDP data for Canada and Nova Scotia are consistent with changes observed in Exports-to-GDP data, since both were at their highest in 2000 (APEC, 2011, p. 98). For key statistics mentioned above, see Table 11 just below.

Table 11: Canada Statistics

<table>
<thead>
<tr>
<th>Exports-to-GDP (Aggregate)</th>
<th>Value-added Exports-to-GDP (Aggregate)</th>
<th>Percentage of Value-added Exports in Fish and Seafood Sector</th>
<th>Import Content of Exports in Fish and Seafood Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>35%</td>
<td>20.4%</td>
<td>60%</td>
<td>26%</td>
</tr>
</tbody>
</table>

Source: APEC (APEC, 2011, p. 48).

In 2007, value-added exports made up 66.8% of all Nova Scotia’s exports in the Fish, seafood, and trapping products sector, while the 61.7% corresponding figure for Canada as a whole. Meanwhile, for all industries, Canada’s share of value-added exports out of total exports was 60% on the aggregate level, slightly above Nova Scotia’s 59% share (D. Chaundy, personal communication, November 16, 2011).

In 2007 (the latest year available), Nova Scotia’s import content of exports for Fish and Seafood products was 21.5%, a decline from 23.3% in 1997 (the first available year for the data). Between 1997 and 2007, Nova Scotia experienced highest import content of exports rate in 2000 when it climbed to 28.9%. In 2007, Nova Scotia’s import content of exports for fish and seafood products was second lowest among Atlantic provinces, after Prince Edward Island, with 19.2%. The highest rate, 28.5%, was recorded in Newfoundland and Labrador, followed by New Brunswick, with 22.1%. At the same time, the import content of exports for Fish and Seafood products was 24.1% for Canada as a whole. Unlike Nova Scotia, this represented an increase from 21.1% in 1997 (D. Chaundy, personal communication, November 16, 2011). For the display of key statistics mentioned above, please refer to Table 12 (see next page).

In 2007, Nova Scotia’s overall import content of export rate was 23%. This was an increase from 19% in 2003, and a decline from 26% in 1999 (APEC, 2011, p. 49) (Cross & Ghanem, 2003, p. 3.4). Comparatively, the most recent data show Canada’s overall import content of exports was 26% in 2007 (APEC, 2011, p. 48). This marked decline from 28.9% in 2003, 31.1% in 1999, and 27.6% in 1986 (the first year of such data’s availability). Still, Canada’s 1986 figure was considered to be unusually high, and was
attributed record-level increases in auto sales driven by collapse in oil prices. This has proven to be empirically correct as it fell to 25.5% and 26.1% in the next two years.

Table 12: Nova Scotia Statistics

<table>
<thead>
<tr>
<th>Exports-to-GDP (Aggregate)</th>
<th>Value-added Exports-to-GDP (Aggregate)</th>
<th>Percentage of Value-added Exports</th>
<th>Import Content of Exports for Fish and Seafood Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.6%</td>
<td>12.8%</td>
<td>66.8%</td>
<td>21.5%</td>
</tr>
</tbody>
</table>

However, subsequently Canada experienced significant rise in import content of export numbers between 1989 and 1994, when they rose from 26.1% to 32.4%. This was observed in all 21 major industries. These changes were attributed to decisions by Canadian export-dependent firms to seek new ways of lowering costs. They were prompted to do so because of the appreciation of the Canadian dollar against the US currency and recession, which on average, caused profits to decline by more than 50%. Subsequently, significantly slower rise in import content of exports between 1994 and 1999 was attributed to depreciation of the Canadian currency and improved performance of the Canadian economy as a whole.

6.5 Conclusion to Nova Scotia Fisheries: International Trade Statistics

This section has provided international trade statistics for Nova Scotia using three perspectives: North American Industrial Classification System (NAICS), Harmonized System (HS) Codes, and Department of Fisheries and Oceans (DFO). The last sub-section provided data quantifying the links between imports and exports for Nova Scotia and Canada, as well as international trade-related economic indicators, along with discussion on their limitations.

The three perspectives, NAICS, HS Codes, and DFO, provided international trade data for Nova Scotia Fisheries from different angles. NAICS split the Fisheries sector into three sub-sectors: Fishing, Hunting, and Trapping, Aquaculture, and Seafood Product Preparation and Packaging. Fishing and Aquaculture covered unprocessed fish products, while Seafood Product Preparation and Packaging covered processed fish products. International trade statistics were provided on individual sub-sector and combined basis. HS Codes provided international trade data on the products-bases, by looking at Nova Scotia’s top 25 exports. DFO statistics provided a further level of detail, providing international trade data for wild capture-based fisheries.

The last sub-section provides data on links between imports and exports, using the import content of exports figures. As well, it looked at economic indicators involved international trade statistics, such as Exports-to-GDP ratios, and listed their limitations.
Even though these three classifications provided different international trade data for Nova Scotia Fisheries, all of them pointed out to a common trend, centring on showing the significance of fish and seafood exports to Nova Scotia. NAICS, HS Codes, and DFO categories indicated dominant rankings for Nova Scotia Fisheries exports in terms of their share to Nova Scotia’s total exports, as well as in comparison to other provinces. Along with the domestic economic data, these findings will form the basis for the next section’s SWOT Analysis.
7. LOOKING TO THE FUTURE: A SWOT ANALYSIS OF NOVA SCOTIA’S FISHERIES

With the key domestic and international data for the Nova Scotia Fisheries Sector introduced, we are now in position to answer the research question: How will the import control section of NAAHP impact the Nova Scotia fisheries, in terms of trade? What follows, will use Strengths, Weaknesses, Opportunities, and Threats, and domestic and international trade statistics to assess a preliminary impact of the introduction of a regulation on a particular sector (Nova Scotia Fisheries sector, in this case). Approaching a regulation from the perspective of improving and maintaining sectoral competitiveness is superior to regarding it as an economic threat.

7.1 Strengths: Maintaining market access for Nova Scotia Fisheries exports

This sub-section will assess the preliminary impact of the implementation of the import control section of NAAHP from the perspective of the Strengths dimension of SWOT.

NAAHP was established by the Government of Canada in order to meet Canada’s international obligations, as member of the World Organization for Animal Health (OIE). The Government of Canada faced with the possibility of losing the market access for Canada’s fish and seafood exports, in the absence of having a federal aquatic animal health regulatory framework in place.

As indicated in the “Nova Scotia Fisheries: Domestic Profile” section (Section 5), the fisheries is a very important sector due to its contributions and share of Nova Scotia’s economy. Fisheries sector’s significance is shown through commonly accepted and quantifiable economic indicators, such as GDP, Number of Establishments, and Employment. Also, Nova Scotia Fisheries had dominant rankings in comparison to other provinces, as it ranked either first or second on most economic indicators. For example, in 2011, Nova Scotia’s 2,891 establishments in the Fishing (unprocessed fish and seafood products) sub-sector accounted for 5.4% of all Nova Scotia’s establishments, and for 30% all Fishing establishments in Canada, putting Nova Scotia first among other provinces.

Furthermore, as shown in the “Nova Scotia Fisheries: International Trade Profile” section (Section 6), fisheries exports tend to account for up to a quarter of all Nova Scotia’s exports. Since approximately 90% of Nova Scotia fisheries output is exported, continuation of market access is very important to the sector and Nova Scotia as a whole. Therefore, NAAHP is vital to Nova Scotia’s well-being, as it would allow Nova Scotia to maintain its dominant positions in Fisheries exports.

7.2 Weaknesses: Implications from introducing import permits

This sub-section will assess the preliminary impact of the implementation of the import control section of NAAHP from the perspective of the Weaknesses dimension of SWOT. The following two elements have been identified under this dimension:
1. The costs of import permits incurred by importers, estimated to be close to $21 million over a 10 year period (at 8% discount rate). Administrative costs of obtaining an import permit are expected to be minor, while “the cost of the measures required under the permit conditions will vary according to the measures (e.g. testing, marking animals, quarantine, etc.) and the degree to which the importer’s facilities are already equipped to meet the conditions” (Government of Canada, 2010). These additional costs could be passed to consumers.

2. The challenges for Nova Scotia-based importers of aquatic animals due to developing countries’ short-term and medium-term challenges in meeting NAAHP’s regulatory standards. As demonstrated in the literature with regards to effects of developed countries’ introduction of Sanitary and Phyto-Sanitary Standards (SPS) and Technical Barriers to Trade (TBT) measures on developing countries, this is very likely to apply in this case as well. The introduction of the import control section of NAAHP is very likely to create short-term and possibly even medium-term challenges for Nova Scotia’s importers, in light of developing countries’ partners’ possible short-term and possibly even medium-term challenges in meeting NAAHP’s requirements.

As indicated above, the Weaknesses dimension revolves around the implication of implementing the import control regulations on Nova Scotia-based importers.

7.3 Opportunities: Improved positioning and opportunities for the Fisheries sector

This sub-section will assess the impact of the implementation of the import control section of NAAHP from the perspective of the Opportunities dimension of SWOT. The following six elements have been identified under this dimension.

1. The absence of federal/national aquatic animal health regulatory framework in US. While NAAHP is currently operational in Canada, same could not be said about US. At the time of writing, the US does not have a mandatory federal/national aquatic animal regulatory framework. While the draft for the proposed national regulatory system, National Aquatic Animal Health Plan, was released by the National Aquatic Animal Health Task Force in October 2008, it is still not operational, since it is considered “a guidance document and not regulation” (NOAA Fisheries, 2011, Background section, para. 3).

2. Canada has joined the list of countries with established federal/national regulatory frameworks for aquatic animal health. This is good for Canada’s international standing when it comes to aquatic animal health matters. The literature points out to an increasing prominence of SPS, TBT, and other scientific and technical measures as important factors in international trade. Therefore, existence of NAAHP will lead to fewer disruptions for Nova Scotia fisheries exports. As indicated in Section 5, Canada’s Fisheries industry has already incurred economic losses due to the absence of a federal/national aquatic animal health regulatory framework. For instance, in 2003, Canadian molluscs industry lost close to $1.4 million in sales as a result of European Union’s new aquatic animal health regulations that adversely affected
molluscs exports. As stated in the CFIA-produced Report on General Surveillance in Pacific oysters and Manila clams in British Columbia (Fall 2006-Spring 2009), “This market loss reinforced the need for a federally led National Aquatic Animal Health Program (NAAHP) similar to that already established for terrestrial animal exports” (CFIA, 2009, p. 8).

3. The establishment of NAAHP can be lead to an improved marketability and quality for Canada’s fish and seafood exports. As indicated in Section 6.0, the value of Nova Scotia’s and Canada’s fish and seafood imports is much lower in comparison to exports. However, the importance of import should not be underestimated because the share of imported inputs of Nova Scotia’s fish and seafood exports was a little more than one fifth (21.5%). Therefore, the new control import requirements would ensure the quality and safety of Nova Scotia’s imports, which would result in an improved marketability and quality of its exports.

4. The impact on the Canadian currency’s appreciation on Nova Scotia’s fish and seafood exports can be mitigated through the use of the imported inputs. The negative impact of the appreciation of the Canadian dollar against the US dollar on Canada’s exports is widely known, as the higher value of the Canadian currency makes Canada’s exports more costly for non-Canadian buyers, which in turn, makes them less competitive. However, the appreciation of the Canadian currency has the opposite impact on imports because the lower value of foreign currency makes them cheaper to obtain for Canadian importers. As shown in the case of Australia and Singapore, lower prices of imported intermediary inputs could at least partially offset currency appreciation-led increases in export prices.

5. The new regulations allow the imports of specified aquatic animal species into Canada only if they would be certified as free of diseases. In turn, this would prevent the spread of those diseases in Canada’s wild-capture fisheries populations. The recent study, assessing the economic impact of the wild Atlantic Salmon at $255 million in the Eastern Canada provides an indication about economic contribution of wild capture fisheries stocks to Nova Scotia. Also, as Australia’s experience demonstrates, diseased aquatic animals, if imported, could cause significant consequences for the domestic industry. Australia is the first country in the world to create a national/federal aquatic animal health regulatory framework (Office of the Chief Veterinary Officer, 2002, p. 3). Australia’s AQUAPLAN was launched in 1999, following the recommendations made by the National Task Force on Imported Fish and Fish Products, calling for “the development of a strategic plan for Australian fish health issues” (Bernoth, 2002, p. 13). Establishment of AQUAPLAN came as a result of the 1995 outbreak of herpes-virus in wild pilchards stocks in Western Australia, which was estimated to cause an AUS $12 million loss to Australia’s pilchard fisheries industry (Gaut, 2000, p. 54). About 10-15% of pilchard population were estimated to be wiped out by the disease (Crockford et al., 2005, p. 1). However, the actual figures may be higher due to sampling and biomass estimate errors (Bernoth, 2002, p. 6). According to Frank C.J. Berthe, the Secretary General of the Aquatic Animals Health Standards Commission, OIE, “Pilchard herpes-virus is thought to
have been introduced to Australia through the import of frozen pilchards for tuna feed” (Berthe, 2010, p. 10). Australia’s dependency on aquatic imports was demonstrated in the National Task Force on Imported Fish and Fish Products Report, “about 36% of the total value of Australia’s fisheries production was derived from the use of aquatic imports” in 1994-1995 (Higgins, 1996, p. 27). Another pilchard herpes virus outbreak took place in 1998-1999, and resulted in the loss of AUS $15 million to the industry (Gaut, 2000, p. 55).

6. The enhancement of statistical methodology for international trade demonstrated a much lower reliance on exports than previously assumed. This could help with designing the most effective and evidence-based policies, programs, and strategies for the Fisheries sector, as well as other sectors. As mentioned in the Literature Review (Section 4), the contribution of exports to Canada’s economic output (GDP), assessed by the Exports-to-GDP ratio, is actually lower than indicated by the ratio. Exports-to-GDP ratios count the total value of the product or service, rather than only the value of what was produced in Canada. As a result, the contribution of Exports to GDP is reduced if the value of imported inputs is subtracted from the total value of the exported product. Therefore, increased focus on imports, driven by the new import control regulations, could lead to an expanded knowledge and improved understanding of the Fisheries sector by all stakeholders. That would make for a more evidence-based decision and policy making going forward.

The Opportunities arising from the enactment of NAAHP revolve around Nova Scotia’s better positioning, and resultant benefits for its Fisheries sector. This includes improved marketability and quality for Nova Scotia’s fish and seafood exports.

7.4 Potential threats of Non-Canadian entities adversely affecting Nova Scotia Fisheries

This sub-section will assess the impact of the implementation of the import control regulation of NAAHP from the perspective of the Threats dimension of SWOT. The following two elements have been identified under this dimension:

1. Possible short-term adjustments-related challenges for importers, in particularly, from developing countries. While the import control section of NAAHP stands to benefit Nova Scotia in the long-term, the possibility of possible short-term impacts should at least be acknowledged. The presence of the import control section of NAAHP might make importing difficult from countries with less comprehensive aquatic animal health regulatory regimes. The literature points out to challenges encountered by developing countries with adjusting to SPS and TBT measures introduced by developed countries (US, European Union, etc.). However, the gradual implementation of NAAHP demonstrates the effort and willingness of the Government of Canada not use the new regulatory framework as an unofficial trade barrier.

2. The potential loss of market access as a result of a unilateral declaration of exports ban by Canada’s trading partners. The presence of the import control
section of NAAHP and NAAHP as a whole, would serve as a buffer against unilateral declaration of bans on Nova Scotia’s exports, in case of discovery of an aquatic animal disease in Canada. As the most recent outbreak of BSE showed, the impact could be quiet significant. According to Statistics Canada report, discovery of BSE in Canada in 2003, in the absence of a national terrestrial animal health regulatory framework, has resulted in $2.5 billion loss in beef (cattle and calf) exports, $2 billion loss in GDP, $5.7 billion decline in total output of the Canadian economy, $1 billion decline in labour income, and a loss of 75,000 jobs (Di Piétro & Mitura, 2004, p. 5). Also, Canada has previously incurred significant economic losses as a result of aquatic animal disease outbreaks.

This sub-section focused on the threats of dimension, focusing on potential actions of non-Canadian stakeholders which could adverse impact Nova Scotia’s fisheries.

7.5 Summary: Conclusions of the SWOT Analysis

Below is the summary of the Strengths, Weaknesses, Opportunities, and Threats, in the context of assessing the impact of the implementation of the import control section of NAAHP on Nova Scotia fisheries, in terms of trade. Strengths involved maintaining Nova Scotia’s dominant positions and ranking in key economic indicators, as well market access. Weaknesses centred on cost of new import permits, as well as challenges to Nova Scotia-based importers, due to potential difficulties of partners from developing countries in meeting the new requirements. Opportunities revolved around improved appeal, marketability, and quality of Nova Scotia exports. Threats revolved around actions by Non-Canadian stakeholders, resulting in adverse impact on Nova Scotia fisheries.

The next page contains a summary chart of Strengths, Weaknesses, Opportunities, and Threats dimensions as a result of implementing the import control portion of NAAHP.
Summary Chart: SWOT Analysis

<table>
<thead>
<tr>
<th>Strengths</th>
<th>Weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Maintain Nova Scotia’s dominant positions and rankings in key economic indicators relative to other sectors in the province and compared to other provinces.</td>
<td>1. New import permits could lead to higher prices for fish and seafood products.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Opportunities</th>
<th>Threats</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Consistent with international policy trends. NAAHP could lead to new export opportunities for Canada’s fish and seafood products, especially if no NAAHP-equivalent framework in US.</td>
<td>2. Loss of market access as a result of a unilateral declaration of exports ban by Canada’s trading partners.</td>
</tr>
<tr>
<td>3. Improved Marketability/Quality of Imported fish. Leads to improved prospects for exports due to NAAHP.</td>
<td></td>
</tr>
<tr>
<td>4. Mitigate the negative impact of Canadian currency’s appreciation on Nova Scotia’s fish and seafood exports.</td>
<td></td>
</tr>
<tr>
<td>5. Prevent importing of diseased aquatic animals, leading to a healthier fish population.</td>
<td></td>
</tr>
<tr>
<td>6. Improved statistical methods demonstrating much lower reliance on exports than assumed. Can inform design of more effective policies, programs, and strategies.</td>
<td></td>
</tr>
</tbody>
</table>
8. DISCUSSION: FINDINGS IN PERSPECTIVE

The report seeks to assess the impact of the implementation of the import control section of NAAHP on Nova Scotia Fisheries in terms of trade. It proceeded with literature review, developed a conceptual framework, assembled domestic and international data, and undertook a high-level SWOT analysis of the Nova Scotia Fisheries sector. This new section provides a summary of these findings, identifies major themes, and concludes by setting out the context for the Options and Recommendations section.

8.1 Summary of Findings

The literature review looked at the import content of exports concept, important for this preliminary impact assessment because it quantifiably links exports and imports. According to Hummels et al. (2001), conventional approaches and methodologies for capturing and assessing the international trade data were no longer adequate due to the ever increasing prominence of global value chains and resultant fragmented and multi-country production. As a result, they proposed new methodologies for improving international trade statistics, which included measuring the increasing use of imported inputs in exported products. This provided conceptual and empirical support to Krugman’s (1993) theory of the importance of imports for the importing jurisdiction, which in turn, provided a conceptual understanding on how the new import control regulations could impact Nova Scotia’s exports.

The literature on the impact of aquatic animal health regulations on trade was reviewed, but the paucity of research led to a broader search on the impact of the entire Sanitary and Phyto-Sanitary Standards (SPS) and Technical Barriers to Trade (TBT) measures on trade. The literature indicated that new SPS and TBT regulations tend to have negative effect on exports from developing countries, but not from developed countries. Literature on economic factors and considerations affecting the export and import of fish and seafood showed that currency exchange rates negatively affected exports and imports. Appreciation of Australian and Canadian currencies was found to have a negative impact on exports, but also resulted in the decline of import prices, which made imports more attractive to consumers in the local market. Moreover, lower prices of imported inputs could offset the currency appreciation-driven price increases in exports.

The literature review also looked at the international governance structure for aquatic animal health. NAAHP was introduced to fulfil Canada’s international obligations to the World Organization for Animal Health (OIE). For the governance chart, please go to Appendix E. Policy developments in other jurisdictions were also reviewed. Australia is widely recognized as the first country in the world to introduce a federal/national aquatic animal health regulatory framework, which was called AQUAPLAN. That resulted in an improved comparative advantage for its fish and seafood products.

The literature review was followed by two data sections on Nova Scotia Fisheries domestic and international trade profiles. The domestic profile section provided domestic performance data using the economic indicators, such as GDP, number of businesses,
profitability, production value, and employment levels for two Fisheries sub-sectors: Fishing, Hunting, and Trapping (unprocessed and wild capture-based fish and seafood products), and Seafood Product Packaging and Processing (processed fish and seafood products). This data showed the importance of the Fisheries sector to Nova Scotia, as well as sector’s leading rankings in comparison to other provinces.

The international profile section contained international trade data using three different categories: NAICS, HS Codes, and DFO. All pointed to the importance of Fisheries exports to Nova Scotia, in terms of their share of total provincial exports. The links between imports and exports for Nova Scotia and Canada were quantified (the most recent import content of exports figures were 21.5% for Nova Scotia Fisheries sector, and 24.1% for Canada’s Fisheries sector), as well as international trade-related economic indicators, along with discussion on their limitations.

These findings were analyzed using the SWOT framework for an exploratory assessment of the impact of the implementation of the import control section of NAAHP on Nova Scotia Fisheries. Below is Figure 4, based on Figure 3 from section 4.12. This new figure incorporates SWOT analysis, in the context of international trade flows.

Figure 4: Conceptual Framework

- **Domestic Sources**
 - Nova Scotia Fisheries Output
- **Import Sources**
 - Imported Inputs
 - NAAHP Import Control Measures (Aquatic animal health regulations) – Yes/No
 - Yes
 - No
 - Not allowed into Canada
 - Aquatic animal health measures in other countries
- **Swot Analysis and Findings (Data Challenges)**
 - Economic Considerations (Price, Currency Exchange Rates)
 - Presence of aquatic animal diseases in exported products or elsewhere in Canada
- **Domestic Sales**
 - Barriers to Trade (Yes/No)
 - No Barriers
 - Exports
 - Exports cannot proceed due to some of the factors outlined below
8.2 Cross-cutting themes

In assessing the preliminary impact of import control section of NAAHP on Nova Scotia fisheries in terms of trade, several themes emerged: an insufficient data and information; the extent of alignment of NAAHP with Canadian interests; and the importance of the Fishing sector to Nova Scotia’s economy. What follows delves into each theme in turn.

Insufficient data/information

This report was commissioned to secure more data and information. However, despite significant effort to locate literature, and the discovery of some useful data and research, it is hard not to be struck by the paucity of research. For example, no peer-revied academic articles were found examining the impact of aquatic animal health regulations on trade were found in the literature. It was also challenging to find specific dollar figures for estimates of economic losses, especially for wild-capture aquatic animals as a result of diseases.

The research undertaken for this report found that conventional international trade indicators, such as Exports to GDP ratio, were not as accurate and useful as previously assumed, due to the globalization-driven changes in the way the products are produced (increasingly multi-country and fragmented production). Several publications noted that while the exports-to-GDP ratios count the full value of the product, including the value of imported inputs, they lead to inflated export figures. Also, no recent import-content-of-exports statistics were available for Canada and Nova Scotia on aggregate and sectoral basis. As a result, the up-to-date international trade statistics were not available, and could not inform this analysis.

Strategic Alignment with Canadian, Nova Scotia and International interests

As a science-based regulatory program, NAAHP directly aligns with the CFIA, Canada’s largest regulatory and science-based agency. Specifically, NAAHP aligns with the “safeguarding animal health” goal of CFIA, as well as with CFIA’s emphasis on “collaboration with domestic and international organizations that share its objectives”. As previously noted, this report is a product of a domestic collaboration involving the federal government and its provincial partners.

NAAHP also represents collaboration with international organizations, since it was established to meet Canada’s international obligations. As a member of the World Organization for Animal Health (OIE), Canada was required to have a federal aquatic animal health regulatory framework in place. Otherwise, Canada stood to be at risk of losing its market access for its fish and seafood exports, in case of the emergence of aquatic animal diseases. The discovery of BSE, combined with the absence of the federal regulatory framework for terrestrial animals, led to significant losses of market access for Canadian beef exports. Thus, NAAHP was to be used as a buffer against unilateral fish and seafood export bans by Canada’s trading partners.
Significance of the Fisheries sector to Nova Scotia

This report confirms the significance of fisheries to Nova Scotia. Moreover, Nova Scotia ranked first among provinces in several categories, such as wild capture fisheries-based exports and the value of seafisheries catches. It ranked first when export figures for Fishing and Seafood Product Preparation and Packaging sectors were combined.

Nova Scotia’s high rankings against other provinces were reflected in the sector’s significance to the province. For instance, Nova Scotia led other major fish and seafood provinces in terms of significance of fishing exports to total provincial exports. Also, for the Fishing and Seafood Processing and Packaging sectors, Nova Scotia was first in terms of these sectors’ significance, accounting for close to 25% of Nova Scotia’s total exports. Together, these figures indicate the importance of a prosperous and sustainable Fisheries sector to Nova Scotia.

8.3 Implications for designing options

These findings have several implications for moving forward. First, the NAAHP framework is crucial to maintaining and expanding the market access for Nova Scotia fisheries exports. Canada and other jurisdictions have lost the market access for their fish and seafood exports in light of outbreaks of aquatic animal diseases provide an indication about the consequences of not having a NAAHP-like buffer in place.

Second, as shown throughout the report, imports, despite being nominally lower than exports, are actually much more important than figures indicate. The link between imports and exports is quantified through the import content of exports concept. In 2007 (the latest year available), Nova Scotia’s import content of exports for fish and seafood products was 21.5%, while value-added exports made up 66.8% of Nova Scotia fish and seafood exports. More recent Nova Scotia’s statistics (for 2012), although less detailed, indicate similar state of affairs. According to the Nova Scotia State of Trade 2012, “the agriculture, forestry, and fishing sector exports a large share (66%) of its sector GDP but relies to a greater extent on imported inputs to produce exports (imports account for 39% of the value of exports)” (Nova Scotia Department of Economic and Rural Development and Tourism, 2013, p.47). These figures demonstrate the importance of the new import control requirement to Nova Scotia fisheries. The requirement to certify fish and seafood imports as disease-free would be a net-positive for Nova Scotia, given the prevalence of imported inputs in its fish and seafood exports.

Third, there is a critical gap between data and information available in the literature (academic and non-academic) and what is needed. Canada and Nova Scotia need more accurate and reliable statistics, and those gaps should be closed. Bridging those gaps would be consistent with the science-based practices of CFIA, Nova Scotia Departments of Agriculture, Nova Scotia Department of Fisheries and Aquaculture.

The next section provides the list of Options for moving forward. These options will be evaluated in the context of their effectiveness and feasibility for CFIA and Nova Scotia.
9. OPTIONS AND RECOMMENDATIONS

This section proposes options and recommendations for the CFIA and Nova Scotia for improving the data and analysis for a more accurate and comprehensive assessment of the Nova Scotia Fisheries sector. This would lead to a better informed decision-making and policy planning by all stakeholders. These options will be evaluated in the context of their effectiveness and feasibility for CFIA and Nova Scotia.

Option 1: Find a better way to co-ordinate existing resources

This option recommends the CFIA and the Government of Nova Scotia to improve the utilization and usefulness of existing data resources.

Data such as “import content of exports”, “value-added exports”, and various export/import statistics are available. For instance, Statistics Canada first published Canada’s import content of exports data in 1999. However, the last year for which Statistics Canada made the import content of exports data available was 2004, and there were no publications on the subject since 2009. Likewise, while Nova Scotia’s most recent publication, Nova Scotia State of Trade 2012, contains some import content of exports data, it was not provided at the sectoral-level of detail. The data was provided for the agriculture, forestry, and fishing sector, rather than just for the fishing sector.

Therefore, collaborative efforts to produce up-to-date report on relevant international trade and Fisheries statistics should be a priority of the senior management of CFIA and Nova Scotia officials.

In terms of feasibility, this option would not be difficult to implement because it involves utilizing the existing organizational knowledge.

On the CFIA side, the implementation of this option would involve collaboration with Statistics Canada and Department of Fisheries and Oceans. Statistics Canada would be asked to consider publishing and compiling the most recent import content of export figures, as well as other relevant international trade statistics. This would build on the existing Statistics Canada’s organizational knowledge.

Option 2: Commissioning research to close the data and literature gaps

Under this option, CFIA and Nova Scotia would take steps to bridge the data and literature gaps noted in this report. For instance, there is an absence of academic articles assessing the impact of introducing federal/national aquatic animal health regulations on trade. Having academic research on the impact of aquatic animal health measures on trade for developed and developing countries, especially from the Canadian perspective, would inform more complete assessment.

This option would involve the CFIA and the Government of Nova Scotia, in collaboration with stakeholders, such as the private sector and academic community,
improve data collection methodologies to better reflect the increasing prominence of
global value chains and multi-country production. Consultations with stakeholders might
lead to identifying additional needs for improvement, which would allow addressing
them proactively, rather than reactively.

The implementation of this option would involve collaboration with stakeholders. The
academic community would be best suited to carry out the research that would bridge the
data and literature gaps. Specifications of the commissioned research would be decided in
consultations with stakeholders.

Option 3: Better analysis of data

This option builds on the previous two options. Better co-ordination of existing resources
and improved data and statistics will provide the foundation for a more definite analysis
of the current needs and realities of the fisheries industry.

CBA is a “go-to” tool for assessing the impact of regulations. However, a comprehensive
CBA would only be feasible once sufficient data becomes available, which is expected to
be in 2015. Enhancing data-collection and analysis capabilities would lead to a more
comprehensive and industry-responsive assessment which, in turn, would lead to more
informed decision making and policy planning.

Comparing Options

Table 13 (see next page) itemizes these options according to four categories: the number
of annual meetings between Canadian and Nova Scotia representatives, and costs of
obtaining, assembling, analyzing, vetting, and publishing the data. For Option 1, at least
two meetings are expected to take place. The costs are expected to be covered through
existing departmental budgets, as this option is primarily aimed at furthering operational
activities, and enhancing the effectiveness and usefulness of existing resources.

Option 2 also requires at least two meetings. The costs are expected to be ongoing
because the new data series would need to be developed on yearly basis.

Option 3 requires at least 3 meetings. The costs are expected to be ongoing and funded
from existing budgets.

Table 14 (see p. 63) compares this report’s three options using the previously stated
feasibility and effectiveness criteria, as well as their benefits and costs. For Option 1,
Benefits are expected to be high, as its implementation lead to a better co-ordination of
existing resources. The costs are expected to be low, as they would be funded through
existing budgets. However, in order to ensure continuance improvement, these co-
ordination exercises would need to be carried out on ongoing basis, every 2-3 years. This
option’s feasibility is high because the implementation is about utilizing the existing
organizational knowledge, resources, and structures. Effectiveness is medium because
even with an improved co-ordination of existing resources, the previously noted data and literature gaps would still remain.

Table 13: Itemizing options

<table>
<thead>
<tr>
<th>Features</th>
<th>Option 1</th>
<th>Option 2</th>
<th>Option 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of annual meetings between Canadian and NS representatives</td>
<td>At least 2 meetings. First meeting will focus on what needs to be done. Second meeting will focus on progress and future steps.</td>
<td>At least 2 meetings. First meeting will focus on setting research parameters and specifications. Number of additional meetings is contingent upon the time it would take to implement the agreed-upon goals.</td>
<td>At least 3 meetings.</td>
</tr>
<tr>
<td>Costs of obtaining and assembling the data</td>
<td>Costs will be funded from existing departmental budgets on ongoing basis</td>
<td>Costs will be funded from existing departmental budgets on ongoing basis</td>
<td>Costs will be funded from existing departmental budgets on ongoing basis</td>
</tr>
<tr>
<td>- one-time only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costs of analyzing the data (research)</td>
<td>Costs will be funded from existing departmental budgets on ongoing basis</td>
<td>Costs will be funded from existing departmental budgets on ongoing basis</td>
<td>Costs will be funded from existing departmental budgets on ongoing basis</td>
</tr>
<tr>
<td>- one-time only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costs of vetting and publishing the data and research findings</td>
<td>Costs will be funded from existing departmental budgets on ongoing basis</td>
<td>Costs will be funded from existing departmental budgets on ongoing basis</td>
<td>Costs will be funded from existing departmental budgets on ongoing basis</td>
</tr>
</tbody>
</table>

The benefits of implementing Option 2 would be high because it would lead to filling the previously noted data and literature gaps. Costs are expected to be medium because of the costs of the commissioned deliverables. The feasibility is expected to be high because commissioning new research represents would require standard contracting procedures and within existing budgets. The effectiveness is expected to be medium-high.
The benefits of implementing Option 3 are expected to be high because its end result would be a comprehensive CBA, which would allow for a detailed and up-to-date impact assessment of NAAHP on Nova Scotia Fisheries. Costs are expected to be low because CBA is a “go-to” tool for impact assessments. The feasibility and effectiveness are also expected to be high.

Table 14: Evaluating the three options for consideration

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Option 1 Coordinate Existing Data Resources</th>
<th>Option 2 Commission Research to Close Data Gap</th>
<th>Option 3 Better Analysis of Data (CBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benefits</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Costs (one-time vs. ongoing data and coordination costs)</td>
<td>Low</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Feasibility</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Effectiveness</td>
<td>Medium</td>
<td>Medium-High</td>
<td>High</td>
</tr>
</tbody>
</table>

Recommended Option: Option 3

It is recommended that CFIA and the Government of Nova Scotia first focus on Option 2 because improved data collection and bridging literature gaps would lead to a more thorough analysis practices. Implementing this option would build on Option 1, since co-ordination and use of existing resources and capabilities would be considered. Once the co-ordination of existing resources has improved and research commissioned to bridge the data and literature gaps, CFIA would be in position to carry out a comprehensive CBA. That would allow for a detailed and up-to-date impact assessment of NAAHP on Nova Scotia Fisheries, which would result in more definite answers and information for CFIA, Nova Scotia, and other stakeholders.

Organizationally, Option 3 is more useful than Options 1 and 2 because of its ultimate purpose: to equip CFIA with the most up-to-date and useful tools for conducting CBA. Option 3 is a macro-level and big picture-kind of an option, while Options 1 and 2 deal with the pieces of the puzzle as a precursor for Option 3. The implementation of Option 3 would be beneficial to CFIA, both operationally and strategically, as it would enhance and strengthen CFIA’s existing procedures and organizational knowledge, leading to a more informed decision making and policy planning.

The next section presents an implementation plan for Option 3.
10. IMPLEMENTATION PLAN

This section outlines a high-level implementation plan for Option 3, recommending a better analysis of data through conducting comprehensive CBA. It is set out in three phases, based on Options 1 and 2, because as stated in the previous section, Option 3 builds on Options 1 and 2.

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1 – Implementation of Option 1 – Co-ordinate existing data resources</td>
<td></td>
</tr>
<tr>
<td>Determine what statistics and data are needed to be published</td>
<td>January 2014</td>
</tr>
<tr>
<td>Meet with Statistics Canada and Department of Fisheries and Oceans colleagues and agree on deliverables</td>
<td>February - March 2014</td>
</tr>
<tr>
<td>Publish new report with up-to-date statistics</td>
<td>April - September 2014</td>
</tr>
<tr>
<td>Phase 2 – Implementation of Option 3 - Commissioning of research to close data gaps</td>
<td></td>
</tr>
<tr>
<td>Consult with stakeholders about the missing and needed data and information</td>
<td>May 2014</td>
</tr>
<tr>
<td>Commission research reports to address those gaps</td>
<td>June 2014</td>
</tr>
<tr>
<td>Deadline for receiving commissioned research reports</td>
<td>July 2014 - June 2015</td>
</tr>
<tr>
<td>Assess the reports</td>
<td>July 2015-September 2015</td>
</tr>
<tr>
<td>Phase 3 – Better data analysis (CBA)</td>
<td></td>
</tr>
<tr>
<td>Agree on timeline for conducting CBA</td>
<td>January 2014</td>
</tr>
<tr>
<td>Carry out CBA</td>
<td>October 2015</td>
</tr>
</tbody>
</table>
11. CONCLUSION

This report sought to provide an exploratory assessment of the impact of the implementation of the import control section of NAAHP on Nova Scotia fisheries in terms of trade, arising from an agreement between the federal government and the Government of Nova Scotia. As a member of OIE, Canada is required to comply with international obligations concerning aquatic animal health matters, which it did through the establishment of NAAHP.

This exploratory assessment was carried out using a mixed-method methodology, which included a review of literature, assembling and reviewing domestic and international trade data, designing an analytic framework, and undertaking a SWOT analysis. After carrying out this assessment, it was concluded that, overall, the implementation of NAAHP would be beneficial and have positive impact for Nova Scotia. Given the significance of fisheries exports to Nova Scotia, it is vital that Canada and Nova Scotia maintain the market access, which necessitates taking measures to ensure the continued market access, including establishing the NAAHP.

This report recommended CFIA and the Government of Nova Scotia to take steps to address data and literature gaps. Having an accurate, current, and industry-responsive data would lead to better-informed decision making and policy planning.
REFERENCES

Brückner, G. K. (2009). The role of the World Organisation for Animal Health (OIE) to facilitate the international trade in animals and animal products. *Journal of Veterinary Research, 76*, 141–146

Global Trade Atlas. 2012. Canada Export to World (Transport Mode: All Modes) Via Province: All Provinces Commodity: 0305, Fish, Dried, Salted Or In Brine; Smoked Fish; Fish Meal Fit For Human Consumption [Data file]. Retrieved from http://www.gtis.com/gta/

APPENDICES

Appendix A – History and Uses of SWOT

There is no uniform agreement on the origins and creation of SWOT (Friesner, 2011). However, the research conducted by Albert Humphrey’s Team Action Model (TAM) during the 1960s at the Stanford Research Institute, is often given credit for developing the SWOT analysis tool. It was carried out on behalf of Fortune 500 companies which provided funding and data. Humphrey sought to find out “why corporate planning in terms of long-range planning was not working, did not pay off, and was an expensive investment in futility,” with the end-goal of finding a solution (ISU, 2006). This resulted in the SOFT (Satisfactory - What is good in the present, Opportunities – What is expected to be good in the future, Faults – What is bad in the present, and Threats – What is expected to be bad in the future) analysis model, considered to be the predecessor to SWOT (Creative & Cultural Skills, 2013). Satisfactory and Faults dimensions dealt with present factors, while Opportunities and Threats dimensions dealt with future factors.

SWOT was first mentioned in 1964 by Urick and Orr, during Humphrey’s seminar on “Seminar in Long Range Planning” in Zurich, Switzerland. SWOT came about when Urick and Orr proposed to replace “Satisfactory” with “Strengths” and “Faults” with “Weaknesses.” After the seminar, Urick and Orr started promoting the newly minted SWOT concept in the United Kingdom (Agyapong and Nyarku, 2011). Another significant development took place in 1982, when Heinz Weihrich proposed the 2x2 TOWS (Threats, Opportunities, Weaknesses, Strengths) matrix for carrying out the SWOT competitive analysis focus from current state to the more distant future. The TOWS Matrix was subsequently renamed to SWOT matrix (Thakur, 2010).

SWOT analysis was traditionally applied to assess the competitiveness of an industry, firm, organization, product, project, and/or service. Only two instances were found in the literature where SWOT analysis was used to assess national regulatory frameworks (Gilabert et al., 2010; Al-Kandari, and Jukes, 2011). They applied the SWOT analysis to assess the implementation of the Hazard Analysis Critical Control Point (HACCP), a national food safety regulatory framework, in Madagascar and the United Arab Emirates, respectively. However, it was used to assess structures and context of the implementation of a specified regulation, HAACP, rather than the impact of its implementation.

The British Columbia Seafood Sector and Tidal Water Recreational Fishing: A Strengths, Weaknesses, Opportunities, and Threats (SWOT) Assessment, is an example of using SWOT analysis in the public sector/government context (British Columbia Ministry of Agriculture, Food and Fisheries, 2004). However, as indicated in the report’s title, the SWOT sought to assess the competitiveness of particular sectors (seafood and tidal water recreational fishing) instead of assessing impacts of new regulations. Accordingly, the assessment in this report will utilize SWOT in a way not previously seen in the literature.

18 SWOT can also be trace back to Harvard in the 1960s and 1987 Ansoff’s Matrix (Friesner, 2011).
Number of Establishments in Canada by Type and Region: December 2011
Fishing, Hunting and Trapping (NAICS 114)

<table>
<thead>
<tr>
<th>Province or Territory</th>
<th>Employers</th>
<th>Non-Employers/Indeterminate</th>
<th>Total</th>
<th>% of Canada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alberta</td>
<td>9</td>
<td>32</td>
<td>41</td>
<td>0.4%</td>
</tr>
<tr>
<td>British Columbia</td>
<td>309</td>
<td>1,350</td>
<td>1,659</td>
<td>17.3%</td>
</tr>
<tr>
<td>Manitoba</td>
<td>59</td>
<td>111</td>
<td>170</td>
<td>1.8%</td>
</tr>
<tr>
<td>New Brunswick</td>
<td>1,312</td>
<td>227</td>
<td>1,539</td>
<td>16.0%</td>
</tr>
<tr>
<td>Newfoundland and Labrador</td>
<td>233</td>
<td>894</td>
<td>1,127</td>
<td>11.7%</td>
</tr>
<tr>
<td>Northwest Territories</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>0.1%</td>
</tr>
<tr>
<td>Nova Scotia</td>
<td>2,011</td>
<td>880</td>
<td>2,891</td>
<td>30.1%</td>
</tr>
<tr>
<td>New Brunswick</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td>0.1%</td>
</tr>
<tr>
<td>Ontario</td>
<td>84</td>
<td>167</td>
<td></td>
<td>1.7%</td>
</tr>
<tr>
<td>Prince Edward Island</td>
<td>327</td>
<td>741</td>
<td>1,068</td>
<td>11.1%</td>
</tr>
<tr>
<td>Quebec</td>
<td>703</td>
<td>876</td>
<td></td>
<td>9.1%</td>
</tr>
<tr>
<td>Saskatchewan</td>
<td>5</td>
<td>31</td>
<td>36</td>
<td>0.4%</td>
</tr>
<tr>
<td>Yukon Territories</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>0.1%</td>
</tr>
<tr>
<td>CANADA</td>
<td>5,062</td>
<td>4,532</td>
<td>9,594</td>
<td>100%</td>
</tr>
<tr>
<td>Percent Distribution</td>
<td>52.8%</td>
<td>47.2%</td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

Appendix C – Type of employer establishments - NAICS 3117

Number of Establishments in Canada by Type and Region: December 2011

Seafood Product Preparation and Packaging (NAICS 3117)

<table>
<thead>
<tr>
<th>Province or Territory</th>
<th>Employers</th>
<th>Non-Employers/Indeterminate</th>
<th>Total</th>
<th>% of Canada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alberta</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0.3%</td>
</tr>
<tr>
<td>British Columbia</td>
<td>89</td>
<td>69</td>
<td>158</td>
<td>17.7%</td>
</tr>
<tr>
<td>Manitoba</td>
<td>7</td>
<td>2</td>
<td>9</td>
<td>1.0%</td>
</tr>
<tr>
<td>New Brunswick</td>
<td>90</td>
<td>15</td>
<td>105</td>
<td>11.8%</td>
</tr>
<tr>
<td>Newfoundland and Labrador</td>
<td>81</td>
<td>71</td>
<td>152</td>
<td>17.1%</td>
</tr>
<tr>
<td>Northwest Territories</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Nova Scotia</td>
<td>216</td>
<td>62</td>
<td>278</td>
<td>31.2%</td>
</tr>
<tr>
<td>Nunavut</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>0.4%</td>
</tr>
<tr>
<td>Ontario</td>
<td>35</td>
<td>6</td>
<td>41</td>
<td>4.6%</td>
</tr>
<tr>
<td>Prince Edward Island</td>
<td>28</td>
<td>25</td>
<td>53</td>
<td>5.9%</td>
</tr>
<tr>
<td>Quebec</td>
<td>63</td>
<td>23</td>
<td>86</td>
<td>9.7%</td>
</tr>
<tr>
<td>Saskatchewan</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0.2%</td>
</tr>
<tr>
<td>Yukon Territories</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>CANADA</td>
<td>614</td>
<td>277</td>
<td>891</td>
<td>100%</td>
</tr>
</tbody>
</table>

Appendix D – Wild fish and seafood exports

Note: The percentage values for Nunavut, Northwest Territories and Yukon have been amalgamated for the purpose of this graph.

Table 3. 2011 Fish and Seafood Export Value per Province and Territory

<table>
<thead>
<tr>
<th>Province</th>
<th>2011</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newfoundland</td>
<td>852,440,285</td>
<td>24</td>
</tr>
<tr>
<td>Nova Scotia</td>
<td>899,542,406</td>
<td>25.3</td>
</tr>
<tr>
<td>New Brunswick</td>
<td>673,777,168</td>
<td>19</td>
</tr>
<tr>
<td>Prince Edward Island</td>
<td>139,279,824</td>
<td>3.9</td>
</tr>
<tr>
<td>Quebec</td>
<td>264,432,074</td>
<td>7.4</td>
</tr>
<tr>
<td>Ontario</td>
<td>88,625,795</td>
<td>2.5</td>
</tr>
<tr>
<td>Nunavut*</td>
<td>269,610</td>
<td>0.02</td>
</tr>
<tr>
<td>N.W.T.*</td>
<td>128,277</td>
<td>X</td>
</tr>
<tr>
<td>Yukon*</td>
<td>169,964</td>
<td>X</td>
</tr>
<tr>
<td>Prairies</td>
<td>59,140,497</td>
<td>1.7</td>
</tr>
<tr>
<td>British Columbia</td>
<td>577,665,949</td>
<td>16.2</td>
</tr>
<tr>
<td>Total</td>
<td>3,555,471,849</td>
<td>100</td>
</tr>
</tbody>
</table>

*The percentage values for Nunavut, Northwest Territories and Yukon have been amalgamated for the purpose of this table.

Source:

Appendix E - Aquatic Animal Health Governance Structure – Global to Local

Source: This diagram is author’s creation, with ideas taken mainly from Brückner (2009).