Supporting information for: Cyclodextrin Ion Channels

Jonathan K.W. Chui and Thomas M. Fyles*

Voltage Clamp Data Acquisition

A model BC-525A bilayer clamp (Warner Instrument Corp.) was used for planar bilayer experiments. The analogue output was filtered with an 8-pole Bessel filter (Frequency Devices, model 902) and digitized with a 330 kHz digitizer (Axon Instruments, Digidata 1200A). Data acquisition was controlled by the pClamp8 software package (Axon Instruments). Data were collected at 10 Hz, analogue filtered at 1 Hz, and digitally filtered at 50 Hz. The headstage and the bilayer chamber (3 mL polystyrene cuvette with 250 µm diameter aperture held in a 5 mL PVC holder) were placed on a floating table and electrically shielded by a grounded aluminum Faraday cage. Agar salt bridges (2 M KNO3 in 1% Agar) were used to stabilize junction potentials and were employed between the electrolyte in each well of the cell and Ag/AgCl electrodes. Electrolyte solutions were prepared from high purity salts and nanopure water.

A stock solution of diphytanoyl phosphatidylcholine (diPhyPC) in chloroform (Avanti Polar Lipids; shipped on dry ice) was divided into sealed glass vials under an argon atmosphere and stored at -12 °C. For use in an experiment, a stream of dry nitrogen was passed through the vial for 1 hour. The dried lipid was diluted with decane to give a solution concentration of 25 mg/mL in lipid.

Bilayers were formed by either brushing or dipping: after lipid in decane had been introduced by brushing, a lipid/decane film formed on the surface of the electrolyte, and bilayers could then be formed by withdrawal of 2-3 mL of electrolyte from the cell holder by syringe to expose one face of the aperture to the air-water interface held in the cell holder, followed by reintroduction of the electrolyte to oppose monolayers across the aperture in the cuvette. Bilayer quality was monitored via the capacitance and stability under applied potential, using the criteria previously described. The measured voltage was applied with respect to the trans (cuvette) side of the bilayer, making the trans side the relative ground. Digitized data files were analyzed using the pClamp10 suite of programs.

The compounds are introduced to the membrane in two ways, depending on the solvent in which the compound can be dissolved:

Direct injection - all injection experiments utilized bilayers that were apparently stable at 100 mV for periods of 20 minutes or more. Aliquots (1-5 µL of transporter solutions in MeOH were injected with a microliter syringe as close as possible to the bilayer in the free well of the cuvette holder (cis side), and gently stirred with a stream of nitrogen for 5 minutes.

Pre-mixed into lipid - in this method, 1mol% of compound (in CDCl3 or MeOH-d4) was added to the diPhyPC/CHCl3 solution, and solvent removed with a stream of N2, and bilayer membrane prepared by brushing/dipping as described above. Most of the bilayers formed with this method gave bilayers with good quality.

Of the two methods, direct injection is preferable, as it allows monitoring of pristine bilayer prior to compound introduction. Following direct injection, channel behaviour typically appears within 20
minutes of compound introduction, and persists over period of hours. Once stabilized, continuous data acquisition of at least 30-60 minutes is required to provide sufficient statistical power for the power-law analysis; shorter acquisition periods (10 minutes) are sufficient to characterize other types of behaviors.

Power Law Fitting Procedure

Fitting experimental data to a power law requires two distinct steps. The first step transforms the irregular current trace into a list of opening times; this list is then fitted to a power law distribution.

Event List Generation Manipulation of the digitally filtered traces was carried out using Clampfit 10 of the pClamp suite. A customized threshold search was used to generate the list of events. The threshold was set across the fluctuating section of the trace to maximize the number of events. Within that segment, α is insensitive to the choice of threshold. A minimum duration was fixed at 50ms. The threshold search automatically logs event start and event end from which the duration can be calculated. The resultant values were exported to the fitting program.

Power Law Fitting The list of opening durations, obtained above as a plain-text file, can then be fitted using the method of Clauset et al2, implemented in python3. The code performs the Maximum Likelihood Estimate fit, and provides α, x_{min}, n, and p-value as outputs.

Summary of bilayer activity

Annotated activity grids, as well as full conductance records (and expansions where appropriate), are provided below for every compound studied. The activity grids were prepared as previously described4. The summaries are arranged first by compound, then individual experiments. Within each experiment, the first page(s) summarizes the experimental conditions as well as activity grids charted; subsequent pages shows the full conductance record as the top panel, with expansions indicated by corresponding letters.

JC-156 bCD-CholateAmide 1M CsCl 2percent AdCOOH pH 4
inverse yellow?
Adamantyl guest

inverse flicker?
inverse flicker? No potential changes throughout.
JC-160 aCD-CholateAmide 2percent 1M CsCl pH 7

Potential/mV

Time/s

0 2000 4000 6000 8000 10000 12000 14000 16000

0 100 200 300 400 500 600 700 800 900 1000

l lipid 2%
 electroolyte
 contact injection
 brush transfer
Adamantyl guest
 lipid
 electrolyte
 nitrophenol
 electrolyte

0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015 0016 0017

IV 0->200mV

super long opening

incorrectly adjusted potential

incorrectly adjusted potential

incorrectly adjusted potential

0006 0007 0008 0009 0010 0011 0012 0013 0014 0015 0016
Incorrectly corrected junction potentials
There is definitely some of this exponential potential dependence thing going on that's worth checking out at some point.
stirred
A

800 pS

278 sec

s.d. baseline = 312 pS
The lab book is corrupted and contain no expt descriptions.
No idea what is going on with this trace?
-25mV
I don't know what is going on with this trace.
JC-138 JC-V-23 bCD-Ethis 1 percent premix AdNH2 1 M CsCl

Potential (mV) vs. Time (s)

- Lipid 1%
- Electrolyte
- Contact injection
- Brush transfer
- Ad-NH2
- Lipid 5%
- Electrolyte

Broken bilayer: 0006, 0007, 0008
No activity

Unknown conc.
JC-139 JC-V-23 bCD-Ethis 1percent 1M NEt4Br

Two level fractals
(4000 pS separation)

Lipid 1%
extrolyte
contact injection
brush transfer
AdNH3Cl
lipid
electrolyte
fractal?
JC-145 JC-V-23 bCD-Ethis 1M CsCl pH7 addn of AdCOOH

Induces leakage current

Graph showing potential over time with markers for lipid 1%, electrolyte, contact injection, brush transfer, AdCOOH, lipid, electrolyte 25mM (cup), NPN4Br, lipid, electrolyte 25mM (cup).
JC-151 bCD-Ethis 1percent 1M CsCl pH 4.5

- Lipid 1%
- Electrolyte 6.3/3.8uM
- AdCOOH / pH 4
- Lipid 67/43uM
- 1M Electrolyte
- Contact injection
- Brush transfer

Monitored addition of AdCOOH
fractal-like - no clear events