CYCLOPENTADIENYL AND RELATED DERIVATIVES OF
GERMANIUM AND TIN

by

ALEXANDER DAVISON McCARTHY
B.Sc., Queens University of Belfast, N. I., 1976

A DISSERTATION SUBMITTED IN PARTIAL FULFILMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
in the Department
of
Chemistry

We accept this dissertation as conforming
to the required standard

Dr. S.R. Stobart

Dr. G.A. Beer

Dr. R.J. Trust

Dr. G.A. Poulton

Dr. R.J. Balfour

Dr. A.H. Cowley

© Alexander Davison McMaster
University of Victoria
January 1982

All rights reserved. This dissertation may not be reproduced in whole or
in part, by mimeograph or other means without the permission of the author.
The preparation and spectroscopic properties of six polycyclopentadienyl and -methylcyclopentadienyl derivatives of germane and stannane are described. The temperature dependence of 1H and 13C NMR data are discussed, leading to conclusions regarding the nature of metallocotropic migrations in both ring systems. Metallocotropic shifts within the methylcyclopentadienyl derivatives result in the interconversion of different isomers, the relative concentrations of which depend on both the size of the metal atom and steric requirements of the substituents.

The NMR properties of a number of polyindenyl derivatives of germane and stannane are examined over a wide range of temperatures. The relative concentrations of isomers present in solutions of these compounds are consistent with zero free energy differences between the ground states of the isomers for any particular compound. Interconversion between these isomers occurs as a result of facile migration of the metal substituent across each indenyl ring. The solid state structure of one isomer of tetra(1-indenyl)stannane, the meso-form, has been determined by X-ray crystallography; some commentary on the significance of this structure which belongs to the symmetry point group S_4 is given.

Three analogues of cyclopentadiene, bearing the same asymmetric
tin substituents have been prepared and their spectral properties are discussed. The nature of the rearrangement process in these compounds is identified through the examination of diastereotopic effects among substituents on the chiral tin center. Migration in each case involves retention of configuration at the metal center and possesses characteristics similar to a Woodward-Hoffmann [1,5] shift.

The synthesis of bis(methylcyclopentadienyl)germanium(II) is described and its physical and chemical properties discussed. Synthesis and spectroscopic properties of nine germylene derivatives of enolisable diketones are described. Two platinum(0) derivatives having either bis(acetylacetonato)-tin(II) or -germanium(II) ligands in which the group IVA metal (metalloid) functions as a two electron donor have been isolated and their spectroscopic properties are described. The solid state structure of the tin complex has been determined by X-ray crystallography and some important features are discussed.

Examiners:

Dr. S.R. Stobart

Dr. G.A. Beer

Dr. T.J. Trust

Dr. G.A. Polton

Dr. W.J. Balfour

Dr. A.H. Cowley
TABLE OF CONTENTS

ABSTRACT ... ii
TABLE OF CONTENTS ... iv
LIST OF TABLES .. vii
LIST OF FIGURES ... xvi
LIST OF ABBREVIATIONS ... xiv
ACKNOWLEDGEMENTS .. xv
DEDICATION .. xvi
PREFACE .. xvii

Chapter

i INTRODUCTION ... 1
A. GENERAL ... 1
B. STRUCTURE AND REACTIVITY OF ORGANOMETALLIC AND
ORGANIC DERIVATIVES OF BIVALENT GERMANIUM, TIN,
AND LEAD ... 8
B.1. Synthesis ... 8
B.2. Structure ... 11
B.3. Reactivity ... 21
C. SIGMATROPIC MIGRATIONS IN METALLO-CARBOCYCLIC
SYSTEMS ... 26
C.1. Introduction .. 26
C.2. Theoretical Considerations ... 27
C.3. The NMR Technique as Applied to
Stereochemically non-rigid Molecules 31
(1) Theory ... 31
(ii) The use of diastereotopic groups in determining the mechanism of rearrangement in metallocyclopentadienes ... 34

C.4. Experimental Observations of Sigmatropic shifts in Metallomonohaptocyclopolyene Systems ... 38

(i) Metallocyclopentadienes 38
(ii) Metallomethylcyclopentadienes 41
(iii) Metallocyclopentamethylcyclopentadienes 45
(iv) Metallo(1-indenes) 46
(v) Metallocycloheptatrienes 50
(vi) Metallocyclononatetraenes 52
(vii) Metallocyclopropenes 52

D. GENERAL EXPERIMENTAL .. 54

D.1. Spectroscopic Methods for Characterization Based on the Nuclear Properties of Isotopes of the Group IVA Elements 54

(i) Nuclear Magnetic Resonance 54
(ii) Mass Spectrometry 56
(iii) Mossbauer Spectroscopy 59

D.2. General Experimental Procedures and Instrumentation 61

2 INTRAMOLECULAR REARRANGEMENT BEHAVIOUR OF TETRAKIS(GYCLOPENTADIENYL) AND TETRAKIS(METHYLCYCLOPENTADIENYL) DERIVATIVES OF GERMANIUM(IV) AND TIN(IV) 64
A. INTRODUCTION 64
B. RESULTS AND DISCUSSION 68
 B.1. Mass Spectral Data 68
 B.2. Mössbauer Spectral Data 72
 B.3. Vibrational Spectral Data 75
 B.4. NMR Data 75
 (i) Monohaptocyclopentadienyl Derivatives 75
 (ii) Monohaptomethylyclopentadienyl Derivatives 80
C. EXPERIMENTAL 91

3 METALLOTROPISM AND STEREOHOMUTATION IN POLYINDENYL DERIVATIVES
 OF GERMANIUM AND TIN 93
 A. INTRODUCTION 93
 B. RESULTS AND DISCUSSION 95
 B.1. Mass Spectral Data 95
 B.2. 13C NMR Data 98
 (i) SnPh$_3$(n1C$_9$H$_7$), (3.2) 98
 (ii) SnPh$_2$(n1C$_9$H$_7$)$_2$, (3.3) 104
 (iii) SnPh(n1C$_9$H$_7$)$_3$, (3.4) and
 SnBu(n1C$_9$H$_7$)$_3$, (3.5) 108
 (iv) Sn(n1C$_9$H$_7$)$_4$, (3.6) and
 Ge(n1C$_9$H$_7$)$_4$, (3.1) 112
 B.3. 1H NMR Data 116
 C. THE CRYSTAL AND MOLECULAR STRUCTURE OF
 R,R,S,S-TETRA(1-INDENYL)STANNANE 124
 D. EXPERIMENTAL 130
CONSEQUENCES OF CHIRALITY AT TIN IN SOME STANNYLCYCLOPENTADIENE ANALOGUES.......................... 132

A. INTRODUCTION... 132
B. RESULTS... 132
 B.1. Mass Spectral Data.. 135
 B.2. NMR Data... 135
 (i) Proton NMR Data... 139
 (ii) Carbon-13 NMR Data... 147
C. DISCUSSION... 149
D. EXPERIMENTAL... 156

SYNTHESIS AND PROPERTIES OF SOME BIVALENT DERIVATIVES OF GERMANIUM AND TIN.. 158

A. INTRODUCTION... 158
B. RESULTS AND DISCUSSION... 161
 B.1. Synthesis and Properties of Bis(5'-methylcyclopentadienyl)germanium(II).. 161
 B.2. Synthesis and Properties of 1,3-Diketonato and Related Derivatives of Germanium(II).. 175
 B.3. Synthesis and Structure of Bis(triphenylphosphine)bis[bis(acetylacetonato)germylene]- and Bis(triphenylphosphine)bis[bis(acetylacetonato)-stannylene]-platinum(0).. 184
C. EXPERIMENTAL... 191

REFERENCES.. 197
LIST OF TABLES

Table No.

1.1(a) Selection rules for an allowed sigmatropic shift of order [1,j] of a hydrogen atom .. 29
1.1(b) General selection rules for thermally allowed sigmatropic shifts .. 30
1.2 Approximate time scales for some different experimental techniques .. 33
1.3 Percentage natural abundance of NMR active isotopes of the group IVA elements having I = 1/2 54
1.4 Representative examples of (a) 29Si and (b) 119Sn chemical shifts .. 55
1.5 Percentage natural abundance of isotopes of the group IVA elements .. 57
1.6 Ionization potentials for the group IVA elements .. 58
1.7 Typical values of the isomer shift and quadrupole splitting for some tin-containing compounds 58
1.8 Instrumentation .. 62
1.9 Starting materials .. 63
2.1 Estimated concentrations of isomers 1 and 2 in MR₃(0¹-C₅H₅CH₃)-type systems .. 65
2.2 Physical and analytical data for compounds 2.1 - 2.6 .. 69
2.3 Mass spectral data for (a) MR₄ and (b) MR₃Cl .. 70
2.4 119Sn Mössbauer data for compounds 2.2 and 2.4 .. 72
2.5 Isomer shift values for some SnR₄-type compounds .. 73
2.6 Quadrupole splitting values for some SnR₃Cl-type compounds ... 73

2.7 Infrared spectra, 2800 - 3200 cm⁻¹ region for compounds 2.1 - 2.4 ... 74

2.8 ¹H NMR data for compounds 2.1 - 2.4 .. 76

2.9 NMR data for tetrakis(1'-methylcyclopentadienyl)germane and -stannane, compounds 2.5 and 2.6 respectively .. 84

3.1 Physical and analytical data for compounds 3.1 - 3.6 .. 96

3.2 Mass spectral data obtained for compounds 3.3 - 3.6 .. 97

3.3 ¹³C NMR resonances assigned to C¹, C² and C³ of the indenyl rings in compounds 3.1 - 3.6 .. 101

3.4 ¹³C NMR resonances assigned to C⁴, C⁵, C⁶, C⁷ and C⁸, C⁹ of the indenyl rings in compounds 3.1 - 3.6 .. 102

3.5 ¹³C NMR resonances for the phenyl groups of SnPh₄₋ₙ(¹-C₆H₄)ₙ, n = 0, 1, 2, 3, and n-butyl group of Sn(Bu₃)(¹-C₆H₄)₃ .. 103

3.6 Stereoisomerism in polyindenyl derivatives .. 117

3.7 ¹H NMR data for compounds 3.1 - 3.6 .. 119

3.8 Bond distances determined for R,R,S,S-tetra(1-indenyl)tin .. 126

3.9 Bond angles determined for R,R,S,S-tetra(1-indenyl)tin .. 127

4.1 Physical and analytical data for compounds 4.2 - 4.4 .. 134

4.2 Mass spectral data for compounds 4.2 - 4.4 (Sn(Me)(i-Pr)(Ph)C₅) .. 136
4.3 NMR data for the methylcyclopentadienyl, pentamethylcyclopentadienyl and indenyl groups of compounds 4.2 - 4.4 ... 144
4.4 1H NMR data for the methyl, iso-propyl and phenyl groups of compounds 4.2 - 4.4 .. 145
4.5 13C NMR data for the methyl, iso-propyl and phenyl groups of compounds 4.2 - 4.4 .. 146
5.1 Physical and analytical data for compounds 5.1 and 5.3 - 5.12 .. 162
5.2 Mass spectral data for bis(η5-methylcyclopentadienyl) -germanium(II) and -tin(II) .. 163
5.3 NMR data for compounds 5.1 and 5.2 ... 164
5.4 Mass spectral data for compounds 5.3 - 5.6 ... 170
5.5 Infrared carbonyl stretching frequencies for compounds 5.3, 5.5 and 5.6 ... 171
5.6 NMR data for compounds 5.3 and 5.4 ... 173
5.7 NMR data for compounds 5.5 and 5.6 ... 174
5.8 Mass spectral data for compounds 5.7 - 5.12 ... 177
5.9 Infrared carbonyl stretching frequencies for compounds 5.7 - 5.12 ... 179
5.10 1H NMR data for compounds 5.7 - 5.12 ... 182
5.11 13C NMR spectral data for compounds 5.8 - 5.12 ... 183
5.12 Infrared stretching frequencies for compounds 5.13 and 5.14 ... 185
5.13 NMR data for compounds 5.13 and 5.14 ... 185
5.14 Structural data for some platinum(0) complexes ... 186
LIST OF FIGURES

Figure

1.1 Proposed $d\pi - p\pi$ overlap in some silicon compounds .. 2
1.2 The solid state structure of bis(η^5-cyclopentadienyl)lead(II) 12
1.3 The crystal structure of (pentahaptocyclopentadienyl)-tin chloride 13
1.4 The crystal structure of (η^6-C$_6$H$_6$)Pb(AlCl$_4$)$_2$C$_6$H$_6$ 15
1.5 The crystal structure of Cr(CO)$_5$M[CH(SiMe$_3$)$_2$]$_2$, M = Ge and Sn 16
1.6 The crystal structure of Cr(CO)$_5$Sn(BuE)$_2$(pyridine) .. 17
1.7 The crystal structure of Sn(IV)Ph$_3$Sn(II)NO$_3$.. 18
1.8(a) Suprafacial migration of a hydrogen atom ... 28
1.8(b) Antarafacial migration of a hydrogen atom .. 28
1.9(a) Possible [1,3] sigmatropic migrations ... 30
1.9(b) Possible [1,5] sigmatropic migrations ... 30
1.10 The 119Sn M"ossbauer Isomer Shift scale ... 60
2.1 Fragmentation pathways for Ge(η^1C$_4$H$_5$)$_3$Cl .. 71
2.2 Variable temperature 90MHz 1H NMR spectrum of Ge(η^1C$_4$H$_5$)$_4$ 78
2.3 Room-temperature 90MHz 1H NMR spectrum of Sn(η^1C$_5$H$_4$CH$_3$)$_4$ 81
2.4 Room-temperature 13C NMR spectrum of Sn(η^1C$_5$H$_4$CH$_3$)$_4$ 82
2.5 90MHz 1H NMR spectrum of
Ge(1-C$_5$H$_4$CH$_3$)$_4$ at 27°C 86

2.6 Variable temperature 13C NMR spectrum of
Ge(1-C$_5$H$_4$CH$_3$)$_4$.. 87

3.1 Variable temperature 13C NMR spectrum of
SnPh$_3$(C$_7$H$_7$), 3.2 .. 99

3.2 Variable temperature 13C NMR spectrum of
SnPh$_4$(C$_7$H$_7$)$_2$, 3.3 105

3.3 The possible isomers present in MR$_2$(C$_7$H$_7$)$_2$ 107

3.4 Variable temperature 13C NMR spectrum of
Sn(Bu2)(C$_7$H$_7$)$_3$, 3.5 109

3.5 The possible isomers present in MR(C$_7$H$_7$)$_3$, R=Bu2, Ph .. 110

3.6 The possible isomers present in
tris-1-(2-methylnaphthyl)borane .. 111

3.7 Variable temperature 13C NMR spectrum of
Sn(C$_7$H$_7$)$_4$, 3.6 .. 113

3.8 The possible isomers present in M(C$_7$H$_7$)$_4$, M=Ge, Sn 115

3.9 Comparison of 13C NMR signals attributable to indenyl-C1
 nuclei in compounds 3.1 - 3.6 118

3.10 Variable temperature 90MHz 1H NMR spectrum of
Sn(Bu2)(C$_7$H$_7$)$_3$ in CDCl$_3$ 120

3.11 Variable temperature 90MHz 1H NMR spectrum of
Sn(C$_7$H$_7$)$_4$ in CDCl$_3$.. 121

3.12 The molecular structure for R,R,S,S-tetra(1-indenyl)tin(IV), 125
4.1 Synthetic scheme used to prepare Sn(Me)(i-Pr)(Ph)(Br).

4.2 90MHz 1H NMR spectrum of Sn(Me)(i-Pr)(Ph)$[\eta^1-C_5(CH_3)_5]$, 4.2 at 27°C.

4.3 ^{13}C NMR spectrum of Sn(Me)(i-Pr)(Ph)$[\eta^1-C_5(CH_3)_5]$, 4.2.

4.4 90MHz 1H NMR spectrum of Sn(Me)(i-Pr)(Ph)$[\eta^1-C_5H_4CH_3]$, 4.3 at 27°C.

4.5 ^{13}C NMR spectrum of Sn(Me)(i-Pr)(Ph)$[\eta^1-C_5H_4CH_3]$, 4.3.

4.6 90MHz variable temperature 1H NMR spectrum of Sn(Me)(i-Pr)(Ph)$[\eta^1-C_5H_4CH_3]$, 4.4.

4.7 Variable temperature ^{13}C NMR spectrum of Sn(Me)(i-Pr)(Ph)$[\eta^1-C_5H_4CH_3]$, 4.4.

4.8 Isomers present in significant concentration in Sn(Me)(i-Pr)(Ph)$[\eta^1-C_5H_4CH_3]$, 4.3.

4.9 The diastereoisomers 5 and 6 present in Sn(Me)(i-Pr)(Ph)$[\eta^1-C_5H_4CH_3]$, 4.4.

5.1 ^{13}C NMR spectrum of bis(n^5-methylcyclopentadienyl)germanium(II) at 25°C.

5.2 1H NMR spectrum of bis(acetylacetonato)germanium(II) in CDCl$_3$ at 27°C.

5.3 The molecular structure of 5.14, bis(triphenylphosphine)bis[bis(acetylacetonato)stannylene]platinum(0).

5.4 The local geometry about tin in 5.14, bis(triphenylphosphine)bis[bis(acetylacetonato)stannylene]platinum(0).
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>acacH</td>
<td>acetylacetone</td>
</tr>
<tr>
<td>Bu^</td>
<td>tertiarybutyl</td>
</tr>
<tr>
<td>Et</td>
<td>ethyl</td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
</tr>
<tr>
<td>i-Pr</td>
<td>isopropyl</td>
</tr>
<tr>
<td>Me</td>
<td>methyl</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrum</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>Ph</td>
<td>phenyl</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>R</td>
<td>alkyl or aryl</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>TMP</td>
<td>trimethylphosphite</td>
</tr>
<tr>
<td>TMS</td>
<td>tetramethylsilane</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

I would like to thank Dr. S. R. Stobart for his advice and support throughout the past several years. I would also like to thank the University of Victoria and the Research Corporation (Cottrell Foundation) for financial support.
To Helen
PREFACE

The work described in this thesis deals with the synthesis and properties of a variety of compounds of germanium and tin. Chapter One outlines the scope of the thesis and provides background information to work contained in the subsequent chapters.

In Chapter Two the non-rigid properties associated with metallocyclopentadienes and metallomethylcyclopentadienes is examined through the use of variable temperature 1H and 13C NMR spectroscopy. Related migrations in polyindenyl derivatives of germanium and tin are reported in Chapter Three. Chapter Four lists information derived about the rearrangement processes in pentamethylcyclopentadiene, methylcyclopentadiene and indene ring systems bearing a chiral tin substituent.

Chapter Five describes both the physical and chemical properties of a number of new derivatives of bivalent germanium and tin.
CHAPTER ONE.

INTRODUCTION

A. GENERAL

The unique position of carbon among the ninety natural elements is primarily the result of its ability to form stable long-chain and cyclic compounds having adjacent carbon atoms connected by single, double or triple bonds. The valence state of carbon in such compounds is invariably four, a situation paralleled by the lower group IVA elements in the majority of their known compounds. In the latter the coordination number is also often four, the central atom assuming a geometry which closely approximates to tetrahedral, but the tendency towards adopting higher coordination numbers increases with increasing atomic number. 1,2,3 This is thought 2,3 to be facilitated in part by utilization of vacant outer nd orbitals, and leads to coordination numbers of five and six through both inter- and intra-molecular coordination. Eight coordinate species have been characterized 2,3 for both tin and lead.

The multiple bonds observed in carbon chemistry which result from overlap between singly occupied 2p orbitals on adjacent carbon atoms are not a feature of the chemistry of the other group IVA elements. Recently, however, a variety of intermediates containing silicon-carbon double bonds have been postulated; 4 and a thermally stable example \((\text{Me}_3\text{Si})_2\text{Si} = \text{C(Me}_3\text{)}(\text{OSiMe}_3)\), has now been isolated. 5,6
Multiple-bond character of a different type, arising from overlap between vacant 3d orbitals on silicon and filled "non-bonding" orbitals on adjacent atoms, (Figure 1.1) has been proposed to explain the stronger silicon-halogen bonds compared to corresponding carbon-halogen bonds, and the structural planarity and lower basicity of silylamines compared to carbon analogues. This effect is greatest for silicon and much less apparent in the chemistry of germanium, tin, and lead.

![Diagram](image)

FIGURE 1.1. Proposed $d\pi - p\pi$ overlap in some silicon compounds.

The group IVA elements have an outer valence shell ground-state electronic configuration of $ns^2np_{x}^1np_{y}^1$, where n changes from 2 for carbon to 6 for lead. The bivalent state requires only two electrons to form the two bonds in, for example, MA_2, while for the quadrivalent state one electron must be promoted from the ns orbital to the np_{z} orbital to give the outer electron configuration $ns^2np_{x}^1np_{y}^1np_{z}^1$: this allows for the formation
of four equivalent \(sp^3 \) hybrid bonds in, for example, \(MA_4 \).

The relative stabilities of these two oxidation states are thus controlled by (i) size of promotion energy, and (ii) bond strengths, i.e. formation of four bonds in \(MA_4 \) as compared to only two in \(MA_2 \). Decrease in the (group IVA)-(other element) bond strength as the group is descended allows a balance to be struck whereby the energy required for electron promotion is comparable to that achieved by additional bond formation and is the basis of the so-called "inert pair effect".

Compounds having carbon in the bivalent state (carbenes) were first proposed as intermediates about the end of the nineteenth century. These highly reactive species are used extensively as \textit{in situ} reagents in organic chemistry, typically undergoing a variety of insertion reactions and additions to olefins giving cyclopropanes. Carbenes can have either a singlet (1) or triplet (2 and 3) spin state. Results from experimental observation and theoretical calculations indicate that most carbenes have a non-linear triplet ground state (i.e., 2), however dihalogenocarbenes and carbenes with oxygen, nitrogen or sulfur attached to the bivalent carbon may have singlet ground states (i.e., 1).
Carbenes are most often prepared from the corresponding diazoalkane (equation (1)); however there are a variety of other useful methods and these have been discussed in detail elsewhere. Transition metal complexes have been used to stabilize a variety of carbenes, the carbene functioning as a two electron donor (Lewis base) towards the metal. These compounds have been prepared by several different methods involving addition of an organolithium reagent to a coordinated carbon monoxide molecule followed by alkylation (equation (2)).

\[\text{R}^1\text{R}^2\text{C} = \text{N}_2 \rightarrow \text{CR}^1\text{R}^2 + \text{N}_2 \]

(1)

In contrast with the special character of carbenes, there are numerous examples of stable inorganic derivatives of bivalent germanium (germylenes), tin (stannylenes) and lead (plumbylenes). While these compounds do not contain metal-metal bonds, they frequently have structures based on bridged polymeric arrays in the solid state. The gas phase structures of two examples, SiF$_2$ and SnCl$_2$, have been determined and both have the bent structure consistent with stereochemical activity of \[\text{X} \rightarrow \text{M} \rightarrow \text{X} \]
the non-bonding electron pair. These compounds are significantly less reactive than the corresponding carbene derivatives although they undergo similar reactions: for example germanium(II) and tin(II) dihalides readily insert into carbon-halogen bonds. Interestingly, the reaction of GeI₂ with certain acetylenes had been reported to give the three membered ring (5). It has subsequently been shown that the product is in fact the six membered ring (6) containing two germanium atoms.

Germanium(II) and tin(II) dichlorides are easily converted to the tetrachlorides by reaction with Cl₂, (equations (3) and (4)), however in the case of lead forcing conditions are necessary, the tetrachloride reverting explosively to the dichloride at temperatures above 20°C (equation (5)), reflecting the greater thermodynamic stability of the lower oxidation state for lead.

\[
\text{GeCl}_2 + \text{Cl}_2 \xrightarrow{\text{rapid (at 25°C)}} \text{GeCl}_4 \hspace{2cm} \text{(3)} \\
\text{SnCl}_2 + \text{Cl}_2 \xrightarrow{\text{slow (at 25°C)}} \text{SnCl}_4 \hspace{2cm} \text{(4)} \\
\text{PbCl}_4 \xrightarrow{20°C} \text{PbCl}_2 + \text{Cl}_2 \hspace{2cm} \text{(5)}
\]
The first authentic organometallic derivatives to be prepared in which the metal (metalloid) is in the bivalent state were the cyclopentadienyl derivatives, $M(C_5H_5)_2$, $M = \text{Ge}$, Sn, and Pb, although oligomeric quadrivalent organometallics had been incorrectly identified as such previously. Structures in which the metal (metalloid) is bonded to two η^5-C_5H_5-rings, as shown in 7, have been established. A summary of the properties of compounds like 7 is given in Section B together with a review of the chemistry of other derivatives in which the group IVA element is in the bivalent state.

\[\text{M} \quad \text{M} = \text{Ge}, \text{Sn}, \text{and Pb.} \]

By contrast with 7, cyclopentadienyl derivatives in which the metal is in the +4 oxidation state involve bonding to the saturated carbon atom of the C_5-ring, as shown in 8.

\[\text{H} \quad \text{MR}_3 \quad \text{M} = \text{Ge}, \text{Sn}, \text{and Pb.} \]

These molecules exhibit non-rigid characteristics associated with the migration of the metal atom around the five carbon atoms of the C_5-ring (equation (6)).
This leads to exchange between the magnetic environments of the five ring protons (and ring carbons), and brings about observable effects in the 1H and ^{13}C NMR spectra of many representatives. The non-rigid character of metallacyclopentadienyls and related cyclopolyenyl systems is reviewed in Section C.

Experimental techniques required by the characteristic properties of group IVA-element compounds, together with associated spectroscopic and synthetic methods, are discussed in Section D.
B. STRUCTURE AND REACTIVITY OF ORGANOMETALLIC AND ORGANIC DERIVATIVES OF BIVALENT GERMANIUM, TIN, AND LEAD.

Attempts to synthesize organoderivatives of bivalent tin date back to the middle of the nineteenth century, when reactions of organolithium or organomagnesium halides with tin(II) halides yielded high-melting, relatively insoluble, tin containing products. It was later shown that these materials were in fact mixtures of compounds containing either rings, eg. 9 and 10, or straight or branched chains, eg. 11, of tin atoms, thus involving the metal in a formally quadrivalent state.

\[
\begin{align*}
R_2\text{Sn} & \quad \text{SnR}_2 \\
R_2\text{Sn} & \quad \text{SnR}_2 \\
\end{align*}
\]

\[
\begin{align*}
\text{SnR}_2 & \quad \text{SnR}_2 \\
\text{SnR}_2 & \quad \text{SnR}_2 \\
\text{SnR}_3 & \quad \text{SnR}_3 \\
\text{SnR}_3 & \quad \text{SnR}_3 \\
\end{align*}
\]

9 10 11

*Group IVA compounds may be categorized as follows:

(1) Organogroup IVA compounds; compounds which contain at least one group IVA element - carbon bond.
(2) Organic compounds; compounds which contain one or more organic groups, but have no group IVA - carbon bond.
(3) Inorganic compounds; compounds which do not belong to classes (1) and (2).
Cyclopentadienyl-19,20 and bis(trimethylsilyl)methyl-27,28 lithium do however react with bivalent germanium, tin, and lead halides to give the corresponding bivalent group IVA compound, equations (7) and (8) respectively.

\[
\text{SnCl}_2 + 2\text{Li} \left(\text{C}_5\text{H}_5 \right) \rightarrow \text{Sn} \left(\eta^5-\text{C}_5\text{H}_5 \right) \text{Cl}_2 + 2\text{LiCl} \quad \text{(7)}
\]

\[
\text{PbCl}_2 + 2\text{LiCH} \left(\text{SiMe}_3 \right)_2 \rightarrow \text{Pb} \left[\text{CH} \left(\text{SiMe}_3 \right)_2 \right] \text{Cl} \quad \text{(8)}
\]

Similar reactions using the lithium or sodium salts of acetylacetone29,30 (equation (9)) or hexamethyldisilazane31 \(\text{HN} \left(\text{SiMe}_3 \right)_2 \), (equation (10)), also afford bivalent group IVA derivatives.

\[
\text{CsGeCl}_3 + 2\text{Na} \left(\text{acac} \right) \rightarrow \text{Ge} \left(\text{acac} \right)_2 \quad \text{(9)}
\]

\[
\text{SnCl}_2 + 2\text{Li} \left[\text{N} \left(\text{SiMe}_2 \right)_2 \right] \rightarrow \text{Sn} \left[\text{N} \left(\text{SiMe}_2 \right)_2 \right] \quad \text{(10)}
\]

The tin cyclopentadienyls, \(\text{Sn} \left(\eta^5-\text{C}_5\text{H}_5 \right) \text{Cl}_2 \) and \(\text{Sn} \left(\eta^5-\text{C}_5\text{H}_4\text{CH}_3 \right) \text{Cl}_2 \), have been shown32,33,34 to be useful precursors to a variety of previously unknown, or otherwise difficult to prepare derivatives of bivalent tin, e.g. equations (11) and (12).

\[
\text{Sn} \left(\eta^5-\text{C}_5\text{H}_5 \right) \text{Cl}_2 + 2\text{HCN} \rightarrow \text{Sn} \left(\text{CN} \right)_2 \quad \text{(11)}
\]

The reaction of tin(II) halides with compounds having an acidic hydrogen, in the presence of triethylamine gives the corresponding tin(II) derivative (equation (13)),35,36

\[
\text{SnCl}_2 + 2\text{MeOH} + 2\text{NET}_3 \rightarrow \text{Sn} \left(\text{OMe} \right)_2 + 2\text{NET}_3 \text{HCl} \quad \text{(13)}
\]
while related reactions for germanium(II) halides have recently been reported, equation (14).

\[
\text{CsGeCl}_3 + 2 \text{NEt}_2 \xrightarrow{2\text{NET}_3} \text{Ge} \quad \text{(14)}
\]

Alternative methods for the synthesis of these types of compound are generally limited in scope, and have been reviewed elsewhere.37

A number of compounds have been reported in which the bivalent group IVA metal (metalloid) functions as a neutral two-electron donor towards the transition metal center.38,39

Where the bivalent group IVA derivative is stable, the transition metal compound is easily formed by displacement reactions similar to those shown in equations (15)38 and (16)39.

\[
\text{M(CO)}_5 \text{THF} + \text{Sn}^{\text{n}} \text{C}_5 \text{H}_5 \xrightarrow{\text{hv}} \text{M(CO)}_5 \text{Sn}^{\text{n}} \text{C}_5 \text{H}_5 \quad \text{(15)}
\]

(M = Cr, Mo, and W)

\[
\text{M(CO)}_6 + \text{Sn[CH(SiMe_3)_2]} \xrightarrow{\text{hv}} \text{M(CO)}_5 \text{Sn[CH(SiMe_3)_2]} \quad \text{(16)}
\]

(M = Cr and Mo)

Some transition metal derivatives, for which the free bivalent metal compound is unstable, have been prepared by "indirect methods". Thus reaction of a coordinated germanium dihalide with two equivalents of an alkylmagnesium halide gives the organogermainium(II) transition metal complex40 as shown in equation (17).

\[
\text{Cr(CO)}_5 \text{GeCl}_2 \text{THF} + 2 \text{MgBr} \xrightarrow{\text{hv}} \text{Cr(CO)}_5 \text{Ge} \quad \text{(17)}
\]
Similarly the reduction of quadrivalent tin in suitably substituted dialkyltin dihalides by \(\text{Cr}(\text{CO})_5^{2-} \), gives the base stabilized compounds \(\text{R}_2\text{Sn(THF)Cr(CO)}_5 \) (equation (18)).

\[
\text{Cr(CO)}_5^{2-} + \text{SnR}_2\text{Cl}_2 \xrightarrow{\text{THF}} \text{Cr(CO)}_5\text{SnR}_2(\text{THF}) \quad \text{(18)}
\]

\(\text{R} = \text{Me, Bu}^+ \)

B.2. Structure

The true organo-tin(II) and -lead(II) derivatives, \(\text{bis(}^5\text{-cyclopentadienyl)} \)-tin(II) and -lead(II), were first reported by Fischer and Grubert in 1956. Wilkinson et al. subsequently reported the synthesis of the methylcyclopentadienyl analogues, while the germanium compounds \(\text{Ge(}^5\text{-C}_5\text{H}_5 \text{)}_2 \) and \(\text{Ge(}^5\text{-C}_5\text{H}_4\text{CH}_3 \text{)}_2 \) have been isolated more recently. Although it was initially suggested that the tin and lead cyclopentadienyls have the \(\text{sigma-bonded structure shown in 12, comparison of their IR spectra with that of ferrocene led Piper and Wilkinson to propose that these compounds had the angular sandwich structure shown in 13.} \)
Electron diffraction studies of Sn(η^5-C$_5$H$_5$)$_2$ and Pb(η^5-C$_5$H$_5$)$_2$ have shown22 that these molecules assume structure13 in the gas phase. The solid state structure of Sn(η^5-C$_5$H$_5$)$_2$ has recently23 been reported to be monomeric, having discrete units with the angular sandwich structure13; however, the solid state structure of the lead compound has been shown by X-ray crystallography44 to be polymeric. In this compound each pair of lead atoms is bridged by a cyclopentadienyl ring, the plane of which is at right angles to the lead-lead axis; coordination of each metal atom is completed by a terminal η^5-C$_5$H$_5$-ring, as shown in Figure 1.2.

![Figure 1.2](image-url)

FIGURE 1.2. The solid state structure of bis(η^5-cyclopentadienyl)lead(II)

The crystal structures of the pentamethylcyclopentadienyls, M[η^5-C$_5$(CH$_3$)$_5$]$_2$, M = Sn45 and Pb23, consist of discrete monomeric units having the angular sandwich structure depicted in14.
The related compound, Sn\(^{n^-C_5(CH_3)_5}\)BF\(_4^-\), formed by the reaction of Sn\(^{n^-C_5(CH_3)_5}\)_2 with HBF\(_4\), has a crystal structure having pentagonal pyramidal Sn\(^{n^-C_5(CH_3)_5}\) units in which all five tin-carbon distances are approximately equal (average 2.46 Å). The tin atom of these units is further associated with two fluorine atoms of the BF\(_4^-\) counterion.

\[\text{Sn}^{n^-C_5(CH_3)_5}\]

The crystal structure of Sn\(^{n^-C_5(CH_3)_5}\)Cl\(^4^-\) consists of Sn\(^{n^-C_5(CH_3)_5}\)Cl units in which the cyclopentadienyl is asymmetrically bound to tin, with Sn-C bond distances ranging from 2.45 to 2.74 Å. The tin atoms of alternate units are bridged by chlorine atoms of adjacent Sn\(^{n^-C_5(CH_3)_5}\)Cl groups, as shown in Figure 1.3.

\[\text{SnSn Cl ClSn}\]

FIGURE 1.3. The crystal structure of (pentahaptocyclopentadienyl)tin chloride.
Apart from the cyclopentadienyl derivatives, there are rather few examples of stable compounds which have a bivalent germanium, tin, or lead atom bonded directly to carbon. The first, and somewhat exotic examples of such compounds were bis[2-phenyl-1,2-dicarba-closo-dodecarboran(12)-1-yl]tin(II) and 1-germa-, 1-stanna-, and 1-plumba-2,3-dicarba-closo-dodecaborane(II).

Lappert et al. have reported the first stable alkyl derivatives of bivalent germanium, tin, and lead, M[CH(SiMe₃)₂]₂, M = Ge, Sn, and Pb. Although the germanium and tin compounds have been shown to be monomeric in the liquid and vapour phases, the crystal structure of Sn[(CH(SiMe₃)₂)]₂ consists of dimeric units, which have been suggested to result from interaction between the orbital containing the non-bonding electron pair on each tin atom, and the vacant orbital on the adjacent tin atom, as shown in the figure.
The first stable aryl stannylene (19) was prepared recently, its stability towards polymerization being attributed to the presence of the trifluoromethyl substituents in the 2- and 6- positions.

\[
\begin{align*}
\text{Sn} & \\
\text{CF}_3 & \\
\text{CF}_3 & \\
\end{align*}
\]

19

Amma and co-workers have reported the novel compounds \([\eta^6-C_6H_{12}]M(AlCl_4)_2\cdot(C_6H_6)\), \(M = \text{Sn, Pb}\). The crystal structure of the lead derivative consists of a polymeric array, in which each lead atom is bound to a terminal, symmetric, \(\eta^6\)-benzene ring. The lead atom is further associated with six chlorine atoms, two from each of the three \(\text{AlCl}_4\) units, with two of these \(\text{AlCl}_4\) units forming bridges between adjacent lead atoms, as shown in Figure 1.4.

\[
\begin{align*}
\text{Al} & \\
\text{Cl} & \text{Cl} \\
\text{Cl} & \text{Cl} \\
\text{Pb} & \\
\text{Cl} & \text{Cl} \\
\text{Cl} & \\
\end{align*}
\]

FIGURE 1.4: The crystal structure of \([\eta^6-C_6H_{12}]\text{Pb}(\text{AlCl}_4)_2\cdot C_6H_6\).
Several other η^6-arene complexes of bivalent tin and lead were subsequently reported, and the crystal structures of $(\eta^6-\text{C}_6\text{H}_6)\text{SnCl(AlCl}_3)$ and $\mu(\eta^6-\text{p-(CH}_3)_2\text{C}_6\text{H}_4)\text{SnCl(AlCl}_3)$ have been determined. Asymmetry in the η^6-C_6-ring, observed for both these compounds was attributed to crystal packing forces.

The crystal structures of the transition metal derivatives of $\text{M}[\text{CH(SiMe}_3)_2]_2$, $\text{Cr}(\text{CO})_5[M[\text{CH(SiMe}_3)_2]_2$, $\text{M} = \text{Ge}$ and Sn, have been determined. (Figure 1.5). Significantly the atoms $\text{C}(1)$, $\text{C}(2)$, M and Cr all lie in approximately the same plane, a result which has been interpreted in terms of back donation from the transition metal to the stannylene (or germynylene) ligand.

![Figure 1.5](image-url)

FIGURE 1.5. The crystal structure of $\text{Cr}(\text{CO})_5[M[\text{CH(SiMe}_3)_2]_2$, $\text{M} = \text{Ge}$ and Sn.}
The crystal structure of the pyridine adduct Cr(CO)$_5$Sn(Bu$^-$)$_2$(pyridine), (Figure 1.6), has also been determined58 and shows the Sn atom to be out of the C(1), C(2), Cr plane, consistent with a decrease in back donation from Cr to Sn upon incorporation of the pyridine molecule.

![Figure 1.6](image)

FIGURE 1.6. The crystal structure of Cr(CO)$_5$Sn(Bu$^-$)$_2$(pyridine).

A variety of germanium(II)-, tin(II)-, and lead(II)-halides (and pseudo-halides) have been structurally characterized.59 These compounds are generally polymeric, having halogen atoms (pseudo-halogen groups) bridging adjacent metal centers. Such structures are complex and have been reviewed in detail elsewhere.59 By contrast, the gas phase structures of SiF$_2$ and SnCl$_2$ are monomeric, having the "bent" geometry shown in 20.

![Diagram](image)
Bivalent tin and lead derivatives of simple oxy-acids have been subjected to extensive structural characterization. These compounds are again polymeric and often have bridging oxygen atoms between adjacent metal centers. The structure of one compound of this type Sn(IV)Ph₃Sn(II)NO₃ is of interest, since it contains both bivalent and quadrivalent tin connected by a tin-tin bond. The crystal structure is polymeric, with bridging NO₃ groups between adjacent bivalent tin atoms (Figure 1.7).

FIGURE 1.7. The crystal structure of Sn(IV)Ph₃Sn(II)NO₃.
The 1,3-diketonato-derivatives of germanium(II) and tin(II), which are monomeric in the vapour, liquid and solid phases, have been reported. The crystal structure of the tin compound, \(\text{di(benzoylacetonato)tin(II)} \), consists of the discrete monomeric units shown in 21, in which each metal atom is four (pseudo-five) coordinate. The chelating effect of the two ketoenolate groups, apparently results in a tin center which is coordinatively saturated, and thus prohibits intermolecular association. The crystal structure of a related germanium compound, \(\text{(acetylacetonato)germanium(II) iodide} \), has also been determined, and consists of the units shown in 22, in which each germanium atom is three (pseudo-four) coordinate.
The structures of the di-tert-butylphenoxides, \(\text{M(OCH}_2\text{C}_6\text{H}_4\text{Me}_4\text{-Bu}^t\text{2,6)}_2 \), \(\text{M} = \text{Ge or Sn} \), have recently been determined by X-ray crystallography. These are the first examples of compounds to have been structurally characterized in the solid state for which the bivalent group IVA element has the low coordination number of two (pseudo three). The structures shown in 21 to 23 clearly demonstrated the strong stereochemical effect of the non-bonding electron pair in each case.

Possibly the most interesting nitrogen derivatives of the bivalent group IVA elements are bis[bis(trimethylsilyl)]amido -germanium(II), -tin(II) and -lead(II). While these compounds are monomeric in the vapour and liquid phases, the solid state structure of the tin compound has been suggested to be dimeric, paralleling exactly the situation found for the isoelectronic tin alkyl, \(\text{Sn[CH(SiMe}_3\text{)]}_2 \).
B.3. Reactivity

The reactions of inorganic tin(II) compounds with organic halides, to give the corresponding tin(IV) compounds, have been known since 1851 \(^2,21\) (equation (19)).

\[
\text{SnI}_2 + \text{MeI} \rightarrow \text{MeSnI}_3 \quad \text{(19)}
\]

This type of reaction has been used extensively in industry for the preparation of monoorganotin(IV) trihalides, which are important constituents of P.V.C. stabilizers. Similar reactions involving unsaturated organic compounds have also been reported, \(^18\) (equation (20)).

\[
2\text{GeI}_2 + 2\text{PhC}═\text{CPh} \rightarrow \text{I}_2\text{GeGeI}_2 \quad \text{(20)}
\]

The reaction of Sn[CH(SiMe\(_3\))\(_2\)]\(_2\) with alkyl halides or halogens \(^39\) also gives the corresponding tin(IV) product, equations (21) and (22).

\[
\begin{align*}
\text{Sn[CH(SiMe\(_3\))\(_2\)]\(_2\))} & \rightarrow \text{Sn[CH(SiMe\(_3\))\(_2\)](Me)(I)} \quad \text{(21)}
\end{align*}
\]

\[
\begin{align*}
\text{Sn[CH(SiMe\(_3\))\(_2\)]\(_2\))} & \rightarrow \text{Sn[CH(SiMe\(_3\))\(_2\)]Br}_2 \quad \text{(22)}
\end{align*}
\]
Tin(II) halides readily insert into transition metal-metal bonds to give the corresponding tin(IV) derivative, eg equation (23).

\[
[\text{Fe}(\eta^5-C_5H_5)(CO)_2)_2 + \text{SnCl}_2 \rightarrow \text{Sn}[\text{Fe}(\eta^5-C_5H_5)(CO)_2]\text{Cl}_2 \ldots \text{(23)}
\]

These types of reactions are often complicated by the further reaction of the tin(IV) compound initially formed; thus Sn[Co(CO)]\text{4}_4 was isolated as one of the products from the reaction of Sn(\eta^5-C_5H_4CH_3)_2 with Co_2(CO)_8 (equation (24)).

\[
\text{Sn}(\eta^5-C_5H_4CH_3)_2 + \text{Co}_2(CO)_8 \rightarrow \text{Sn}[\text{Co}(CO)]\text{4}_4 + \ldots \ldots \text{(24)}
\]

Similarly, the reaction of Sn(\eta^5-C_5H_4CH_3)_2 with W(\eta^5-C_5H_5)(CO)_3(H), which had been reported to give the bivalent tin compound Sn[W(\eta^5-C_5H_5)(CO)]_3, has recently been shown to give the tin(IV) compound Sn(H)[W(\eta^5-C_5H_5)(CO)]_3 (equation (25)).

\[
\text{Sn}(\eta^5-C_5H_4CH_3)_2 + 3W(\eta^5-C_5H_5)(CO)_3(H) \rightarrow \text{Sn}(H)[W(\eta^5-C_5H_5)(CO)]_3 \ldots \text{(25)}
\]

Insertion into a metal-hydrogen and metal-carbon bonds have also been reported, thus Sn[CH(SiMe_3)]_2 inserts into either a Mo-H or a Mo-C bond according to equation (26).

\[
\text{Mo}(\eta^5-C_5H_5)(CO)_3-R \rightarrow \text{Sn}[\text{CH}(\text{SiMe}_3)]_2 \rightarrow \text{Sn}[\text{CH}(\text{SiMe}_3)]_2[\text{Mo}(\eta^5-C_5H_5)(CO)]_3R
\]

R = H, CH_3

\ldots \ldots \text{(26)}
Several tin(II) compounds have been shown to react with diiron enneacarbonyl to give four-membered Fe$_2$Sn$_2$ ring compounds, in which the tin is in a formally quadrivalent state (equation (27)).

\[
\text{SnX}_2 + \text{Fe}_2(\text{CO})_9 \rightarrow \text{(OC)}_4\text{Fe} \quad \text{Sn} \quad \text{Fe}(\text{CO})_4 \quad (27)
\]

\(X = \text{Cl, Br, C}_5\text{H}_5, \text{C}_3\text{H}_4\text{CH}_3,\)

and 1,3-diketonato.

The bivalent group IVA element in these derivatives of germanium, tin, and lead can also function as a two-electron donor to suitable acceptor sites, thus Sn(\(\eta^5\)-C$_5$H$_5$)$_2$ forms complexes with the Lewis acids BF$_3$ and AlCl$_3$ (equation (28)).

\[
\text{Sn}(\eta^5\text{-C}_5\text{H}_5)_2 + \text{MX}_3 \rightarrow (\eta^5\text{-C}_5\text{H}_5)_2\text{Sn} \rightarrow \text{MX}_3 \quad \text{(28)}
\]

\(\text{MX}_3 = \text{BF}_3, \text{AlCl}_3.\)

Interestingly Sn[CH(SiMe$_3$)$_2$]$_2$ does not react with BF$_3$-Et$_2$O, however with AlCl$_3$, below -30°C, it forms a white solid, which decomposes at more elevated temperatures, the only isolable product being Sn[CH(SiMe$_3$)$_2$]$_2$Cl$_2$. More straightforwardly Sn[CH(SiMe$_3$)$_2$]$_2$ functions as a two-electron donor to the metal carbonyls, M(CO)$_5$, M = Cr and Mo, and also displaces ethylene from Rh(C$_2$H$_4$)Cl(PPh$_3$)$_2$ and PPh$_3$ from RhCl(PPh$_3$)$_3$ (equation (29)).

\[
\text{Sn}[\text{CH(SiMe$_3$)$_2$}]_2 \quad \text{Rh(C}_2\text{H}_4\text{)}\text{Cl(PPh$_3$)$_2$} \quad \text{RhCl(PPh$_3$)$_3$Sn[CH(SiMe$_3$)$_2$}]_2 \quad \text{(29)}
\]
For most derivatives of bivalent germanium, tin and lead, the metal (metalloid) can function as a Lewis acid, accepting an electron pair into an unoccupied \(nsnp_{x+y} \) type molecular orbital. Thus in the crystal structure of \(\text{SnCl}_2 \cdot 2\text{H}_2\text{O} \),

the oxygen of one of the water molecules can be viewed as donating two electrons to tin, as shown in 25. Germanium(II)

![Image](image)

and tin(II) halides readily accept a further halide ion to form the complex ions \(\text{GeX}^+ \) and \(\text{SnX}^- \) (equation (30)).

\[
[\text{GeCl}_2]^+ + \text{CsCl} \rightarrow \text{Cs}^+ \text{GeCl}_3^-
\]

Both \(\text{bis}(\text{n}^5\text{-cyclopentadienyl})\text{tin(II)} \) and \(\text{bis} (\text{acetyl-acetonato})\text{tin(II)} \) undergo redistribution reactions with tin(II) halides (equation (31)),

\[
\text{Sn}(\text{n}^5\text{-C}_5\text{H}_5)_2 + \text{SnCl}_2 \rightarrow 2\text{Sn}(\text{n}^5\text{-C}_5\text{H}_5)\text{Cl}
\]

*GeCl₂ is prepared \textit{in situ} from the reduction of GeCl₄ in acidic media.
while similar exchange reactions have also been observed with
tin(IV) halides, \(^\text{74}\) (equation (32)).

\[
\text{Sn}(\eta^5-\text{C}_5\text{H}_5)_2 + \text{SnMe}_2\text{Cl}_2 \rightarrow \text{SnMe}_2(\eta^1-\text{C}_5\text{H}_5)\text{Cl} + \text{Sn}(\eta^5-\text{C}_5\text{H}_5)\text{Cl}_\text{I} \quad (32)
\]
C. SIGMATROPIC MIGRATIONS IN METALLO-CARBOCYClic SYSTEMS.

C.1. Introduction.

The discovery of the phenomenon of stereochemical non-rigidity added a new dimension to the concept of molecular structure. The establishment of variable temperature NMR spectroscopy as a routine method further facilitated the rapid development of the study of stereochemically non-rigid molecules where the rate of rearrangement is of the order of $10^{-1} - 10^{+9}$ s$^{-1}$. This has led in particular to the identification of migrations of sigma-bonded metal atoms between some, or all, of the carbon atoms in certain cyclopolypeny1 systems. Sigmatropic shifts of this type have been thoroughly documented for the cyclopentadienyl-ring system, shown in 26 while more recently migrations in other ring systems i.e. C_3, 27, C_7, 28, and C_9, 29, have also been observed. This section reviews this topic, discussing first the theoretical aspects (C.2), secondly the methods used to characterize these processes (C.3), and finally summarizing the experimental results available (C.4).
Several types of sigmatropic shifts have been distinguished by Woodward and Hoffmann. For the purposes of this discussion, however, only rearrangements of order \([1,j]\) will be considered, corresponding to the migration of a \(\sigma\)-bonded atom or group \((R)\) from one end to the other of a polyenic chain as shown in equation (33).

\[
\begin{align*}
R \quad C = C = C \quad \text{n} & \quad [1,j] \quad C = C = C \quad \text{n} \quad R \\
\text{(j = 2n + 1)}
\end{align*}
\]

Woodward and Hoffmann have defined a sigmatropic change of order \([i,j]\) as the migration of a \(\sigma\) bond, flanked by one or more \(\pi\)-electron systems, to a new position whose termini are \(i-1\) and \(j-1\) atoms removed from the original bonded loci, in an uncatalyzed intramolecular reaction. Then provided the migrating group \(R\) remains bonded to both ends of the unsaturated system throughout (concerted reaction), orbital symmetry constraints would be derived from the form of the highest occupied molecular orbital (HOMO) of the hydrocarbon radical corresponding to the polyenic chain. The HOMO for this system is the non-bonding allylic orbital which possesses the following symmetry.
A group R, when bound to the chain by a symmetric orbital (e.g., an σ orbital for $R = H$), can migrate from one end of the chain to the other in two distinct ways; consider the case of a 1,5 migration for the following pentadienyl:

\[
\text{FIGURE 1.8(a). Suprafacial migration of a hydrogen atom.}
\]

\[
\text{FIGURE 1.8(b). Antarafacial migration of a hydrogen atom.}
\]
for a suprafacial process (Figure 1.8(a)), the transferred hydrogen atom is associated at all times with the same face of the system; for the antarafacial process (Figure 1.8(b)), the hydrogen atom is associated at all times with the same face of one carbon of the π system; for the antarafacial process (Figure 1.8(b)), the migrating atom passes from the top face of one carbon to the bottom face of the other. The selection rules for such a sigmatropic reaction of order [1,1] are given in Table 1.1(a).

TABLE 1.1(a).

Selection rules for an allowed sigmatropic shift of order [1,1] of a hydrogen atom.

where R is a group other than a hydrogen atom (e.g., methyl), the orbital by which R is bound to the polynyl system may be antisymmetric (which possesses some p character). Alternate processes at the migrating center as shown in equation (34).
The selection rules are then precisely reversed if inversion takes place at the migrating center (Table 1.1(b)).

TABLE 1.1(b).

General selection rules for thermally allowed sigmatropic shifts.

<table>
<thead>
<tr>
<th>[1,j]</th>
<th>Suprafacial</th>
<th>Antarafacial</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,3]</td>
<td>inversion</td>
<td>retention</td>
</tr>
<tr>
<td>[1,5]</td>
<td>retention</td>
<td>inversion</td>
</tr>
<tr>
<td>[1,7]</td>
<td>inversion</td>
<td>retention</td>
</tr>
<tr>
<td>[1,9]</td>
<td>retention</td>
<td>inversion</td>
</tr>
</tbody>
</table>

Thus a [1,3] shift may be either antarafacial with retention, or suprafacial with inversion (Figure 1.9(a)), while a [1,5] shift will be suprafacial with retention, or antarafacial with inversion (Figure 1.9(b)).

1,3: antarafacial: *retention* 1,3: suprafacial: *inversion*

![FIGURE 1.9(a) Possible [1,3] sigmatropic migrations.](image)

1,5: suprafacial: *retention* 1,5: antarafacial: *inversion*

![FIGURE 1.9(b) Possible [1,5] sigmatropic migrations.](image)
These rules, although originally conceived for straight chain polyenyls, are equally applicable to the corresponding cyclopolyenyl systems. It should be noted however, that rearrangements going by an antarafacial process have been ruled out for small ring-systems.\(^76\) It follows that for a ring-system having \(n = 1\) (i.e., \(C_3H_2R\)), the only Woodward-Hoffmann allowed shift will be a 1,3 suprafacial shift, involving an inversion of configuration at the metal center, while for \(n = 2\) (\(C_3H_2R\)), two rearrangements are allowed, a 1,3 shift with inversion of configuration, or a 1,5 shift with retention of configuration.

The relevance of these considerations to metallotropic rearrangements in metallocyclopentadienes has been suggested elsewhere.\(^77,78,79\)

C.3. The NMR Technique as Applied to Stereochemically non-rigid Molecules.

C.3.(i). Theory

Electron spin resonance and nuclear magnetic resonance spectroscopy owe their existence to the fact that electrons and certain nuclei possess magnetic moments because they have both electrostatic charge and spin angular momentum. In the presence of a magnetic field, these magnetic moments become aligned either with or opposed to the applied magnetic field. Hence for a nucleus of spin quantum number \(I = \frac{1}{2}\), there are two states;
During the NMR experiment, nuclei aligned with the magnetic field (the ground state, \(M_I = + \frac{1}{2} \)), absorb energy and become aligned against the magnetic field (the excited state, \(M_I = - \frac{1}{2} \)).

The energy difference, \(\Delta E \), between the ground and excited states is generally small, so that the uncertainty principle dictates that any measure of \(\Delta E \) must require a significantly long time, \(i.e. \ g 10^{-6} \text{s} \). If a nucleus were to change its chemical or geometric environment during the time required to complete this measurement a large uncertainty in the latter would result. This has the effect of giving a series of energies rather than a single defined band.

If the nucleus changes its place between two magnetically different sites, \(i.e. \) which have different resonance positions, at a sufficiently rapid rate, a new band will start to appear at the median of the two former bands. This is consistent with the rate of rearrangement becoming comparable to the frequency separation between the two resonance positions, before and after the change in position. The "time required for
measurement" is directly related to what is commonly referred to as the "time scale" of the experiment. A list of the time scales for some common techniques are given in Table 1.2.

TABLE 1.2:
Approximate time scales for some different experimental techniques.

<table>
<thead>
<tr>
<th>Technique</th>
<th>Approximate Time Scale(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>electron diffraction</td>
<td>10^{-20}</td>
</tr>
<tr>
<td>X-ray diffraction</td>
<td>10^{-18}</td>
</tr>
<tr>
<td>ultraviolet</td>
<td>10^{-15}</td>
</tr>
<tr>
<td>visible</td>
<td>10^{-14}</td>
</tr>
<tr>
<td>IR, Raman</td>
<td>10^{-13}</td>
</tr>
<tr>
<td>electron spin resonance</td>
<td>$10^{-4} - 10^{-8}$</td>
</tr>
<tr>
<td>nuclear magnetic resonance</td>
<td>$10^{-1} - 10^{-9}$</td>
</tr>
<tr>
<td>Mössbauer (iron)</td>
<td>10^{-7}</td>
</tr>
<tr>
<td>Molecular beam</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>Experimental separation of isomers</td>
<td>$> 10^2$</td>
</tr>
</tbody>
</table>

The fact that the lifetime of so many stereochemically non-rigid molecules is comparable with the time scale of the NMR experiment has made NMR an invaluable tool, without which these processes would have remained unobserved, or at best observed only with difficulty.
C.3.(ii). The use of diastereotopic groups in determining the mechanism of rearrangement in metalloccypentadienes.

Definitions. (a) Nuclei which experience equal magnetic shielding have identical chemical shifts and are termed *isochronous* or *homotopic*. (b) Two atoms (or groups of atoms) are *magnetically equivalent* if they are isochronous and if they are equally coupled to all other NMR active nuclei in the molecule. (c) Generally, for any tetrahedral molecule of the type M^{abc_230} where a and b are different nondissymmetric groupings, the two c nuclei will be *enantiomeric*, however they are also magnetically equivalent and isochronous.

The environments of $c(1)$ and $c(2)$ are mirror images of each other, such that replacing either of them by another different nucleus or group d would give rise to the enantiomorphs $30(a)$ and $30(b)$.

![Diagram](image-url)
(d) For 30, where either a or b are dissymmetric, i.e. 31, the two nuclei a(1) and a(2) experience magnetically inequivalent environments and are diastereomeric.

Replacing either a(1) or a(2) by another nucleus, d, then results in the diastereoisomers 31(a) and 31(b).

A group like M_{ac_2} is often referred to as a diastereotopic group.
Application

One of the simplest examples of a molecule incorporating a diastereotopic group is shown in [32]

As defined above, the methyl groups (A) and (B) are magnetically inequivalent, in principle giving separate signals in the 13C NMR spectrum and a complex 1H NMR spectrum arising from an $a_x b_x \chi$ spin system, as opposed to the $a_x \chi$ system occurring when (A) and (B) are magnetically equivalent (i.e. $R_1 = R_2$).

When E is a nitrogen atom, inversion at N (equation (35)) is rapid and causes exchange between the magnetic environments of (A) and (B). Hence the two methyl groups are no longer distinguishable by NMR spectroscopy, and only one C$_{methyl}$ signal is observed in the 13C NMR spectrum. The corresponding resonance in the 1H NMR is a doublet via coupling to the methine proton.

\[\text{(35)} \]
Mislow et al. have observed temperature dependent phenomena for a related phosphine derivative. Thus spectra consistent with the static structure are observed at 0°C, showing the methyl groups (A) and (B) to be magnetically inequivalent. Inversion at the phosphorus center exchanges the magnetic environments of (A) and (B) at a rate such that, at temperatures above +60°C, they are indistinguishable on the NMR time scale.

A similar method has recently been used to determine if migration in metalloccyclopentadienes occurs with retention or inversion of configuration at the metal center. Thus for compound 34, the slow-limit 13C NMR spectrum, observed at -30°C,
has two signals for the diastereomeric methyl groups (A) and (B).
At higher temperatures, where the fluxional process is sufficiently
rapid to bring about averaging of resonances for the cyclo-
pentadienyl ring carbons, no broadening or change in chemical
shift of the two methyl resonances was observed, showing the
rearrangement takes place with retention of configuration
at the silicon center.

C.4. Experimental Observations of Sigmatropic Shifts in
Metallomonohaptocytopolyene Systems.

Several comprehensive reviews of the fluxional processes
taking place in monohaptocytopolyenylmetal systems have appeared.24,82,83
This section sets out to summarize important, more recent
developments, but some of the earlier material has also been
included for completeness.

C.4.(i). Metallocyclopentadienes

Metallocyclopentadienes, in which the metal is bonded via a
sigma-bond to the saturated carbon atom of the C5-ring, have
been known since 1956, in which year compounds35 and36 were.

\[
\begin{align*}
\text{Fe} & \quad \text{35} \\
\text{CO} & \quad \text{CO}
\end{align*}
\]
\[
\begin{align*}
\text{Hg} & \quad \text{36}
\end{align*}
\]
isolated by Piper and Wilkinson. These species were found to exhibit surprisingly simple room-temperature 1H NMR spectra, singlet resonances being observed for both π^1-C$_5$H$_5^-$ and π^5-C$_5$H$_5^-$ ring nuclei. These observations were attributed to a fast metal-carbon rearrangement around the π^1-cyclopentadienyl ring, an interpretation which has subsequently been fully corroborated.

In a detailed re-investigation of the iron complex 35, Cotton and coworkers, using X-ray crystallography, demonstrated the existence of the two different types of cyclopentadienyl ring. As part of the same study, the 1H NMR spectrum of 35 was also shown to be temperature dependent, and at ca. -80°C, a spectrum consistent with the static structure was obtained.

Determination of the rearrangement pathway was also attempted by analysis of the differential collapse of the $aa^\prime bb^\prime$ multiplet in the slow-limit 1H NMR spectrum. Assignment of the portion of the $aa^\prime bb^\prime$ multiplet which collapses first to HA'AA' based on the magnitude of the coupling constants $|3J(H-H')|$ and $|4J(H-H')|$, and later by comparison of chemical shifts with those of the monohaptoindenyl analogue Fe(π-C$_5$H$_5^-$)(\pi1-C$_9$H$_7$)(CO)$_2$, led to the conclusion that a 1,2 shift predominates.

Further evidence for the assignment of the $aa^\prime bb^\prime$ part of the spectrum has been arrived at for several other derivatives. Thus for Mo(π-C$_5$H$_5^-$)$_2$(\pi1-C$_5$H$_5^-$)(NO)$_2^7$, the slow-limit 1H NMR spectrum is consistent with "freezing out" of the rotational
configuration shown in 37, in which the two sides of the η^1-C_5-ring are magnetically inequivalent. It was assumed that the magnitude of this effect would be greatest for the A,A" protons, an assignment which again supports a 1,2 shift. In two similar experiments an asymmetric metal center is σ-bonded to the C_5-ring. The anticipated larger diastereotopic splittings in the 13C NMR spectrum of the C\(^2\) and C\(^5\) carbon resonances, relative to those for C\(^3\) and C\(^4\), again led to the conclusion that a 1,2 shift takes place in Mo(η^5-C_5H_5)(1,2-C_5H_5)(NO)(S\(_2\)CNBu\(^\text{Bu}^2\))\(^8\) and Si(H)(Bu\(^\text{Bu}^2\))(1,2-C_5H_5)Cl.\(^8\)

For compounds of type $M(X)(Y)(Z)(\eta^1-C_5H_5)$, along with diastereotopic shifts among the C_5-ring nuclei, anisochromicity may be present within an appropriately substituted migratory group, $M(X)(Y)(Z)$. The first such report\(^7\) concerned...
Si(H)(Me)(i-Pr)(n-C_{3}H_{5}) where the slow-limit 13C NMR spectrum is consistent with structure 38 showing diastereotopic effects both within the ring and for the two methyls (A) and (B) of the isopropyl group. As the temperature was raised, collapse of the ring carbon resonances in the 13C NMR spectrum was observed, but no broadening of resonances attributable to C^{A} and C^{B} was apparent, showing the magnetic environments of the two methyl groups remain unchanged throughout the rearrangement process. Thus the isopropyl group can be used to probe the stereochemical behaviour of the silyl substituent, since the above results are only consistent with retention of configuration at the silicon center, throughout the fluxional process.

C.4.(ii). Metallomethylcyclopentadienes.

Non-degenerate rearrangements in ring-substituted metallo-cyclopentadienes have only recently become well understood. In the earliest report of the synthesis of such species, Fritz and Kreiter incorrectly interpreted the ^{1}H NMR spectrum
for tetrakis(\(\eta^1\)-methylcyclopentadienyl)stannane in terms of structure 39 in which the tin atom is surrounded by four C\(_5\)-rings each bonded exclusively by the carbon bearing the methyl group in a 'static' (stereochemically rigid) arrangement.

\[
\begin{array}{c}
\text{CH}_3 \\
\end{array}
\]

39

Davison and Rakita subsequenty pointed out that the observed data are also consistent with the rapid movement of the tin center around each of the methylcyclopentadienyl rings.

It has further been shown that the \(^1\)H NMR spectrum of SnMe\(_3\)(\(\eta^1\)-C\(_5\)H\(_4\)CH\(_3\)) is significantly broadened at -60\(^\circ\)C, and that both SiMe\(_3\)(\(\eta^1\)-C\(_5\)H\(_4\)CH\(_3\)) and GeMe\(_3\)(\(\eta^1\)-C\(_5\)H\(_4\)CH\(_3\)) exhibit complex slow-limit spectra at \(\alpha\sigma\) 0 and -60\(^\circ\)C respectively, which show characteristic spectral variations with increasing temperature. This evidence identifies a series of rearrangements which lead to interconversion between the three isomers 40, 41, and 42.
This type of rearrangement has been termed "quasi-fluxional" implying a close relationship with the behaviour of the corresponding unsubstituted cyclopentadienyl derivatives; the difference from the latter is that interconversion occurs between chemically distinguishable isomers possessing different ground state energies. Hence, in a predictably more complicated way, the fast-limit NMR spectra of such compounds will result from the averaging of magnetic environments at fast rates of reversible isomerization.

Detailed investigation of rearrangements occurring in such molecules has been greatly assisted by the use of 13C NMR spectroscopy. For GeMe$_3$(η1-C$_5$H$_4$CH$_3$), it has been possible to completely assign the slow-limit 13C NMR spectrum, using off-resonance selective proton decoupling, in terms of isomer types 40 and 41 in an α:2:1 ratio. More recently analysis of the slow-limit spectra of MR$_3$(η1-C$_5$H$_4$CH$_3$), MR$_3$ = SiH$_3$, GeH$_3$, and GeMe$_3$, has led to the proposal that only isomers 40 and 41 occur in significant concentrations in solution.

For SnMe$_3$(η1-C$_5$H$_4$CH$_3$) a rough estimate of the relative concentrations of 40 and 41 ([40]: [41]) at room-temperature was also made, based on the frequency separation between the 13C resonances for each of the two pairs of ring carbon atoms in the fast-limit spectrum. On the basis of this evidence, it was concluded that the ratio [40]: [41] was sensitive to both the size of the metal atom, and the steric demands of substituents on the metal.
A somewhat similar experiment on a system having a deuterium atom label, as opposed to a methyl group attached to the C5-ring, has recently been reported. For SnMe₃(n⁵-C₅H₅)D, isotopic perturbation of the strictly fluxional rearrangement in SnMe₃(n¹-C₅H₅) was observed, the fast-limit spectrum being consistent with an equilibrium between the three isomers 43, 44, and 45.

Recently, Fabian and Labinger have shown that in Fe(n⁵-C₅H₅)(n¹-C₅H₅CH₃)(CO)(PF₂NMe₂), the metal atom moves around the methylcyclopentadienyl ring with retention of configuration at the metal center, applying arguments similar to those used for Si(h)(CH₃)(i-Pr)(n¹-C₅H₅). It was also possible to show that in the fast-limit H NMR spectrum, signals for the ring protons, H⁴A and H⁴B are diastereotopically shifted, see 46.
indicating that the fluxional process must involve either
(i) suprafacial migration with retention of configuration
at the metal center, or (ii) antarafacial migration with inversion
of configuration. Since migration occurs with retention of
configuration at the metal center, the rearrangement was therefore
concluded to be suprafacial.

C.4.(iii). Metallopentamethylcyclopentadienes.

There have been only a few reports of metallotropic shifts
in monohaptopentamethylcyclopentadienyl derivatives. Pentame-
thylcyclopentadienyltrimethyl-germane and -stannane* both show similar non-rigid characteristics which correspond
to those observed for the unsubstituted cyclopentadienyl analogues.
Interestingly, it has been claimed that Hg[η^1-C_5(CH_3)_5]_2 98
is a 'static' molecule, in striking contrast to the several
known monohaptocyclopentadienylmercury derivatives, 84,99
which are fluxional with very low activation energies for
rearrangement (~<20kJmol^-1).
The first reported example of a compound having boron bonded via a σ-bond to the allylic carbon of a C₅-ring is the pentamethylcyclopentadienyl B[ηⁱ₋₅(CH₃)₅]Cl₂, shown in 47. The preferred vinyl isomers, 48 and 49, found exclusively for all previously known cyclopentadienylboranes is said to be precluded here owing to the high activation energy of a 1,2 methyl shift, relative to a 1,2 hydrogen shift.

During efforts to establish the nature of the fluxional process taking place in monohaptocyclopentadienyls, a number of derivatives of the related indene ring-system were prepared. It was hoped that a comparison of the ¹H NMR spectra of indenyl derivatives with those of cyclopentadienyl analogues would allow an unequivocal assignment of the slow-limit spectrum for the cyclopentadienyl, facilitating distinction between 1,2 and 1,3 shifts. Further should a 1,3 shift be the predominant rearrangement pathway for metallocyclopentadienyls, the rearrangement in the indenyl analogue (50(a) → 50(b), equation(36)) might

\[\text{(36)} \]
be expected to proceed at a similar rate, while a 1,2 shift would result in intermediacy of the high energy 3,3-indenyl (51), significantly slowing the rate of rearrangement in 50.

\[
\begin{align*}
& \text{M} \\
& \text{H} \\
& \text{H} \\
& \text{M}
\end{align*}
\]

51

Cotton and co-worker\(^{102}\) prepared Fe(\(\eta^5-C_5H_5\))\((\eta^1-C_9H_7\))\(\text{(CO)}\)_2 and found it to be non-fluxional, a result interpreted as supporting a 1,2 pathway in Fe(\(\eta^5-C_5H_5\))\((\eta^1-C_5H_7\))\(\text{(CO)}\)_2. Bis(\(\eta^1\)-indenyl)mercury, Hg(\(\eta^1-C_9H_7\))\(_2\), has been shown to be a fluxional molecule, but the rate of rearrangement is significantly slower than that for Hg(\(\eta^1-C_5H_5\))\(_2\). The NMR data are consistent with an overall 1,3 shift of the metal allowing for interconversion between 52 (a) and 52 (b).

\[
\begin{align*}
& \text{H} \\
& \text{M} \\
& \text{H} \\
& \text{M}
\end{align*}
\]

52(a) 52(b)

Davison and Rakita have shown\(^{103}\) that similar rearrangements occur in some tin indenyls. Some mechanistic information was also obtained from examination of the DNMR spectrum of
SnMe₂Ph(n¹-C₅H₅), 53. For the latter, the diastereotopic methyl groups (A) and (B) give rise to separate resonances in the slow-limit (-30°C) ¹H NMR spectrum, while fast metallotropic rearrangement results in averaging of the two methyl resonances, which, provided only suprafacial shifts are considered, is consistent with retention of configuration at the metal center during the rearrangement.

A detailed study of the DNMR spectrum of the di-metallo-indene, 1,2-bis(trimethylsilyl)indene, has provided some evidence for the pathway of the rearrangement. At elevated temperatures site-exchange between the two SiMe₃ groups occurs, such that only one coalesced SiMe₃ resonance is observed in the fast-limit ¹H NMR spectrum, equation (37).
These observations are consistent with the intermediacy of the iso-indene, but do not rule out the possibility of a pair of simultaneous, concerted 1,2 shifts, as shown in.

The possible intermediate (the iso-indene) has also been identified by trapping experiments using the Diels-Alder reaction with dienophiles, to give adducts having the migratory group, MR₃, at the 2-position (equation (38)).
Thermolysis of trimethylsilyl(η-indene),[6][106,107] results in an equilibrium mixture of starting material (56) along with two other products (57 and 58) each of which is the result of a prototropic shift(s). The presence of isomer 57 may be interpreted as further evidence for a rearrangement via the iso-indene 51.

The observed pathway for migration in metallocyclopentadienes provides no evidence to distinguish between a 1,2, "least motion", shift and a 1,5 pathway topologically identical with a Woodward-Hoffmann symmetry-controlled [1,5] thermal rearrangement. In a C₇-ring system, 1,2 and 1,5 migrations will be differentiable, resulting in either a "least motion" shift or a "molecular broad jump" respectively, i.e.,

Thus the C₇-ring system provides a suitable model from which the rearrangement pathway established experimentally will distinguish between the two alternatives.

The first such molecule to be prepared was SnPh₃(η-C₇H₇),[108] which exhibited a DNMR spectrum consistent with a 1,5 shift.
(equivalent to a 1,4 shift), of the \(\text{Ph}_3\text{Sn} \)-substituent about the \(\text{C}_7 \)-ring (equation (39)). These observations have been reinvestigated by Mann and co-workers\(^{109}\) who have essentially confirmed the earlier conclusions.

\[
\begin{align*}
\text{H} & \quad \text{SnPh}_3 \\
\text{H} & \quad \text{SnPh}_3 \\
\text{H} & \quad \text{SnPh}_3
\end{align*}
\]

More recently, the first transition metal \(\sigma \)-bonded cycloheptatriene, \(\text{Re}(\text{h} \cdot \text{C}_7\text{H}_5)(\text{CO})_5 \) has been reported.\(^{110}\)

Interestingly, the molecule is alleged on the basis of Forsen-Hoffmann spin-saturation experiments to undergo a least motions 1,2 (or 1,7) shift, not related to a Woodward-Hoffmann symmetry-allowed \([1,5]\) shift.

The related cycloheptadiene system has also been investigated.\(^{111}\)
Thus \(\text{SnMe}_3(\text{h} \cdot \text{C}_7\text{H}_5) \) has been shown to be a fluxional molecule, in which the tin moiety migrates \(\text{via} \) a 1,5 shift, at a rate similar to that observed for \(\text{SnPh}_3(\text{h} \cdot \text{C}_7\text{H}_5) \). (equation (40)).

Metallotropism in metallo(\(\text{metal}^1\text{C}_9\text{H}_6\)) systems have recently been reported.\(^{112,113}\) A detailed investigation of the silyl, germyl and stannyl systems was completed in these laboratories by Dr. A. Bonny.\(^{113}\) The rate of rearrangement appears to be comparable to that observed for the corresponding cyclopentadienyl derivatives, and significantly faster than those for related cycloheptatrienyl derivatives. This led to the conclusion that a 1,2 (or 1,9) "least motion" shift as opposed to the higher energy 1,5 (or 1,4) "molecular broad jump" was the lowest-energy pathway for rearrangement, (equation (41)).

\[
\text{C.4.(vii). Metallocyclopropenes.}
\]

Only a few reports of sigmatropic shifts in cyclopropenes have appeared. The first such observation\(^{114}\) involved the thermal isomerization of \(59 \rightarrow 60\) (equation (42)), presumably
via a 1,2 (or 1,3) sigmatropic shift; however the reaction is irreversible and no mechanistic information was obtained.

Recently, an equilibrium between 61 and 62 has been observed115 (equation (43)). The derived activation energy, $E_a = 134 \text{kJmol}^{-1}$, is significantly higher than that for $\text{SiMe}_3(\text{CH}_3)_2$, $E_a = 54 \text{kJmol}^{-1}$, implying that the rearrangement between 61 and 62 takes place with inversion of configuration at the silicon center. The rearrangement was shown to be intramolecular, but no direct evidence was obtained to identify the stereochemistry of the reaction.

\[
\begin{array}{c}
\text{Ph} \\
\text{SiMe}_3
\end{array}
\quad \rightleftharpoons
\begin{array}{c}
\text{Ph} \\
\text{SiMe}_3
\end{array}
\]

\[61 \quad \rightleftharpoons \quad 62 \]

(43)
D. GENERAL EXPERIMENTAL

D.1.(i). Nuclear Magnetic Resonance.

Silicon, tin, and lead each have at least one isotope with the nuclear spin $I = \frac{1}{2}$ (Table 1.3), in a sufficiently high concentration to bring about observable effects in the 1H and ^{13}C NMR spectra of many of their compounds. Thus spin-coupling, between the NMR nuclei under investigation and the group IVA NMR-active isotope, results in spectra containing satellite lines which are symmetrically disposed about each central absorption. The technique of heteronuclear magnetic double resonance uses this magnetic relationship to determine indirectly the chemical shift for the particular NMR-active isotope.

\[\text{TABLE 1.3} \]

Percentage natural abundance of NMR active isotopes of the group IVA elements having $I = \frac{1}{2}$.

<table>
<thead>
<tr>
<th>Element</th>
<th>Isotope</th>
<th>% Natural Abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>13</td>
<td>1.11</td>
</tr>
<tr>
<td>Si</td>
<td>29</td>
<td>4.70</td>
</tr>
<tr>
<td>Sn</td>
<td>115</td>
<td>0.35</td>
</tr>
<tr>
<td>117</td>
<td>7.61</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>8.58</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>207</td>
<td>22.60</td>
</tr>
</tbody>
</table>
TABLE 1.4.

Representative examples of (a) 29Si and (b) 119Sn chemical shifts.

(a) 29Si

<table>
<thead>
<tr>
<th>Compound</th>
<th>Chemical Shift $\delta^{a,b}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiMe$_4$</td>
<td>0.0</td>
</tr>
<tr>
<td>SiMe$_3$Cl</td>
<td>30.2</td>
</tr>
<tr>
<td>SiMe$_3$(OMe)</td>
<td>17.2</td>
</tr>
<tr>
<td>SiPh$_4$</td>
<td>-15.2</td>
</tr>
<tr>
<td>SiCl$_4$</td>
<td>-19.9</td>
</tr>
</tbody>
</table>

a Values of 29Si chemical shifts in ppm relative to tetramethyilsilane, positive values to higher frequencies.

b Measurement at room-temperature on neat or d_6-benzene solutions of samples.

c Values obtained from references 117 and 118.

(b) 119Sn

<table>
<thead>
<tr>
<th>Compound</th>
<th>Chemical Shift $\delta^{a,b}$</th>
<th>Solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SnMe$_4$</td>
<td>0^{c}</td>
<td>neat</td>
</tr>
<tr>
<td>SnMe$_3$Cl</td>
<td>171</td>
<td>CDCl_3</td>
</tr>
<tr>
<td>SnMe$_3$(OMe)</td>
<td>121</td>
<td>C_6H_6</td>
</tr>
<tr>
<td>SnPh$_4$</td>
<td>-137</td>
<td>$\text{CHCl}_2,\text{CH}_2\text{Cl}(110^\circ C)$</td>
</tr>
<tr>
<td>SnMe$_3$(n$_1^{-}\text{C}_5\text{H}_5$)</td>
<td>26.0</td>
<td>CCl_4</td>
</tr>
<tr>
<td>Sn(n$_1^{-}\text{C}_5\text{H}_5$)$_4$</td>
<td>-24.4</td>
<td>CCl_4</td>
</tr>
<tr>
<td>Sn(n$_5^{-}\text{C}_5\text{H}_5$)$_2$</td>
<td>-2171.1</td>
<td>CDCl_3</td>
</tr>
</tbody>
</table>

a Values of 119Sn chemical shifts in ppm relative to tetramethyltin, positive values to higher frequency.

b Measurement at room-temperature unless otherwise stated.

c Values obtained from reference 119.
In the specific case of tin, where this technique has been used extensively, the 119Sn satellite line in the 1H NMR spectrum of the compound is observed, while the sample is irradiated with an r.f. field which sweeps through the 119Sn resonant frequency. The frequency at which the satellite line in the proton spectrum is most perturbed gives the 119Sn chemical shift.

The advent of the Fourier transform NMR technique as a commonly available analytical tool has facilitated convenient observation of 29Si, 119Sn and 207Pb chemical shifts. Values of 29Si and 119Sn chemical shifts for some typical silicon and tin compounds are given in Tables 1.4(a) and 1.4(b), respectively.

D.1.(ii). Mass Spectrometry

The polyisotopic nature of all of the group IVA elements (Table 1.5), gives rise to characteristic fragmentation families in the mass spectra of their volatile compounds. Spectra of related volatile derivatives of the group IVA elements have many features in common, observed differences being attributable to a decrease in ionization potentials (Table 1.6), or a decrease in the bond strengths of bonds between the group IVA elements and other elements, on descending the group.

The spectra are dominated by even-electron ions, the relative concentration of odd-electron ions being characteristically small. Radical elimination from odd-electron ions is common.
TABLE 1.5.

Percentage natural abundance of isotopes of the group IVA elements.

<table>
<thead>
<tr>
<th>Element</th>
<th>Isotope</th>
<th>12</th>
<th>13</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>70</th>
<th>72</th>
<th>73</th>
<th>74</th>
<th>76</th>
<th>112</th>
<th>114</th>
<th>115</th>
<th>116</th>
<th>117</th>
<th>118</th>
<th>119</th>
<th>120</th>
<th>122</th>
<th>124</th>
<th>204</th>
<th>206</th>
<th>207</th>
<th>208</th>
<th>209</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Isotope</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% Natural Abundance</td>
<td>98.89</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>Isotope</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% Natural Abundance</td>
<td>92.21</td>
<td>4.70</td>
<td>3.09</td>
<td></td>
</tr>
<tr>
<td>Ge</td>
<td>Isotope</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>70</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% Natural Abundance</td>
<td>20.53</td>
<td>27.43</td>
<td>7.76</td>
<td>36.54</td>
<td>7.76</td>
<td></td>
</tr>
<tr>
<td>Sn</td>
<td>Isotope</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>112</td>
<td>114</td>
<td>115</td>
<td>116</td>
<td>117</td>
<td>118</td>
<td>119</td>
<td>120</td>
<td>122</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% Natural Abundance</td>
<td>0.96</td>
<td>0.66</td>
<td>0.35</td>
<td>14.30</td>
<td>7.61</td>
<td>24.03</td>
<td>8.58</td>
<td>32.85</td>
<td>4.92</td>
<td>5.94</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>Isotope</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>204</td>
<td>206</td>
<td>207</td>
<td>208</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 1.6.

Ionization Potentials for the group IVA elements.

<table>
<thead>
<tr>
<th>Element</th>
<th>1st (eV)</th>
<th>2nd (eV)</th>
<th>3rd (eV)</th>
<th>4th (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>11.264</td>
<td>24.376</td>
<td>47.864</td>
<td>64.476</td>
</tr>
<tr>
<td>Si</td>
<td>6.149</td>
<td>16.34</td>
<td>33.46</td>
<td>45.13</td>
</tr>
<tr>
<td>Ge</td>
<td>7.809</td>
<td>15.86</td>
<td>34.07</td>
<td>45.5</td>
</tr>
<tr>
<td>Sn</td>
<td>7.332</td>
<td>14.63</td>
<td>30.6</td>
<td>39.6</td>
</tr>
<tr>
<td>Pb</td>
<td>7.415</td>
<td>15.03</td>
<td>32.0</td>
<td>42.3</td>
</tr>
</tbody>
</table>

TABLE 1.7

Typical values of the isomer shift and quadrupole splitting for some tin-containing compounds.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Isomer Shift a,b,c</th>
<th>Quadrupole Splitting a,c</th>
</tr>
</thead>
<tbody>
<tr>
<td>SnMe$_4$</td>
<td>+1.29</td>
<td>0.0</td>
</tr>
<tr>
<td>SnMe$_3$CF$_3$</td>
<td>+1.31</td>
<td>1.38</td>
</tr>
<tr>
<td>SnMe$_3$Ph</td>
<td>+1.16</td>
<td>0.0</td>
</tr>
<tr>
<td>SnPh$_4$</td>
<td>+1.21</td>
<td>0.0</td>
</tr>
<tr>
<td>SnMe$_3$Cl</td>
<td>+1.43</td>
<td>3.41</td>
</tr>
<tr>
<td>Sn(1-5C$_5$H$_5$)$_4$</td>
<td>+1.56</td>
<td>0.0</td>
</tr>
<tr>
<td>Sn(5-5C$_5$H$_5$)$_2$</td>
<td>+3.76</td>
<td>0.0</td>
</tr>
<tr>
<td>SnCl$_2$</td>
<td>+4.07</td>
<td>0.0</td>
</tr>
</tbody>
</table>

aValues given in mm.s$^{-1}$.

bRelative to 0 for SnO$_2$.

cAll spectra were recorded at -78°C.
and usually the dominant mode for decomposition of the molecular ion (equation (44)), with the radical lost commonly being that

$$\text{MR}_4^+ \rightarrow \text{MR}_3^+ + \text{R}' \quad \text{(44)}$$

most weakly bound to the metal in the neutral molecule. The most familiar mode for decomposition of even-electron ions having alkyl substituents is alkene elimination (equation (45)),

$$\text{M} \text{Et}_3^+ - \text{C}_2\text{H}_4 \rightarrow \text{M} \text{Et}_2\text{H}^+ - \text{C}_2\text{H}_4 \rightarrow \text{M} \text{EtH}_2^+ - \text{C}_2\text{H}_4 \rightarrow \text{M} \text{H}_3^+ \quad \text{(45)}$$

while elimination of neutral species becomes increasingly common among the heavier group IVA elements (equation (46)).

$$\text{MPh}_3^+ \rightarrow \text{MPh}^+ + \text{Ph}-\text{Ph} \quad \text{(46)}$$

$\text{M} = \text{Sn, Pb}.$

D.1.(iii). Mössbauer Spectroscopy

Mössbauer Spectroscopy, or γ-ray resonance spectroscopy, uses a source of γ-rays to excite a nucleus from its ground-state to the first nuclear excited-state. The radiation source for ^{119}Sn Mössbauer spectroscopy is the ^{119m}Sn isotope which has a half life of 250 days, emitting a γ-ray of energy 23.8 KeV.

When the nuclear environment of the tin atoms in the source and absorber are different, absorption can occur only when the energy of the source is modulated. This is done through making use of the Doppler effect by moving the source relative
to the absorber. The velocity at which maximum absorption occurs is called the isomer shift, δ (also known as the chemical shift, or chemical isomer shift) and is given by

$$\delta = K \frac{\Delta R}{R} \left(|\psi_s(o)|^2_a - |\psi_s(o)|^2_s \right)$$

where K is a constant, $\Delta R/R$ is the fractional change in the nuclear charge radius of excitation and $|\psi_s(o)|^2_a$ and $|\psi_s(o)|^2_s$ are the total s-electron densities at the nuclei of the absorber and source respectively.

The first excitation state of 119Sn has a nuclear spin $I = 3/2$, such that deviations of the nuclear charge distribution from spherical symmetry can lead to a splitting of the energy levels, the quadrupole splitting, A.

The value of the isomer shift δ, is a measure of the s-electron density at the nucleus, and is therefore sensitive to changes in the oxidation state of the metal. Several workers have proposed the isomer shift for α-tin as a dividing line between quadrivalent and bivalent tin, while others have used the value obtained for β-tin. Figure 1.10 shows the scale for this parameter relative to SnO$_2$ = 0, and some typical values for the isomer shift δ and for quadrupole splitting A, are given in Table 1.7.

<table>
<thead>
<tr>
<th>stannic compound</th>
<th>stannous compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>SnO$_2$</td>
<td>α-Sn</td>
</tr>
<tr>
<td></td>
<td>β-Sn</td>
</tr>
<tr>
<td></td>
<td>Sn(SnC_5H_5)$_2$</td>
</tr>
<tr>
<td></td>
<td>SnCl$_2$</td>
</tr>
<tr>
<td>0.00</td>
<td>2.06</td>
</tr>
<tr>
<td></td>
<td>2.56</td>
</tr>
<tr>
<td></td>
<td>3.76</td>
</tr>
<tr>
<td></td>
<td>4.07 (mm.s$^{-1}$)</td>
</tr>
</tbody>
</table>

FIGURE 1.10. The 119Sn Mössbauer isomer shift scale.

Due to air (oxygen) and water sensitivity, preparation of the majority of the compounds described in this thesis required the use of Schlenk-type apparatus in conjunction with a double manifold-type nitrogen atmosphere/vacuum system. Glassware was oven-dried at 110°C with flasks and Schlenk tubes being evacuated and purged with dinitrogen gas several times before use. All solvents were manipulated using syringes which were previously flushed with dinitrogen.

Pentane, hexane, toluene, diethyl ether and tetrahydrofuran were dried over potassium/benzophenone, presence of the characteristic blue color of the benzophenone ketyl radical indicating the solvent was sufficiently dry to be used immediately after distillation under an atmosphere of dinitrogen.

The instrumentation which was used is listed in Table 1.8, and commercially available starting materials are listed in Table 1.9; references for preparation of readily available starting compounds are also provided. Microanalysis was performed in this Department or by Canadian Microanalytical Service Ltd. (Vancouver, B.C.).
TABLE 1.8.

Instrumentation

<table>
<thead>
<tr>
<th>Technique</th>
<th>Spectrometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrared</td>
<td>Perkin-Elmer 283</td>
</tr>
<tr>
<td>1H NMR</td>
<td>Perkin-Elmer R12A and R12B (60MHz)</td>
</tr>
<tr>
<td>13C NMR</td>
<td>Perkin-Elmer R32 (90MHz)</td>
</tr>
<tr>
<td>19F NMR</td>
<td>Nicolet TT-14 (15.1MHz)</td>
</tr>
<tr>
<td>Mass Spectra</td>
<td>Hitachi Perkin-Elmer RMU-17</td>
</tr>
<tr>
<td></td>
<td>Finnigan 3300</td>
</tr>
</tbody>
</table>
TABLE 1.9.

Starting Materials

<table>
<thead>
<tr>
<th>Compound</th>
<th>Supplier (Reference)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SnCl₄</td>
<td>Aldrich</td>
</tr>
<tr>
<td>GeCl₄</td>
<td>Alfa</td>
</tr>
<tr>
<td>GeI₂</td>
<td>123</td>
</tr>
<tr>
<td>GeCl₂, dioxan</td>
<td>124</td>
</tr>
<tr>
<td>CsGeCl₃</td>
<td>125</td>
</tr>
<tr>
<td>SnBu³Cl₃</td>
<td>M & T Chemicals Inc.</td>
</tr>
<tr>
<td>SnPhCl₃</td>
<td>Alfa</td>
</tr>
<tr>
<td>SnPh₂Cl₂</td>
<td>M & T Chemicals Inc.</td>
</tr>
<tr>
<td>SnPh₃Cl</td>
<td>M & T Chemicals Inc.</td>
</tr>
<tr>
<td>"cyclopentadiene dimer"</td>
<td>Aldrich</td>
</tr>
<tr>
<td>"methylcyclopentadiene dimer"</td>
<td>Aldrich</td>
</tr>
<tr>
<td>indene</td>
<td>Eastman</td>
</tr>
<tr>
<td>pentamethylocyclopentadiene</td>
<td>Aldrich</td>
</tr>
<tr>
<td>acetylacetone</td>
<td>Aldrich</td>
</tr>
<tr>
<td>benzoylacetone</td>
<td>Aldrich</td>
</tr>
<tr>
<td>dibenzoylmethane</td>
<td>Aldrich</td>
</tr>
<tr>
<td>tropolone</td>
<td>Aldrich</td>
</tr>
<tr>
<td>thujaplicine</td>
<td>Aldrich</td>
</tr>
<tr>
<td>8-hydroxyquinoline</td>
<td>Fisher</td>
</tr>
<tr>
<td>dipivalcylmethane</td>
<td>Aldrich</td>
</tr>
<tr>
<td>boron trifluoride etherate</td>
<td>Eastman</td>
</tr>
</tbody>
</table>
CHAPTER TWO

INTRAMOLECULAR REARRANGEMENT BEHAVIOUR OF

TETRAKIS(CYCLOPENTADIENYL) AND TETRAKIS(METHYLCYCLOPENTADIENYL)

DERIVATIVES OF GERMANIUM(IV) AND TIN(IV).

A. INTRODUCTION

From its origins, based on a suggestion by Piper and Wilkinson in 1956, the concept of fluxional character of η1-cyclopentadienyl metal derivatives has received continuing attention. Recent results obtained in these laboratories have established conclusively the nature and mechanism of the dynamic process giving rise to stereochemical non-rigidity in this class of compounds. By contrast, the non-rigid properties of related ring-substituted cyclopentadienyl derivatives have, until recently, not received close scrutiny. In such molecules, any corresponding rearrangement must necessarily involve facile interconversion between isomers of the type 1, 2, and 3 (see also Chapter One),
Davison and Rakita, concluded⁹¹,⁹² that the temperature dependent \(^1H \) NMR spectra of \(\text{MMe}_3(\eta^1-C_5H_4CH_3) \), \(M = \text{Si}, \text{Ge}, \) and \(\text{Sn} \), are consistent with interconversion of these three isomers and that the rearrangement rates are similar to those found for the cyclopentadienyl analogues. The \(-30^\circ \text{C} \)^{13}C NMR spectrum of \(\text{GeMe}_3(\eta^1-C_5H_4CH_3) \) has been assigned⁹⁵ to existence of a mixture of isomer types 1 and 2, following a comparison with \(^{13}C\) NMR data for cyclopentadiene and methylcyclopentadiene.

Stobart and Holmes-Smith⁹⁴ reached similar conclusions for \(\text{MR}_3(\eta^1-C_5H_4CH_3) \), \(\text{MR}_3 = \text{SiH}_3, \text{GeH}_3, \text{GeMe}_3 \) and \(\text{SnMe}_3 \), and also estimated the relative concentrations of the two isomers (Table 2.1). It was assumed that isomer 1 was the configuration having lowest free energy on the basis of steric considerations.

TABLE 2.1.

Estimated concentrations of isomers 1 and 2 in \(\text{MR}_3(\eta^1-C_5H_4CH_3) \)-type systems.

<table>
<thead>
<tr>
<th>Compound</th>
<th>([1] : [2])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{SiH}_3(\eta^1-C_5H_4CH_3))</td>
<td>1.2 : 1 ⁹⁹</td>
</tr>
<tr>
<td>(\text{GeH}_3(\eta^1-C_5H_4CH_3))</td>
<td>1 : 1</td>
</tr>
<tr>
<td>(\text{GeMe}_3(\eta^1-C_5H_4CH_3))</td>
<td>3.2 : 1 ⁹⁹</td>
</tr>
<tr>
<td>(\text{SnMe}_3(\eta^1-C_5H_4CH_3))</td>
<td>(\alpha), 1 : 1 ⁹⁹</td>
</tr>
</tbody>
</table>

⁹⁹ Obtained from slow-limiting \(^{13}C\) NMR data at \(-30^\circ \text{C}\).

⁹⁹ Obtained from fast-limiting \(^{13}C\) NMR data.

⁹⁹ At \(+95^\circ \text{C} \).

⁹⁹ At \(+30^\circ \text{C} \).
As part of the same study, the separation of the two resonances due to \(C_{\alpha,\alpha} \) and \(C_{\beta,\beta} \) (see 4) in the fast-limiting \(^{13}\)C NMR of these compounds was shown to be a function of the relative isomer concentrations. Thus for SnMe\(_3\)(\(\eta^1\)-C\(_5\)H\(_4\)CH\(_3\)), where the concentration of isomers 1 and 2 are similar, there is only a small separation between the two resonances (ca. 5.8 ppm), while for GMe\(_3\)(\(\eta^1\)-C\(_5\)H\(_4\)CH\(_3\)), the isomer ratio [1] : [2] = 2 : 1, results in a decrease in the olefinic character of \(C_{\alpha,\alpha}' \), and leads to a larger separation between \(C_{\alpha,\alpha}' \) and \(C_{\beta,\beta}' \) of 12.2 ppm.

In 1965, Fritz and Kreiter reported the synthesis of Sn(\(\eta^1\)-C\(_5\)H\(_4\)CH\(_3\))\(_3\), concluding from \(^1\)H NMR data that this compound had the static structure 5; however Davison and Rakita subsequently pointed
out that the observed spectrum is precisely that expected for a dynamic \(\eta^1-C_5H_4CH_3 \) system, noting that cooling to \(-80^\circ C\) led to significant broadening of resonances in the \(^1H\) NMR spectrum. Campbell and Grøen \(^{127}\) confirmed the non-rigid character of \(Sn(\eta^1-C_5H_4CH_3)_4 \) from an observation of the temperature dependence of both \((^1H - ^1H)\) and \((^{117, 119}Sn - ^1H)\) coupling constants, and further concluded that it exists almost entirely as one isomer form, i.e., either 6 or 7.

A more thorough investigation of this situation has been completed as part of the present work and in this chapter the effect of total substitution of germanium and tin by both monohaptocyclopentadienyl and monohapto methylcyclopentadienyl rings is discussed, giving compounds of the type \(MR_4 \), \(R = \eta^1-C_5H_5 \) or \(\eta^1-C_5H_4CH_3 \). For \(R = \eta^1-C_5H_4CH_3 \), the interchange between isomers with metal-ring bonding, as shown in 1, 2, and 3, is investigated, and changes effected by replacement of Sn by Ge in \(M(\eta^1-C_5H_4CH_3)_4 \) are examined.
B. RESULTS AND DISCUSSION

Tetrakis(η¹-cyclopentadienyl)germane (2.1), tetrakis(η¹-cyclopentadienyl)stannane (2.2), chlorotris(η¹-cyclopentadienyl)germane (2.3), and chlorotris(η¹-cyclopentadienyl)stannane (2.4), were prepared in high yield (α = 75%) as light yellow (M = Ge), or bright yellow (M = Sn) solids, from the reaction of potassium cyclopentadienide with MCl₄ (M = Ge, or Sn). Exactly analogous reactions using potassium methylcyclopentadienide gave tetrakis-(η¹-methylcyclopentadienyl)germane (2.5), and tetrakis(η¹-methyl-cyclopentadienyl)stannane (2.6), again in high yield, as viscous yellow oils. Compounds 2.5 and 2.6 are air-sensitive and the germanium compound is thermally unstable: over a period of several days at room-temperature it forms a hard non-melting glass, insoluble in common organic solvents. Physical and analytical data for compounds 2.1 - 2.6 are given in Table 2.2.

Mass spectral data for compounds 2.1 - 2.6 are given in Table 2.3 and provide definitive characterization for each of the six compounds. While the molecular ion for the three germanium compounds is clearly discernible, those for the tin derivatives were not observed, reflecting a decrease in the metal-carbon bond strength. Subsequent fragmentation is dominated by the formation of even electron ions, via radical elimination,
<table>
<thead>
<tr>
<th>Compound</th>
<th>Colour</th>
<th>M.P. ($^\circ$C)</th>
<th>Analysis</th>
<th>% yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ge(1-C_5H_5)$_4$ (2.1)</td>
<td>light yellow</td>
<td>116$^\circ$ (dec)</td>
<td>72.16 6.01</td>
<td>71.90 5.83</td>
</tr>
<tr>
<td>Sn(1-C_5H_5)$_4$ (2.2)</td>
<td>yellow</td>
<td>73-74$^\circ$</td>
<td>63.37 5.32</td>
<td>63.19 5.51</td>
</tr>
<tr>
<td>Ge(1-C_3H_5)$_3\text{Cl}$ (2.3)</td>
<td>light yellow</td>
<td>145$^\circ$ (dec)</td>
<td>59.39 4.99</td>
<td>59.09 4.99</td>
</tr>
<tr>
<td>Sn(1-C_3H_5)$_3\text{Cl}$ (2.4)</td>
<td>yellow</td>
<td>165$^\circ$ (dec)</td>
<td>51.55 4.30</td>
<td>51.31 4.13</td>
</tr>
<tr>
<td>Ge(1-$\text{C}_5\text{H}_4\text{CH}_3$)$_4$ (2.5)</td>
<td>amber oil</td>
<td></td>
<td>74.09 7.26</td>
<td>73.71 6.98</td>
</tr>
<tr>
<td>Sn(1-$\text{C}_5\text{H}_4\text{CH}_3$)$_4$ (2.6)</td>
<td>orange oil</td>
<td></td>
<td>66.24 6.48</td>
<td>66.51 6.57</td>
</tr>
</tbody>
</table>

TABLE 2.2.
Physical and analytical data for compounds 2.1 - 2.6.
TABLE 2.3.

Mass spectral data\(^a\) for (a) \(\text{MR}_4\)\(^b,c\) and (b) \(\text{MR}_3\text{Cl}\)\(^b,d\).

(a)

<table>
<thead>
<tr>
<th>Ion Family</th>
<th>(\text{Ge}(n^1-\text{C}_5\text{H}_5)_4^+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{MR}_4^+)</td>
<td>0.5</td>
</tr>
<tr>
<td>(\text{MR}_3^+)</td>
<td>6.9</td>
</tr>
<tr>
<td>(\text{MR}_2^+)</td>
<td>1.9</td>
</tr>
<tr>
<td>(\text{MR}^+)</td>
<td>77.0</td>
</tr>
<tr>
<td>(\text{MC}3\text{H}+)</td>
<td>8.0</td>
</tr>
<tr>
<td>(\text{MC}_2\text{H}_2^+)</td>
<td>3.4</td>
</tr>
<tr>
<td>(\text{M}^+)</td>
<td>1.0</td>
</tr>
</tbody>
</table>

| Ion Family | \(\text{Sn}(n^1-\text{C}_5\text{H}_5)_4^+\) | \(\text{Ge}(n^1-\text{C}_5\text{H}_5\text{CH}_3)_4^+\) | \(\text{Sn}(n^1-\text{C}_5\text{H}_5\text{CH}_3)_4^+\) |
|------------|---------------------------------|---|
| \(\text{MR}_4^+\) | n.o. | 1.1 | n.o. |
| \(\text{MR}_3^+\) | 6.9 | 1.2 | 7.1 |
| \(\text{MR}_2^+\) | 1.9 | 0.2 | 1.4 |
| \(\text{MR}^+\) | 77.0 | 97.5 | 66.8 |
| \(\text{MC}_3\text{H}_+\) | 8.0 | n.o. | n.o. |
| \(\text{MC}_2\text{H}_2^+\) | 3.4 | n.o. | n.o. |
| \(\text{M}^+\) | 1.0 | 14.7 | 13.2 |

(b)

<table>
<thead>
<tr>
<th>Ion Family</th>
<th>(\text{Ge}(n^1-\text{C}_5\text{H}_5)_3\text{Cl}^+)</th>
<th>(\text{Sn}(n^1-\text{C}_5\text{H}_5)_3\text{Cl}^+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{MR}_3\text{Cl}^+)</td>
<td>4.8</td>
<td>n.o.</td>
</tr>
<tr>
<td>(\text{MR}_3^+)</td>
<td>2.3</td>
<td>16.2</td>
</tr>
<tr>
<td>(\text{MR}_2\text{Cl}^+)</td>
<td>11.1</td>
<td>n.o.</td>
</tr>
<tr>
<td>(\text{MR}_2^+)</td>
<td>9.9</td>
<td>7.8</td>
</tr>
<tr>
<td>(\text{MRCl}^+)</td>
<td>n.o.</td>
<td>1.6</td>
</tr>
<tr>
<td>(\text{MR}^+)</td>
<td>48.8</td>
<td>49.8</td>
</tr>
<tr>
<td>(\text{MC}3\text{H}+)</td>
<td>3.2</td>
<td>n.o.</td>
</tr>
<tr>
<td>(\text{MCl}^+)</td>
<td>19.3</td>
<td>20.9</td>
</tr>
<tr>
<td>(\text{M}^+)</td>
<td>4.6</td>
<td>3.6</td>
</tr>
</tbody>
</table>

\(^a\) 70eV ionizing voltage.

\(^b\) Ge, or Sn.

\(^c\) \(\text{R}^=\text{C}_5\text{H}_5\) or \(\text{R}^=\text{C}_5\text{H}_5\text{CH}_3\).

\(^d\) \(\text{R}^=\text{C}_5\text{H}_5\text{CH}_3\).

\(^e\) \% metal-containing ions, summed within each family resulting from isotope distribution and hydrogen loss.

\(^f\) Not observed.
FIGURE 2.1. Fragmentation pathways for Ge(n-C₅H₅)₃Cl.
giving principally \(MR^+ \), a result similar to that observed for many other group IVA organometallics.\(^1,120\) The ion \(MR^+ \) decomposes either by loss of the \(C_5^+ \)-ring or by carbon-carbon bond cleavage within the ring, giving \(MC\left(C_5^+\right) \) and \(MC_2\left(C_5^+\right) \) fragments (Figure 2.1). These fragments have a relatively low abundance, consistent with the recent conclusion\(^128\) that while \(\eta^5 \)-cyclopentadienyls characteristically fragment via carbon-carbon bond fission, the main pathway for decomposition of \(\eta^1 \)-cyclopentadienyl analogues is by breaking of the metal-carbon linkage.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Isomer Shift (\delta)</th>
<th>Quadrupole Splitting (\Delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Sn(\eta^1-C_5H_5))</td>
<td>1.56</td>
<td>0</td>
</tr>
<tr>
<td>(Sn(\eta^1-C_5H_5)Cl)</td>
<td>1.56</td>
<td>1.45</td>
</tr>
</tbody>
</table>

\(^a\) Measured at 77K by using a Harwell constant-acceleration spectrometer. Isomer shift in \(\text{mm.s}^{-1} \) relative to 0 for \(SnO_2 \) and quadrupole splitting in \(\text{mm.s}^{-1} \).

B.2. Mössbauer Spectral Data

The Mössbauer data obtained for compounds 2.2 and 2.4 are given in Table 2.4. The isomer shifts determined for both compounds are identical within experimental error, \(\delta = 1.56 \text{mm.s}^{-1} \), and in the region expected for quadrivalent tin, being similar to isomer shifts obtained for other tetraorganotin(IV) compounds,
but significantly lower than the value reported for Sn(\(\eta^5-C_5H_5\))\(_2\), (Table 2.5).

TABLE 2.5

Isomer shift values for some SnR\(_4\) - type compounds.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Isomer Shift (\delta) ((\text{mm.s}^{-1}))</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>SnMe(_4)</td>
<td>1.29</td>
<td>129</td>
</tr>
<tr>
<td>Sn((C_6H_{11})_4)</td>
<td>1.52</td>
<td>130</td>
</tr>
<tr>
<td>SnPh(_4)</td>
<td>1.21</td>
<td>130</td>
</tr>
<tr>
<td>Sn((\eta^1-C_5H_5))(_4)</td>
<td>1.56</td>
<td>this work</td>
</tr>
<tr>
<td>Sn((\eta^5-C_5H_5))(_2)</td>
<td>3.76</td>
<td>131</td>
</tr>
</tbody>
</table>

The spectrum for compound 2.4 consists of a doublet with quadrupole splitting Q.S. = 1.45 \(\text{mm.s}^{-1}\), consistent with non-spherical symmetry about the tin center. The value obtained is substantially smaller than those for some related triorganotin halides, as indicated in Table 2.6.

TABLE 2.6

Quadrupole splitting values for some SnR\(_3\)Cl - type compounds.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Quadrupole Splitting ((\text{mm.s}^{-1}))</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>SnMe(_3)Cl</td>
<td>3.41</td>
<td>132</td>
</tr>
<tr>
<td>SnPh(_3)Cl</td>
<td>2.5</td>
<td>130</td>
</tr>
<tr>
<td>Sn Bu(_3)Cl</td>
<td>3.40</td>
<td>133</td>
</tr>
<tr>
<td>Sn(p-ClC(_6)H(_4))_3Cl</td>
<td>2.49</td>
<td>130</td>
</tr>
<tr>
<td>Sn((\eta^1-C_5H_5))_3Cl</td>
<td>1.45</td>
<td>this work</td>
</tr>
</tbody>
</table>
TABLE 2.7.

Infrared spectra\(^a\), 2800–3200 cm\(^{-1}\) region for compounds 2.1–2.4\(^b\).

<table>
<thead>
<tr>
<th>(\text{Ge}(\eta^1-\text{C}_3\text{H}_5)_4)</th>
<th>(\text{Sn}(\eta^1-\text{C}_3\text{H}_5)_4)</th>
<th>(\text{Ge}(\eta^1-\text{C}_3\text{H}_5)_3\text{Cl})</th>
<th>(\text{Sn}(\eta^1-\text{C}_3\text{H}_5)_3\text{Cl})</th>
</tr>
</thead>
<tbody>
<tr>
<td>3100 ((\text{w}))</td>
<td>3100 ((\text{vw}))</td>
<td>3095 ((\text{vw}))</td>
<td>3101 ((\text{w}))</td>
</tr>
<tr>
<td>3081 ((\text{w}))</td>
<td>3060 ((\text{w}))</td>
<td>3070 ((\text{w}))</td>
<td>3093 ((\text{w}))</td>
</tr>
<tr>
<td>3042 ((\text{mw}))</td>
<td>3040 ((\text{vw}))</td>
<td>3048 ((\text{vw}))</td>
<td>3073 ((\text{w}))</td>
</tr>
<tr>
<td>2904 ((\text{w}))</td>
<td>2950 ((\text{w}))</td>
<td>2954 ((\text{vw}))</td>
<td>2959 ((\text{w}))</td>
</tr>
<tr>
<td>2842 ((\text{vw}))</td>
<td>2920 ((\text{mw}))</td>
<td>2910 ((\text{w}))</td>
<td>2915 ((\text{vw}))</td>
</tr>
<tr>
<td>2850 ((\text{w}))</td>
<td></td>
<td>2845 ((\text{w}))</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Values given in cm\(^{-1}\).

\(^b\) As KBr pellets.

The infrared spectra of compounds 2.1 - 2.4 each have at least five absorptions between 2800 and 3200 cm\(^{-1}\) (Table 2.7), due to ring \(\nu(CH)\). Using group theoretical considerations it is possible to predict that for a \(\eta^5\)-C\(_5\)H\(_5\)-ring (local \(D_{5h}\) symmetry), there should be two IR-active fundamentals due to the ring \(\nu(CH)\), (2800 - 3200 cm\(^{-1}\) range). In contrast a \(\eta^1\)-C\(_5\)H\(_5\)-ring (\(C_8\) symmetry), should give rise to five stretching modes, one aliphatic-type (2800 - 3200 cm\(^{-1}\)) and four olefinic C-H stretches (3000 - 3200 cm\(^{-1}\)). Hence the presence of three or more bands in this region is positive evidence for monohaptocyclopentadienyl bonding, and the observed spectra clearly point to the existence of such an arrangement in each of the four compounds.

B.4. NMR Data.

The \(^1\)H NMR spectra of Sn(\(\eta^5\)-C\(_5\)H\(_5\))\(_4\) (2.2) and Sn(\(\eta^1\)-C\(_5\)H\(_5\))\(_3\)Cl (2.4) are superficially very similar (Table 2.8), each consisting of a single sharp line with symmetrically disposed satellite lines due to coupling between \(^1\)H and \(^{117, 119}\)Sn (I = \(\frac{1}{2}\)). The single line indicates magnetic equivalence between the five ring protons of each of the C\(_5\)H\(_5\)-rings, with the coupling constants, \(2J^{(117}\text{Sn}-\text{H})\) and \(2J^{(119}\text{Sn}-\text{H})\), being significantly different for the
TABLE 2.8.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Temperature °C</th>
<th>(\delta(A, A'))</th>
<th>(\delta(B, B'))</th>
<th>(\delta(X))</th>
<th>(2J(^{117}\text{Sn}-'\text{H}))(^{f})</th>
<th>(2J(^{119}\text{Sn}-'\text{H}))(^{f})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ge(\eta^1\text{C}_5\text{H}_5)_4, 2.1</td>
<td>-65 °</td>
<td>6.63</td>
<td>6.28</td>
<td>3.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27 °</td>
<td></td>
<td></td>
<td></td>
<td>6.31(^{c})</td>
<td></td>
</tr>
<tr>
<td>Ge(\eta^1\text{C}_5\text{H}_5)_3Cl, 2.3</td>
<td>-60 °</td>
<td>6.62</td>
<td>6.29</td>
<td>3.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27 °</td>
<td></td>
<td></td>
<td></td>
<td>5.83</td>
<td></td>
</tr>
<tr>
<td>Sn(\eta^1\text{C}_5\text{H}_5)_4, 2.2</td>
<td>27 °</td>
<td></td>
<td></td>
<td></td>
<td>5.92(^{c,d})</td>
<td>25.4</td>
</tr>
<tr>
<td>Sn(\eta^1\text{C}_5\text{H}_5)_3Cl, 2.4</td>
<td>27 °</td>
<td></td>
<td></td>
<td></td>
<td>5.81(^{c,e})</td>
<td>29.9</td>
</tr>
</tbody>
</table>

\(^{a}\) Chemical shifts in ppm measured positive downfield from SiMe\(_4\) in 5\% CDCI\(_3\) solution.

\(^{b}\) Measured at 60.0 and 90.0 MHz.

\(^{c}\) Exchange-broadened-averaged chemical shift.

\(^{d}\) See also reference 90. \(\delta(13\text{C}) = 114.5\) ppm, \(1J(\text{Sn-C}) = 17.7\) Hz \((^{117}\text{Sn,}^{119}\text{Sn components not resolved})\) at 27°C.

\(^{e}\) In CD\(_6\) solution

\(^{f}\) Values given in Hz.
two compounds, increasing upon introduction of the electron withdrawing Cl substituent.

The variable temperature 1H NMR spectra of Ge(n^1-$C_5H_5)_4$ (2.1) and Ge(n^1-$C_5H_5)_3$Cl (2.3), are also similar (Table 2.8). The 1H NMR spectrum of compound 2.1 at -60°C, Figure 2.2(a), is assigned to an incompletely resolved $aa''bb''$ pattern, consistent with the presence of four magnetically equivalent n^1-C_5H_5- rings attached to germanium. On raising the temperature above -60°C the spectrum broadens, the upfield portion of the $aa''bb''$ pattern collapsing more rapidly than the low-field part. At 0°C, Figure 2.2(d), the spectrum consists of a single broad absorption which shows a continuing decrease in half-height line-width with increasing temperature, eventually giving (above 100°C) a single sharp line similar to the room-temperature 1H NMR spectrum of the two tin compounds.

The spectral broadening of the 1H NMR spectra of the germanium compounds at temperatures above -60°C, is the result of a migration of the germanium center around the n^1-cyclopentadienyl rings ("ring whizzing"), ultimately bringing about equivalence of the five ring protons of each of the C_5^- rings on the NMR timescale when this process becomes sufficiently fast. The unsymmetrical collapse of the $aa''bb''$ pattern for the four olefinic protons eliminates any pathway in which site exchange occurs either randomly, or via any configuration in which all sites become equivalent (eg. dissociative). Further
FIGURE 2.2. Variable temperature 90MHz 1H NMR spectrum of Ge(1-C$_2$H$_4$)$_4$. 2.1.
an assignment of the 1,2 pathway for the migration is also possible, if the upfield portion of the $aa'bb'$ multiplet is assigned to the HH', see 8. Such conclusions have previously been reached for GeMe$_3$(η1-C$_5$H$_5$)$_3$ following a complete analysis of the variable temperature 1H NMR spectrum, and for Si(η1)(Bu$^-$)(η1-C$_5$H$_3$)Cl, chirality at the silicon center leading to the expected larger diastereotopic splitting between between signals for H^A and H^A', than for H^B and H^B', in the -60°C 1H NMR spectrum.

The 1H NMR spectra of the tin cyclopentadienyls also indicate that fast metallotropic rearrangement is taking place, however the rearrangement rates are significantly faster than those observed for the germanium analogues. A similar conclusion has been reached for SnMe$_3$(η1-C$_5$H$_5$)$_3$, for which at very low temperature (-150°C) a spectrum consistent with a static η1-C$_5$H$_5$ configuration was observed. Further, the solid state structure of Sn(η1-C$_5$H$_5$)$_4$ (2.2) has been shown by X-ray crystallography to contain four equivalent η1-C$_5$H$_5$ rings.
Presence of $^{117, 119}$Sn satellite lines in the fast-limit spectra of the tin compounds provides conclusive evidence for identification of the rearrangement process as non-dissociative (i.e., intramolecular).

4.B.(ii). Monohaptomethylcyclopentadienyl Derivatives

At room-temperature, the 1H NMR spectrum of Sn(η^1-C$_5$H$_4$CH$_3$)$_4$ (2.6) (Figure 2,3), consists of three absorptions at δ2.05, 4.95, and 5.97 in an intensity ratio of 3 : 2 : 2, assigned to H$_\alpha$, H$_\alpha^\prime$, and H$_\beta$, respectively, see 4, while the 13C NMR spectrum (Figure 2.4), has four signals at 15.4, 96.5, 123.6 and 139.5 ppm for C$_3$H, C$_3$, C$_2$, C$_\beta$, and C$_\gamma$ respectively.

![Diagram](image)

The deceptively simple appearance of both these spectra arises from an intramolecular rearrangement which must involve facile isomerization between the three possible configurations, A, B, and C. Work in these laboratories has established...
FIGURE 2.3. Room-temperature 90MHz 1H NMR spectrum of Sn($^1\text{C}_5\text{H}_4\text{CH}_3$)$_4$.
FIGURE 2.4. Room-temperature 13C NMR spectrum of $\text{Sn} \left(\eta^1 - \text{C}_5\text{H}_4\text{CH}_3 \right)_4$.
Tha rearrangement in these types of ring system results in fast-limiting 13C NMR spectra, having three resonances with frequencies ν_1, ν_2 and ν_3 for the five ring carbons (equations (1)-(3)), in which ν_a, $\nu_{a'}$, ν_β, $\nu_{\beta'}$, and ν_γ are the resonant frequencies at the slow-limit for isomer A and a is its equilibrium molar fraction at T K; ν_{a_1}, $\nu_{a_1'}$, ν_{β_1}, $\nu_{\beta_1'}$, and ν_{γ_1} are the corresponding frequencies for, and b the molar fraction of, isomer B.

$$
\nu_1 = \frac{1}{2}[a(\nu_a + \nu_{a'}) + b(\nu_{a_1} + \nu_{a_1'})] \quad \ldots \quad (1)
$$

$$
\nu_2 = \frac{1}{2}[a(\nu_\beta + \nu_{\beta'}) + b(\nu_{\beta_1} + \nu_{\beta_1'})] \quad \ldots \quad (2)
$$

$$
\nu_3 = a\nu_\gamma + b\nu_{\gamma_1} \quad \ldots \quad (3)
$$

It was also shown that for GeMe$_3(\eta^1$-C$_5$H$_4$CH$_3$), where ($\nu_2 - \nu_1$) = 12.2 ppm, the ratio of concentrations of isomers A and B is approximately 2:1, while for SnMe$_3(\eta^1$-C$_5$H$_4$CH$_3$), the separation ($\nu_2 - \nu_1$) = 5.8 ppm indicates that the two isomers are present in approximately equal concentrations. Thus for Sn(\eta^1$-C$_5H_4CH_3$)$_4$, where the separation between ν_1 (96.5 ppm) and ν_2 (125.6 ppm) is large, i.e 29.1 ppm, isomer A must be present in a significantly higher concentration than isomer B. Significantly, Campbell and Green have also concluded that Sn(\eta^1$-C$_5H_4CH_3$)$_4$ exists almost exclusively as one isomer, based on the temperature dependence of (117, 119Sn - 1H) coupling constants.

The most distinctive feature of the room-temperature

* The relative concentration of isomer C was assumed to be negligible. 94,95,127
TABLE 2.9:

NMR dataa for tetrakis(\textit{n}^1\text{-methylcyclopentadienyl}) - germane and - stannane, compounds 2.5 and 2.6 respectively.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Temperature (°C)</th>
<th>1\textsubscript{H}</th>
<th>(\delta(\text{H}^\beta,\text{H}^\prime))</th>
<th>(\delta(\text{H}^\alpha'))</th>
<th>(\delta(\text{H}^\alpha))</th>
<th>(\delta(\text{CH}_3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ge(\textit{n}^1\text{-C}_5\text{H}_4\text{-CH}_3)\textsubscript{4}, 2.5</td>
<td>\textit{-50} °c</td>
<td></td>
<td>6.25, 5.90</td>
<td>6.40</td>
<td>3.12</td>
<td>2.08</td>
</tr>
<tr>
<td></td>
<td>27° e</td>
<td></td>
<td>6.10</td>
<td>4.75</td>
<td>2.06</td>
<td></td>
</tr>
<tr>
<td>Sn(\textit{n}^1\text{-C}_5\text{H}_4\text{-CH}_3)\textsubscript{4}, 2.6</td>
<td>27° f</td>
<td></td>
<td>5.97</td>
<td>4.95</td>
<td>2.05</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Temperature (°C)</th>
<th>(\delta(C^\gamma))</th>
<th>(\delta(C^\beta,\beta'))</th>
<th>(\delta(C^\alpha'))</th>
<th>(\delta(C^\alpha))</th>
<th>(\delta(C^3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ge(\textit{n}^1\text{-C}_5\text{H}_4\text{-CH}_3)\textsubscript{4}, 2.5</td>
<td>\textit{-50} °c</td>
<td>141.2</td>
<td>134.0, 128.0</td>
<td>134.0</td>
<td>49.0</td>
<td>15.5</td>
</tr>
<tr>
<td></td>
<td>27° e</td>
<td>141.0</td>
<td>131.2</td>
<td>n.o.</td>
<td>15.3</td>
<td></td>
</tr>
<tr>
<td>Sn(\textit{n}^1\text{-C}_5\text{H}_4\text{-CH}_3)\textsubscript{4}, 2.6</td>
<td>27° f</td>
<td>139.5</td>
<td>123.6</td>
<td>96.5</td>
<td>15.4</td>
<td></td>
</tr>
</tbody>
</table>

aChemical shifts, ppm, measured positive downfield from SiMe\textsubscript{4} in 10\%(1H) or 50\% (13C) CDCl\textsubscript{3} solutions.

bMeasured at 90 MHz.

cSee also figure 2.5.

dFor 117, 119 Sn - \textit{H} coupling constants see reference 127.

eSee also figure 2.6.

fSee also figure 2.4.
1H NMR spectrum of the germanium compound 2.5, (Figure 2.5) is the unsymmetrical collapse of the two olefinic resonances of 66.10 and 4.75. As the temperature is lowered to α_0^0C, the signal centered at 64.75 becomes extremely broad and at -60^0C a new broad absorption is apparent at 63.12 (Table 2.9), while the methyl resonance at 62.08 shows little variation in either chemical shift or line width.

The 13C NMR spectrum of 2.5 (Figure 2.6), shows extensive changes between -50 and $+50^0$C (see also Table 2.9): thus signals at 49.0, 128.0 and 134.0 ppm in the -50^0C spectrum become broad at α_5^0C, the low frequency signal having completely collapsed at α_1^0C. By contrast, signals at α_{15} and 141.2 ppm, assigned to 3Me and 5, show little variation in frequency or line width throughout the temperature range studied. These spectra differ from comparable data for GeMe$_3$(η-1-5H$_4$CH$_3$),94,95 in that:

(i) the -50^0C spectrum for 2.5 has only one ring-methyl signal (at 15.3 ppm), while for GeMe$_3$(η-1-5H$_4$CH$_3$) at -30^0C there are two ring-methyl signals,

(ii) there is only one resonance due to a ring carbon bearing a methyl substituent, C$, (at 141.0 ppm) in the -50^0C spectrum of 2.5, while two such absorptions are present for GeMe$_3$(η-1-5H$_4$CH$_3$), in the -30^0C spectrum,

(iii) neither of the two signals due to C$ and C$ in the 13C NMR spectrum of 2.5 show any variation in frequency or
FIGURE 2.5. 90MHz 1H NMR spectrum of Ge(1C$_5$H$_4$CH$_3$)$_4$ at 27°C.
FIGURE 2.6. Variable temperature 13C NMR spectrum of $\text{Ge(}^1\text{C}_5\text{H}_4\text{CH}_3)_4$.
line width during coalescence of the remaining portions of the spectrum while for GeMe₃(η⁻⁵-C₅H₅CH₂), signals for C⁰ and C'Me in the -30°C ¹³C NMR spectrum broaden, eventually giving, at more elevated temperatures, a single line for each of C⁰ and C'Me.

These results show that while both isomer types A and B are present in significant (observable) concentrations for GeMe₃(η⁻⁵-C₅H₅CH₂), for Ge(η⁻⁵-C₅H₅CH₂)₄, there is only one major isomer present. This indicates that decreasing the size of the metal atom in M(η⁻⁵-C₅H₅CH₂)₄ results in only one ring configuration being detectable, steric constraints having increased the [A]:[B] ratio to a point where [B] can be neglected.

The rearrangement process taking place can then be formulated as the degenerate (i.e., fluxional) rearrangement shown in equation (4). This results in averaging of signals in the ¹³C NMR spectrum due to C⁺, (ν₀), and C⁺⁺, (ν₀⁺) and also C⁺⁺, (ν₀⁺) and C⁺⁺⁺, (ν₀⁺⁺), while having no effect on resonances due to C⁰, (ν⁰) and C'Me. In fact the averaging process between ν₀ and ν₀⁺ (to give ν₁) and ν₀⁺ and ν₀⁺⁺ (to give ν₂) occurs.
at very different rates (because of the much larger frequency separation between the first pair), thus while v_2 is obvious at $+40^\circ$C, v_1 is not apparent even at $+65^\circ$C.

The 1H NMR spectrum can be analyzed in an exactly similar way. Thus the differential rate of collapse of resonances for the two pairs of ring protons results from the much larger frequency separation between the H_1^1 and H_5^5 resonances (assigned to lines at 63.12 and 6.40 respectively in the -50°C spectrum), than for the H_2^2 and H_4^4 resonances (assigned to lines at 66.25 and 5.90). This clearly identifies the low-field component of the fast-limiting spectrum with H_8^8, a conclusion which has previously been reached for $Sn(\eta-C_5^1H_4^1CH_3_4)$ from manipulation of (117, 119Sn - 1H) and (1H - 1H) coupling constants.

These results also confirm conclusions reached by Stobart and Holmes-Smith that a decrease in size of M in $MR_3(\eta-C_5^1H_4^1CH_3)$ or an increase in the steric requirements of the substituents R, will result in an increase on the relative concentration of isomer A.

The above discussion has treated the rearrangement behaviour of systems, represented by compounds 2.5 and 2.6, in terms of an approximate model that of a single ring attached to a metal center. Although this approach fully accounts for the experimental NMR data, it should be noted that if configuration B enters into the equilibrium, it would be present as part of a Ge_3A_3B molecule, and not, as may have been implied, a Ge_4.

molecule. Also a Ge₄ molecule represents a more complex situation than has been assumed, in that the carbon atom Cα is asymmetric; thus Ge₄ in fact exists as a stereoisomeric mixture, a complication which gives rise to observable effects in several related systems as described in Chapters Three and Four. Possibly the fact that signals in a slow-limit ¹³C NMR spectrum of compound 2.5 at -50°C, assigned to Cα', Cα'', Cβ' and Cβ'', and in the -60°C ¹H NMR spectrum for Hα, Hα', Hβ and Hβ', are noticeably broad, may be due to unresolved chemical shift differences between resonances due to these nuclei in each of the different isomers.
C. EXPERIMENTAL

General experimental information is contained in Chapter One.

Potassium-cyclopentadienide and -methylcyclopentadienide preparations of tetrakis(\(\eta^1\)-cyclopentadienyl)- and tetrakis(methylcyclopentadienyl)-stannane have been published, however both were prepared by the method described below for the germanium analogue, the properties of the products obtained corresponding exactly to those given in the literature preparations.

(i) Tetrakis(\(\eta^1\)-cyclopentadienyl)germane.

Germanium tetrachloride (3.56g, 16.5mmol) in benzene (30mL) was added slowly to a vigorously stirred suspension of potassium cyclopentadienide (8.6g, excess) in benzene (50mL), over a period of 0.5h. After stirring for a further 24h, the mixture was filtered and the filtrate concentrated in \(\text{vacuo}\), leaving a yellow solid which was crystallized from diethyl ether (50mL) affording pure Ge(\(\eta^1\)-C\(_5\)H\(_5\))\(_4\) (4.72g, 14.2mmol, 86%).

(ii) Chlorotris(\(\eta^1\)-cyclopentadienyl)germane.

A solution of germanium tetrachloride (3.56g, 16.5mmol) in benzene (20mL) was added slowly to a stirring slurry of potassium cyclopentadienide (5.21g, 49.5mmol) in benzene (100mL). The reaction mixture was stirred for 24h, the mixture filtered and the filtrate concentrated in \(\text{vacuo}\) to give a light yellow solid.
which was crystallized from diethyl ether (50mL) to give pure
Ge(\(\eta^1\)-C\(_5\)H\(_5\))\(_3\)Cl (3.6g, 15.0mmol, 91%).

(iii) Tetrakis(\(\eta^1\)-methylcyclopentadienyl)germane.

Germanium tetrachloride (5.40g, 18.0mmol) in benzene (50mL)
was added slowly to a vigorously stirred suspension of potassium
cyclopentadienide (12g, excess) in benzene (100mL) during 1h.
The reaction mixture was stirred for 48h at room-temperature,
giving a yellow gelatinous mixture. Hexane (25mL) was added and
the mixture stirred for 0.5h, and then filtered, the filtrate
being concentrated in vacuo leaving a viscous yellow oil.
This was then dissolved in dry hexane, and the mixture filtered
and pumped to remove the solvent. Repetition of this procedure
followed by prolonged pumping (48h, 10^-2 mmHg) finally yielded
Ge(\(\eta^1\)-C\(_5\)H\(_4\)CH\(_3\))\(_4\) as a viscous, air-sensitive, amber oil (7.2g,
18.5mmol, 74%).
CHAPTER THREE

METALLOCROTISM AND STEREOCHANGE

IN POLY(INDENYL) DERIVATIVES OF GERMANIUM AND TIN.

A. INTRODUCTION.

The nature of the facile non-degenerate rearrangement occurring in metalloccyclopentadienes is now believed to be well understood. Examination of the non-rigid properties of related ring systems has resulted in the identification of rearrangement processes which have similar characteristics to those observed for the cyclopentadienyl derivatives. In this context, the metallotropic properties of 1-metallo-indene-ring systems (1), were among the first to be studied in detail.

Davison and Rakita have shown that the 1H NMR data obtained for $\text{MMMe}_3(n\text{C}_9\text{H}_7)$, $M = \text{Si, Ge, and Sn}$, are consistent with facile, 1,3 migration of the MMMe_3 moiety across the indenyl ring (equation (1)). Cotton and Marks reached a similar conclusion.
for Hg(\(n^1-C_9H_7\))\(_2\), based on a complete analysis of the variable temperature \(^1H\) NMR spectrum. These shifts have a substantially higher activation energy than related rearrangements observed for the cyclopentadienyl analogues\(^{24}\) (ca. 30-40 kJ mol\(^{-1}\) higher).

Based on this observation and a variety of other experimental evidence\(^{105,106,107}\) the \textit{iso}-indene 2 has been proposed as an intermediate in the rearrangement process.

\begin{center}
\begin{tikzpicture}
\node (M) at (0,0) {M};
\node (H) at (1,0) {H};
\draw (M) -- (H);
\end{tikzpicture}
\end{center}

Analysis of the \(^1H\) D NMR spectrum of SnMe\(_2\)Ph(\(n^1-C_9H_7\))\(_2\), 2, has provided\(^{103}\) some evidence for the effect of the rearrangement on the stereochemistry at the migrating center in such systems.

\begin{center}
\begin{tikzpicture}
\node (MeA) at (0,0) {Me(A)};
\node (MeB) at (1,0) {Me(B)};
\node (Sn) at (0.5,-1) {Sn};
\node (Ph) at (1.5,-1) {Ph};
\node (H1) at (0,-1) {H\(^1\)};
\node (H2) at (1,-1) {H\(^2\)};
\node (H3) at (1,-2) {H\(^3\)};
\draw (MeA) -- (Sn);\draw (MeB) -- (Sn);\draw (Sn) -- (H1);\draw (Sn) -- (H2);\draw (Sn) -- (H3);\draw (Ph) -- (H1);\draw (Ph) -- (H2);\draw (Ph) -- (H3);
\end{tikzpicture}
\end{center}

In 3 the two methyl groups (A) and (B) are magnetically inequivalent (diastereotopic) as a result of attachment of the Me\(_2\)PhSn moiety to the chiral C* carbon atom of the indenyl ring. Migration of the Me\(_2\)PhSn group from C\(^1\) to C\(^3\) was observed to be accompanied by averaging of resonances due to methyls (A) and (B). This indicates that the overall rearrangement process takes place
with retention of configuration at the tin center, provided only suprafacial shifts are considered.

This chapter investigates the effects of degenerate and non-degenerate rearrangements in mono- and poly-indenyl derivatives of germanium and tin. The results of the solid state structure determination by X-ray crystallography of Sn(1-C_{9}H_{6})_{4}, carried out by Professor J.L. Atwood and R.D. Rogers at the University of Alabama, are also discussed.

B. RESULTS AND DISCUSSION.

Reactions of indenyllithium with germanium tetrachloride or suitably substituted tin(IV) halides, provide a convenient route to the compounds tetra(1-indenyl)germane (3.1),

diphenyl(1-indenyl)stannane (3.2),

triphenyl(1-indenyl)stannane (3.3),

phenyltri(1-indenyl)stannane (3.4),

n-butyltri(1-indenyl)stannane (3.5), and tetra(1-indenyl)stannane (3.6); all are white, crystalline materials which are air- and water-stable, compound 3.6 reportedly being unchanged after refluxing in concentrated aqueous hydrochloric acid. Physical and analytical data for compounds 3.1 - 3.6 are given in Table 3.1.

The mass-spectral data for compounds 3.1 - 3.6 are tabulated in Table 3.2. Molecular ions were observed for only two compounds, 3.2 and 3.6, both being of low abundance, The most abundant
<table>
<thead>
<tr>
<th>Compound</th>
<th>%yield</th>
<th>M.Pt. (°C)</th>
<th>Actual</th>
<th>Analysis</th>
<th>Theoretical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>%C</td>
<td>%H</td>
<td>%C</td>
</tr>
<tr>
<td>Ge(\text{n-C}_9\text{H}_7)_4 3.1</td>
<td>84</td>
<td>196-198</td>
<td>80.89</td>
<td>5.14</td>
<td>81.11</td>
</tr>
<tr>
<td>SnPh\text{\textsubscript{3}}(\text{n-C}_9\text{H}_7)_3 3.2</td>
<td>95</td>
<td>129-130</td>
<td>69.78</td>
<td>4.87</td>
<td>69.71</td>
</tr>
<tr>
<td>SnPh\text{\textsubscript{2}}(\text{n-C}_9\text{H}_7)_2 3.3</td>
<td>89</td>
<td>116-117</td>
<td>72.13</td>
<td>4.87</td>
<td>71.60</td>
</tr>
<tr>
<td>SnPh(n\text{n-C}_9\text{H}_7)_3 3.4</td>
<td>51</td>
<td>153-154</td>
<td>73.91</td>
<td>4.98</td>
<td>73.23</td>
</tr>
<tr>
<td>Sn(Bu\text{n})(\text{n-C}_9\text{H}_7)_3 3.5</td>
<td>62</td>
<td>58</td>
<td>71.06</td>
<td>5.79</td>
<td>71.43</td>
</tr>
<tr>
<td>Sn(\text{n-C}_9\text{H}_7)_4 3.6</td>
<td>87</td>
<td>215</td>
<td>74.43</td>
<td>5.06</td>
<td>74.64</td>
</tr>
</tbody>
</table>
TABLE 3.2

Mass spectral data\(^{a,b}\), obtained for compounds 3.1 - 3.6.

<table>
<thead>
<tr>
<th>Ion Family</th>
<th>Ge((n^1\text{-C}_{9\text{H}}))(_4)</th>
<th>SnPh(3(\text{n}^1\text{-C}{9\text{H}}))</th>
<th>SnPh(2(\text{n}^1\text{-C}{9\text{H}}))(_2)</th>
<th>SnPh((\text{n}^1\text{-C}_{9\text{H}}))(_3)</th>
<th>Sn(Bu(^{\text{H}}))((\text{n}^1\text{-C}_{9\text{H}}))(_3)</th>
<th>Sn((\text{n}^1\text{-C}_{9\text{H}}))(_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent ion</td>
<td>n.o.</td>
<td>1.9</td>
<td>n.o.</td>
<td>n.o.</td>
<td>n.o.</td>
<td>0:1</td>
</tr>
<tr>
<td>M((\text{n}^1\text{-C}_{9\text{H}}))(^{+})</td>
<td>5.0</td>
<td>n.o.</td>
<td>0.5</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR((\text{n}^1\text{-C}_{9\text{H}}))(_2)(^{+})</td>
<td>n.o.</td>
<td>5.0</td>
<td>10.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR(2(\text{n}^1\text{-C}{9\text{H}}))(^{+})</td>
<td>1.0</td>
<td>79.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR(_2)(^{+})</td>
<td>35.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M((\text{n}^1\text{-C}_{9\text{H}}))(_2)(^{+})</td>
<td>1.4</td>
<td>3.2</td>
<td>2.2</td>
<td>1.9</td>
<td>0.7</td>
<td>0.6</td>
</tr>
<tr>
<td>MR((\text{n}^1\text{-C}_{9\text{H}}))(^{+})</td>
<td>0.4</td>
<td>1.1</td>
<td>3.0</td>
<td>n.o.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR(_2)(^{+})</td>
<td>0.6</td>
<td>2.9</td>
<td>2.2</td>
<td>65:2</td>
<td>88.1</td>
<td>83.2</td>
</tr>
<tr>
<td>M((\text{n}^1\text{-C}_{9\text{H}}))(_2)(^{+})</td>
<td>28.9</td>
<td>22.0</td>
<td>14.2</td>
<td>22.0</td>
<td>n.o.</td>
<td></td>
</tr>
<tr>
<td>MR(^{+})</td>
<td></td>
<td>n.o.</td>
<td></td>
<td></td>
<td>n.o.</td>
<td>15.5</td>
</tr>
<tr>
<td>M(^{+})</td>
<td>3.6</td>
<td>29.5</td>
<td>n.o.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) 70eV ionizing voltage.

\(^b\) Metal containing ions summed within each family resulting from isotope distribution or hydrogen loss.

\(^c\) Not observed.
ion in the mass spectra of compounds 3.1, 3.4, 3.5, and 3.6 is $M(C_9H_7)^+$, while for compounds 3.2 and 3.3, the major series of peaks correspond to the loss of one indenyl ring, i.e., $SnPh_3^+$ and $SnPh_2(C_9H_7)^+$ respectively. For the phenyl derivatives, 3.2, 3.3 and 3.4, the second most abundant ion corresponds to $SnPh^+$; however no obvious correlation between structure and relative intensity is apparent. Significantly, no carbon-carbon bond cleavage of the indenyl ring was observed, consistent with results obtained by Davison and Rakita103 for the indenyls, $MMe_3(n^1-C_9H_7)$, $M = Si, Ge$, and Sn. Thus the main pathway for decomposition of n^1-indenyls is by breaking of the metal-carbon linkage, exactly paralleling the situation observed128 for the cyclopentadienyl analogues.

B.2. ^{13}C NMR Data.

B.2.(i). $SnPh_3(n^1-C_9H_7)$, (3.2).

The ^{13}C NMR spectrum of $SnPh_3(n^1-C_9H_7)$, 3.2, at $-30^\circ C$ (Figure 3.1(a)), is consistent with the "rigid" structure 4, having a single resonance at 44.6ppm due to C1, with further signals to higher frequency, the assignments for which are given
FIGURE 3.1. Variable temperature ^{13}C NMR spectra of SnPh$_3$(n-$^1\text{C}_9\text{H}_7$), 3.2.
in Tables 3.3 - 3.5. As the temperature is raised to α.0°C, signals at 142.8 and 144.3 ppm, assigned to C^8,9, broaden, giving at α.60°C (Figure 3.1(c)), a single resonance at 143.6 ppm. Similarly resonances in the −30°C spectrum at 121.5, 122.4, 123.6 and 124.5 ppm, assigned to C^4,5,6,7 are broad at α.0°C, giving at +60°C two lines at 122.2 and 124.2 ppm. Resonances for C^1 (44.6 ppm) and C^3 (126.9 ppm) in the −30°C spectrum have completely collapsed at α.0°C, however no absorption at the average of these two resonance positions is observed at +60°C (Figure 3.1(c)). By contrast, the C^2 resonance (at 134.4 ppm) shows no variation in chemical shift or line width throughout the temperature range studied. Similarly resonances due to the phenyl groups, at 137.0 (C^2,6), 129.5 (C^4) and 128.7 ppm (C^3,5) (a resonance attributable to C^1 was not observed), are temperature independant.

These observations are consistent with a facile 1,3 migration of the metal substituent across the indenyl ring, as shown in equation (2). Thus the pairs of resonances in the −30°C spectrum, assigned to each of the pairs of carbon atoms, C^4,7, C^5,6 or C^8,9, average to give single resonances at α.60°C. Resonances for C^1 and C^3 are averaged much more slowly because of the larger frequency separation between them, and hence a
13C NMRa resonances assigned to C^1, C^2, and C^3 of the indenyl rings in compounds 3.1 - 3.6.

<table>
<thead>
<tr>
<th>Compound</th>
<th>C^1</th>
<th>C^2</th>
<th>C^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ge(η^1-C$_9$H$_7$)$_4$, 3.1</td>
<td>42.5, 43.2, 44.5, 134.8</td>
<td>130.0, 129.4, 129.1</td>
<td></td>
</tr>
<tr>
<td>SnPh$_3$(n-1-C$_9$H$_7$)$_2$, 3.2</td>
<td>44.6</td>
<td>134.4</td>
<td>126.9</td>
</tr>
<tr>
<td>SnPh$_2$(n-1-C$_9$H$_7$)$_2$, 3.3</td>
<td>43.8</td>
<td>134.0</td>
<td>127.0</td>
</tr>
<tr>
<td>SnPh(n-1-C$_9$H$_7$)$_3$, 3.4</td>
<td>43.5, 44.6, 45.1</td>
<td>133.4, 133.7, 127.3</td>
<td>134.0</td>
</tr>
<tr>
<td>Sn(Buη)(n-1-C$_9$H$_7$)$_3$, 3.5</td>
<td>44.0, 44.6, 44.9, 134.2, 133.8</td>
<td>126.7, 126.2</td>
<td>45.5, 133.4</td>
</tr>
<tr>
<td>Sn(n-1-C$_9$H$_7$)$_4$, 3.6</td>
<td>44.2, 44.6, 45.7</td>
<td>133.2</td>
<td>127.5, 127.1</td>
</tr>
</tbody>
</table>

a CDCl$_3$ was used as solvent and internal reference; chemical shift values in ppm downfield from tetramethylsilane.
TABLE 3.4.

13C NMR^a resonances assigned to C^{4,5,6,7} and C^{8,9} of the indenyl rings in compounds 3.1 - 3.6.

<table>
<thead>
<tr>
<th>Compound</th>
<th>C<sup>4,5,6,7</sup></th>
<th>C<sup>8,9</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Slow limit</td>
<td>Fast limit</td>
</tr>
<tr>
<td>Ge(1-C<sub>9</sub>H<sub>7</sub>)<sub>4</sub>, 3.1</td>
<td>121.9, 123.7, 123.9; 124.4, 126.0</td>
<td>n.o.<sup>b</sup></td>
</tr>
<tr>
<td>SnPh<sub>3</sub>(1-C<sub>9</sub>H<sub>7</sub>), 3.2</td>
<td>121.5, 122.4, 123.6, 124.5</td>
<td>122.2, 124.2</td>
</tr>
<tr>
<td>SnPh<sub>2</sub>(1-C<sub>9</sub>H<sub>7</sub>)<sub>2</sub>, 3.3</td>
<td>121.3, 122.3, 123.5, 124.5</td>
<td>122.1, 124.2</td>
</tr>
<tr>
<td>SnPh(1-C<sub>9</sub>H<sub>7</sub>)<sub>3</sub>, 3.4</td>
<td>121.7, 122.5, 123.9, 124.9</td>
<td>122.0, 124.3</td>
</tr>
<tr>
<td>Sn(1-C<sub>9</sub>H<sub>7</sub>)<sub>4</sub>, 3.5</td>
<td>121.7, 122.1, 123.8, 124.6</td>
<td>122.1, 124.3</td>
</tr>
<tr>
<td>Sn(1-C<sub>9</sub>H<sub>7</sub>), 3.6</td>
<td>121.9, 122.6, 124.0, 125.2</td>
<td>122.4, 124.7</td>
</tr>
</tbody>
</table>

^a CDCl₃ was used as solvent and internal reference; chemical shift values in ppm downfield from tetramethylsilane.

^b Not observed.
<table>
<thead>
<tr>
<th>Compound</th>
<th>C<sup>1</sup></th>
<th>C<sup>2,6</sup><sup>b</sup></th>
<th>C<sup>3,5</sup></th>
<th>C<sup>4</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>SnPh<sub>4</sub></td>
<td>138.0</td>
<td>137.3</td>
<td>129.1</td>
<td>128.6</td>
</tr>
<tr>
<td>SnPh<sub>3</sub>(H<sub>1</sub>C<sub>9</sub>H<sub>7</sub>)</td>
<td>n.o.<sup>c</sup></td>
<td>137.0</td>
<td>128.7</td>
<td>129.5</td>
</tr>
<tr>
<td>SnPh<sub>2</sub>(H<sub>1</sub>C<sub>9</sub>H<sub>7</sub>)<sub>2</sub></td>
<td>n.o.<sup>c</sup></td>
<td>136.4</td>
<td>128.3</td>
<td>129.3</td>
</tr>
<tr>
<td>SnPh(H<sub>1</sub>C<sub>9</sub>H<sub>7</sub>)<sub>3</sub></td>
<td>n.o.<sup>c</sup></td>
<td>136.2</td>
<td>128.2</td>
<td>129.4</td>
</tr>
<tr>
<td>Sn(Bu<sup>3</sup>)(H<sub>1</sub>C<sub>9</sub>H<sub>7</sub>)<sub>3</sub></td>
<td>12.3, 13.5, 27.1, 28.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a CDCl₃ was used as solvent and internal reference; chemical shift values in ppm downfield from tetramethylsilane.

^b Assignment of C^{2,6} and C^{3,5}, see reference 142.

^c Not observed.
coalesced signal is not observed in the +60°C spectrum. The magnetic environment of C is not affected by the rearrangement process as indicated by equation (3); consequently the C resonance is temperature independent.

\[\begin{align*}
\text{[Diagram of molecular structures]} \\
\end{align*} \]

\[\text{(3)} \]

B.2. (ii). SnPh\(_2\)(\(\text{H}^1\)-C\(_9\)H\(_7\))\(_2\) (3.3).

The -40°C \(^{13}\)C NMR spectrum of compound 3.3 (Figure 3.2(a)), is consistent with the "static" structure shown in 5. As the temperature is raised many of the signals begin to broaden, with resonances at 43.8 and 127.0 ppm, assigned to C\(^1\) and C\(^3\) respectively, doing so most rapidly. Signals at 142.5 and 144.0 ppm, assigned to C\(^8,9\) also broaden, giving at ca. +40°C, a single resonance at 143.7 ppm. Similarly resonances at 121.3, 122.3, 123.5 and 124.5 ppm assigned to C\(^4,5,6,7\) coalesce to two lines centered
FIGURE 3.2. Variable temperature ^{13}C NMR spectrum of $\text{SnPh}_2(\text{η}^-\text{C}_9\text{H}_7)_2$, 2:2.
at 121.1 and 124.2 ppm at ca. +40°C. The signal at 134.0 ppm, assigned to C², is temperature invariant, as are resonances at 128.3, 129.3, and 136.4 ppm, assigned to C³, C⁴, C², respectively of the phenyl groups (no signal due to C¹ was observed).

Thus, the variable temperature ¹³C NMR spectrum of compound 3.3 is similar in many respects to that obtained for compound 3.2, and is consistent with a facile 1,3 migration of the tin moiety across each of the indenyl rings. Significantly, the indenyl carbon atom to which the metal is bound, C¹, is a chiral center, so that compound 3.3 exists as both enantiomorphs represented as (±,−) or (RR,SS) S₁, and meso(R,S), 7 forms, (Figure 3.7). While the two enantiomers which constitute the pair S₁ will have identical NMR properties, the meso form, 7, is a different compound (diastereoisomer), and will have different physical and chemical properties (e.g. NMR spectrum) from the enantiomeric pair S₁. The slow-limit (−40°C) ¹³C NMR spectrum of 3.3 might be expected to consist of a superimposition of the spectra of two similar, though distinct compounds (i.e., diastereoisomers). That this does not appear to be observed indicates that either the ¹³C NMR spectra of pair S₁ and isomer 7 are insufficiently diastereotopically shifted to be resolved, or that one isomer is overwhelmingly preferred with ca. 100% equilibrium concentration. A corresponding absence of diastereotopic effects in the ¹H NMR spectrum of the di-indenyl Hg(η¹-C⁹H₁₇)_₂ has been reported by Cotton et al.
FIGURE 3.3. The possible isomers present in $\text{MR}_2(n^{1}-\text{C}_9\text{H}_7)_2$.

(+ +), (− −) pair, g: point group C_2

(+ −) isomer, l (meso−): point group C_6
B.2. (iii). \(\text{SnPh}(\eta^1 - C_9H_7)_3 \) (3.4) and \(\text{SnBu}^n(\eta^1 - C_9H_7)_3 \) (3.5).

The slow-limit \(^{13}\text{C}\) NMR spectra of \(\text{SnPh}(\eta^1 - C_9H_7)_3 \), 3.4, at \(-25^\circ\text{C}\), and \(\text{SnBu}^n(\eta^1 - C_9H_7)_3 \), 3.5, at \(-60^\circ\text{C}\) (Figure 3.4(a)), are complex; however a complete assignment for each is possible on the basis of temperature-dependent behaviour (Tables 3.3 - 3.5).

Raising the temperature above \(ca. 0^\circ\text{C}\) in either case results in averaging of resonances for \(C^4\) and \(C^7\), \(C^5\) and \(C^6\), and \(C^8\) and \(C^9\), such that single lines are observed for each of these pairs of nuclei at \(ca. +60^\circ\text{C}\). Resonances due to \(C^1\) and \(C^3\) also broaden on raising the temperature to \(ca. 0^\circ\text{C}\), such that at \(+40^\circ\text{C}\) these signals have completely collapsed; a coalesced peak is not observable at \(+60^\circ\text{C}\). Resonances for the phenyl group in compound 3.4 are temperature invariant, while in the spectrum of the butyl compound, 3.5, one of the four signals for the butyl group (at 12.3ppm) is broad at \(-60^\circ\text{C}\), and only becomes sharp above \(ca. 0^\circ\text{C}\).

The complex, slow-limit spectra for both these compounds result from the existence for each of two diastereotopic pairs, 8 and 9, of enantiomorphs (Figure 3.5). In terms of stereochemical characteristics, these compounds are analogous to the isomers of tris-1-(2-methylnaphthyl)borane (Figure 3.6), which have been subjected to complete conformational analysis by Mislow et al.\(^{143}\).

In pair 8 represented by (+++ , ---) or (RRR, SSS) all asymmetric \(C^1\) centers have the same relative configuration and are homotopic. The molecules in pair 9 (++++, ----) which contain one \(C^1\) having the opposite configuration to that of the other two, belong to
FIGURE 3.4. Variable temperature 13C NMR spectrum of $\text{Sn(Bu}^n\text{)}(\eta^1-C_9H_{18})_3$.

$^{3.5}$
(+++), (---) pair, 8; point group C_1

(+-+), (+-) pair, 2; point group C_1

FIGURE 3.5. The possible isomers present in $\text{MR}(\eta^1\text{C}_9\text{H}_7)_3$, $R = \text{Bu}^\text{N}$, Ph.
FIGURE 3.6. The possible isomers present in tris-1-(2-methylnaphthyl)borane.
the point group C_1 so that all three C^1 nuclei are magnetically inequivalent. Thus, in principle 8 and 9 together account for four anisochronous C^1 nuclei and in fact each appears to give rise to a separate resonance in the observed ^{13}C NMR spectrum of 3.5 at $-60^\circ C$. The slow-limit spectrum of compound 3.4 at $-25^\circ C$ is also consistent with this interpretation if coincidence of two out of the four C^1 resonances is assumed. The near-equality in signal heights for the four components in the spectrum of compound 3.5, indicates that the equilibrium $[8]:[9]$ ratio is approximately $1:3$, i.e., the statistical distribution, implying near-zero free energy difference in solution between the diastereoisomers. Diastereotopic splitting of resonances attributable to C^2, C^3, and C^8 in compounds 3.4 and 3.5 (by comparison with data for compound 3.2 and SnMe$_3(\eta^1-C_9H_7)_2$), and to the n-butyl carbon bound to tin in 3.5, is also apparent in the slow-limit spectra.

On raising the temperature, collapse of these anisochronous effects accompanies coalescence behaviour characteristic of the non-degenerate rearrangement of compound 3.2, identifying the latter as the mechanism for interconversion between all the possible stereoisomers.

B.2.(iv). $Sn(\eta^1-C_9H_7)_4$ (3.6) and $Ge(\eta^1-C_9H_7)_4$ (3.1).

An assignment of the complex slow-limit spectra obtained for $Sn(\eta^1-C_9H_7)_4$, 3.6, at $-35^\circ C$ (Figure 3.7(a)) and $Ge(\eta^1-C_9H_7)_4$, 3.1, at $25^\circ C$, is given in Tables 3.3 and 3.4. Raising the temperature
FIGURE 3.7. Variable temperature 13C NMR spectrum of Sn(1-C$_{9}$H$_{7}$)$_{4}$, 3.6.
for the tin compound 3.6 causes averaging between resonances for
$C^4,7$ (and $C^5,6$ and $C^1,3$) while the C^2 resonance at 133.2 ppm
is unchanged. Collapse of anisochronous effects present in the
slow-limit spectrum occurs with the concomitant coalescent
behaviour, in a way which parallels exactly that observed for
the other tin indenyls studied (Sections B.2.(i)-(iii)). No
corresponding changes in the appearance of the spectrum of the germane
3.1 was observed even at $+90^\circ$C, a result consistent with the much
higher activation energies for rearrangement of both indenyl-
and cyclopentadienyl-germanium compounds compared with their
tin analogues.

The complex slow-limit spectra of both these compounds are
the result of each existing as two diastereomeric pairs 10 and 11
of enantiomorphs, along with a third stereoisomer, the *meso*-form
12 (Figure 3.8). In pair 10, which can be represented as $(++++,----)$
or $(RRRR,SSSS)$, in every molecule all four asymmetric C^1 centers
have the same relative configuration and are homotopic. Pair 11,
represented by $(++++,----)$ or $(RRRS,SSSR)$, consists of molecules
in which one C^1 has the opposite configuration from the other three
and belongs to the point group C_1, however the unique C^1 center
lies on a C_3 axis assuming free rotation about the Sn-C^1 bond and
will contain only two distinct (diastereotopic) types of C^1
nuclei having a 3:1 distribution. The *meso*-isomer, 12 $(+++)$
or $(RRSS)$ belongs to the point group S_4 and contains four magnetically
equivalent indenyl rings (homotopic C^1 nuclei).
FIGURE 3.8. The possible isomers present in
\[M(\eta^1-C_9H_7)_4, \ M = \text{Ge, Sn}. \]
Compounds 3.1 and 3.6, as equilibrium diastereoisomeric mixtures, will incorporate four anisochronous 13C nuclei. (see Table 3.6). In a situation where there is no free energy difference between the ground states of these isomers, their equilibrium concentrations will be $[10] : [11] : [12] = 1:4:3$ since isomer 11 has two anisochronous 13C nuclei in a 3:1 ratio, resonant signals due to 13C carbon nuclei in the 13C NMR spectrum will therefore ideally appear as four lines of relative intensity 1:1:3:3. This is clearly the case for compound 3.1 (Figure 3.9), and is closely approximated to for 3.6 (Figure 3.7). It can thereby be concluded that the ground-state free energies of the three possible isomers are close to one another.

Resonances attributable to 13C carbon nuclei in the slow-limit 13C NMR spectra of compounds 3.1 - 3.6 are shown in Figure 3.9. The predicted number of such resonances for each possible isomer is given in Table 3.6 together with relative populations for each of the isomers assuming zero ground state free energy differences. The slow-limit spectra obtained for all the indenyl compounds investigated allow for the conclusion that the difference in ground state energy for the isomers of each of the polyindenyls studied is small.

B.3. 1H NMR Data.

The 1H NMR spectra of compounds 3.2 - 3.6 (Table 3.7, see also Figures 3.10, 3.11), are similar in many respects to those
TABLE 3.6.
Stereoisomerism in polyindenyl derivatives.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Isomer</th>
<th>S</th>
<th>Point Group</th>
<th>Mag.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph₂Sn(ind)₂</td>
<td>(++)^e</td>
<td>1</td>
<td>C₂</td>
<td>H</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(+-)f</td>
<td>1</td>
<td>Cₛ</td>
<td>H</td>
<td>2</td>
</tr>
<tr>
<td>n-BuSn(ind)₃</td>
<td>(+++)</td>
<td>1</td>
<td>C₁</td>
<td>H</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(+-)</td>
<td>3</td>
<td>C₁</td>
<td>D</td>
<td>(1,1,1)</td>
</tr>
<tr>
<td>Ge(ind)₄</td>
<td>(++++)</td>
<td>1</td>
<td>D₂</td>
<td>H</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>(+++-)g</td>
<td>4</td>
<td>C₁</td>
<td>D</td>
<td>(3,1)</td>
</tr>
<tr>
<td></td>
<td>(++--)^h</td>
<td>3</td>
<td>S₄</td>
<td>H</td>
<td>4</td>
</tr>
</tbody>
</table>

Notes:
- Each possible isomer for a given type is symbolized in terms of relative configuration + or - at an indenyl C¹ carbon center.
- S represents the statistical distribution of the stereoisomers as listed in the preceding column.
- C: Relationship between chemically equivalent nuclei in terms of magnetic properties. H = homotopic, D = Diastereotopic.
- N is the number of chemically equivalent nuclei per molecule sharing an identical magnetic environment which can be interchanged by some symmetry operation.
- Racemic form. Meso-isomer. Reduces from (1,1,1,1) see text.
- This notation (rather than (+--)) implies that the first two descriptions are related by an S₄ (±C₂) rotation.
FIGURE 3.9. Comparison of 13C NMR signals attributable to indenyl-C1 nuclei in compounds 3.1 - 3.6.
TABLE 3.7.

H NMR data\(^a\) for compounds 3.1 - 3.6.

<table>
<thead>
<tr>
<th>Compound</th>
<th>T(^\circ)C</th>
<th>(\delta)(^b)</th>
<th>(J)(^c)</th>
<th>(\delta)(^d)</th>
<th>(\delta)(^e)</th>
<th>(\delta)(^f)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(\text{H}^1)</td>
<td>(\text{H}^2)</td>
<td>(\text{H}^3)</td>
<td>(\text{H}^4,5,6,7)</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slow-limit</td>
<td>Fast-limit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ge((\ell^1)-(\text{C}_9\text{H}_7))(_4)</td>
<td>+25</td>
<td>3.71(3), 3.48(1)</td>
<td>5.04-5.22</td>
<td>6.58-6.92</td>
<td>6.98-7.62</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.83-5.93</td>
</tr>
<tr>
<td>SnPh(_2)((\ell^1)-(\text{C}_9\text{H}_7))(_2)</td>
<td>-60</td>
<td>4.62; (102.6)(^c)</td>
<td>6.89-7.09</td>
<td>6.93(^g) (3.5)(^h)</td>
<td>7.12-7.80(^e)</td>
<td>7.12-7.80(^f)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.92-7.65(^f)</td>
</tr>
<tr>
<td>SnPh(_2)((\ell^1)-(\text{C}_9\text{H}_7))(_3)</td>
<td>-50</td>
<td>4.29, (101.7)(^c)</td>
<td>6.38-6.48</td>
<td>6.58(^l) (3.5)(^h)</td>
<td>6.67-6.95(^e)</td>
<td>6.82-7.80(^f)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.82-7.80(^f)</td>
</tr>
<tr>
<td>SnPh((\ell^1)-(\text{C}_9\text{H}_7))(_3)</td>
<td>-50</td>
<td>3.89(1), 4.08(2)</td>
<td>6.04-6.36</td>
<td>6.57(^i) (3.6)(^h)</td>
<td>6.43-7.05(^e)</td>
<td>6.82-7.80(^f)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.82-7.80(^f)</td>
</tr>
<tr>
<td>Sn((\text{Ru}^\ell))-(\ell^1)-(\text{C}_9\text{H}_7))(_3)</td>
<td>-60</td>
<td>3.51(1), 3.62(1)</td>
<td>5.78-6.32</td>
<td>6.16(^k) (3.4)(^h)</td>
<td>6.52-6.91</td>
<td>6.91-7.90 (0.31-1.35)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.72(1)</td>
<td>3.97(1)</td>
</tr>
<tr>
<td>Sn((\ell^1)-(\text{C}_9\text{H}_7))(_4)</td>
<td>-60</td>
<td>3.46(3), 3.61(3)</td>
<td>4.81-5.11</td>
<td>5.79(^l) (3.7)(^h)</td>
<td>6.69-6.93</td>
<td>7.03-7.71 (1.03-1.21)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.71(1)</td>
<td>3.78(1)</td>
</tr>
</tbody>
</table>

\(^a\)\(\text{CDC}_3\) was used as solvent, TMS as internal reference, chemical shift values given in ppm downfield from TMS.

\(^b\)Values in brackets represent relative intensities.

\(^c\)\(2\)\(_J\)(117,119\(\text{Sn}-\text{H}\)) in Hz.

\(^d\)Multiplets, J values not determined.

\(^e\)Centered below phenyl resonances.

\(^f\)Resonances assigned to \(\text{H}^4,5,6,7\) and phenyl protons overlap and were not resolved.

\(^g\)At +60\(^\circ\)C.

\(^h\)\(3\)\(_J\)(117,119\(\text{Sn}-\text{H}\)).

\(^i\)+60\(^\circ\)C.

\(^j\)+50\(^\circ\)C.

\(^k\)+60\(^\circ\)C.

\(^l\)+60\(^\circ\)C.

\(^m\)Not observed.
FIGURE 3.10. Variable temperature 90MHz 1H NMR spectrum of Sn(Bu^t)$_2$(n-$^1_{-}C_9H_7$)$_3$ in CDCl$_3$.
FIGURE 3.11. Variable temperature 90MHz 1H NMR spectrum of Sn(1-C$_9$H$_7$)$_4$ in CDCl$_3$.
reported for SnMe$_3$(n-1-C$_9$H$_7$)$_{103}$ and Hg(n-1-C$_9$H$_7$)$_2$. Thus absorptions due to H1 and H3 in the slow-limit 1H NMR spectrum (at ca.-30°C) broaden on increasing the temperature to ca.0°C, eventually giving, at temperatures above ca.120°C, a broad peak midway between the slow-limit H1 and H3 resonances. Resonances assigned to H2 become broad at ca.0°C, giving a well defined triplet above ca.30°C, the coupling constants of which are given in Table 3.7. Resonances due to 4H,5,6,7 show some degree of broadening and spectral change throughout the temperature range studied (ca.-60 to +120°C).

The above data are consistent with an overall 1,3 migration of the metal across the indenyl ring, resulting in averaging of the resonances due to H1 and H3. Further H2, which is strongly coupled to H3,(3J(H2-H3) = ca.7Hz), and only weakly coupled to H1,(3J(H2-H1) = ca.0Hz),becomes broadened due to averaging between the two coupling constants 3J(H2-H3) and 3J(H2-H1), eventually becoming a triplet having

$$J_{av} = \frac{^3$$J$(H2-H3) + 3$J$(H2-H1)}{2}$$

The 1H NMR spectrum of compound 3.1 is slow-limiting, even at +100°C, further confirming that activation energies for rearrangement in indenylgermanes are significantly higher than those for tin analogues.

The slow-limit 1H NMR spectra of compounds 3.1 and 3.4 - 3.6 are complex, not unexpectedly in the light of the foregoing
discussion of the 13C NMR data. For all four compounds the absorptions due to H^2 and H^3 appear as overlapping multiplets, an analysis of which was not attempted. Since the H^1 nucleus for any particular indenyl ring is expected to give rise to a single although broadened absorption (through unresolved coupling to H^2 and to H^3), analysis of the appropriate spectral range (between 63.0 and 4.0) should be possible.

In fact four distinct H^1 resonances of approximately equal intensity are observed for the butyl compound 3.5 (Figure 3.10), while three, in an $\alpha,1:2:1$ ratio, are discernible for compound 3.4. The overall similarity of this portion of the spectrum to patterns encountered for C^1 nuclei in the slow-limit 13C NMR spectra of these compounds is striking. This again indicates the presence of four magnetically inequivalent indenyl rings in approximately equal ratio, and confirms that the relative concentrations of isomers 6 and 7 in both 3.4 and 3.5, are close to those calculated statistically.

While the region between 63.0 and 3.5 is broad for the germane 3.1, four distinct absorptions are present for the tin compound 3.6 (Figure 3.11(a)) in an approximately 1:1:3:3 ratio, indicating the presence of four different H^1 sites and confirming the presence of the three possible isomers 8, 9 and 10 in close to statistical concentrations. Thus results derived from 1H NMR data are entirely consistent with conclusions reached on the basis of 13C NMR data.

Overall, these results establish that non-degenerate rearrangements
occurring in mono-indenyl derivatives (equation (1)) are paralleled by the metallotropic shifts in poly-indenyl derivatives; and that in these latter this process also results in interconversion between all possible stereoisomers in each case, i.e. provides a facile mechanism for stereomutation.

![Equation (1)](image)

G. THE CRYSTAL AND MOLECULAR STRUCTURE OF R,R,S,S-TETRA(1-INDENYL)STANNANE.

The X-ray crystal and molecular structure of R,R,S,S-Sn(\(\eta^1\)-C\(_9\)H\(_7\))\(_4\), (3.6), was determined by Prof. J.L. Atwood and R.D. Rogers at the University of Alabama, using a sample provided by the author. The molecular structure is shown in Figure 3.12; pertinent bond lengths and angles are given in Tables 3.8 and 3.9 respectively. The geometry about the tin center is approximately tetrahedral, although there is some variation among the four (Sn-C) bond distances [2.202(8), 2.169(11), 2.182(10) and 2.202(9)\(\AA\)]. These bond distances (mean 2.19 \(\AA\)) are significantly shorter than the tin-carbon bond lengths determined\(^{137}\) for Sn(\(\eta^1\)-C\(_5\)H\(_5\))\(_4\), mean (Sn-C) = 2.27 \(\AA\). Related bond distances within each of the four indenyl rings are similar, being close to those expected for a
TABLE 3.8.

Bond distances determined for R,R,S,S-tetra(1-indenyl)tin

(a) Tin-carbon bond distances.

<table>
<thead>
<tr>
<th>bond</th>
<th>length Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sn-C(1)</td>
<td>2.202(8)</td>
</tr>
<tr>
<td>Sn-C(10)</td>
<td>2.169(11)</td>
</tr>
<tr>
<td>Sn-C(19)</td>
<td>2.182(10)</td>
</tr>
<tr>
<td>Sn-C(28)</td>
<td>2.202(9)</td>
</tr>
</tbody>
</table>

(b) Carbon-carbon bond distances.

<table>
<thead>
<tr>
<th>bond</th>
<th>length Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)-C(2)</td>
<td>1.51</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.34</td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.46</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.36</td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.39</td>
</tr>
<tr>
<td>C(6)-C(7)</td>
<td>1.40</td>
</tr>
<tr>
<td>C(7)-C(8)</td>
<td>1.35</td>
</tr>
<tr>
<td>C(8)-C(9)</td>
<td>1.40</td>
</tr>
<tr>
<td>C(9)-C(1)</td>
<td>1.48</td>
</tr>
<tr>
<td>C(4)-C(9)</td>
<td>1.41</td>
</tr>
</tbody>
</table>
TABLE 3.9.
Bond angles determined for R,R,S,S-tetra(1-indenyl)tin.

<table>
<thead>
<tr>
<th>Bonds</th>
<th>Angle(deg)</th>
<th>Bonds</th>
<th>Angle(deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(9)-C(1)-C(2)</td>
<td>102</td>
<td>C(18)-C(10)-C(11)</td>
<td>104</td>
</tr>
<tr>
<td>C(9)-C(2)-C(3)</td>
<td>110</td>
<td>C(10)-C(11)-C(12)</td>
<td>110</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)</td>
<td>111</td>
<td>C(11)-C(12)-C(13)</td>
<td>110</td>
</tr>
<tr>
<td>C(3)-C(4)-C(9)</td>
<td>106</td>
<td>C(12)-C(13)-C(18)</td>
<td>108</td>
</tr>
<tr>
<td>C(4)-C(9)-C(1)</td>
<td>111</td>
<td>C(13)-C(18)-C(10)</td>
<td>107</td>
</tr>
<tr>
<td>C(9)-C(4)-C(5)</td>
<td>121</td>
<td>C(18)-C(13)-C(14)</td>
<td>121</td>
</tr>
<tr>
<td>C(4)-C(5)-C(6)</td>
<td>119</td>
<td>C(13)-C(14)-C(15)</td>
<td>118</td>
</tr>
<tr>
<td>C(5)-C(6)-C(7)</td>
<td>119</td>
<td>C(14)-C(15)-C(16)</td>
<td>123</td>
</tr>
<tr>
<td>C(6)-C(7)-C(8)</td>
<td>123</td>
<td>C(15)-C(16)-C(17)</td>
<td>121</td>
</tr>
<tr>
<td>C(7)-C(8)-C(9)</td>
<td>119</td>
<td>C(16)-C(17)-C(18)</td>
<td>116</td>
</tr>
<tr>
<td>C(8)-C(9)-C(4)</td>
<td>119</td>
<td>C(17)-C(18)-C(13)</td>
<td>121</td>
</tr>
<tr>
<td>C(27)-C(19)-C(20)</td>
<td>103</td>
<td>C(36)-C(28)-C(29)</td>
<td>104</td>
</tr>
<tr>
<td>C(19)-C(20)-C(21)</td>
<td>111</td>
<td>C(28)-C(29)-C(30)</td>
<td>109</td>
</tr>
<tr>
<td>C(29)-C(21)-C(22)</td>
<td>109</td>
<td>C(29)-C(30)-C(31)</td>
<td>110</td>
</tr>
<tr>
<td>C(21)-C(22)-C(27)</td>
<td>109</td>
<td>C(30)-C(31)-C(36)</td>
<td>110</td>
</tr>
<tr>
<td>C(22)-C(27)-C(19)</td>
<td>107</td>
<td>C(31)-C(36)-C(28)</td>
<td>107</td>
</tr>
<tr>
<td>C(27)-C(22)-C(23)</td>
<td>120</td>
<td>C(36)-C(31)-C(32)</td>
<td>117</td>
</tr>
<tr>
<td>C(22)-C(23)-C(24)</td>
<td>118</td>
<td>C(31)-C(32)-C(33)</td>
<td>123</td>
</tr>
<tr>
<td>C(23)-C(24)-C(25)</td>
<td>122</td>
<td>C(32)-C(33)-C(34)</td>
<td>118</td>
</tr>
<tr>
<td>C(24)-C(25)-C(26)</td>
<td>120</td>
<td>C(33)-C(34)-C(35)</td>
<td>122</td>
</tr>
<tr>
<td>C(25)-C(26)-C(27)</td>
<td>118</td>
<td>C(34)-C(35)-C(36)</td>
<td>118</td>
</tr>
<tr>
<td>C(26)-C(27)-C(22)</td>
<td>121</td>
<td>C(35)-C(36)-C(31)</td>
<td>123</td>
</tr>
</tbody>
</table>
For each molecule there are two distinct types of indenyl substituent: two pairs of ring-systems each have opposite relative configurations at the \(C^1 \) carbon centers. Thus the crystal structure determined for \(\text{Sn}(\text{n}^1-\text{C}_9\text{H}_7)_4 \) contains only one of the five possible molecular units depicted in Figure 3.9 (**structure 12**). This is the \(R,R,S,S -(-+) \) or meso-form, which is optically inactive, and belongs to the point group \(S_4 \).

Molecules possessing this kind of symmetry have been of interest since they were first discussed \(^{147}\) in the literature by Mohr in 1903. McCasland and coworkers reported \(^{148,149}\) the synthesis of the first two examples of such molecules (**13** and **14**), and both were indeed shown to have no observable optical rotation.

![Chemical structures](image)

These systems lack either a plane or center of symmetry, but do possess a fourfold alternating (improper) axis of rotation: any molecule containing this symmetry element (whether or not it contains other symmetry elements) is necessarily superimposable...
on its mirror image and is thus optically inactive.\footnote{150}

Although a variety of such molecules have now been prepared, there has been only one report in the literature of a structurally characterized example, the bis(N,N,N',N'-tetrapropyl-trans-1,2-cyclohexylenedioxoydiacetamido)manganese(II) cation.\footnote{151} The X-ray crystal structure of the bromide salt was published in 1977\footnote{151} and was subsequently recognized as a system for which the highest possible symmetry belongs to the point group S_d by Professor Kurt Mislow, who kindly brought the paper to our attention. All other related structures result from conformational distortion of a higher symmetry configuration.\footnote{152} The meso-isomer, (RRSS)-form (isomer \textit{II}) of tetra(n1-indenyl)tin(IV) thus represents only the second (first recognized as such\footnote{153}) example of this type of molecule for which X-ray data confirm the structure.

Because of the low barrier to stereomutation, a solution of tetra(n1-indenyl)tin(IV) represents a complex mixture of different molecules (diastereoisomers) whose relative concentrations are under thermodynamic control, (i.e., the concentrations of each of the diastereoisomers is determined by the relative values of their ground state free energies, differences in which have been shown to be negligibly small). Isolation in the crystalline state of only one of the five possible isomers can be interpreted in terms of crystal-lattice energy differences or lower solubility for the meso-form. The rapid equilibration between all of the isomers in solution provides a pathway for each of the molecules
to convert to and crystallize as the \textit{meso} diastereoisomer.

Interestingly every metallo tropic shift of the metal-containing group across an indenyl ring effects inversion of the C1 center of that ring and thus represents an extremely facile example of an epimerization process.154 This process is also intramolecular while other, more familiar examples of epimerization processes are intermolecular \textit{eg}, the base-catalysed epimerization of menthone and \textit{isomenthone}.154 (equation (4)).

\begin{center}
\begin{align*}
\text{(-)-menthone} & \xrightarrow{\text{base}} \text{(+)-\textit{isomenthone}} \\
\end{align*}
\end{center}

D. EXPERIMENTAL.

Indenyllithium was prepared by the literature method. Tetra(\textit{n} -indenyl)germane, 3.1 139 triphenyl(\textit{n} -indenyl)stannane, 3.2 140 diphenyldi(\textit{n} -indenyl)stannane, 3.3 140 and tetra(\textit{n} -indenyl)stannane, 3.6 141 have been synthesized previously.

Phenytri(\textit{n} -indenyl)tin(IV) (3.4).

A solution of PhSnCl\textsubscript{3} (2.26g, 7.5mmol) in hexane (20mL) was added dropwise over \(\alpha\).0.5h to a stirring suspension of
indenyllithium (3.0 g, 25 mmol) in hexane (50 mL), the reaction mixture being maintained at 0°C throughout. After addition was complete, the mixture was allowed to warm to room-temperature, after which stirring was continued for an additional 24 h. The mixture was filtered, the filtrate concentrated in vacuo, eventually giving a light yellow solid which was recrystallized from Et₂O/hexane (95/5) to give 2.1 g of white crystalline 3.4.

N-Butyltri(1-indenyl)stannane (3.5) was prepared by an exactly analogous procedure.
CHAPTER FOUR

CONSEQUENCES OF CHIRALITY AT TIN

IN SOME STANNYLCYCLOPENTADIENE ANALOGUES.

A. Introduction

The effect of stereoisomerism in non-rigid methylcyclopentadienyl-germanes and -stannanes was referred to very briefly in Chapter Two, and in Chapter Three the related stereochemical effects resulting from chirality within the η^1-indenyl framework were discussed at some length. Concurrently, chirality in the migratory group has been used by other workers in these laboratories (see Chapter One) to derive mechanistic information regarding fluxional rearrangements in cyclopentadienylsilanes and related compounds. Developing this approach into the context of related ring-systems (see Chapter One), three methyl(isopropyl)phenylstannyl derivatives, (the pentamethylcyclopentadiene; the methylcyclopentadiene; and the indene) have been prepared as part of the present work and have been examined in detail using variable-temperature 1H and 13C NMR spectroscopy.

B. Results

Methyl(isopropyl)phenyl(η^1-pentamethylcyclopentadienyl)stannane (4.2), methyl(isopropyl)phenyl(η^1-methylcyclopentadienyl)stannane (4.3) and methyl(isopropyl)phenyl(η^1-indenyl)stannane (4.4),
none of which have been isolated previously, were prepared in high yield as yellow, volatile, air- and water-sensitive liquids, from the reaction of methyl(isopropyl)phenyltin bromide (4.1) with lithium pentamethylocyclopentadienide, potassium methylecyclopenta
dienide and indenyllithium respectively. Physical and analytical data for the new compounds, 4.2 - 4.4, are given in Table 4.1.

Sn(Me)(i-Pr)(Ph)(Br), 4.1, was prepared by the literature method (Figure 4.1). This involved successive reactions of a triorganotin halide with the appropriate alkylmagnesium halide followed by either bromodemetallation (with Br2) or protodemetallation (with HCl) of the tetraorganotin compound formed. Compounds isolated during the synthesis of compound 4.1 were characterized by IR, 1H NMR, MS, and B.Pt., the observed properties agreeing exactly with those given in the literature.

\[
\text{SnPh}_3\text{Cl} \xrightarrow{\text{MeMgBr \ Et}_2\text{O}} \text{Sn(Me)Ph}_3 \xrightarrow{\text{HCl / MeOH}} \text{Sn(Me)(Ph)}_2\text{(Cl)} \xrightarrow{\text{Mg(i-Pr)Br}} \text{Sn(Me)(i-Pr)(Ph)(Br)} \xrightarrow{\text{Br}_2 \ EtOH} \text{Sn(Me)(i-Pr)(Ph)}_2
\]

FIGURE 4.1. Synthetic scheme used to prepare Sn(Me)(i-Br)(Ph)(Br), 4.1.
TABLE 4.1.

Physical and analytical data for compounds 4.2 - 4.4.

<table>
<thead>
<tr>
<th>Compound</th>
<th>B.Pt. (°C/mmHg)</th>
<th>Analysis</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Theoretical</td>
<td>Actual</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%C</td>
<td>%H</td>
</tr>
<tr>
<td>4.2 Sn(Me)(t-Pr)(Ph)[n(^1)-C(_5)(CH(_3))(_5)]</td>
<td>125-130/10(^{-2})</td>
<td>61.73</td>
<td>7.77</td>
</tr>
<tr>
<td>4.2 Sn(Me)(t-Pr)(Ph)[n(^1)-C(_5)H(_3)]</td>
<td>115-125/10(^{-2})</td>
<td>58.08</td>
<td>6.87</td>
</tr>
<tr>
<td>4.4 Sn(Me)(t-Pr)(Ph)[n(^1)-C(_9)H(_3)]</td>
<td>135-140/10(^{-2})</td>
<td>62.09</td>
<td>6.34</td>
</tr>
</tbody>
</table>

Mass spectral data for compounds 4.2 - 4.4 are listed in Table 4.2, and consist of a considerable range of ion families due to tin-containing fragments resulting from decomposition pathways involving the four different substituents on the metal. Molecular ions were observed for each compound, with the majority of the metal-containing ion-current being carried by the even electron ions (e.g., SnR,R, R, and SnR). No prominent peaks were attributed to fragmentation within the Cp* substituent, indicative of monohapto-bonding between the metal and the Cp* ring.

B.2. NMR Data

Compounds 4.2 - 4.4 are optically inactive, existing as racemic mixtures (equal proportion of the two enantiomers). Although such racemic mixtures differ from each of the optically pure enantiomers in their interaction with (a) polarized light, or (b) chiral substrates, they will possess NMR spectra (and IR, MS, etc.) which are identical, and hence conclusions concerning the stereochemistry of the rearrangement behaviour may be adduced directly from the NMR data observed.

The 1H and 13C NMR spectra of the pentamethylcyclopentadiene, 4.2 (Figures 4.2 and 4.3), and the methylcyclopentadiene, 4.3

* Cp = C$_5$(CH$_3$)$_5$, C$_5$H$_4$CH$_3$, C$_9$H$_7$.
TABLE 4.2.

Mass spectral data\(^a\) for compounds 4.2 - 4.4 \((\text{Sn} \text{(Me)(i-Pr)(Ph)Cp}^+)\).

<table>
<thead>
<tr>
<th>Ion Family/ Cp(^+)</th>
<th>(\text{C}_5 \text{(CH}_3\text{)}_5)</th>
<th>(\text{C}_5 \text{H}_4 \text{CH}_3)</th>
<th>(\text{C}_9 \text{H}_7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Sn(Me)(Ph)(i-Pr)Cp}^+)</td>
<td>4</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>(\text{Sn(i-Pr)(Ph)Cp}^+)</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(\text{Sn(Me)(Ph)Cp}^+)</td>
<td>16</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>(\text{Sn(Me)(i-Pr)Cp}^+)</td>
<td>13</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>(\text{Sn(Me)(i-Pr)(Ph)}^+)</td>
<td>8</td>
<td>31(^c)</td>
<td>11</td>
</tr>
<tr>
<td>(\text{Sn(Me)(Ph)}^+)</td>
<td>11</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>(\text{Sn(Me)(i-Pr)}^+)</td>
<td>4</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>(\text{SnCp}^+)</td>
<td>13</td>
<td>31(^c)</td>
<td>14</td>
</tr>
<tr>
<td>(\text{SnPh}^+)</td>
<td>24</td>
<td>13</td>
<td>27</td>
</tr>
<tr>
<td>(\text{SnMe}^+)</td>
<td>8</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>(\text{Sn}^+)</td>
<td>7</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

\(^a\) 70eV ionizing voltage.

\(^b\) \% metal-containing ions, summed within each family resulting from isotope distribution and hydrogen loss.

\(^c\) Peaks between m/e = 249 and 259 are assigned to both \(\text{Sn}[\text{C}_5 \text{(CH}_3\text{)}_5]^+\) and \(\text{Sn(Me)(i-Pr)(Ph)}^+\).
FIGURE 4.2. 90MHz 1H NMR spectrum of Sn(Me)(i-Pr)(Ph)[n$_1$-C_5(CH$_3$)$_5$], 4.2 at 27°C.
FIGURE 4.3. 13C NMR spectrum of Sn(Me)(i-Pr)(Ph)[1-C$_3$(CH$_3$)$_5$], 4.2.
(Figures 4.4 and 4.5), are temperature invariant, while corresponding spectra for the indene, 4.4 (Figures 4.6 and 4.7) are temperature dependent over the range studied (ca. -60° to +60°C), (see also Tables 4.3 - 4.5).

B.2.(i). Proton NMR data.

The H NMR spectra of compounds 4.2 and 4.3 each contain a single resonance (δ = 0.20, -0.16 respectively) due to the methyl group bound directly to tin, while the corresponding spectrum of compound 4.4 has two such signals at -60°C (δ= -0.01, 0.05) which broaden on increasing the temperature through 0°C, giving at ca. +60°C a single resonance (δ = 0.04). Signals for the five phenyl protons appear as single absorptions at ca. 6.7, 7 for compounds 4.2 and 4.4 and as a broad multiplet centered at 6.5 for compound 4.3. The methyl groups of the isopropyl substituent give rise to two broad signals at 61.22 and 1.30 for compound 4.2 while for compounds 4.3 and 4.4 (at -60°C) multiplets centered at 61.2 are observed. For compound 4.4 these signals become broad at ca. 0°C, sharpening again at ca. +60°C.

The pentamethylcyclopentadiene (4.2) has a single resonance at 61.78 for the five methyl groups of the CMe3 group. For the methylcyclopentadiene, (4.3) there is a single ring-methyl resonance at 62.06, while three signals at 65.52, 5.72 and 5.92 of relative intensity 2:1:1 are assigned to H5, H6, H8 and H8' respectively (cf. Figure 2.3).
FIGURE 4.4. 90MHz 1H NMR spectrum of $\text{Sn(Me)}(\text{t-Pr})_2(\text{Ph})(\text{n-}{\text{C}}_5\text{H}_4\text{CH}_3)_2$, 4.3 at 27°C.
FIGURE 4.5. 13C NMR spectrum of $\text{Sn(Me)(i-Pr)(Ph)(n}^-\text{C}_5\text{H}_4\text{CH}_3)$, 4.35.
FIGURE 4.6. 90MHz variable temperature 1H NMR spectrum of Sn(Me)(i-Pr)(Ph)(n1C$_9$H$_{18}$), 4.4.
FIGURE 4.7. Variable temperature 13C NMR spectrum of Sn(Me)(i-Pr)(Ph)$\eta^1_{-C_9H_{17}}$, 4.4.
TABLE 4.3.

NMR data for the methyliclopentadienyl, pentamethyliclopentadienyl and indenyl groups of compounds 4.2-4.4.

<table>
<thead>
<tr>
<th>Compound</th>
<th>1H NMR</th>
<th>13C NMR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C_5-CH_3</td>
<td>C_5-H</td>
</tr>
<tr>
<td>4.2 Sn(Me)(t-Pr)(Ph)(n1-C$_5$(CH$_3$)$_3$)</td>
<td>1.78(19)d</td>
<td>15.4</td>
</tr>
<tr>
<td>4.3 Sn(Me)(i-Pr)(Ph)(n1-C$_5$H$_4$CH$_3$)</td>
<td>2.06(11)d</td>
<td>5.52(2)e</td>
</tr>
</tbody>
</table>

13C NMR

<table>
<thead>
<tr>
<th>C^1</th>
<th>C^2</th>
<th>C^3</th>
<th>$C^{4,5,6,7}$</th>
<th>$C^{8,9}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>43.9b</td>
<td>134.7b</td>
<td>134.9c</td>
<td>125.2b</td>
<td>121.2b</td>
</tr>
<tr>
<td>44.4</td>
<td>135.4b</td>
<td>(7.1Hz)8</td>
<td>121.9</td>
<td>121.7c</td>
</tr>
<tr>
<td>123.1</td>
<td>123.8</td>
<td>123.7</td>
<td>145.5</td>
<td>144.1c</td>
</tr>
</tbody>
</table>

1H NMR

<table>
<thead>
<tr>
<th>1H NMR</th>
<th>H^1</th>
<th>H^2</th>
<th>H^3</th>
<th>$H^4,5,6,7$</th>
<th>$H^8,9$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.41b</td>
<td>6.8-7.1b</td>
<td>6.1-6.8b</td>
<td>6.1-6.8b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.46</td>
<td>6.91(t)c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aChemical shifts, ppm, measured positive downfield from SiMe$_4$ in CDCl$_3$. bSpectrum recorded at 60ºC. cSpectrum recorded at -60ºC. dJ(1H-19Sn), in Hz. eRelative intensity. fNot observed. g3J(1H-H)$^3_{av.-H}$. h3J(1H-19Sn).
TABLE 4.4.

1H NMR dataa,b for the methyl, isopropyl and phenyl groups of compounds 4.2 - 4.4.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Sn-CH$_3$</th>
<th>2J(Sn-1H,Sn-1H),(Hz)</th>
<th>-CH(CH$_3$)$_2$</th>
<th>-CH(CH$_3$)$_2$</th>
<th>C$_6$H$_5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>0.20</td>
<td>45.0</td>
<td>1.4 - 1.9</td>
<td>1.22, 1.30</td>
<td>7.7f</td>
</tr>
<tr>
<td>Sn(Me)(t-Pr)(Ph)(n-C$_5$(CH$_3$)$_5$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>-0.16</td>
<td>50.4</td>
<td>1.4 - 1.9e</td>
<td>1.20, 1.23,</td>
<td>7.8 - 7.2e</td>
</tr>
<tr>
<td>Sn(Me)(t-Pr)(Ph)(n-C$_5$H$_4$CH$_3$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>-0.01c</td>
<td>0.04d 48.7c</td>
<td>1.4 - 1.9e</td>
<td>1.0 - 1.4c</td>
<td>7.7f</td>
</tr>
<tr>
<td>Sn(Me)(t-Pr)(Ph)(n-C$_9$H$_7$)</td>
<td>0.05c</td>
<td>49.1c 49.1d</td>
<td></td>
<td>1.20, 1.23, 1.28,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.31d,e</td>
<td></td>
</tr>
</tbody>
</table>

a Chemical shifts, ppm, measured positive downfield from SiMe$_4$ in 10% CDCl$_3$ solutions.

b Measured at 90MHz.

c Spectrum recorded at -30°C.

d Spectrum recorded at +60°C.

e Multiplet.

f Broad.
TABLE 4.5.

13C NMR dataa for the methyl, isopropyl and phenyl groups of compounds 4.2 - 4.4.

<table>
<thead>
<tr>
<th>Compound</th>
<th>13C (Sn-CH$_3$)</th>
<th>13C (Sn-i-Pr)</th>
<th>13C (Sn-C$_6$H$_5$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J (^{13}$C-177,199 Sn)</td>
<td>CH(CH$_3$)$_2$</td>
<td>CH(CH$_3$)$_2$</td>
</tr>
<tr>
<td>4.2 Sn(Me)(i-Pr)(Ph)(n$_1$-C$_5$(CH$_3$)$_5$)</td>
<td>-12.9</td>
<td>129.9</td>
<td>16.9</td>
</tr>
<tr>
<td>4.3 Sn(Me)(i-Pr)(Ph)(n$_1$-C$_5$H$_4$CH$_3$)</td>
<td>-13.4</td>
<td>130.4</td>
<td>17.7</td>
</tr>
<tr>
<td>4.4 Sn(Me)(i-Pr)(Ph)(n$_1$-C$_9$H$_7$)</td>
<td>-13.9c</td>
<td>-13.2d n.o.</td>
<td>18.5</td>
</tr>
</tbody>
</table>

aChemical shifts, ppm, measured positive downfield from SiMe$_4$ in CDCl$_3$.

bBroad.

cSpectrum recorded at -30°C.

dSpectrum recorded at $+60^\circ$C.

eAssignment as in reference 142.

fValues given in Hz.
At -60°C, the ¹H NMR spectrum of compound 4.4 contains indenyl-¹H resonances at δ4.41 and 4.46, a multiplet centered at δ6.95 due to H², with the other indenyl proton resonances forming a broad multiplet centered at δ6.5 which overlaps with resonances for the phenyl protons. Raising the temperature to ca. -10°C results in broadening of the H¹ and H² resonances, and at +60°C the H¹ resonances have completely collapsed while the H² resonance appears as a triplet. Signals due to H⁴,5,6,7 show some spectral changes with temperature, but no detailed assignment was attempted.

B.2.(ii). Carbon-13 NMR data.

The ¹³C NMR spectrum of compounds 4.2 and 4.3 have methyl signals at -12.9 and -13.4ppm respectively due to the methyl group bound directly to tin. In contrast the -60°C spectrum of 4.4 contains two CMe resonances at -13.9 and -13.2ppm which broaden on increasing the temperature, giving at ca. +60°C a single resonance at -13.2ppm. Resonances at 127.9, 128.4, 136.8 and 141.4ppm for compound 4.2, at 128.4, 128.8, 136.4 and 141.4ppm for compound 4.3 and at 128.4, 128.9, 136.5 and 140.3ppm for compound 4.4 are attributed to C³,⁵, C⁴, C²,⁶ and C¹ respectively of the substituent phenyl groups. The isopropyl group gives three signals at 16.9, 21.7 and 22.0ppm for compound 4.2, but only two signals for both compounds 4.3 (at 17.7 and 21.7ppm) and compounds 4.4 (at 16.5 and 21.6ppm), the high frequency signal for compounds 4.3 and 4.4 being broad.
For compound 4.2 the remaining resonances at 12.1 and 119.3 ppm are due to the five methyl- and five ring-carbon atoms respectively of the pentamethylcyclopentadienyl ring. For the methylcyclopentadienyl compound 4.3, resonances at 15.4, 100.6, 101.1, 115.4 and 118.8 ppm result from C^Me, C^α, C_5^α, C^8 and C^β respectively of the methylcyclopentadienyl-ring (a signal corresponding to C^γ was not observed).

In the indenyl, 4.4 the -30°C spectrum contains two C^1-indenyl resonances at 43.9 and 44.4 ppm, the assignment of the remaining resonances, ascribed to the carbons of the indenyl ring are given in Table 4.3. At ca. 10°C, all the indenyl carbon resonances have broadened significantly and at ca. +60°C resonances due to C^1 (at 43.9 and 44.4 ppm) and C^3 (125.2 ppm) have completely collapsed, while slow-limit resonances at 121.2, 121.9, 123.1 and 123.8 ppm due to C^4, C^5, C^6, C^7 have averaged to give two signals at 121.7 and 123.7 ppm for C^4, C^7 and C^5, C^6. in the +60°C spectrum. Similarly resonances at 142.2, 145.2 and 145.5 ppm assigned to C^8, C^9 broaden, giving at ca. +60°C a single absorption at 144.1 ppm, while C^2 signals at 134.7 and 135.4 ppm are broad at ca. 0°C and at +60°C give a sharp resonance at 134.9 ppm.

* Order may be reversed.
C. DISCUSSION.

The NMR data obtained for the pentamethylcyclopentadiene
$\text{SnMe}_{2}\text{Pr}(\text{Ph})[\text{CH}_3]^1\text{C}_5\text{H}_3] (4,2)$ are consistent with rapid
migration of the tin moiety around the five carbon atoms of the
$\text{CH}_3\text{C}_5\text{H}_3$-ring, bringing about equivalence of the five ring carbons
and also the five ring methyl groups on the NMR timescale, exactly
paralleling the situation observed92 for $\text{SnMe}_3[\text{CH}_3]^1\text{C}_5\text{H}_3]$.
Thus only one signal is apparent in the ^1H NMR spectrum for the
five methyl groups (Figure 4.2), while in the ^{13}C NMR spectrum
the $\text{CH}_3\text{C}_5\text{H}_3$ ring system gives rise to two singlets (Figure 4.3),
one due to the five ring carbon atoms and the other to the five
methyl groups. Although the rearrangement process has no effect
on the resonances for the methyl, isopropyl or phenyl substituents,
analysis of signals resulting from the isopropyl group
is informative. In the ^{13}C NMR spectrum there are three distinct
signals for the three carbon atoms of the isopropyl substituent,
confirming magnetic non-equivalence of the two methyl groups.
This observation at fast rates of intramolecular exchange establishes
that the rearrangement process does not lead to averaging of the
magnetic environments of the two methyl groups, and must therefore
take place with retention of configuration at the tin center.

By contrast, at 90 MHz the ^1H signals due to the β-protons of the
isopropyl group show no resolvable splitting due to diastereotopic
effects, appearing as a doublet through coupling to the single
methine proton.
The appearance of the ^1H and ^{13}C NMR spectra (Figures 4.4 and 4.5 respectively) for the methylcyclopentadiene, SnMe(3-Pr)(Ph)(1-5-C$_5$H$_4$CH$_3$)(4.3) is the result of facile sigmatropic migration of the tin-containing group around the methylcyclopentadienyl ring at a rate which is fast relative to the NMR timescale (see also Chapter Two). Thus, the methyl group bound to the C_5-ring gives a single absorption in both the ^1H and ^{13}C NMR spectra. Diastereotopic splitting of resonances for the ring nuclei (see Chapter One, references 79 and 89) is also apparent, so that in the ^{13}C NMR spectrum a signal arises for each of the ring carbons C^α, C^β, C^γ and C^δ, while in the ^1H NMR spectrum there are three broad lines at 65.52(H^δ), 5.72(H^β) and 5.96(H^α, H^α), in a 1:1:2 intensity ratio.

In the ^1H NMR spectrum the complexity of the multiplet centered at 61.25 attributable to the β-protons of the isopropyl substituent establishes magnetic non-equivalence between the two methyl groups to give a pattern resembling that expected for an a_2b_2x spin system. By contrast, at 15.1 MHz the ^{13}C NMR spectrum shows an unsplit signal for the two β-carbon atoms. Thus identification of magnetic non-equivalence of the two methyl groups at fast rates of rearrangement (^1H NMR data) leads to the conclusion that the sigmatropic migration occurs with retention of configuration at the migrating center. As Fabian and Labinger have noted for a related iron system, the observation of diastereotopically shifted resonances for the carbons (^{13}C NMR) or protons (^1H NMR) of the methylcyclopentadienyl ring at fast rates of sigmatropic
migration, is evidence for either (i) retention of configuration in a suprafacial process, or, (ii) inversion of configuration during an antarafacial process.

Thus the observed diastereotopic splitting of resonances for the methylcyclopentadienyl-ring nuclei, in conjunction with the above proof that rearrangement occurs with retention of configuration at the migrating center, leads to the conclusion that the rearrangement is suprafacial as anticipated. The rearrangement taking place can then be visualised as a rapid interconversion of the four isomers (1 - 4), Figure 4.8.

FIGURE 4.8. Isomers present in significant concentration in

$$\text{Sn(Me)(e-Pr)(Ph)\left(1-C_2H_4CH_3\right)_4} 4.3$$
The complex slow-limit 1H NMR (-30°C) and ^{13}C (at -60°C) NMR spectra observed for the indenyl 4.4 are the result of the presence in 4.4 of the diastereomeric pair, 5 and 6, of enantiomorphs (Figure 4.9).

![Diastereoisomers](image)

FIGURE 4.9. The diastereoisomers 5 and 6 present in Sn(Me)(i-Pr)(Ph)(1C_9H_7), 4.4.

The enantiomeric pair 5 (and also the pair 6) have identical NMR spectra, but these two pairs are significantly different from one another and will give rise to different NMR spectra. Thus the
methyl group bound directly to tin in each enantiomeric pair gives one
signal in the 13C NMR spectrum and in the 1H NMR spectrum.
Similarly there are two indenyl C¹ resonances in the 13C NMR
spectrum and two 1H resonances in the 1H NMR spectrum.

Raising the temperature results in an averaging of resonant
positions for the indenyl ring nuclei, which is consistent with an
overall 1,3 rearrangement of the tin moiety across the five
membered ring of the indene framework (equation (1)).

\[\text{H} \quad \text{Sn(Me)(i-Pr)(Ph)} \]

\[\text{Sn(Me)(i-Pr)(Ph)} \quad \text{H} \]

Thus resonances assigned to C¹ and C³ broaden at α, 0°C and are
completely collapsed at 20°C. Resonances for C⁸,⁹ also broaden
at α, 0°C, giving a coalesced signal at α, $+60^\circ$C, as do resonances
for C⁴,⁷, and also for C⁵,⁶. In the 1H NMR spectrum H¹ and H³ resonances
broaden at α, 0°C and completely collapse at α, $+30^\circ$C, while
signals for H² broaden, giving a triplet at α, $+30^\circ$C, resulting
from the averaging of the coupling constants $^3J(H^1-H^2)$ and $^3J(H^3-H^2)$.

The rearrangement process also averages resonances for the
indenyl C² nuclei, and the tin-methyl groups in isomers 5 and 6,
consistent with the metallotrpic rearrangement bringing about
interconversion between the two different isomer types 5 and 6.
A 1,3 suprafacial migration as depicted in equation (2) must necessarily involve a change in the configuration at C\(^1\) of the indenyl ring; it follows that the observed interconversion between the two diastereoisomeric pairs 5 and 6 requires that the configuration at the tin center should remain invariant \(\alpha\) retention.

\[
\text{Sn(Me)}(\text{i-Pr})(\text{Ph}) \quad \text{Sn(Me)}(\text{i-Pr})(\text{Ph})
\]

(2)

Resonances in the \(-30^\circ\text{C}\) \(^1\text{H}\) NMR spectrum due to the methyl groups of the isopropyl substituent appear as a complex multiplet. This results from overlap of signals for the isopropyl group in diastereoisomers 5 and 6. Interconversion between 5 and 6 results in averaging of these resonances, so that the \(+60^\circ\text{C}\) \(^1\text{H}\) NMR spectrum is consistent with the methyl groups of the isopropyl substituent maintaining magnetically distinguishable environments throughout the rearrangement process (\(\alpha\) resulting from an \(a/b_2\alpha\) spin system). This is confirmatory evidence for retention of configuration at the migrating metal center.

These observations can be summarized as follows: Rearrangement of the indenyl (diastereoisomeric mixture 5:6) involves an overall 1,3 suprafacial migration of the metal, the configuration at which is unchanged by the metallotropic shift. Simultaneously this process interconverts the diastereoisomeric pairs 5 and 6 as shown in Figure 4.9.

Similarly the \(^1\text{H}\) NMR data obtained \(^{103}\) for SnMe\(_2\)Ph(\(\eta^1\text{C}_9\text{H}_7\))
are consistent with exchange between the magnetic environments of the two methyl groups and support retention of configuration at the tin center in a suprafacial process (Chapter One and reference 103).

Rearrangement \textit{via} an \textit{iso}-indenyl intermediate is indicated by several compelling yet inconclusive experimental observations (see Chapter One). Thus in a number of instances 105,106 products have been isolated from the Diels-Alder reaction of metallo-1-indenes with dienophiles in which the migratory group is located at the 2-position. Thermolysis of trimethylsilyl(\textit{\eta}^1-indene), \textit{7} yields 106,107 an equilibrium mixture of three compounds (\textit{7}, \textit{8}, and \textit{9}), the presence of one of which (\textit{8}) is consistent with the \textit{iso}-indenyl intermediate. Site exchange between the two trimethylsilyl groups of 1,2-bis(trimethylsilyl)indene, \textit{10}, leads to only one methyl signal in the fast-limit 1H NMR spectrum. 104 This observation rules out the possibility of a concerted 1,3 migration; while it is consistent with the \textit{iso}-indenyl intermediate and alternates process involving a pair of simultaneous,
concerted 1,2 shifts (11) has also been proposed.104

\[\text{Diagram:} \]

\[\text{Diagram:} \]

The design of suitable experiments which will unambiguously assign this inherently-likely pathway (i.e., overall 1,3 migration via successive 1,2 shifts) has not yet been achieved.

D. EXPERIMENTAL.

Lithium pentamethylcyclopentadienide,92 potassium methyl-
cyclopentadienide,138 indenyllithium104 and methylisopropyl-
phenyltin bromide155 were prepared by the literature methods.

Methylisopropylphenyl(1'-methylenecyclopentadieny)stannane

A solution of methylisopropylphenyltin bromide (2.00 g, 5.99 mmol) in toluene (20 mL) was added dropwise to a suspension of potassium cyclopentadienide (0.5 g, 6.3 mmol) in toluene (30 mL) which was maintained at \(-78^\circ C\) throughout the addition. The mixture was warmed to room-temperature and stirring continued for a further 12 h. The mixture was then filtered, and the filtrate concentrated in vacuo leaving a light yellow oil. Sublimation in vacuo onto a \(-78^\circ C\) (dry ice/acetone) probe gave pure liquid Sn(\text{Me})(\text{t-Fr})(\text{Ph})(\text{1'-C}_5\text{H}_4\text{CH}_3) (1.10 g, 3.31 mmol, 55%).
Methylisopropylphenyl(\(\eta^1\)-pentamethylcyclopentadienyl)stannane
and methylisopropylphenyl(\(\eta^1\)-indenyl)stannane were prepared
in a similar manner.
CHAPTER FIVE

SYNTHESIS AND PROPERTIES OF

SOME BIVALENT DERIVATIVES OF GERMANIUM AND TIN

A. INTRODUCTION:

While the organometallic chemistry of quadrivalent germanium, tin, and lead has been intensively investigated, related compounds in which the metal is in the bivalent state are much rarer and belong to a small number of specialized categories. Bis(η⁵-cyclopentadienyl) derivatives of tin(II) and lead(II), are representative examples of one of those classes of accessible compounds in which a bivalent tin or lead atom is bound to carbon; these molecules have also been of interest because of the nature of the metal-to-ring interaction.

While it was initially assumed that these compounds possessed the σ-bonded structure shown in 1, Wilkinson et al. subsequently concluded that in fact an angular π-bonded sandwich structure 2 was adopted on the basis of IR and dipole
moment measurements. The existence of "sideways" rather than
"end-on" bonding between the metal and the ring-system in these
and related cyclopentadienyl derivatives has since been substantiated
by electron diffraction \([\text{Sn}(\eta^5-C_5H_5)_2, \text{Pb}(\eta^5-C_5H_5)_2]\) and
X-ray crystallographic \([\text{Sn}(\eta^5-C_5H_5)_2, \text{Pb}(\eta^5-C_5H_5)_2, \text{Sn}(\eta^5-C_5(CH_3)_5)_2, \text{Pb}(\eta^5-C_5(CH_3)_5)_2, \text{Sn}(\eta^5-C_5H_5)\text{Cl, Sn}(\eta^5-C_5(CH_3)_5)\text{BF}_4}\]}

studies.

Bis (\(\eta^5\)-cyclopentadienyl)- and bis (\(\eta^5\)-methylcyclopentadienyl)-
tin(II) have been shown to be useful synthetic precursors
to a variety of previously unknown or otherwise difficultly
accessible derivatives of tin(II). Thus, in general, reactions
with sources of acidic hydrogen give the corresponding tin(II)
products (equations (1) and (2)).

\[
\begin{align*}
\text{Sn}(\eta^5-C_5H_5CH_3)_2 & \xrightarrow{2\, \text{RSH}} \text{Sn}[\text{SR}]_2 \\
-2C_5H_5CH_3 & \quad \text{......... (2)}
\end{align*}
\]

A more limited range of related reactions of bis (\(\eta^5\)-cyclopentadienyl)-
lead(II) have been reported by Buddephatt et al (equation (3)).

\[
\begin{align*}
\text{Pb}(\eta^5-C_5H_5)_2 + 2\text{HA} & \xrightarrow{} \text{PbA}_2 + 2C_5H_6 \\
A = \text{OR}^{-}, \text{O}_2\text{CBu}^{\text{t}}^{-}, \text{RCHOCHCOR}^{-} \quad \text{......... (3)}
\end{align*}
\]

The corresponding germanium chemistry has, until recently, been
neglected due to a lack of convenient synthetic precursors.
Thus, although bis(\(n^5\)-cyclopentadienyl)germanium(II)\(^{19}\) would appear to be a logical starting material, it has been reported to undergo rapid polymerization at room temperature (95%, 3h)\(^{19}\), and, in fact, no detailed description of its reactions has appeared in the literature.

Organo-derivatives of bivalent germanium, tin, and lead have been shown to function as formal two-electron donors to low-valent transition metal centers. These types of complex have been referred to in Chapter One and their formation has been reviewed in the literature.\(^{157}\)

This chapter reports the synthesis of the relatively thermally stable compound bis(\(n^5\)-methylcyclopentadienyl)germanium(II) and describes its physical and chemical properties. Reactions with suitable protic reagents (particularly those of the general type 3) which might provide access to monomeric, intramolecularly associated germanium(II) containing products have been examined in some detail. An alternate synthetic route to some of these

\[
\begin{align*}
\text{X} & \quad \text{OH} \\
\text{3} & \\
\text{X} = O, N
\end{align*}
\]

germylenes, involving the reaction of a germanium(II) dihalide with the appropriate 1,3 ketoenolate and triethylamine has also been investigated. The reaction of biis(acetylacetonato)-germanium(II) and -tin(II) with tetrakis(triphenylphosphine)-
platinum(0) or bis(triphenylphosphine)(ethylene)platinum(0) is observed to give Pt(PPh₃)₂[M(acac)₃], M = Ge, Sn. The crystal and molecular structure of the tin compound has been determined by Professor T.S. Cameron and Ms. E.T. Brennan at Dalhousie University and their results are commented upon.

B. RESULTS AND DISCUSSION.

B.1. Synthesis and Properties of bis(η⁵-methylcyclopentadienyl)germanium(II).

Bis(η⁵-methylcyclopentadienyl)germanium(II), 5.1 was conveniently prepared in high yield (>90%) as a light yellow oil by the reaction of germanium(II) diiodide with potassium methylcyclopentadienide in toluene at ca. 5°C. Reaction at temperatures above 10°C gave only low yields (<10%) of compound 5.1 together with a red insoluble gum. Attempts to prepare 5.1 from either CsGeCl₃ or GeCl₂.dioxan and potassium methylcyclopentadienide were not successful.

Compound 5.1 is a yellow liquid which is markedly air- and water-sensitive. It is soluble in most organic solvents (e.g. hexane, benzene, ether, THF), but reacts rapidly with solvents containing protic hydrogen (e.g. MeOH, EtOH) to give white insoluble solids (these reactions will be discussed later in this section). Attempts to crystallize or sublime the material in vacuo were unsuccessful; the yellow oil darkened in color after a few
TABLE 5.15

Physical and analytical data for compounds 5.1 and 5.3 - 5.12.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Method of prep.</th>
<th>% Yield</th>
<th>Analysis</th>
<th>M.Pt (°C)</th>
<th>B.Pt (mm Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ge(n C₅H₁₂CH₃)₂, 5.1</td>
<td>A</td>
<td>85</td>
<td></td>
<td>62.45</td>
<td>61.92</td>
</tr>
<tr>
<td>Ge(trop)₂, 5.3</td>
<td>B</td>
<td>84</td>
<td></td>
<td>52.75</td>
<td>53.42</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>76</td>
<td></td>
<td>5.37</td>
<td>3.18</td>
</tr>
<tr>
<td>Ge(thuj)₂, 5.4</td>
<td>B</td>
<td>86</td>
<td></td>
<td>60.61</td>
<td>60.23</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>79</td>
<td></td>
<td>5.82</td>
<td>5.52</td>
</tr>
<tr>
<td>Ge(oxine)₂, 5.5</td>
<td>B</td>
<td>96</td>
<td></td>
<td>60.26</td>
<td>59.92</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>99</td>
<td></td>
<td>3.72</td>
<td>3.39</td>
</tr>
<tr>
<td>Ge(hyp)₂, 5.6</td>
<td>B</td>
<td>73</td>
<td></td>
<td>56.56</td>
<td>56.05</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>55</td>
<td></td>
<td>4.04</td>
<td>4.12</td>
</tr>
<tr>
<td>Ge(acac)₂, 5.7</td>
<td>A</td>
<td>55</td>
<td></td>
<td>43.79</td>
<td>44.35</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>90</td>
<td></td>
<td>5.49</td>
<td>5.21</td>
</tr>
<tr>
<td>Ge(piv)₂, 5.8</td>
<td>C</td>
<td>85</td>
<td></td>
<td>59.76</td>
<td>60.17</td>
</tr>
<tr>
<td>Ge(benzac)Cl₂, 5.9</td>
<td>C</td>
<td>75</td>
<td></td>
<td>38.11</td>
<td>39.72</td>
</tr>
<tr>
<td>Ge(benzac)₂, 5.11</td>
<td>C</td>
<td>98</td>
<td></td>
<td>60.45</td>
<td>60.82</td>
</tr>
<tr>
<td>Ge(dibenz)Cl₂, 5.10</td>
<td>C</td>
<td>83</td>
<td></td>
<td>54.54</td>
<td>d</td>
</tr>
<tr>
<td>Ge(dibenz)₂, 5.12</td>
<td>C</td>
<td>97</td>
<td></td>
<td>70.01</td>
<td>69.43</td>
</tr>
</tbody>
</table>

- * Analysis for N, actual 7.77%, found 7.7%.
- A suitable C, H analysis could not be obtained.
- Sublimed onto a water cooled probe over 24h.
- Suitable C, H analysis could not be obtained.

\[\text{Bi}((\text{CgH}_{12}\text{CH}_3))_n \text{Ge} + \text{X}_2 \rightarrow \text{GeX}_2. \]

\[\text{GeX}_2, \text{X} = \text{Li}^+, \text{Na}^+, \text{K}^+, \text{X} = \text{halogen}. \]
minutes at +75°C, eventually giving a viscous, insoluble red gum.
The undiluted liquid compound is also thermally unstable at room-
temperature, forming over a period of several weeks, a clear
yellow glass, insoluble in common organic solvents. The rate
of polymerization is significantly reduced if compound 5.1 is
stored as an α,5% solution in either hexane or toluene, but
such solutions are significantly more air-sensitive than neat 5.1.
Some physical and analytical data for compound 5.1 are given in
Table 5.1.

TABLE 5.2.
Mass spectral data for
bis(5-methylcyclpentadienyl)-germanium(II) and tin(II).

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Ge(5-C₅H₄CH₃)₂⁺</th>
<th>Sn(5-C₅H₄CH₃)₂⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>M(C₅H₄CH₃)₂⁺</td>
<td>0.5</td>
<td>1.9</td>
</tr>
<tr>
<td>M(C₅H₄CH₃)⁺</td>
<td>74.1</td>
<td>84.0</td>
</tr>
<tr>
<td>MC₄H₄⁺</td>
<td>3.6</td>
<td>n.o.</td>
</tr>
<tr>
<td>MC₃H₂⁺</td>
<td>7.7</td>
<td>n.o.</td>
</tr>
<tr>
<td>M⁺</td>
<td>13.3</td>
<td>14.1</td>
</tr>
</tbody>
</table>

a 70eV ionizing voltage; %metal-containing ions, summed within each
family resulting from isotope distribution and hydrogen loss.

b See reference 158.

c Not observed.
Mass spectral data for 5.1 together with those reported158 for the tin analogue, Sn(5-C\(_5\)H\(_4\)CH\(_3\))\(_2\), are given in Table 5.2. Results for both compounds are similar with major metal-containing peaks corresponding to the parent ion and sequential loss of the two methylcyclpentadienyl rings. For compound 5.1 decomposition of the most abundant germanium containing ion, Ge(C\(_4\)H\(_4\)CH\(_3\))\(^+\), also occurs by carbon-carbon bond fission within the C\(_5\)-ring, resulting in significant abundances of the ions GeC\(_4\)H\(_3^+\) and GeC\(_2\)H\(_n^+\). Fragmentation of the cyclpentadienyl ring has also been reported for Ge(5-C\(_5\)H\(_4\))\(_2\)19 and Sn(5-C\(_5\)H\(_4\))\(_2\), but significantly it is not generally observed in the mass spectra of related monohaptopcyclpentadienyls.128

\textbf{TABLE 5.3.}

<table>
<thead>
<tr>
<th>NMR dataa for compounds 5.1 and 5.2.</th>
<th>1\textsubscript{H} b</th>
<th>19\textsubscript{F} c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ge(5-C(_5)H(_4)CH(_3))(_2), 5.1</td>
<td>2.08</td>
<td>5.72</td>
</tr>
<tr>
<td>Ge(5-C(_5)H(_4)CH(_3))(_2)BF(_3), 5.2</td>
<td>1.88</td>
<td>5.86</td>
</tr>
<tr>
<td>Ge(C(_4)H(_4)CH(_3))(_2)BF(_3), 5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ge(C(_4)H(_4)CH(_3))(_2)BF(_3), 5.2</td>
<td>13C</td>
<td>13C</td>
</tr>
<tr>
<td>Ge(C(_4)H(_4)CH(_3))(_2)BF(_3), 5.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5.1. 13C NMR spectrum of bis(η5-methylcyclopentadienyl)germanium(II) at 25°C.
The 1H and 13C NMR spectra of compound 5.1 (see Table 5.3) are similar to those reported43 for the tin and lead analogues. The 1H NMR spectrum of compound 5.1 consists of a methyl signal at 62.08 and a multiplet centered at 65.72 for the four ring protons, while in the 13C NMR spectrum (Figure 5.1) there is a methyl signal at 14.1ppm, with a further three absorptions at 110.5, 113.0 and 126.2ppm due to C_α, C_β, and C_γ respectively.

These spectra are significantly different from the NMR spectra (described in Chapter Two) for tetrakis(η^1-methylcyclopentadienyl)-germane (2.5) which are temperature dependent over the range studied ($\alpha -60^\circ C$ to $+60^\circ C$). The sharply contrasting spectra are the result of the different mode of bonding between the $C_5H_4CH_3$-ring and the germanium atom in 5.1 (4) and 2.5 (5).
Thus in the germane 2,5, the germanium atom is bound to a single aliphatic carbon atom of each of the four monohaptomethylcyclopenta-diienyl-rings. Migration of the germanium atom about the \((\eta^1-\text{C}_5\text{H}_4\text{CH}_3)\)-rings results in averaging of the signals present in the slow-limit spectrum, however the rate is not sufficiently rapid for the spectrum to be fast-limiting at room temperature: thus broad absorptions are observed in both the \(^1\text{H}\) and \(^{13}\text{C}\) NMR spectra for the ring protons and the ring carbons, \(C^a, C^b, C^8, C^6\) respectively.

By comparison, signals in the room-temperature \(^1\text{H}\) and \(^{13}\text{C}\) NMR spectra of compound 5.1 are sharp, the germanium atom being bound to two equivalent \((\eta^5-\text{C}_5\text{H}_4\text{CH}_3)\)-rings to form the angular sandwich shown in 4.

Reaction of compound 5.1 with MeI over a period of 1h at room-temperature yields a viscous yellow oil the \(^1\text{H}\) NMR and mass spectrum of which are indicative of the presence of a mixture of compounds of the type Ge(Me)\(_m\) \((\eta^1-\text{C}_5\text{H}_4\text{CH}_3)\)\(_n\) I\(_{4-m-n}\). By contrast, the reaction of Sn\((\eta^5-\text{C}_5\text{H}_5)\)\(_2\) with MeI has been reported to give the single product Sn(Me)\((\eta^1-\text{C}_5\text{H}_3)\)\(_2\)I; this reaction is thought to proceed via a radical pathway, the following scheme having been proposed (equation (4)).

\[
\begin{align*}
\text{Sn}(\eta^5-\text{C}_5\text{H}_3)\text{I}_2 \xrightarrow{\text{MeI}} \text{Sn(Me)}(\eta^1-\text{C}_5\text{H}_3)\text{I}_2 + \text{Sn}(\eta^5-\text{C}_5\text{H}_5)\text{I}_2
\end{align*}
\]
Similarly, Sn(n^{5-\text{C}_5\text{H}_5})_2\) reacts smoothly with an excess of CH_2I_2 to give Sn(CH_2I)\((\text{\eta}^1-\text{C}_5\text{H}_5)\)_2I\) as the main product, while reaction using an excess of Sn(n^{5-\text{C}_5\text{H}_5})_2 gives a series of products including Sn(\text{\eta}^1-\text{C}_5\text{H}_5)_2(\text{I})\text{CH}_2\text{Sn}(\text{\eta}^1-\text{C}_5\text{H}_5)_2\text{I},\text{Sn}(\text{\eta}^1-\text{C}_5\text{H}_5)_3\text{CH}_2\text{Sn}(\text{\eta}^1-\text{C}_5\text{H}_5)_2\text{I}\) and Sn(n^{5-\text{C}_5\text{H}_5})_2\text{I}\).

The presence of a non-bonding electron pair on the germanium atom allows compound 5.1 to function as a Lewis base; accordingly it reacts rapidly with boron trifluoride etherate at room-temperature to give the viscous red oil 5.2. Compound 5.2 is significantly more air-sensitive than 5.1, however \(^1\text{H}\) and \(^{19}\text{F}\) NMR spectral data were obtained (Table 5.3) and are consistent with the formulation Ge(n^{5-\text{C}_5\text{H}_4\text{CH}_2})_2\text{BF}_3.

Sn(n^{5-\text{C}_5\text{H}_4\text{CH}_2})_2\) has been shown\(^{32,33,34}\) to react with a wide variety of protic reagents to give the corresponding tin(II) derivative in high yield (eg. equations (5) - (8)).

\[
\begin{align*}
\text{Sn(n}^{5-\text{C}_5\text{H}_4\text{CH}_2})_2 & \rightarrow 2\text{ROH} \quad \text{Sn(OR)}_2 \quad \text{... (5)} \\
& \rightarrow 2\text{RS}^+ \quad \text{Sn(SR)}_2 \quad \text{... (6)} \\
& \rightarrow 2\text{HCN} \quad \text{Sn(CN)}_2 \quad \text{... (7)} \\
& \rightarrow 2\text{HCN} \quad \text{Sn} \quad \text{... (8)}
\end{align*}
\]

By contrast, although Ge(n^{1-\text{C}_5\text{H}_4\text{CH}_2})_2, (5.1) did yield white solid precipitates with alcohols and azoles, analytical data supporting formulation as Ge\(_3\) derivatives could not be obtained and the
insolubility of these materials precluded convenient identification.

Surprisingly no reaction was observed between Ge(\(\eta^5\)-C\(_5\)H\(_4\)CH\(_3\))\(_2\) and the \(\beta\)-diketones shown in 6 even after refluxing in toluene solution for several hours, the \(\beta\)-diketone being recoverable to ca. 90%.

\[
\begin{array}{cccccc}
\text{R}_1 & \text{Me} & \text{Me} & \text{Ph} & \text{Me} & \text{CF}_3 \\
\text{R}_2 & \text{Me} & \text{Ph} & \text{Ph} & \text{CF}_3 & \text{CF}_3 \\
\end{array}
\]

While the known chelated ketoenolate derivatives of Ge(II) were not produced from the reaction of Ge(\(\eta^5\)-C\(_5\)H\(_4\)CH\(_3\))\(_2\) and the corresponding \(\beta\)-diketone, rapid reaction was observed with some phenolic and related compounds capable of bidentate coordination at a germanium(II) center (equation (9)).

\[
\text{HA} \quad \text{Ge}(\eta^5\text{-C}_5\text{H}_4\text{CH}_3)_2 \xrightarrow{\text{2(C}_5\text{H}_5\text{CH}_3)} \text{GeA}_2 \quad \text{(9)}
\]

<table>
<thead>
<tr>
<th>Compound</th>
<th>HA</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3 HA = tropolone (tropH)</td>
<td>(2-hydroxycyclohepta-2,4,6-trienone)</td>
</tr>
<tr>
<td>5.4 HA = thujaplicin (thujH)</td>
<td>(2-hydroxy-4-isopropylcyclohepta-2,4,6-trienone)</td>
</tr>
<tr>
<td>5.5 HA = 8-hydroxyquinoline (oxinH)</td>
<td></td>
</tr>
<tr>
<td>5.6 HA = (\beta)-hydroxyacetophenone (hyapH)</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 5.4.
Mass spectral data\(^a\) for compounds 5.3 – 5.6.

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Relative Intensity</th>
<th>Assignment</th>
<th>Relative Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ge(C(_7)H(_5)O(_2))(^+)</td>
<td>8.3</td>
<td>Ge(C(10)H({11})O(_2))(^+)</td>
<td>2.7</td>
</tr>
<tr>
<td>Ge(C(_7)H(_3)O(_2))(^+)</td>
<td>91.7</td>
<td>Ge(C(10)H({11})O(_2))(^+)</td>
<td>84.0</td>
</tr>
<tr>
<td>Ge(^+)</td>
<td>0.0</td>
<td>Ge(C(_7)H(_5)O(_2))(^+)</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ge(^+)</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Relative Intensity</th>
<th>Assignment</th>
<th>Relative Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ge(C(_9)H(_6)NO)(^+)</td>
<td>6.7</td>
<td>Ge(C(_8)H(_7)O(_2))(^+)</td>
<td>0.2</td>
</tr>
<tr>
<td>Ge(C(_9)H(_6)NO)(^+)</td>
<td>93.3</td>
<td>Ge(C(_8)H(_7)O(_2))(^+)</td>
<td>99.8</td>
</tr>
<tr>
<td>Ge(^+)</td>
<td>0.0</td>
<td>Ge(^+)</td>
<td>0.0</td>
</tr>
</tbody>
</table>

\(^a\) 70eV ionizing voltage; metal-containing ions, summed within each family resulting from isotope distribution and hydrogen loss.
The synthetic procedures used to prepare each of these compounds were similar, involving addition at room-temperature of a toluene solution of the corresponding free hydroxo compound to a stirred toluene solution of Ge(n^5-C_5H_4CH_3)_2. After ca.0.5h a precipitate started to form (see experimental), which gave, after work up, the pure Ge(II) derivative. These compounds are THF and chloroform soluble solids which are sufficiently volatile to allow for characterization by mass spectroscopy (see Table 5.4). Typically the most prominent peak in the mass spectra corresponds to loss of one chelate with the current carried by the molecular ion and Ge^4+ being small. For the thujaolicinato derivative cleavage of the isopropyl group was also observed to give relatively intense germanium-containing ions.

TABLE 5.5.
Infrared carbonyl stretching frequencies for compounds 5.3, 5.5 and 5.6.

<table>
<thead>
<tr>
<th>Compound</th>
<th>v(C=O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ge(trop)_2, 5.3</td>
<td>1590(v,s), 1570(m)</td>
</tr>
<tr>
<td>Ge(thuj)_2, 5.4</td>
<td>1583(m), 1569(s)</td>
</tr>
<tr>
<td>Ge(hyap)_2, 5.6</td>
<td>1580(m), 1635(m)</td>
</tr>
</tbody>
</table>

The IR spectra of compounds 5.3, 5.4 and 5.6 show a significant reduction in frequency for bands due to v(C=O) (Table 5.5) when compared to corresponding absorptions for the uncombined organic molecule, consistent with coordination of the oxygen atom of the
carbonyl group and hence a four (pseudo-five) coordinate germanium atom (eq. 7 for Ge(trop)$_2$).

NMR data obtained for compounds 5.3 - 5.6 are given in Tables 5.6 and 5.7. The 1H and 13C NMR spectra of compounds 5.4 - 5.6 are temperature invariant and confirm the proposed structure for each of the compounds. Surprisingly the 1H NMR spectrum of bis(tropolonato)germanium(II) is temperature dependent, the room-temperature spectrum consisting of two sharp lines centered at ca. 67.55 and a multiplet at ca. 67.00 in an intensity ratio of 4:1 respectively, while at lower temperatures the spectrum becomes significantly broadened. Analogous spectral changes have been reported for bis(tropolonato)tin(II), however these were not analyzed in detail.

The 13C NMR spectra of these compounds are however less complex, each having four signals due to C$_A$, C$_B$, C$_C$, C$_D$ and C$_E$. Further, spectra for both the germanium and tin compounds are temperature invariant, a result which would appear to preclude both inter- and intra-molecular rearrangement. Thus the spectral changes observed in the 1H NMR spectrum of both bis(tropolonato)germanium(II) and -tin(II) most probably result from small changes in the chemical shifts of resonances for the
TABLE 5.6.

NMR data for compounds 5.3 and 5.4.

<table>
<thead>
<tr>
<th>R</th>
<th>Compound</th>
<th>(\delta(H_{A,B,B',C,C'}))</th>
<th>(\delta(C-H))</th>
<th>(\delta(CH(CH_3)_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Ge(trop)_2</td>
<td>6.70-8.00(^{c})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr</td>
<td>Ge(thuj)_2</td>
<td>6.70-7.70</td>
<td>2.83(septet)(^{d})</td>
<td>1.22 (d)(^{d})</td>
</tr>
</tbody>
</table>

\(^{13}\)C NMR Data

<table>
<thead>
<tr>
<th>R</th>
<th>Compound</th>
<th>(\delta(C^D_D))</th>
<th>(\delta(C^C))</th>
<th>(\delta(A))</th>
<th>(\delta(B))</th>
<th>(\delta(B'))</th>
<th>(\delta(C-H))</th>
<th>(\delta(CH(CH_3)_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Ge(trop)_2</td>
<td>176.6</td>
<td>139.6</td>
<td>129.0</td>
<td>126.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr</td>
<td>Ge(thuj)_2</td>
<td>172.9(^{e})</td>
<td>120.9, 122.2, 123.6,</td>
<td>157.8</td>
<td>39.6</td>
<td>23.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{a}\) Chemical shifts, ppm, measured positive downfield from SiMe\(_4\) of CDCl\(_3\) solutions.

\(^{b}\) Measured at 90MHz.

\(^{c}\) Broad multiplet, not resolved.

\(^{d}\) \(J(H,H) = 6.4 \text{ Hz} \).

\(^{e}\) Signals due to \(C^1 \) and \(C^2 \) were not resolved.
five ring protons and their respective coupling constants.

TABLE 5.7.

- NMR data\(^a\) for compounds 5.5 and 5.6.

<table>
<thead>
<tr>
<th>Compound</th>
<th>(\delta(\text{ring-protons}))</th>
<th>(\delta(\text{CH}_3))</th>
<th>(\delta(\text{ring-carbons}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>8.81(^c), 8.30(^c)</td>
<td></td>
<td>113.6, 113.9, 124.6, 129.9, 137.9, 142.9</td>
</tr>
<tr>
<td>5.6</td>
<td>7.10(^c)</td>
<td>2.57</td>
<td>n.o.(^d)</td>
</tr>
</tbody>
</table>

\(\delta\) Chemical shifts, ppm measured positive downfield from SiMe\(_4\) on CDCl\(_3\) solutions.

\(\delta\) Measured at 90MHz.

\(\delta\) Center of multiplet.

\(\delta\) Not observed.

Noltes et al.\(^\text{74}\) have investigated the reaction of bis-(\(\eta^5\)-cyclopentadienyl)tin(II) with protic reagents and concluded that the reaction rate is essentially independent of the \(pK_a\) of the proton source, but depends on the ability of the atom to which the acidic hydrogen is bound to donate an electron pair to the tin center. Thus while reactions with ethanol (\(pK_a = 16.18\)) and phenol (\(pK_a = 10.10\)) are both fast, reaction with HCN (\(pK_a = 9.19.5\)) is slow and no reaction takes place.

\[
\begin{align*}
\eta^5-C_5H_5)_2Sn + ROH & \rightarrow (C_5H_5)_2SnO - R \\
C_5H_5SnOR + C_5H_5 & \rightarrow \cdots \cdots (10)
\end{align*}
\]
place with malononitrile (NCCH₂CN; pKₐ = ca. 11). A mechanism for the reaction of Sn(η⁵-C₅H₅)₂ with alcohols (equation (10)), was also proposed. Thus nucleophilic attack by the oxygen atom at the tin center results in weakening of the tin-cyclopentadienyl linkage causing a significant negative charge to develop on the ring, while simultaneously the hydrogen atom on the oxygen becomes more acidic facilitating fast reaction.

Based on this mechanism, the difference in reactivity of bis(η⁵-methylcyclopentadienyl)-tin(II) and -germanium(II) with 1,3-diketoenolates of type 6 can be interpreted in terms of either the germylene being a poorer electron acceptor (i.e., the germanium atom to function as a Lewis acid) than the tin compound, or the significantly higher germanium-carbon bond strength relative to that for the corresponding tin-carbon bond may make the activation energy for cleavage of the germanium-carbon linkage prohibitively high.

B.2. Synthesis and Properties of 1,3-Diketonato and Related Derivatives of Germanium(II).

The first ketoenolato derivatives of bivalent germanium were reported by Rodgers and Stobart in 1976. These compounds were prepared in 50% yield from reaction of GeI₂ or CsGeCl₃ with the sodium salt of the corresponding β-diketone. Related tin compounds have been synthesized by a variety of methods: for example Sn(acac)₂ has been prepared by (i) reaction of Na(acac) with SnCl₂, (ii) reaction of acacH with Sn(η⁵-C₅H₅CH₃)₂, and
(11) refluxing acacH with Sn(OMe)\textsubscript{2}.

Alternatively we have found that reaction of CsGeCl\textsubscript{3} or SnCl\textsubscript{2} with two equivalents of Hacac and NET\textsubscript{3} at room-temperature (see experimental) gives a convenient, high yield (ca. 90\%) route to Ge(acac)\textsubscript{2}, 5.7 and Sn(acac)\textsubscript{2}. Analogously, stirring solutions of GeI\textsubscript{2} with dipivaloylmethane or \textit{o}-hydroxyacetophenone and NET\textsubscript{3} at room-temperature for ca. 18h gives good yields of the germanium(II) containing products bis(dipivaloylmethanato)germanium(II), 5.8 and bis(b-acetylphe noxy)germanium(II), 5.6 respectively.

Reactions at room-temperature of toluene solution of either benzoylac etone or dibenzoylmethane with germanium diiodide and triethylamine gave a mixture of 1,3-diketone, (1,3-diketonato)germanium(II) iodide and bis(1,3-diketonato)germanium(II), with the corresponding reactions using cesium trichloro germinate also yielding a similar mixture of products. Attempts to improve the selectivity by varying the solvent, temperature and time of reaction were not successful, nor were attempts to purify the products by recrystallization or column chromatography. Reaction of CsGeCl\textsubscript{3} with one equivalent of \textit{b}-diketone and a two-fold excess of NET\textsubscript{3} does however give the pure (1,3-diketonato)germanium(II) chloride, [(benzoylacetonato)germanium chloride (5.9) and (dibenzoylmethanato)-germanium chloride (5.10)] in ca. 90\% yield. The subsequent reaction of the (1,3-diketonato)germanium(II) chloride with exactly one equivalent of the corresponding \textit{b}-diketone and triethylamine gives the pure bis(1,3-diketonato)germanium(II) derivatives bis(benzoyl-
TABLE 5.8.

Mass spectral data for compounds 5.7 - 5.12.

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Ion Abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ge(C₅H₇O₂)⁺</td>
<td>12.2</td>
</tr>
<tr>
<td>Ge(C₇H₁₀O₄)⁺</td>
<td>1.3</td>
</tr>
<tr>
<td>Ge(C₅H₇O₂)⁺</td>
<td>82.5</td>
</tr>
<tr>
<td>Ge(C₂H₅O₂)⁺</td>
<td>4.0</td>
</tr>
<tr>
<td>Ge⁺</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Relative Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ge(C₁₁H₁₉O₂)⁺</td>
<td>0.2</td>
</tr>
<tr>
<td>Ge(C₁₈H₂₉O₂)⁺</td>
<td>1.8</td>
</tr>
<tr>
<td>Ge(C₁₁H₉O₂)⁺</td>
<td>94.0</td>
</tr>
<tr>
<td>Ge(C₁₅H₁₅O₂)⁺</td>
<td>0.3</td>
</tr>
<tr>
<td>Ge(C₉H₁₃O₂)⁺</td>
<td>3.7</td>
</tr>
<tr>
<td>Ge⁺</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Relative Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ge(C₁₁H₁₉O₂)⁺</td>
<td>2.3</td>
</tr>
<tr>
<td>Ge(C₁₅H₁₅O₂)⁺</td>
<td>97.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Relative Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ge(C₁₀H₉O₂)⁺</td>
<td>1.3</td>
</tr>
<tr>
<td>Ge(C₁₀H₉O₂)⁺</td>
<td>93.1</td>
</tr>
<tr>
<td>GeCl⁺</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Ge(acac)₂, 5.7 Ge(piv)₂, 5.8

Ge(benzac)₂, 5.11 Ge(dibenz)₂, 5.12

Ge(benzac)Cl, 5.9 Ge(dibenz)Cl, 5.10

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Relative Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ge(C₁₀H₉O₂)⁺Cl⁺</td>
<td>1.3</td>
</tr>
<tr>
<td>Ge(C₁₀H₉O₂)⁺</td>
<td>93.1</td>
</tr>
<tr>
<td>GeCl⁺</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Ge(C₁₅H₁₁O₂)Cl⁺ | 2.1 |
| Ge(C₁₅H₁₁O₂)⁺ | 94.7 |
| GeCl⁺ | 3.2 |

a 70eV ionizing voltage.

b % metal-containing ions, summed within each family resulting from isotope distribution and hydrogen loss.
acetonato)germanium(II), 5.11 and bis(dibenzoylmethanato)germanium(II), 5.12 in ca 95% yield (equation (11)).

\[
\text{CsGeCl}_3 + \text{Compound 5.11} \xrightarrow{\text{NET}_{3}} \text{Compound 5.12}
\]

\[
(\text{benzacH})R_1 = \text{Me}, R_2 = \text{Ph}
\]

\[
(\text{dibenZH})R_2 = R_2 = \text{Ph}
\]

Preparation of related germanium(II) derivatives of 1,1,1-trifluoroacetylacetone or 1,1,1,5,5,5-hexafluoroacetylacetone was not attempted by this method since these 8-diketones are known to form relatively stable complexes with bases such as triethylamine.

Compounds 5.3, 5.4 and 5.5 are apparently air-stable although contact with either air or water was avoided whenever possible, while compounds 5.6 - 5.12 are both air- and water-sensitive.

Some physical and analytical data for compounds 5.6 - 5.12 are given in Table 5.1.

The mass spectral data for compounds 5.7 - 5.12 are tabulated in Table 5.8. These data are similar to those reported for the corresponding tin derivatives, showing a weak molecular ion, with the most abundant metal containing ion corresponding to the
loss of one chelate. Fragmentation within the organic portion of the molecule was observed for some compounds, thus bis(acetylacetonato)germanium(II) formally loses the acetylene, \(\text{CH}_3\text{C}≡\text{CH} \) (equation (12)),

\[
\begin{align*}
\text{Ge(C}_5\text{H}_7\text{O}_2)\text{Ge} & \xrightarrow{-\text{CH}_3\text{C}≡\text{CH}} \text{Ge(C}_5\text{H}_7\text{O}_2)\text{C-CH}_3 \\
(82.5) & \quad (13) \\
\text{Ge(C}_5\text{H}_7\text{O}_2)\text{Ge} & \xrightarrow{-\text{CH}_3\text{C}≡\text{CH}} \text{Ge(C}_5\text{H}_7\text{O}_2)\text{C-CH}_3 \\
(4.0) & \quad (12)
\end{align*}
\]

while bis(dipivaloylmethanato)germanium(II) has low abundance ions resulting from loss of a methyl radical and complete loss of a tertbutyl group.

The IR spectra of compounds 5.7 - 5.12 (Table 5.9) show a significant reduction in \(\nu(\text{C}=\text{O}) \) compared.

TABLE 5.9.

Infrared carbonyl stretching frequencies for compounds 5.7 - 5.12.

<table>
<thead>
<tr>
<th>Compound</th>
<th>(\nu(\text{C}=\text{O}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ge(acac)(_2), 5.7</td>
<td>1580(s), 1540(m)</td>
</tr>
<tr>
<td>Ge(piv)(_2), 5.8</td>
<td>1570(s), 1539(m)</td>
</tr>
<tr>
<td>Ge(benzac)Cl, 5.9</td>
<td>1592(w), 1525(s)</td>
</tr>
<tr>
<td>Ge(dibenz) Cl, 5.10</td>
<td>1585(w), 1520(s)</td>
</tr>
<tr>
<td>Ge(benzac)(_2), 5.11</td>
<td>1590(m), 1530(vs)</td>
</tr>
<tr>
<td>Ge(dibenz)(_2), 5.12</td>
<td>1585(w), 1523(s)</td>
</tr>
</tbody>
</table>
to corresponding absorptions for the free diketone indicative of intramolecular coordination involving the carbonyl oxygen atom.

These spectra are also similar to those reported34,159 for the corresponding tin compounds, consistent with germanium and tin analogues being isostructural.

The 1H and 13C NMR spectral data for compounds 5.7 - 5.12 are tabulated in Tables 5.10 and 5.11 (see also Figure 5.2).

The results are consistent with both chelating ketoenolate substituents being equivalent (compounds 5.3 - 5.8, 5.11 and 5.12), and further when \(R_1 = R_2 \) (see 8), \(R_1 \) and \(R_2 \) being magnetically equivalent.

\[\begin{array}{c}
\text{H} \\
\text{R}_1 \\
\text{O} \\
\text{R}_2 \\
\end{array} \]

This is good evidence for coordination of the carbonyl group to germanium (i.e., intramolecular association).

For compounds 5.6, 5.11 and 5.12, stepwise replacement of methyl by phenyl groups results in the deshielding of resonances for the methine proton [\(\delta(\text{CH}): 5.10 \text{ Ge(acac)}_2, 6.01 \text{ Ge(benzac)}_2, 6.76 \text{ Ge(dibenz)}_2 \)] with corresponding resonances in the 13C NMR spectrum for the \(C_2 \) carbons having much smaller shift differences.
FIGURE 5.2. 1H NMR spectrum of bis(acetylacetonato)germanium(II) in CDCl$_3$ at 27°C.
TABLE 5.10.

1H NMRa data for compounds 5.7 - 5.12.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R_1</th>
<th>R_2</th>
<th>X</th>
<th>R_1</th>
<th>R_2</th>
<th>X</th>
<th>$C - H$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>Ph</td>
<td>Cl</td>
<td></td>
<td>2.30</td>
<td>7.22-8.07b</td>
<td>6.52</td>
<td></td>
</tr>
<tr>
<td>Me</td>
<td>Ph</td>
<td></td>
<td></td>
<td>2.08</td>
<td>7.08-7.93b</td>
<td>6.01</td>
<td></td>
</tr>
<tr>
<td>Ph</td>
<td>Ph</td>
<td>Cl</td>
<td></td>
<td>7.30-8.21b</td>
<td>7.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph</td>
<td>Ph</td>
<td></td>
<td></td>
<td>7.12-8.10b</td>
<td>6.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Me</td>
<td>Me</td>
<td></td>
<td></td>
<td>1.70</td>
<td></td>
<td>5.10</td>
<td></td>
</tr>
<tr>
<td>t-Bu</td>
<td>t-Bu</td>
<td></td>
<td></td>
<td>1.13</td>
<td></td>
<td>5.76</td>
<td></td>
</tr>
</tbody>
</table>

a CDCl\textsubscript{3} was used as solvent, TMS as internal reference, chemical shift values in ppm downfield from TMS.

b Multiplet.
TABLE 5.11.

13C NMR a spectral data for compounds 5.8 - 5.12.

<table>
<thead>
<tr>
<th>R_1</th>
<th>R_2</th>
<th>X</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>C_4</th>
<th>C_{12}</th>
<th>C_{33}</th>
<th>C_4</th>
<th>Me_3</th>
<th>$C-(\text{CH}_3)_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>Ph</td>
<td>Cl</td>
<td>191.4</td>
<td>179.1</td>
<td>100.1</td>
<td>28.3</td>
<td>135.6</td>
<td>129.0</td>
<td>128.5</td>
<td>132.5</td>
<td></td>
</tr>
<tr>
<td>Me</td>
<td>Ph</td>
<td></td>
<td>192.2</td>
<td>181.1</td>
<td>98.3</td>
<td>28.6</td>
<td>137.7</td>
<td>128.5</td>
<td>127.7</td>
<td>131.8</td>
<td></td>
</tr>
<tr>
<td>Ph</td>
<td>Ph</td>
<td>Cl</td>
<td>183.0</td>
<td>96.9</td>
<td>136.3</td>
<td>129.1</td>
<td>128.6</td>
<td>134.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph</td>
<td>Ph</td>
<td></td>
<td>183.7</td>
<td>95.3</td>
<td>135.9</td>
<td>128.7</td>
<td>127.5</td>
<td>133.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bu</td>
<td>Bu</td>
<td></td>
<td>201.5</td>
<td>90.8</td>
<td>135.9</td>
<td>128.7</td>
<td>127.5</td>
<td>133.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\text{CDC}_3\text{ was used as solvent and internal reference, chemical shift values in ppm downfield from TMS.}\]
B.3. Synthesis and Structure of Bis(triphenylphosphine)bis[bis(acetyl-
acetonato)germylene]- and Bis(triphenylphosphine)bis[bis(acetyl-
acetonato)stannylene]-platinum(0).

Bis(triphenylphosphine)bis[bis(acetylacetonatogermylene)]platinum(0) (5.13) and bis(triphenylphosphine)bis[bis(acetylacetonatostannylene)]-
platinum(0) (5.14) were prepared in almost quantitative yield from
the room-temperature reaction of Pt(PPh$_3$)$_4$ with two equivalents
of bis(acetylacetonato)-germanium(II) and -tin(II) respectively.
Reaction of two equivalents of bis(acetylacetonato)tin(II) with
Pt(PPh$_3$)$_2$(π-C$_5$H$_4$) in toluene and subsequent addition of hexane
afforded orange crystals of 5.14 suitable for X-ray diffraction.
Significantly, no reaction takes place on stirring a toluene
solution of Pt(PPh$_3$)$_4$ and Sn(π-C$_5$H$_4$CH$_3$)$_2$ at room-temperature over
6h. Related reactions of other organic germanium(II) and tin(II)
derivatives with Pt(PPh$_3$)$_4$ and Pd(PPh$_3$)$_4$ are currently underway
in these laboratories.

Reaction of the tin derivative 5.14 with an excess (>3 equi-
valents) of I$_2$ results in cleavage of the tin-platinum linkage and
formation of the corresponding tin(IV) and platinum(II) diiodides.
A similar cleavage of the platinum-tin bond was observed in reactions
of 5.14 with anhydrous HCl or MeI.

The IR -spectra of compounds 5.13 and 5.14 (Table 5.12) both
show bands near 1600cm$^{-1}$ due to ν(C=O) in almost identical positions
to those reported for the corresponding free germanium(II) (Table
5.9) and tin(II) derivatives. This indicates that coordination
onto the Pt center does not affect the intramolecular coordination of the ketoenolate at the Ge or Sn center and thus these centers are probably five coordinate.

| TABLE 5.12. |
| Infrared carbonyl stretching frequencies for compounds 5.13 and 5.14. |

<table>
<thead>
<tr>
<th>Compound</th>
<th>ν(C=O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Pt(PPh}_3\text{)}_2[\text{Sn(acac)}_2]_2$</td>
<td>1575, 1530</td>
</tr>
<tr>
<td>$\text{Pt(PPh}_3\text{)}_2[\text{Ge(acac)}_2]_2$</td>
<td>1570, 1532</td>
</tr>
</tbody>
</table>

The 1H NMR spectra (Table 5.13) contain signals centered at ca. 67.5 (15, m), 4.2 (2, s) and 1.3 (12, s) attributable to C_6H_5, CH, and CH$_2$ protons respectively, consistent with the presence of two M(acac)$_2$, M = Ge or Sn groups and two triphenylphosphine groups of Pt.

| TABLE 5.13. |
| NMR dataa for compounds 5.13 and 5.14. |

<p>| 1H NMRb |</p>
<table>
<thead>
<tr>
<th>Compound</th>
<th>CH$_3$</th>
<th>CH</th>
<th>C_6H_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.13</td>
<td>1.30</td>
<td>4.26</td>
<td>7.52c</td>
</tr>
<tr>
<td>5.14</td>
<td>1.31</td>
<td>4.23</td>
<td>7.48c</td>
</tr>
</tbody>
</table>

<p>| 31P NMRd |</p>
<table>
<thead>
<tr>
<th>Compound</th>
<th>31P</th>
<th>1J(Pt-P)(Hz)</th>
<th>2J(Sn-P)(Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.13</td>
<td>110.1</td>
<td>5252</td>
<td>445</td>
</tr>
<tr>
<td>5.14</td>
<td>116.0</td>
<td>n.o.e</td>
<td></td>
</tr>
</tbody>
</table>

a All spectra recorded in C_6D_6. b ppm downfield from TMS. c Broad multiplet. d Relative to TMP. e Not observed.
TABLE 5.14.

Structural data for some platinum(0) complexes.

<table>
<thead>
<tr>
<th>Compound</th>
<th>(Pt – P) Å</th>
<th>(P – Pt – P)°</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt(PEtPh₂)₂(CO)₂</td>
<td>2.360 (4)</td>
<td>97.6 (2)</td>
<td>161</td>
</tr>
<tr>
<td>Pt(PPh₃)₃(CO)</td>
<td>2.340 (2)</td>
<td>111.4 (1)</td>
<td>162</td>
</tr>
<tr>
<td>Pt(PPh₃)₃SO₂ (5.14)</td>
<td>2.348 (3)</td>
<td>118.4</td>
<td>163,164</td>
</tr>
<tr>
<td>Pt(PPh₃)₃</td>
<td>2.261 (4)</td>
<td>120.1 (2)</td>
<td>this work</td>
</tr>
<tr>
<td>Pt(PBu₂Ph)₂</td>
<td>2.252</td>
<td>177</td>
<td>166</td>
</tr>
</tbody>
</table>

3P NMR data (Table 5.13) for the platinum compounds 5.13 and 5.14 consist of singlet resonances at 110.1 and 116.0 with that for the tin compound having satellite lines due to coupling to both 195Pt(1 = 9/2), ($^1J = 5252$Hz) and 117,119Sn(1 = 5/2), ($^2J_{av} = 445$Hz).

The large value for 1J(Pt-P) is indicative of a platinum(0) compound, being in fact somewhat larger than those reported for other zerovalent platinum complexes including Pt(PPh$_3$)$_n$ (n = 2, 3 or 4).

The crystal and molecular structure of bis(triphenylphosphine)bis[bis(acetylacetonato)stannylene]platinum(0), 5.14 was determined by Ms. E.T. Brennan and Professor T.S. Cameron at Dalhousie University using X-ray crystallography. The molecular structure of compound 5.14 is shown in Figure 5.3. The two PPh$_3$ and the two Sn(acac)$_2$ units are disposed about the platinum center in a distorted tetrahedral arrangement with a wide (P-Pt-P) angle (120.1°), this despite the presence of the bulky tin containing ligands.

The Pt-P bond distance, 2.261(4) Å, is close to Pt-P bond distances which have been determined for Pt(PPh$_3$)$_3^{165}$ and Pt(PBu$_2$Ph)$_2^{166}$ (Table 5.14); however it is significantly shorter than those observed for some four-coordinate platinum(0) compounds. This is consistent with poor π-acceptor capability of the tin ligands resulting in enhanced π-donation of P. The short Pt-P bond lengths in Pt(PPh$_3$)$_3$ and Pt(PBu$_2$Ph)$_2$ have however been rationalized in terms of changes in hybridization at Pt rather than π-effects.166

Both tin centers have a distorted trigonal bipyramidal
geometry with the platinum occupying one position in the equatorial plane (Figure 5.4). This geometry is similar to that reported61 for the uncomplexed Sn(benzac)2 with values for corresponding bond distances and bond angles being almost identical.

Several structurally unrelated transition metal compounds in which a germanium(II) or tin(II) center functions as a two electron donor to the metal have previously been characterized. Thus the crystal structures of Cr(CO)\textsubscript{5}M[CH(SiMe\textsubscript{3})\textsubscript{2}]\textsubscript{2}, M = Ge and Sn56,57 contain three coordinate germanium and tin atoms respectively (9), with the atoms C(1), C(2), M and Cr lying in approximately the same plane, a result attributed to back donation from Cr to M. Interestingly, the crystal structure of Cr(CO)\textsubscript{5}Sn(But)\textsubscript{2}(pyridine)(10)58 has the tin atom out of the C(1), C(2), Cr plane reflecting a decrease in back donation from Cr to Sn upon incorporation of the pyridine molecule.

\[\begin{array}{c}
\text{(Me}_3\text{Si)}\text{CH(1)} & \text{CO} & \text{CO} \\
\text{M} & \text{Cr} & \text{CO} \\
\text{(Me}_3\text{Si)}\text{CH(2)} & \text{CO} & \text{CO}
\end{array} \]

\[\begin{array}{c}
\text{Me}_3\text{C(1)} & \text{CO} & \text{CO} \\
\text{Sn} & \text{Cr} & \text{CO} \\
\text{Me}_3\text{C(2)} & \text{CO} & \text{CO}
\end{array} \]

\[M = \text{Ge, Sn} \]

\[\text{Benzac = benzoylacetonato.} \]
FIGURE 5.3. The molecular structure of 5.14,

\[\text{bis(triphenylphosphino)bis[bis(acetylacetonato)stannylene]platinum(0)} \]
FIGURE 5.4. The local geometry about tin in 5.14, bis(triphenylphosphine)bis[bis(acetylacetonato)stannylene]platinum(0).
C. EXPERIMENTAL.

Bis(η⁵-methylcyclopentadienyl)germanium(II), 5.1.

A solution of GeI₂ (1.5g, 4.60mmol) in toluene (50mL) was added to a stirred slurry of KC₅H₄CH₃ (1.19g, 10mmol) in toluene (50mL) held at ca. 5°C. The temperature of the reaction mixture was maintained at ca. 5°C and stirring continued for 3h, and the solvent was then removed in vacuo. Addition of hexane (50mL) followed by filtration and concentration of the filtrate gave the product as a light yellow oil (0.92g, 3.91mmol, 85%). Anal. Calcd. for C₁₂H₁₄Ge (calc. C 61.92, H 6.09; found C62.45, H5.92%).

Reaction of bis(η⁵-methylcyclopentadienyl)germanium(II) with methyl iodide.

To a stirring solution of Ge(C₅H₄CH₃)₂ (0.116g, 0.50mmol) in toluene (10mL) was added dropwise MeI (0.071g, 0.50mmol) in toluene (10mL) and stirring continued for a further 1h. Solvent was then removed by pumping in vacuo to give a viscous yellow oil (1.8g).

Bis(methylcyclopentadienyl)(boron trifluoride)germanium(II), 5.2.

BF₃·Et₂O (0.15g, 1.0mmol) in toluene (20mL) was added dropwise to a stirred solution of Ge(C₅H₄CH₃)₂ (0.20g, 0.86mmol) in toluene (20mL). After ca. 5 min a yellow oil separated at the bottom of the flask. The upper layer was syringed off and the yellow oil washed with hexane (3 x 20mL) to leave the yellow viscous air-sensitive product, 5.2 (0.23g, 0.78mmol, 91%).
Attempted reaction of bis(\(\eta^5\)-methylcyclopentadienyl)germanium(II) with benzoylaceton.

A solution of benzoylaceton (0.174 g, 1.00 mmol) in toluene (40 mL) was added to a stirring solution of Ge\((C_5H_4CH_3)_2\) (0.116 g, 0.50 mmol) in toluene (20 mL) and the solution refluxed for 6h. Removal of solvent in vacuo and addition of hexane (20 mL) precipitated a white solid (0.16 g) identified as benzoylaceton by \(^1\)H NMR, I.R. and M.S.

Reaction of bis(\(\eta^5\)-methylcyclopentadienyl)germanium(II) with tropolone: synthesis of bis(tropolonato)germanium(II).

A solution of tropolone (1.21 g, 10 mmol) in Et\(_2\)O (25 mL) was added to a stirring solution of Ge\((C_5H_4CH_3)_2\) (1.16 g, 5.0 mmol) in hexane (20 mL). The pale yellow solution slowly darkened, and after 0.5 h, a yellow precipitate started to form. The reaction mixture was stirred for a further 1 h, the precipitate allowed to settle, and the supernatant removed. The remaining solid was washed with Et\(_2\)O (2 x 10 mL), and dried in vacuo giving the product 1.23 g, 4.42 mmol, 84% as a bright yellow solid.

Anal. Calcd. for \(C_{14}H_{10}GeO_4\) (calc. C 53.42, H 3.18; found C 52.75, H 3.37%)

Reaction of bis(\(\eta^5\)-methylcyclopentadienyl)germanium(II) with 8-hydroxyquinoline(oxineH): synthesis of bis(oxine)germanium(II).

A solution of 8-hydroxyquinoline (1.45 g, 10.0 mmol) in Et\(_2\)O (15 mL) was added to a stirring solution of Ge\((C_5H_4CH_3)_2\) (1.16 g, 5.0 mmol) in hexane. The solution darkened, and after 1 h a yellow precipitate
started to form. The mixture was stirred for a further 3h, the precipitate allowed to settle and the supernatant removed. The remaining solid was washed with Et₂O (2 x 10mL) and dried in vacuo giving the product (1.73g, 4.8mmol, 96%) as a yellow solid. Anal. for C₁₈H₁₂GeN₂O₂ (calc. C59.92, H3.38%; found C60.26, H3.72%).

Reaction of bis(n⁵-methylcyclopentadienyl)germanium(II) with o-hydroxyacetophenone (hyapH): synthesis of bis(hyap)germanium(II).

A solution of o-hydroxyacetophenone (1.36g, 10.0mmol) in hexane (25mL) was added to Ge(C₅H₄CH₃)₂ (1.16g 5.0mmol) in hexane (3 x 30mL) and dried in vacuo giving the product (1.25g, 3.65mmol, 73%) as a white solid. Anal. for C₁₆H₁₄GeO₄ (calc. C56.05, H4.12%; found C56.56, H4.04%).

Reaction of bis(n⁵-methylcyclopentadienyl)germanium(II) with methanol.

A solution of MeOH (0.064g, 2.0mmol) in toluene (20mL) was added dropwise to a stirring solution of Ge(C₅H₄CH₃)₂ (0.28g, 1.0mmol) in toluene, giving an immediate white precipitate. The solid was washed with toluene (3 x 25mL) to leave a white solid (0.3g). Similar reactions were observed on mixing toluene solutions of Ge(C₅H₄CH₃)₂ with EtOH and PhOH.

Reaction of bis(n⁵-methylcyclopentadienyl)germanium(II) with pyrazole.

Pyrazole (0.14g, 2.0mmol) in toluene (30mL) was added dropwise to a stirring solution of Ge(C₅H₄CH₃)₂ (0.23g, 1.0mmol). After 3h the light-yellow precipitate which had formed was allowed to settle and was washed with toluene (3 x 25mL) to give a light
yellow solid (0.52 g). Similar reactions were observed on mixing toluene solutions of Ge(C₅H₅CH₃)₂ with 1,2,4-triazole and pyrrole.

Synthesis of bis(acetylaceto nato)germanium(II).

NEt₃ (2.02 g, 2.78 mL, 20.0 mmol) in hexane (20 mL) was added dropwise to a stirred mixture of CsGeCl₃ (3.12 g, 10.0 mmol) and acetylacetone (2.00 g, 20 mmol) in hexane (30 mL). The mixture was stirred for 24 h, then filtered, and the filtrate concentrated in vacuo giving a light yellow oil. Sublimation in vacuo onto a water cooled probe, maintaining the temperature of the sample at ca. 20°C, gave the pure product as a light yellow liquid (5.13 g, 9.0 mmol, 90%). Anal. Calcd. for C₃₀H₁₄GeO₄ (calc. C 44.35, H 5.21; found C 43.79, H 5.49%).

Synthesis of bis(dipivaloylmethanato)germanium(II).

NMe₃ (1.01 g, 1.39 mL, 10.0 mmol) in hexane (20 mL) was added dropwise to a stirred mixture of CsGeCl₃ (3.12 g, 10.0 mmol) and dipivaloylmethane (3.68 g, 4.18 mL, 20.0 mmol) in hexane (30 mL). The mixture was stirred for a further 18 h, then filtered, and the resulting filtrate concentrated in vacuo giving a light yellow oil. Sublimation in vacuo at 110°C onto a -78°C (dry ice/acetone) probe followed by recrystallization from hexane at -30°C gave the pure product as a white crystalline solid (3.8 g, 8.6 mmol, 86%). Anal. calcd. for C₂₂H₃₈GeO₄ (calc. C 60.17, H 8.72; found C 59.76, H 8.94%).
Attempts synthesis of bis(benzoylacetonato)germanium(II).

\(\text{NET}_3 (1.01g, 1.39mL, 10.0\text{mmol}) \) in toluene (20mL) was added dropwise to a stirred mixture of \(\text{CsGeCl}_3 (1.56g, 5.0\text{mmol}) \) and benzoylacetone (1.62g, 10\text{mmol}) in toluene (50mL). The mixture was stirred for 24h, then filtered, and the filtrate concentrated in vacuo giving a yellow oil. Dropwise addition of hexane (25mL) yielded a yellow solid which was washed with hexane (3 x 20mL) and dried in vacuo. The resulting yellow solid (1.9g) was shown by \(^1\text{H} \text{NMR, IR and M.S.} \) to be a mixture of three compounds, benzoylacetone, (benzoylacetonato)germanium(II) chloride, and bis(benzoylacetonato)germanium(II).

Synthesis of (benzoylacetonato)germanium(II) chloride.

\(\text{NET}_3 (1.09g, 1.39mL, 10\text{mmol}) \) in toluene (20mL) was added dropwise to a stirred mixture of \(\text{CsGeCl}_3 (3.12g, 10\text{mmol}) \) and benzoylacetone (1.64g, 10\text{mmol}) in toluene (50mL). The mixture was stirred for 24h, then filtered, and the filtrate concentrated in vacuo giving a yellow solid which was washed with hexane (3 x 20mL) to give the pure product (2.27g, 7.5\text{mmol}, 75\%). \text{Anal. Calcd. for C}_{10}\text{H}_{12}\text{ClGeO}_2 (\text{calc. C}39.72, \text{H}2.97; \text{found C}38.11, \text{H}3.39\%).}

Synthesis of bis(benzoylacetonato)germanium(II).

\(\text{NET}_3 (0.25g, 0.35mL, 2.5\text{mmol}) \) in toluene (20mL) was added dropwise to a stirred mixture of (benzoylacetonato)germanium chloride (0.76g, 2.5\text{mmol}) and benzoylacetone (0.41g, 2.5\text{mmol}) in toluene (50mL). The mixture was stirred for 24h, then filtered, and the filtrate
concentrated in vacuo giving a bright yellow solid which was washed with hexane (3 x 20mL) to give the pure product (0.97g, 2.45mmol, 98%). Anal. calc for C\textsubscript{20}H\textsubscript{18}GeO\textsubscript{4} (calc. C 60.82, H 4.59; found C 60.45, H 4.79%). Exactly analogous reactions to the two described above using dibenzoylmethane in place of benzoylacetonate gave pure (dibenzoylmethanato)germanium(II) chloride and bis(dibenzoylmethanato)germanium(II).

Synthesis of bis(triphenylphosphine)bis[bis(acetyllacetonato)stannylene]platinum(0).

A solution of Sn(acac)\textsubscript{2} (0.105g, 0.33mmol) in toluene (15mL) was added dropwise to a stirred solution of Pt(PPh\textsubscript{3})\textsubscript{4} (0.20g, 0.16mmol) in toluene (25mL). The mixture was stirred for a further 3h, the volume reduced to ca. 5mL by pumping in vacuo and hexane (30mL) added. The resulting yellow solid was washed with hexane (3 x 30mL) and dried by pumping in vacuo to give the pure complex as a bright yellow solid (0.20g, 0.15mmol, 94%).
REFERENCES

118. E. A. Williams and J. D. Cargioli, Annual Reports on NMR Spectroscopy, 1979, 2, 221.

153. K. Mislow, personal communication.

VITA

Surname: McMaster Given Names: Alexander Davison

Place of Birth: Cowra, N.S.W. Australia Date of Birth: March 1, 1955

Educational Institutions Attended, with Dates of Entering and Leaving:

Queens University, Belfast, N. Ireland 1973 to 1976
University of Victoria, B.C. Canada 1976 1981

Degrees, Diplomas, Etc., Awarded, with Dates and Names of Institutions:

B.Sc. (Honors) 1976 Queens University, Belfast, N. Ireland

Honors and Awards:

University of Victoria Supplement Holder, 1977 - 1979
University of Victoria Fellowship Holder, 1979 - 1981

Publications:

1. Formation of Chlorobisethylenediaminecobalt(III)-μ-cyano-
 pentacyanocobalt(III) and High Apparent Nucleophile Efficiency
 of the Cyanide Ligands of Hexacyanocobaltate(III). M.G. Burnett

2. Bis(methylcyclopentadienyl) Derivatives of Germanium(II),
 Tin(II), and Lead(II): \(^1\)H and \(^{13}\)C NMR properties and
 Comparison with those for Analogues formed by Univalent
 Metals (Li, K and Tl). A. Bonny, A.D. McMaster and S.R. Stobart,

4. Stereochimically Non-rigid Silanes, Germanes and Stannanes.
PARTIAL COPYRIGHT LICENSE

I hereby grant the right to lend my thesis or dissertation (the title of which is shown below) to users of the University of Victoria Library, and to make single copies only for such users or in response to a request from the library of any other university, or similar institution, on its behalf or for one of its users. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by me or a member of the University designated by me. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Title of Thesis/Dissertation
Cyclopentadienyl and Related Derivatives of Germanium and Tin

Author
Signature
Alexander D. McMaster
Name
January, 14th, 1982
Date