The Impact of Changes in the AgriStability Program on Crop Activities: A Farm Modeling Approach

by

Xuan Liu
B.Sc., East China Normal University, 1998
M.A., East China Normal University, 2001

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF ARTS

in the Department of Economics

© Xuan Liu, 2015
University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author.
Supervisory Committee

The Impact of Changes in the AgriStability Program on Crop Activities:
A Farm Modeling Approach

by

Xuan Liu
B.Sc., East China Normal University, 1998
M.A., East China Normal University, 2001

Supervisory Committee

Dr. G. Cornelis van Kooten, (Department of Economics)
Supervisor

Dr. Alok Kumar, (Department of Economics)
Departmental Member
Abstract

Supervisory Committee

Dr. G. Cornelis van Kooten, (Department of Economics)
Supervisor

Dr. Alok Kumar, (Department of Economics)
Departmental Member

The objective of this thesis is to examine the impacts of changes in Canada’s AgriStability program on crop allocation, particularly the change in the payment trigger associated with the shift from Growing Forward (GF) to Growing Forward 2 (GF2). To examine whether this change could affect production decisions, and thereby potentially violate the WTO’s ‘green box’ criteria, farm management models are constructed for representative farms in six different Alberta regions. To incorporate risk and uncertainty into the farm model, I assume that, instead of maximizing overall gross margin, a farmer varies her crop activities to maximize expected utility subject to technological and market constraints. The models are calibrated using positive mathematical programming (PMP), which then facilitates their use for policy analysis; however, PMP is not straightforward in the case of expected utility maximization because a risk parameter also needs to be calibrated. Possible ways to address this issue are examined. Results indicate that the initial introduction of the AgriStability program tilted farmers’ planting decisions towards crops with higher returns and greater risk, but that a change in the AgriStability payout trigger (going from GF to GF2) would not further alter land-use decisions. However, the latter shift does reduce indemnities and farmers’ expected profits. Meanwhile, increases in farmers’ aversion to risk will lead to changes in crop allocations.

Key words: Agricultural business risk management; AgriStability program; positive mathematical programming and risk aversion
## Table of Contents

Supervisory Committee ........................................................................................................... ii
Abstract ........................................................................................................................................ iii
Table of Contents ......................................................................................................................... iv
List of Tables ................................................................................................................................ v
List of Figures ................................................................................................................................. vi
Glossary .......................................................................................................................................... vii
Acknowledgments ........................................................................................................................ viii
Introduction ................................................................................................................................... 1
Farm Management Model and Calibration ..................................................................................... 6
  Choices of the Objective Function .............................................................................................. 6
  Model Calibration Steps and Assumptions ................................................................................... 9
Study Area, Representative Farms and Data .................................................................................... 11
PMP Results .................................................................................................................................... 16
AgriStability Program Analysis ..................................................................................................... 19
  Extending the Farm-level Model ............................................................................................... 20
  Growing Forward (GF) versus Growing Forward 2 (GF2) ....................................................... 22
  Premium Subsidization Rate ...................................................................................................... 26
  Risk Aversion Coefficient .......................................................................................................... 26
Concluding Discussion ................................................................................................................... 28
References ...................................................................................................................................... 30
Appendices ..................................................................................................................................... 34
List of Tables
Table 1: Representative Farms in Alberta ................................................................. 13
Table 2: Crop Prices .............................................................................................. 14
Table 3: Correlation Matrix for Average Crop Yields in Vulcan County ............. 15
Table 4: Summary of Returns and Costs for Six Representative Farms .............. 16
Table 5: Parameters for the Vulcan Representative Farm ........................................ 17
Table 6: Calibration Results for Six Representative Farms .................................... 18
Table 7: Land-use Changes with AgriStability Program ........................................... 24
Table 8: Changes under GF2 compared to GF ...................................................... 25
Table 9: Smoky River Representative Farm’s Optimal Choice for Different Risk
  Attitudes .................................................................................................................. 27
List of Figures

Figure 1: Map of Alberta. .................................................................................................................................12

Figure 2: Volatility in crop prices, 1993–2014 ..............................................................................................14

Figure 3: Average yields for five crops in Vulcan County, Alberta ...............................................................15

Figure 4: Marginal cost curves for wheat for six representative farms in Alberta ...............................18

Figure 5: Distributions of Simulated Prices of Wheat and Canola ..............................................................21

Figure 6: AgriStability Payment Structure under GF and GF2 Sources ...................................................23
### Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Correlation Matrix</strong></td>
<td>A matrix gives values of the correlation coefficients between each pair of variables.</td>
</tr>
<tr>
<td><strong>Expected Utility Maximization</strong></td>
<td>Expected utility theory examines how a person chooses rationally when the outcomes resulting from the acts are uncertain. The theory assumes that a person makes decisions to achieve the highest level of expected utility.</td>
</tr>
<tr>
<td><strong>Green Box Criteria</strong></td>
<td>The green box is defined in Annex 2 of the WTO’s Agriculture Agreement. To meet the requirements, subsidies must not distort trade or at most cause minor distortion. They also have to be government-funded and cannot involve price support.</td>
</tr>
<tr>
<td><strong>Gross Margin</strong></td>
<td>Equal to the gross total income from a farm less the variable costs incurred. It does not include fixed or overhead costs, such as depreciation, permanent labour, etc.</td>
</tr>
<tr>
<td><strong>PMP</strong></td>
<td>In the context of agricultural models, Positive Mathematical Programming (PMP) is a method for model calibration using nonlinear yield or cost functions. The method is implemented in three stages and begins with a constrained linear program. The resulting nonlinear models show smooth responses to production.</td>
</tr>
<tr>
<td><strong>Sensitivity Analysis</strong></td>
<td>Used to examine how different values of an input variable in a model will impact the outcome under a given set of assumptions.</td>
</tr>
<tr>
<td><strong>Shadow Price</strong></td>
<td>For maximization problems, the shadow price associated with a particular resource constraint shows how much more profit would be obtained if the amount of that resource is increased by one unit.</td>
</tr>
<tr>
<td><strong>Variance-covariance matrix</strong></td>
<td>A symmetric square matrix contains the information of variances and covariances between all possible pairs of variables.</td>
</tr>
<tr>
<td><strong>Wealth Effect</strong></td>
<td>Describes the changes in a person’s behavior caused by a change in the value of the person’s assets. Increase in the value of assets often tends to encourage a person to be less risk aversion.</td>
</tr>
<tr>
<td><strong>Wiener Process</strong></td>
<td>A continuous-time stochastic process named in honor of Norbert Wiener, which is also often called standard Brownian motion. It is one of the best known stochastic processes with stationary joint probability distribution.</td>
</tr>
</tbody>
</table>
Acknowledgments

I would like to express my heartfelt gratitude to my supervisor, Dr. van Kooten. He contributed many hours of work and gave me inspiring suggestions and invaluable supports throughout the research. Special thanks to my husband Jon who helped me with programming.
Introduction

Governments support the incomes of farmers partly to protect them from income volatility but also to prevent the demise of rural communities (and protect a particular lifestyle), earn foreign exchange through exports, address concerns about food safety and self-sufficiency, and, importantly, respond to lobbying from a large political constituency.

In the United States, farm programs began with Agricultural Adjustment Act of 1933, which is also known as the first Farm Bill since the program focused mainly on providing financial aid to farmers during the Great Depression. Since then, the U.S. revisits and issues a new Farm Bill every five to seven years. Since 1933, Farm Bills have gradually developed into an array of comprehensive agricultural and food programs to integrate multiple goals related to food, energy and environmental protection, as well as food programs for the urban poor (McGranahan et al 2013). Of course, the costs of U.S. farm programs had increased with the expansion of their scope. In the Agricultural Act of 2014, the most recent Farm Bill, programs are grouped into 12 titles, covering farm safety, trade, nutrition (i.e., welfare programs for the urban poor), rural development, et cetera. By the time of 2014 Farm Bill, programs allocated $89.8 billion to crop insurance, $56.0 billion for soil conservation programs, $44.4 billion for commodity programs and $8.2 billion for other farm programs, as well as $756.0 billion for urban welfare (food stamps and nutrition). The major development in the most recent farm legislation is the shift away from price and income support towards greater reliance on crop insurance. The total estimated cost of mandatory agricultural and food programs over the next five years (2014-2018) is estimated at $489 billion (Johnson and Monke, 2014).

The Conference of Stresa (1958) signalled the beginning of the European
Union’s Common Agricultural Policy (CAP). Similar to the development of farm policies in the U.S., the EU’s farm programs started by providing high levels of price and income support to agricultural producers to encourage production. Since the 1990s, however, the CAP has focused more on food quality and rural development; related reforms include reducing support prices to make farmers more market-oriented and ‘modulating’ funds from direct farm support towards rural development to strengthen ecological competitiveness (European Union 2012). Initially, the CAP accounted for more than three-quarters of the EU’s budget, but, by 2014, only 40.5% of the budget (or €57.8 billion) went to agriculture, split roughly 75-25 as direct support to farmers and rural development. Nonetheless, spending on agriculture is expected to remain the largest item in the EU’s long-term budget for 2014-2020.

Other countries followed the U.S. and the EU in providing support to their agricultural sectors, including Japan, Norway, Canada and Australia. For example, Canada’s agricultural safety net programs began in 1958 with the Agricultural Stabilization Act, which guaranteed prices for certain products. After many reforms, Canadian safety nets evolved to include a new suite of business risk management programs to address innovation, competitiveness and development besides farm income stability, rather than direct intervention in the market process. The major development in this regard came in 2007 when agricultural programs, including the Canadian Agricultural Income Stabilization (CAIS) program, were amalgamated under ‘Growing Forward’ (GF) in 2007 and, then, in 2013 by ‘Growing Forward 2’ (GF2), as discussed below.

Although many countries have their own agricultural programs, American and

---

1 Along with New Zealand, Canada and Australia are the only developed countries comprising the 19-nation Cairns group that sought to negotiate reductions in U.S. and EU agricultural subsidies (Coppens 2014, p.33).
European farm policies have been an obstacle in international trade negotiations because of the extent of support and the size of their agricultural sectors. During the Uruguay Round (1986-1994) of the GATT, an Agreement on Agriculture was negotiated with great difficulty and it entered into force only with the establishment of the World Trade Organization (WTO), which replaced the GATT in January 1995. The WTO’s Doha Development Round of trade negotiations was launched in November 2001, but progress on agriculture continues to be slow, with only “some limited agricultural differences” having been resolved to date as part of the “Bali package” reached on December 2013 (Coppens 2014, p.35).

The WTO’s Agreement on Agriculture (AoA) permits some farm subsidies, classifying them according to three ‘pillars’: domestic support, market access and export subsidies. Domestic support is categorized according to three boxes: ‘amber’ (production-enhancing programs that distort trade), ‘blue’ (production-limiting programs, such as supply restrictions that adversely affect trade) and ‘green’ (subsidies that have only a minor distortionary impact on trade). Countries have agreed to reduce or eliminate amber box subsidies, while green box programs were exempt from trade reduction commitments. Blue box programs were tolerated but could be targeted by other countries for modification (e.g., Canada’s dairy and poultry marketing regimes have been singled out). However, governments are still in the process of replacing crop-specific subsidies with ones that provide income support and target income volatility but no longer distort trade – programs that decouple support payments from output. Europe’s single farm payment and the use of base acres and base yields in the most recent (2014) U.S. Farm Bill (Babcock 2014) are examples of attempts at decoupling. As noted above, governments are also turning to crop and income insurance as these will likely be considered green box programs.
Government sponsored multi-peril crop insurance is never actuarially sound, and there is always a risk that such programs violate WTO rules. Rules for determining the reference margin that triggers a payout are important: Are farmers incentivized to increase production to increase the reference margin, and to what degree? For example, there are many variations as to how a reference margin is determined, including the average of a farmer’s historical yield for a base period (e.g., 2001-2006), the average regional yield for the base period, or some hybrid of a farmer’s own yield and average regional yield. The use of a base period prevents farmers from increasing yields used to determine the reference margin, although in practice it would be difficult to implement programs where the base period does not change. One variant of this approach used in Europe is to provide a fixed payment ($/ha) that varies by crop and is based on average prices, yields and costs for some reference period – a single farm payment (Sckokai and Moro 2006, 2009).

A more recent suggestion is to employ whole farm insurance (WFI), where it is the total farm income that is insured and not returns to individual crops (Coble et al. 2013; Turvey 2012). As a result of an OECD report on agricultural risk management (OECD 2011), countries appear willing to accept WFI as a green box subsidy under the WTO as long as income falls by at least 30% from a reference level of income before indemnities are triggered, and then no more than 70% of the lost income is compensated. Yet there remain concerns that the whole farm approach may still distort crop production decisions due to both an insurance effect, which provides an effective lower bound on income, and a wealth effect, which reduces the farmer’s aversion to risk (Boere and van Kooten 2014; Finger and Lehmann 2012; Hennessy 1998). The objective of the current thesis is to examine this issue in the context of Canada’s changing agricultural programs.
In 2007, Canada replaced its agricultural support programs with Growing Forward, which consisted of four business-risk management components: AgriInvest, AgriStability, Agri-Recovery and AgriInsurance (see Vercammen 2013; Trautman et al. 2013). AgriInvest subsidized farmers’ savings accounts to provide flexible coverage for small income losses and some protection against investment risk. AgriStability protects farmers against larger income losses while AgriRecovery provides disaster relief. Finally, AgriInsurance continues to provide production insurance. When GF expired on March 31, 2013, it was replaced by GF2, which left much of GF intact with the exception of AgriInvest and AgriStability. With regard to the former, producer contributions were raised and the size of savings accounts greatly increased. The major change of relevance to the current research concerned AgriStability, where the margin necessary to trigger a payout changed from 85% of the reference margin to 70%, and the method for calculating the reference margin was revised so that farmers could choose the lesser of the historic average program margin (as in GF) or a margin based on historical average of allowable expenses (determined for the same three years used to calculate the reference margin).

This study analyzes the effect of the Agristability program on farmers’ decisions of land allocation and the influence of the change in the payout trigger from 85% to 70% of the reference margin using data on Alberta producers from six regions. Representative farm models are constructed for each region to show how producers are likely to adjust their crop allocations in going from GF to GF2. I conclude that the AgriStability program distorts production decisions slightly. The change in the AgriStability payout trigger (from 0.85 to 0.7) does not further distort farmers’ land allocation decisions while the amount of saved indemnity is higher than the amount of the reduction in farmers’ expected profit at the average level. In this regard, the results
are similar to those of Trautman et al. (2013) who simulated the impact on net present value of changes in going from GF to GF2.

In the next section, crop allocation models are constructed for six representative farms in different regions within the province of Alberta. The models are calibrated using positive mathematical programming, which then facilitates their use for policy analysis. Then the calibrated models are used to examine the impacts of Canada’s AgriStability program on crop allocations, with particular focus on the change in the payment trigger associated with the shift from GF to GF2.

**Farm Management Model and Calibration**

*Choices of the Objective Function*

Given data on prices, yields and average costs of planting and harvesting different crops, a linear programming model that maximizes expected gross margin will fail to identify crop allocations that are as diverse as those observed in practice. To replicate observed plantings, ad hoc constraints can be added to the model to mimic the benefits of crop rotations, long-term soil conservation and other factors, but such models are unduly constrained and not usually suitable for policy analysis. Another approach is to maximize expected utility rather than expected gross margin, but this assumes that all of the variability in land uses can be attributed to the decision maker’s risk aversion. A third option is to use positive mathematical programming (PMP) to calibrate the individual crop cost functions so that marginal cost is upward sloping rather than constant (Howitt 1995, 2005; Heckelei et al. 2012). By calibrating farm management models to a base period, the PMP calibrated models take into account farmers’ risks, crop rotations, crop impacts on soil quality, and any other factors that cause costs to rise as more of the same crop is planted. The calibrated model can then be used to compare the effects of agricultural policies (e.g., payments
to specific crops and various agricultural insurance programs) on farmers and the agricultural sector as a whole (Arfini et al. 2003).

The PMP method is more complicated when the objective is to maximize expected utility, which would be more applicable in the study of farm insurance. In this study, to incorporate risk and uncertainty into the farm model, a farmer is assumed to vary land uses or crop activities to maximize her expected utility subject to technological and market constraints, instead of simply maximizing the total gross margin. In that case, one should also calibrate the absolute risk aversion parameter (denoted \( \phi \)). However, the PMP method for calibrating both the cropping cost functions and the risk aversion coefficient is not straightforward. One can iteratively choose values of \( \phi \) so that the observed crop allocation is almost exactly replicated, but then it is no longer necessary to use PMP to recover the crop-specific cost functions. But what if \( \phi \) has very little impact on land use?

Petsakos and Rozakis (2011, 2015) provide a more complete model in which observed plantings and a variance-covariance matrix of gross margins are needed to calibrate the model. Rather than assuming an exponential utility function which leads to a constant absolute risk aversion (CARA) parameter, Petsakos and Rozakis (2015) assume a logarithmic function and thus a decreasing absolute risk aversion (DARA) parameter that is a concave function of wealth. Specification of an initial level of wealth is required so that DARA changes in response to the farmer’s cropping choice. In their application, the authors choose an initial wealth given by the (small) fixed payment available to EU farmers in Greece.

However, since a farmer’s wealth does not change dramatically from one crop year to the next – the probability distribution of gross margins from the available planting decisions in any given year does not represent a lottery with a large windfall,
the farmer’s risk aversion is best characterized by CARA rather than DARA. Nonetheless, a method for specifying the CARA parameter, $\varphi$, is still required.\footnote{Attempts to implement Petsakos and Rozakis’s (2015) procedure fell short, perhaps due to the values of initial wealth that were chosen. I sought to calibrate $\varphi$ after calibrating the cost functions, because attempts first to calibrate $\varphi$ did not come anywhere close to a reasonable approximation of the observed land use.} One approach would be to vary $\varphi$ in iterative fashion until the observed crop allocation is closely duplicated; then that value of $\varphi$ is used to calibrate the cost function. But, as noted above, a problem arises if the observed crop allocation is precisely duplicated, in which case risk aversion completely explains why all of the available land is not planted to the crop with the greatest gross margin – aversion to risk is the only reason why farmers plant a variety of crops. Alternatively, since the standard PMP approach takes risk into account (albeit it is in a general sense) what representative farms are dealt with, we could simply use the calibrated cost functions obtained when expected margins are maximized and then investigate risk further by specifying expected utility maximization while retaining the calibrated marginal cost functions. In that case, $\varphi$ can only be interpreted as risk aversion relative to the risk embodied in the calibrated cost functions.

In this study, quadratic crop-specific cost functions are still calibrated following the standard PMP approach, based on an LP model where the objective is to maximize overall gross margins. Then the objective is re-specified to maximize expected utility, but including the calibrated marginal cost functions. Before settling on the final model, multiple values of $\varphi$ are tested and the one that would not trigger a change in the replicated (observed) crop allocation is chosen. Finally, in the policy analysis phase, various values of $\varphi$ are considered to examine how different attitudes to risk might change the optimal crop allocation.
Since the policy to be analyzed is delivered at the farm level, the common method of modeling a representative farm is applied. For example, Turvey (2012) uses one representative farm for Manitoba, because the farming area he considered is quite homogeneous. He investigated the change to a producer’s optimal crop choices in moving from the Canadian Agricultural Income Stabilization (CAIS) program (the precursor of GF’s AgriInvest and AgriStability) to a whole farm insurance scheme, finding that producers are likely to alter their strategies in response to the introduction of a new or altered insurance product. On the other hand, Coble et al. (2013) use a total of four representative farms (two corn-soybean farms and two corn-wheat farms) from four different states in the U.S. to “develop and analyze customizable area whole farm insurance” (p.1). They find that expected indemnity payouts differ significantly by crop mixes. Given the diversity of the agricultural landscape in Alberta, it is necessary to develop several representative farms (as discussed in the next section).

Model Calibration Steps and Assumptions

For each farm, cost functions are calibrated using the PMP approach. Implementation of the PMP approach requires three steps (see Buysse 2010). First, the following linear programming model is specified for each representative farm, with calibration constraints included to ensure that the model solves closely for the observed crop allocations:

Maximize \( \sum_{k=1}^{K} R_k = \sum_{k=1}^{K} (p_k y_k - c_k) x_k \), \( \tag{1} \)

Subject to

\( \sum_{k=1}^{K} x_k \leq X \) \( \tag{2} \)

\( x_k \leq \bar{x}_k^0 + 0.001, \forall k \) \( \tag{3} \)
\[ x_k \geq 0, \forall k \quad (4) \]

Here \( R_k \) represents the total gross margin from planting \( x_k \) acres of crop \( k \) (= 1, …, \( K \)); \( X \) is the total area available for crop production at the representative farm; \( p_k \) is the price and \( y_k \) the per-acre yield of crop \( k \); \( c_k \) is the per-acre variable cost of planting and harvesting; and the superscript ‘o’ indicates the observed amounts of the variable in question. Objective function (1) is linear because the per-acre variable cost of preparing the ground, seeding, fertilizing, harvesting, et cetera, is fixed, varying only by the crop that is planted. Constraint (2) imposes an upper limit on the producer’s seeded area, which cannot exceed the total available area. Calibration constraints (3) are applied based on the assumption that the observed land allocation is the optimal choice. The small positive adjustment 0.001 is used to prevent linear dependency between constraint (2) and (3). Constraint (4) ensures that all allocations are strictly positive.

The shadow prices \((\lambda_k)\) for all crops are recovered after the model is solved. Then, in the second step, a quadratic cost function is assumed: \( \alpha_k x_k + \frac{1}{2} \beta_k x_k^2 \). For each crop, the shadow price \( \lambda_k = MC_k - AC_k = (\alpha_k + \beta_k x_k) - (\alpha_k + \frac{1}{2} \beta_k x_k) = \frac{1}{2} \beta_k x_k \). Using the shadow prices derived in the first step, and equations \( \beta_k = 2 \lambda_k/x_k^o \) and \( \alpha_k = c_k^o - \lambda_k \), I can find the corresponding cost-function parameters, \( \alpha_k \) and \( \beta_k \), given the observed crop allocations \( x_k^o \) and observed average costs \( c_k^o \).

Once the cost function parameters are obtained, the objective function is set to maximize a farm’s expected utility. A farmer’s risk aversion is assumed to be constant. The utility function is assumed to take an exponential form and maximizing utility with normally distributed consumption results in a standard mean-variance objective as follows (McCarl and Spreen 2004, p.14-8):
Maximize \( \text{EU} = \sum_{k=1}^{n} \left( p_k x_k y_k - \alpha x_k - 0.5 \beta x_k^2 \right) - \frac{\phi}{2} \sum_{k=1}^{K} \sum_{i=1}^{K} \left[ x_k \times CV(R_k, R_i) \times x_i \right] \) \hspace{1cm} (5)

Subject to \( \sum_{k=1}^{K} x_k \leq \bar{X} \) and \( x_k \geq 0, \forall k. \) \hspace{1cm} (6)

where \( CV(R_k, R_i) \) refers to the variance-covariance matrix between crops with \( R_k \) and \( R_i \) as the realized net return to crop \( k \). The risk aversion coefficient is then calibrated iteratively to determine the greatest value of \( \phi \) that reproduces the land allocations of the base run without the calibration constraints for each crop. Then the calibrated model is subsequently used for policy analysis.

**Study Area, Representative Farms and Data**

The current application focuses on arable farms in Alberta with a mixed crop portfolio. I begin by identifying geographic locations and soil types to determine the characteristics of the representative farms. Alberta has 69 counties and municipal districts. According to the regional economic indicator reports provided by Government of Alberta, 69 districts are grouped into 14 regions, with economic information available for each including average farm size based on the 2011 Canada census (see also Government of Alberta 2014). Some districts in northern and northeastern Alberta were subsequently excluded from further consideration because they had insignificant area in crops.

Alberta’s Agricultural Financial Services Corporation (AFSC) provided data on average yields, number of farms and total insured acres of cropland for each municipal district. The five most important crops in Alberta in terms of plantings are wheat, barley, canola, peas and durum, with more than 95 percent of cropland in the AFSC database planted to these crops. Although the preliminary plan was to set up representative farms for each of the five major soil types (see Figure A1 in
Appendices), I used the municipal level data to identify the 12 districts with the largest total crop production as candidates for further analysis, of which five were then chosen. Although not among the top 12 districts, the county of Smoky River, which ranks 29th in production, was also included to obtain representative province-wide coverage, giving us six farms representative of the province which are shown in Figure 1.

Figure 1: Map of Alberta: The six municipal districts and counties with representative farms are shaded – Forty Mile, Vulcan, Red Deer, Vermilion River, Westlock, and Smoky River.
Table 1 summarizes above related information, where the average proportions of land in various crops for the period 2011-2013 are provided based on insured acres for each crop within each municipal district.

<table>
<thead>
<tr>
<th>County</th>
<th>Region</th>
<th>Soil Zone</th>
<th>Farm Size (acres)</th>
<th>Crop Land Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forty Mile</td>
<td>South</td>
<td>Brown</td>
<td>3089</td>
<td>7% 7% / 3% 23% 20% 32% / 6%</td>
</tr>
<tr>
<td>Red Deer</td>
<td>West</td>
<td>Black</td>
<td>785</td>
<td>35% 37% 2% 27%</td>
</tr>
<tr>
<td>Smoky River</td>
<td>North</td>
<td>Dark Gray</td>
<td>1265</td>
<td>2% 53% 3% 42%</td>
</tr>
<tr>
<td>Vermilion River</td>
<td>East</td>
<td>Black</td>
<td>1166</td>
<td>15% 43% 5% 38%</td>
</tr>
<tr>
<td>Vulcan</td>
<td>South</td>
<td>Dark Brown</td>
<td>1569</td>
<td>19% 28% 7% 15% 31%</td>
</tr>
<tr>
<td>Westlock</td>
<td>Central</td>
<td>Dark Gray</td>
<td>743</td>
<td>14% 50% 2% 34%</td>
</tr>
<tr>
<td>Average of Alberta</td>
<td></td>
<td></td>
<td>1168</td>
<td>14% 33% 8% 10% 35%</td>
</tr>
</tbody>
</table>

*For the representative farm of Forty Mile County, dryland/irrigated canola and wheat are treated as separate crops.

After setting up representative farms, four types of information are needed to calibrate a base farm-level crop allocation model: product prices, yields, production costs and the variance-covariance matrix of realized returns per acre among crops. By assuming that shipping and handling costs are relatively uniform across the province, I apply the same crop prices to all six representative farms. Data on monthly crop prices are available from Statistics Canada for all crops for the period August 1993 through September 2014, except that the data for durum for the period August 2012 to July 2013 are missing. The price data are plotted in Figure 2.

A stationary mean-reverting, Ornstein-Uhlenbeck (OU) stochastic process is then used to obtain estimated long-term mean prices for all crops for calibration.\(^3\) The general stochastic differential equation for an OU process is:

\[
\frac{dx_t}{\theta(\mu-x_t)}dt + \sigma dW_t,
\]

\(^3\) The R package \{sde\} is used to simulate the parameters of the discrete Ornstein-Uhlenbeck process.
where $W(t)$ is a Wiener process, $\theta$ is a parameter that captures the speed of reversion back to the mean price $\mu$, and $\sigma$ represents the degree of volatility.

![Volatility in crop prices, 1993–2014](image)

*Figure 2: Volatility in crop prices, 1993–2014*

Since there was an obvious change in trend as prices rose to a higher level after 2007, which would distort the estimate of mean prices, only monthly data for the period January 2008 to March 2014 are used in the estimation. Table 2 presents the average prices directly calculated from the original data and the estimated mean prices based on the OU model for five agricultural products. Except for canola, the estimated mean prices are clearly lower than the observed average prices.

<table>
<thead>
<tr>
<th>Table 2: Crop Prices</th>
<th>Barley</th>
<th>Canola</th>
<th>Durum</th>
<th>Peas</th>
<th>Wheat</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Estimated Mean Price ($/bu)</strong></td>
<td>3.87</td>
<td>11.42</td>
<td>6.16</td>
<td>6.90</td>
<td>6.07</td>
</tr>
<tr>
<td><strong>Original Average Price ($/bu)</strong></td>
<td>4.04</td>
<td>11.36</td>
<td>7.42</td>
<td>7.31</td>
<td>6.67</td>
</tr>
</tbody>
</table>

*a* Estimated mean prices are derived from the Ornstein–Uhlenbeck model.

*b* Average prices are directly calculated from the original data.

From Figure 2, it appears that the mean prices estimated from the stochastic process are perhaps more reasonable to use than the original averages; thus, the estimated mean prices are employed in what follows. Per-acre average crop yield data were also obtained from AFSC. For illustrative purposes, the data for Vulcan
County are plotted in Figure 3. The figure indicates that yields have increased in recent years, and that yields are positively correlated across all five crops.

![Figure 3: Average yields for five crops in Vulcan County, Alberta](image)

Table 3 reports the correlation matrix for yields in Vulcan County as an example. The correlation matrices for yields for other counties are given in Table A1 in Appendices. Five-year Olympic average yields (2009-2013) are used for the model calibration and are provided in Table 4.

### Table 3: Correlation Matrix for Average Crop Yields in Vulcan County

<table>
<thead>
<tr>
<th></th>
<th>Barley</th>
<th>Canola</th>
<th>Durum</th>
<th>Peas</th>
<th>Wheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barley</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canola</td>
<td>0.90</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durum</td>
<td>0.81</td>
<td>0.83</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peas</td>
<td>0.93</td>
<td>0.85</td>
<td>0.85</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Wheat</td>
<td>0.97</td>
<td>0.91</td>
<td>0.91</td>
<td>0.93</td>
<td>1.00</td>
</tr>
</tbody>
</table>

In this study, only variable costs are considered, and these include costs of seed, fertilizer, herbicides, machinery repairs, et cetera. Total variable cost of production per acre is obtained from Alberta Agriculture & Rural Development and calculated based on sector averages. Given the available yield and price data, net revenues are calculated for all cropping activities. An overview of net revenues, costs, yields and prices by crop and representative districts is also found in Table 4.
Table 4: Summary of Returns and Costs for Six Representative Farms

<table>
<thead>
<tr>
<th>Item</th>
<th>County</th>
<th>Barley</th>
<th>Canola</th>
<th>Durum</th>
<th>Peas</th>
<th>Wheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Price ($/bu)</td>
<td></td>
<td>3.87</td>
<td>11.42</td>
<td>6.16</td>
<td>6.90</td>
<td>6.07</td>
</tr>
<tr>
<td>Yields (bu/acre)</td>
<td>Forty Mile</td>
<td>59.0</td>
<td>27.9 / 46.5</td>
<td>48.3</td>
<td>36.4</td>
<td>39.5 / 83.3</td>
</tr>
<tr>
<td></td>
<td>Red Deer</td>
<td>69.4</td>
<td>38.1</td>
<td>43.8</td>
<td>59.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Smoky River</td>
<td>62.0</td>
<td>34.1</td>
<td>38.3</td>
<td>47.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vermillion River</td>
<td>60.0</td>
<td>35.4</td>
<td>36.8</td>
<td>47.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vulcan</td>
<td>67.9</td>
<td>38.8</td>
<td>48.2</td>
<td>49.5</td>
<td>46.6</td>
</tr>
<tr>
<td></td>
<td>Westlock</td>
<td>74.0</td>
<td>44.3</td>
<td>51.6</td>
<td>65.2</td>
<td></td>
</tr>
<tr>
<td>Costs ($/acre)</td>
<td>Forty Mile</td>
<td>71.8</td>
<td>99.4 / 140.5</td>
<td>87.5</td>
<td>91.2</td>
<td>84.4 / 195.0</td>
</tr>
<tr>
<td></td>
<td>Red Deer</td>
<td>120.2</td>
<td>150.9</td>
<td>120.1</td>
<td>125.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Smoky River</td>
<td>105.5</td>
<td>129.2</td>
<td>108.5</td>
<td>109.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vermillion River</td>
<td>120.2</td>
<td>150.9</td>
<td>120.1</td>
<td>125.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vulcan</td>
<td>99.0</td>
<td>118.2</td>
<td>104.0</td>
<td>101.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Westlock</td>
<td>117.6</td>
<td>140.3</td>
<td>115.5</td>
<td>121.0</td>
<td></td>
</tr>
<tr>
<td>Gross Margin ($/acre)</td>
<td>Forty Mile</td>
<td>156.2</td>
<td>219.4 / 390.4</td>
<td>209.8</td>
<td>160.1</td>
<td>155.3 / 310.5</td>
</tr>
<tr>
<td></td>
<td>Red Deer</td>
<td>148.1</td>
<td>284.6</td>
<td>181.8</td>
<td>237.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Smoky River</td>
<td>134.3</td>
<td>260.5</td>
<td>155.6</td>
<td>177.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vermillion River</td>
<td>111.7</td>
<td>253.4</td>
<td>133.4</td>
<td>159.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vulcan</td>
<td>163.4</td>
<td>325.1</td>
<td>192.6</td>
<td>236.5</td>
<td>181.0</td>
</tr>
<tr>
<td></td>
<td>Westlock</td>
<td>168.5</td>
<td>366.0</td>
<td>240.7</td>
<td>274.7</td>
<td></td>
</tr>
</tbody>
</table>

The variance-covariance matrix of realized returns per acre among crops is estimated based on 1000 simulated outcomes (as discussed in the next section), rather than a few historical observations, since the simulated data represent the potential outcomes that farmers anticipate, which are not necessarily observed, when they plant crops. Rational expectations on the part of farmers are assumed.

**PMP Results**

For the first step of the PMP approach, I use the data in Tables 1 and 2 to maximize the gross margin of each representative farm subject to observed land-use

---

4 GAMS code for PMP calibration and the following policy analysis is provided in Appendix B.
calibration constraints. The associated shadow prices are then used to derive a quadratic cost function for each crop at each representative farm. The observed allocations of land to crops are reproduced based on the model constructed in the above step. For each representative farm, the marginal cost of barley land remains constant since its calibration constraint was not binding ($\lambda=0$). Table 5 shows the estimates of the representative farm in Vulcan County as an example.

Table 5: Parameters for the Vulcan Representative Farm

<table>
<thead>
<tr>
<th>County</th>
<th>Crop</th>
<th>$\lambda$</th>
<th>$\alpha$</th>
<th>$\beta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vulcan</td>
<td>Barley</td>
<td>0.00</td>
<td>99.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Canola</td>
<td>161.32</td>
<td>-43.12</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>Durum</td>
<td>29.31</td>
<td>74.69</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>Peas</td>
<td>72.90</td>
<td>32.10</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>Wheat</td>
<td>17.81</td>
<td>83.69</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>Total Land Use</td>
<td>1569.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To obtain the shadow price for barley, I include the elasticity of land supply with respect to the output price of barley, $\eta_s = (\partial q/\partial p) (p/q)$, to adjust the estimates of all $\lambda_k$ as (see Howitt 2005, pp.88-91): $\hat{\lambda}_k = \lambda_k + Adj$. Meyers et al. (1993) estimate supply elasticities for U.S. crops for the period 1985-1989, with the own-price supply elasticity of barley estimated to be between 1.084 and 1.215. Jansson (2007) employs an own-price supply elasticity of 1.109 for barley, while Barr et al. (2011) find that it is 1.038 for the 2007-09 period although somewhat lower than it has been in previous periods. Lacking further information including information about the supply elasticity of land in barley, I simply assume it to be 1.04.

The calibration results once the shadow prices are adjusted for the assumed supply elasticity of land in barley are reported in Table 6. These indicate that the six groups of parameters are quite distinct from each other.
Table 6: Calibration Results for Six Representative Farms

<table>
<thead>
<tr>
<th>District</th>
<th>Crop</th>
<th>$\lambda$</th>
<th>$\alpha$</th>
<th>$\beta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forty Mile</td>
<td>Barley</td>
<td>116.42</td>
<td>-44.62</td>
<td>1.07</td>
</tr>
<tr>
<td></td>
<td>Canola (Dry)</td>
<td>179.38</td>
<td>-79.98</td>
<td>1.13</td>
</tr>
<tr>
<td></td>
<td>Canola (Irr)</td>
<td>350.42</td>
<td>-209.92</td>
<td>6.64</td>
</tr>
<tr>
<td></td>
<td>Durum</td>
<td>169.92</td>
<td>-82.42</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>Peas</td>
<td>120.20</td>
<td>-29.00</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>Wheat (Dry)</td>
<td>115.29</td>
<td>-30.89</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>Wheat (Irr)</td>
<td>270.59</td>
<td>-75.60</td>
<td>2.90</td>
</tr>
<tr>
<td>Red Deer</td>
<td>Canola</td>
<td>265.45</td>
<td>-114.54</td>
<td>1.84</td>
</tr>
<tr>
<td></td>
<td>Peas</td>
<td>162.75</td>
<td>-42.69</td>
<td>18.84</td>
</tr>
<tr>
<td></td>
<td>Wheat</td>
<td>218.28</td>
<td>-92.59</td>
<td>2.09</td>
</tr>
<tr>
<td>Westlock</td>
<td>Barley</td>
<td>138.75</td>
<td>-21.15</td>
<td>2.68</td>
</tr>
<tr>
<td></td>
<td>Canola</td>
<td>332.47</td>
<td>-192.17</td>
<td>1.79</td>
</tr>
<tr>
<td></td>
<td>Peas</td>
<td>208.29</td>
<td>-92.79</td>
<td>23.58</td>
</tr>
<tr>
<td></td>
<td>Wheat</td>
<td>244.47</td>
<td>-123.47</td>
<td>1.95</td>
</tr>
<tr>
<td>Vulcan</td>
<td>Barley</td>
<td>126.18</td>
<td>-27.18</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>Canola</td>
<td>287.50</td>
<td>-169.30</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td>Durum</td>
<td>155.49</td>
<td>-51.49</td>
<td>2.73</td>
</tr>
<tr>
<td></td>
<td>Peas</td>
<td>199.08</td>
<td>-94.08</td>
<td>1.69</td>
</tr>
<tr>
<td></td>
<td>Wheat</td>
<td>143.99</td>
<td>-42.49</td>
<td>0.58</td>
</tr>
<tr>
<td>Vermilion River</td>
<td>Canola</td>
<td>253.00</td>
<td>-102.10</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>Peas</td>
<td>133.45</td>
<td>-13.35</td>
<td>4.89</td>
</tr>
<tr>
<td></td>
<td>Wheat</td>
<td>159.83</td>
<td>-34.13</td>
<td>0.73</td>
</tr>
<tr>
<td>Smoky River</td>
<td>Canola</td>
<td>241.37</td>
<td>-112.15</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td>Peas</td>
<td>136.60</td>
<td>-28.10</td>
<td>6.97</td>
</tr>
<tr>
<td></td>
<td>Wheat</td>
<td>158.59</td>
<td>-49.09</td>
<td>0.60</td>
</tr>
</tbody>
</table>

The marginal cost curves for wheat for the six representative farms are provided in Figure 4, and illustrate the distinctiveness of the representative farms. Although the marginal cost functions of wheat are similar for the farms in the counties of Vulcan and Smoky River, differences across the other farms are significant.

![Figure 4: Marginal cost curves for wheat for six representative farms in Alberta](image)

After calibrating the parameters of the quadratic cost functions for all representative farms, I iterate the value of risk aversion coefficient to find a range for each farm to reproduce the land allocations of the base run without the calibration constraints for each crop. Eventually, $\varphi$ is set at 0.0000005 for all farms, which is the
maximum value that reproduces the base outcome for all farms.

**AgriStability Program Analysis**

The purpose here is to examine how changes in Canada’s AgriStability Program affect producers’ land use decisions. Clearly, participation in AgriStability itself could change producers’ crop choices to some extent. However, the premium subsidy rate should not affect producers’ land use decisions if they decide to participate, but, rather, it might affect producers’ decisions about whether to participate. As in other countries, Canada continues to adapt its agricultural policies. Thus, for example, the Canadian Agricultural Income Stabilization (CAIS) program was replaced by GF, which was “designed to be more responsive, predictable and bankable” (AAFC 2014b). Yet, in a survey conducted by the Canadian Federation of Independent Business (CFIB) from November 2009 to January 2010, 65 percent of respondents categorized the predictability of financial support under AgriStability to be poor, while 56 percent replied that the paperwork and the calculations were complicated (Labbie 2010; see also Vercammen 2013). Compared to GF, the current GF2 simplifies the AgriStability payment calculation by harmonizing multi-tier compensation rates under GF to a single level (70%). Meanwhile, GF2 lowers the payment trigger from 85% to 70% of the reference margin, as required by the OECD (2011) for AgriStability to qualify as a green box program; in this way, the program also covers losses rather than simply declines in profit. Although discussion about the impacts of changes on farmers appeared before and after the launch of GF2, including arguments about the estimated reduction in indemnities and reduced attractiveness to farmers, there has been little research on the effect that changes in the policy parameters, including the compensation rate and the payment trigger, have on farmers’ production decisions and overall wellbeing.
Extending the Farm-level Model

The farm model given by (5) and (6) is now modified to account for the AgriStability program. Constraints in the model include exogenous input and output prices and fixed land. A farmer is assumed to

$$\text{Maximize } U = E[R] - \frac{\varphi}{2} \sigma^2,$$

(8)

where $\varphi$ is the Arrow-Pratt coefficient of absolute risk aversion and $\sigma^2$ represents the variance or risk associated with the chosen crop portfolio. The constraints are given by:

$$R_i = \sum_{k=1}^{K} [p_{k,t}y_{k,t} - c_k(x_k)]x_k + Z \times \max \left(0, \alpha \left( \beta M - \sum_{k=1}^{K} (p_{k,t}y_{k,t} - c_k)x_k \right) \right),$$

(9)

$$E[R] = \frac{1}{T} \sum_{t=1}^{T} R_i,$$

(10)

$$\sigma^2 = \sum_{k=1}^{K} \sum_{j=1}^{J} \left[ x_k \times CV(R_k, R_j) \times x_j \right],$$

(11)

$$CV(R_k, R_j) = \frac{1}{T} \sum_{t=1}^{T} \left( R_{k,t} - E[R_k] \right) \left( R_{j,t} - E[R_j] \right), \forall k, i,$$

(12)

$$E[R_k] = \frac{1}{T} \sum_{t=1}^{T} R_{k,t}, \forall k,$$

(13)

$R_i$ is the gross margin in state of nature $t$ and $E[R]$ represents the expected whole farm gross margin. $M = \sum_{k=1}^{K} [p_k y_k x_k - c_k x_k]$ is used to calculate the reference margin, while $\beta$ describes the payment trigger level as a proportion of the reference margin. Only when a farm’s realized gross margin declines by more than $(1-\beta)$ of $M$ will the farmer get a payment from the AgriStability program. The compensation rate $\alpha$ represents the...
proportion of qualified losses that is covered by the program, and dummy variable $Z$, with $Z=1$ when $R_t < \beta \times M$ and $Z=0$ when $R_t \geq \beta \times M$, is used to trigger a payout equal to

$$\text{Max} \left( 0, \alpha \beta M - \sum_{k=1}^{K} \left[ p_{k,t} y_{k,t} - c_k(x_k) \right] x_k \right)$$

in a given state of nature $t$. To ensure the insurance scheme is actuarially sound, the premium is calculated by the formula

$$\frac{1}{T} \sum_{t=1}^{T} \text{Max} \left( 0, \alpha \beta M - \sum_{k=1}^{K} \left[ p_{k,t} y_{k,t} - c_k(x_k) \right] x_k \right),$$

which is multiplied by $(1-\delta)$ to determine the cost to the public purse. $E[R_k]$ is the farmer’s expected net return ($$/acre) from planting crop $k$. $K$ crops are planted in any given period and $T$ refers to the number of simulated outcomes or states of nature. To simulate the per acre gross margin across scenarios, crop prices, yields and production costs are key elements for the crop-specific quadratic cost functions across representative farms.

Monte Carlo simulation is used to generate $T=1,000$ sets of prices and yields, and thus gross margins, for each crop and representative farm. Prices are determined using the Ornstein-Uhlenbeck process discussed above; a graph of the distributions of 1,000 simulated wheat and canola prices is provided in the following figure.

![Figure 5: Distributions of Simulated Prices of Wheat and Canola](image)
Since crop yields are correlated (see Table 3 and Table A1 in Appendices), I assume they are characterized by a multivariate normal distribution. AFSC yield data for the period 1997-2013 are used to calculate the covariance matrix for simulation. To do so, I first de-trend the yield data to remove the influence of technology so that proper estimates of the underlying probability distribution are obtained (Cooper 2010). Then the de-trended data are used to derive the covariance matrix and generate 1,000 sets of yield data from this matrix (Luis 2011). Each representative farm has a distinctive covariance yield matrix so crop scenarios will differ across regions of the province.

Growing Forward (GF) versus Growing Forward 2 (GF2)

Under both GF and GF2, the AgriStability indemnity or payout is determined by the extent to which a farmer’s gross margin declines compared to her reference margin. A farmer’s reference margin is defined as the lower of her Olympic average gross margin of the past five years (the lowest and highest margins are excluded from the calculation) and her average allowable expenses for the three years used to calculate the reference margin. In this way, farmers will not simply pursue risk that leads to more volatile incomes after joining the program since they need to consider the effects of their behavior on their reference margins and related potential future payouts. Accordingly, the value of the risk aversion coefficient remains at same level as it would without insurance.

Although most rules of the AgriStability program are same under GF and GF2, the elements used to calculate final payments have changed. Under GF, a payout is triggered once a farmer’s gross margin falls below 85% of her reference margin, with AgriInvest meant to cover any reduction between the reference margin and the gross margin for that year (see left-hand panel in Figure 6). The farmer would then receive
an indemnity that covered 70% of any reduction in gross margin below 85% but above 70% of the reference margin. If the gross margin fell below 70%, she would receive 80% of any difference in realized gross margin and 70% of the reference margin. Under GF2, government support is triggered only when a farmer’s margin falls below 70% of the reference margin and a harmonized compensation rate of 70% is applied to the payment calculation as indicated in the right-hand panel of Figure 5 (AFSC 2014a, 2014b). When comparing the AgrStability program between GF and GF2, for simplicity and without loss of generality, the margin coverage ($\beta$) is set at 85% and the compensate rate ($\alpha$) is 80% for GF, while both $\alpha$ and $\beta$ are set equal to 70% for GF2.

![Diagram showing payment structure under GF and GF2](image)

*Figure 6: AgrStability Payment Structure under GF and GF2*

*Sources: AgriStability Program Handbook, Revised August 2011 (AAFC 2014b) AgriStability Program Handbook, Effective for Program Years commencing 2013 (ASFC 2014b)*

The changes in land allocations of the representative farms under GF2 compared to the base year are given in Tables 7(a) and 7(b). Table 7(a) reports the changes in acres while Table 7(b) reports the changes in percentage. For example,
after joining the AgriStability program under GF2 and compared to the model base outcome, which assumes the farmer does not participate in AgriStability, a farmer in Forty Mile County reduces the acres allocated to dryland canola by 45 acres (14.15%) while increasing acres planted to dryland wheat by 44 acres (4.37%). Since producers’ land-use decisions are very similar under GF and GF2 compared to the base case, the changes in land allocations under GF are not reported. The results indicate that farmers’ land use decisions will change if they join the AgriStability program. Although the impact varies by region (weather, soil and other environmental conditions), all of the representative farms reduce production of canola while choosing to produce more wheat.

Table 7: Land-use Changes with AgriStability Program
(a) GF2 versus Base Outcome (acre)

<table>
<thead>
<tr>
<th>County</th>
<th>Planted area</th>
<th>Barley Dryland</th>
<th>Canola Dryland</th>
<th>Canola Irrigated</th>
<th>Durum</th>
<th>Peas Dryland</th>
<th>Peas Irrigated</th>
<th>Wheat Dryland</th>
<th>Wheat Irrigated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forty Mile</td>
<td></td>
<td>20</td>
<td>-45</td>
<td>-6</td>
<td>-32</td>
<td>13</td>
<td>44</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Red Deer</td>
<td></td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>17</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Smoky River</td>
<td></td>
<td>0</td>
<td>-13</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>15</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Vermilion River</td>
<td></td>
<td>-3</td>
<td>-12</td>
<td>-2</td>
<td>-2</td>
<td>11</td>
<td>17</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Vulcan</td>
<td></td>
<td>0</td>
<td>-39</td>
<td>11</td>
<td>-13</td>
<td>11</td>
<td>41</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Westlock</td>
<td></td>
<td>-2</td>
<td>-5</td>
<td>-1</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

(b) GF2 versus Base Outcome (percentage)

<table>
<thead>
<tr>
<th>County</th>
<th>Planted area</th>
<th>Barley Dryland</th>
<th>Canola Dryland</th>
<th>Canola Irrigated</th>
<th>Durum</th>
<th>Peas Dryland</th>
<th>Peas Irrigated</th>
<th>Wheat Dryland</th>
<th>Wheat Irrigated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forty Mile</td>
<td></td>
<td>9.13%</td>
<td>-14.15%</td>
<td>-5.66%</td>
<td>-4.52%</td>
<td>2.38%</td>
<td>4.37%</td>
<td>3.23%</td>
<td></td>
</tr>
<tr>
<td>Red Deer</td>
<td></td>
<td>-1.48%</td>
<td>-1.18%</td>
<td>-2.45%</td>
<td>-2.75%</td>
<td>10.04%</td>
<td>8.32%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoky River</td>
<td></td>
<td>-1.71%</td>
<td>-1.97%</td>
<td>-5.61%</td>
<td>8.32%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermilion River</td>
<td></td>
<td>-1.64%</td>
<td>-2.45%</td>
<td>-5.53%</td>
<td>8.32%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vulcan</td>
<td></td>
<td>0.00%</td>
<td>-8.92%</td>
<td>10.04%</td>
<td>8.32%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westlock</td>
<td></td>
<td>-2.02%</td>
<td>-1.43%</td>
<td>-3.41%</td>
<td>3.24%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A comparison between GF and GF2 is provided in Tables 8(a) and 8(b). The
results indicate that the change in going from GF to GF2 affects the number of triggered payouts, the actuarially sound premium for the program, and the farmers’ expected gross margin. With the reduction of the margin coverage ($\beta$), number of payouts, premiums and expected gross margins all decline to some extent.

Table 8: Changes under GF2 compared to GF
(a) GF2 versus GF (dollar)

<table>
<thead>
<tr>
<th>County</th>
<th># of payments</th>
<th>Premium ($)</th>
<th>Expected gross margin ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forty Mile</td>
<td>-186</td>
<td>-8,931</td>
<td>-2,679</td>
</tr>
<tr>
<td>Red Deer</td>
<td>-177</td>
<td>-3,646</td>
<td>-1,094</td>
</tr>
<tr>
<td>Smoky River</td>
<td>-193</td>
<td>-4,183</td>
<td>-1,255</td>
</tr>
<tr>
<td>Vermilion River</td>
<td>-118</td>
<td>-8,137</td>
<td>-2,441</td>
</tr>
<tr>
<td>Vulcan</td>
<td>-168</td>
<td>-6,733</td>
<td>-2,020</td>
</tr>
<tr>
<td>Westlock</td>
<td>-172</td>
<td>-4,002</td>
<td>-1,201</td>
</tr>
</tbody>
</table>

(b) GF2 versus GF (percentage)

<table>
<thead>
<tr>
<th>County</th>
<th># of payments</th>
<th>Premium (%)</th>
<th>Expected gross margin (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forty Mile</td>
<td>-73.5%</td>
<td>-83.3%</td>
<td>-0.6%</td>
</tr>
<tr>
<td>Red Deer</td>
<td>-61.0%</td>
<td>-75.5%</td>
<td>-0.7%</td>
</tr>
<tr>
<td>Smoky River</td>
<td>-72.6%</td>
<td>-82.2%</td>
<td>-0.5%</td>
</tr>
<tr>
<td>Vermilion River</td>
<td>-30.3%</td>
<td>-45.8%</td>
<td>-1.2%</td>
</tr>
<tr>
<td>Vulcan</td>
<td>-53.8%</td>
<td>-67.3%</td>
<td>-0.8%</td>
</tr>
<tr>
<td>Westlock</td>
<td>-62.8%</td>
<td>-76.8%</td>
<td>-0.6%</td>
</tr>
</tbody>
</table>

There are two important findings worth noting: First, both the number of payouts and the premiums are significantly reduced in percentage terms. For example, the actuarially sound premium for the program in Forty Mile County under GF2 is about 17% of that under GF. Second, although farmers suffer some loss in terms of the expected gross margin, the value of benefits that other agents in society get is larger than the value of the farmers’ losses. The reason relates to the reduction in the actuarially sound premium, which is partly subsidized by government. Further, given that the real cost of public funds is often 1.3 to 1.5 times that of the net subsidy, the total benefit to taxpayers of the premium reductions exceeds those of our
representative farmers. Since moving from GF to GF2 does not alter producers’
production decisions, I focus on analysing GF2 in the next subsection.

**Premium Subsidization Rate**

The test results of the effect of a premium subsidy show that a change in the
proportion of the subsidy paid by government (\( \delta \)) does not alter the farmer’s
production decision once the farmer has decided to participate in the AgriStability
program. The premium paid by a farmer for a $100,000 hedge against the reference
margin is $315 (AAFC 2014a, p.11). Even including a $55 administrative fee, the
amount is small compared to a representative producer’s gross margin. Therefore, the
effect of a premium subsidy on crop allocation decisions is not obvious. However, to
incentivize a farmer to participate in the program and protect her from large losses
with small probabilities in the long term, a subsidy is necessary (see Chambers 2007;
Moshini and Hennessey 2001). The subsidization rate should be determined by
comprehensively considering other factors, like the opportunity cost of public funds.

**Risk Aversion Coefficient**

To explore how farmers’ risk attitudes affect their crop portfolio, I also solve
the model for various \( \varphi \) values. McCarl and Bessler (1989) discuss three approaches
to develop an upper bound for the risk aversion coefficient. The non-negative
certainty equivalent approach finds the bound of \( \varphi \) equals \( 2 \times \text{mean divided by the variance (} \sigma^2 \text{)} \). The confidence interval method yields the bound as \( 2 \times \text{the number of standard deviations divided by } \sigma \). If Chebyshev’s inequality is applied, an extreme
value of \( \varphi \) is found as \( \frac{28}{\sigma} \). The third approach comes from MOTAD
studies and specifies the bound as $5$ divided by $\sigma$.\(^5\)

Three methods are applied in this study to find three bound values of $\phi$ for sensitivity analysis. Table 9 reports the results for Smoky River County as an example. Solutions at those values of $\phi$ for other representative farms are provided in Table A2 in Appendices, respectively. The land allocations in the base case are provided for comparison.

Except for the representative farm in Vulcan, the number of triggered payments and the premium are monotonically increasing with increases in the risk aversion coefficient. Farmers in different regions will respond to changes in their risk attitudes in different ways since the variance of crop yields is not the same across the province. For a farmer in Forty Mile County, land allocated to barley, canola and irrigated wheat increases with $\phi$ at the cost of durum, peas and dryland wheat. For a farmer in Smoky River County, however, more barley and peas are planted as the producer becomes more risk averse ($\phi$ rises) at the expense of canola and wheat.

Table 9: Smoky River Representative Farm’s Optimal Choice for Different Risk Attitudes

<table>
<thead>
<tr>
<th>Smoky River Risk Aversion Coefficient</th>
<th>Actuarial Sound Premium</th>
<th># of Triggered payment</th>
<th>Barley</th>
<th>Canola</th>
<th>Peas</th>
<th>Wheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>$28/(\text{standard deviation})$</td>
<td>0.0005280</td>
<td>8165</td>
<td>382</td>
<td>7.3%</td>
<td>45.8%</td>
<td>7.8%</td>
</tr>
<tr>
<td>$2 \ (\text{expected value})/\text{variance}$</td>
<td>0.0001890</td>
<td>2671</td>
<td>184</td>
<td>4.1%</td>
<td>49.0%</td>
<td>5.1%</td>
</tr>
<tr>
<td>$5/(\text{standard deviation})$</td>
<td>0.0000940</td>
<td>1608</td>
<td>124</td>
<td>3.0%</td>
<td>50.4%</td>
<td>4.0%</td>
</tr>
<tr>
<td>Base Outcome</td>
<td>0.0000005</td>
<td></td>
<td></td>
<td>1.8%</td>
<td>53.4%</td>
<td>3.1%</td>
</tr>
</tbody>
</table>

\(^5\) Recall that, because the calibrated cost functions already account for some risk, these bounds are likely much larger than is the case. Although the risk accounted for as a result of the PMP adjustment is unknown, it might be small since maximizing expected utility when marginal (=average) costs are constant fails to replicate the observed crop allocation for various values of $\phi$.\)
Concluding Discussion

The objective of this thesis was to analyse how a farmer’s land-use decisions vary in response to changes in the AgriStability program and their risk aversion level. For this, a mathematical programming model that aims to maximize a farmer’s expected utility is employed to determine crop allocation. I conclude that the AgriStability program slightly alters production decisions. However, the change in the AgriStability payout trigger does not further affect farmers’ land allocation decisions. Meanwhile, as a result of a reduction in the trigger mechanism and the coverage proportion of the income difference, the number of payouts and the actuarial sound premium are significantly reduced in percentage terms. In this regard, the findings are similar to those of Trautman et al. (2013), who employed net present value analysis to examine the differences between GF and GF2. Further, farmers in different regions will respond to changes in their risk attitudes in different ways.

In this study, I employed what is now a standard approach for analyzing changes in agricultural policy related to business risk management. However, there remain several research questions that need to be addressed. First, positive mathematical programming was initially proposed as a means of calibrating LP models to an observed crop allocation because the use of ad hoc constraints was unsatisfying and not useful for analyzing policy, while modeling attempts to replicate observed land uses by maximizing expected utility as opposed to expected returns fell short of the mark (Howitt 1995, 2005). However, while PMP could identify crop-specific cost functions that enabled the analyst to replicate precisely observed land use, it was not clear what the calibrated quadratic cost functions entailed since they could apparently account for many unseen factors that went into crop production, including risk perceptions. This interpretation was a focal point of criticism (e.g., Heckelei et al.
2012), which has not yet been clarified although research continues into this issue.

Second, as Figure 6 illustrates, GF and GF2 provide two programs (AgriStability and AgriInvest) to protect farmers’ incomes while only the AgriStability program is investigated in this study. It is worthwhile to study how to integrate the AgriInvest program into the model to analyze farmers’ responses to a set of income protection solutions and the distribution of gains and losses among farmers caused by the combined policies.

Third, when analyzing policy related to agricultural insurance and risk, it is necessary to calibrate not only crop-specific cost functions but also the risk aversion parameter. Although Petsakos and Rozakis (2015) provide one means for doing so, there remain problems implementing their approach. In the current application, this problem is recognized and an ad hoc procedure is used to incorporate farmers’ risk attitudes. Even though the observed land uses could not be replicated only on the basis of farmers’ risk aversion, attitude toward risk does in the model turn out nonetheless to be more important than changes in the AgriStability program between GF and GF2. Further research is needed to address the simultaneous calibration of cost functions and risk aversion within a PMP framework, while also finding a better way to measure farmers’ risk attitudes. These steps are necessary to improve economists’ abilities to analyze agricultural business risk management and related public policy.
References


Cooper, J.C., 2010. Average Crop Revenue Election: A Revenue-Based Alternative to Price-Based Commodity Payment Programs, American Journal of Agricultural Economics 92: 1214-1228.


Appendices

Figure A.1: Alberta’s Soil Zones and the six municipal districts and counties with representative farms (indicated by yellow labels) – Forty Mile, Vulcan, Red Deer, Vermilion River, Westlock, and Smoky River.
Table A1: Correlation Matrices for Average Crop Yields for Representative Farms

(a) Forty Mile

<table>
<thead>
<tr>
<th></th>
<th>Barley</th>
<th>Canola (Dry)</th>
<th>Canola (Irr)</th>
<th>Durum</th>
<th>Peas (Dry)</th>
<th>Wheat (Irr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barley</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canola (Dry)</td>
<td>0.80</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canola (Irr)</td>
<td>0.49</td>
<td>0.67</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durum</td>
<td>0.92</td>
<td>0.93</td>
<td>0.53</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peas</td>
<td>0.90</td>
<td>0.79</td>
<td>0.30</td>
<td>0.93</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Wheat (Dry)</td>
<td>0.96</td>
<td>0.89</td>
<td>0.50</td>
<td>0.98</td>
<td>0.94</td>
<td>1.00</td>
</tr>
<tr>
<td>Wheat (Irr)</td>
<td>0.22</td>
<td>-0.18</td>
<td>0.08</td>
<td>-0.11</td>
<td>-0.03</td>
<td>0.02</td>
</tr>
</tbody>
</table>

(b) Red Deer

<table>
<thead>
<tr>
<th></th>
<th>Barley</th>
<th>Canola</th>
<th>Peas</th>
<th>Wheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barley</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canola</td>
<td>0.54</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peas</td>
<td>0.67</td>
<td>0.41</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Wheat</td>
<td>0.75</td>
<td>0.86</td>
<td>0.51</td>
<td>1.00</td>
</tr>
</tbody>
</table>

(c) Vermilion River

<table>
<thead>
<tr>
<th></th>
<th>Barley</th>
<th>Canola</th>
<th>Peas</th>
<th>Wheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barley</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canola</td>
<td>0.93</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peas</td>
<td>0.96</td>
<td>0.90</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Wheat</td>
<td>0.96</td>
<td>0.95</td>
<td>0.90</td>
<td>1.00</td>
</tr>
</tbody>
</table>

(d) Westlock

<table>
<thead>
<tr>
<th></th>
<th>Barley</th>
<th>Canola</th>
<th>Peas</th>
<th>Wheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barley</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canola</td>
<td>0.87</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peas</td>
<td>0.76</td>
<td>0.75</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Wheat</td>
<td>0.84</td>
<td>0.84</td>
<td>0.67</td>
<td>1.00</td>
</tr>
</tbody>
</table>

(e) Smoky River

<table>
<thead>
<tr>
<th></th>
<th>Barley</th>
<th>Canola</th>
<th>Peas</th>
<th>Wheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barley</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canola</td>
<td>0.65</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peas</td>
<td>0.61</td>
<td>0.71</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Wheat</td>
<td>0.86</td>
<td>0.65</td>
<td>0.66</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Table A2: Representative Farm’s Optimal Choice for Different Risk Attitudes

(a) Forty Mile

<table>
<thead>
<tr>
<th>Forty Mile</th>
<th>Risk aversion coefficient</th>
<th>Actuarial sound premium</th>
<th># of Triggered payment</th>
<th>Barley (Dry)</th>
<th>Canola (Dry)</th>
<th>Canola (Irr)</th>
<th>Durum</th>
<th>Peas</th>
<th>Wheat (Dry)</th>
<th>Wheat (Irr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28/(standard deviation)</td>
<td>0.0002270</td>
<td>7074</td>
<td>207</td>
<td>13.1%</td>
<td>22.5%</td>
<td>4.6%</td>
<td>16.5%</td>
<td>5.6%</td>
<td>26.6%</td>
<td>9.2%</td>
</tr>
<tr>
<td>2 (expected value)/variance</td>
<td>0.0000538</td>
<td>3326</td>
<td>101</td>
<td>10.9%</td>
<td>13.5%</td>
<td>3.9%</td>
<td>19.4%</td>
<td>12.8%</td>
<td>32.0%</td>
<td>7.4%</td>
</tr>
<tr>
<td>5/(standard deviation)</td>
<td>0.0000405</td>
<td>2940</td>
<td>94</td>
<td>10.3%</td>
<td>12.4%</td>
<td>3.8%</td>
<td>19.9%</td>
<td>14.0%</td>
<td>32.5%</td>
<td>7.2%</td>
</tr>
<tr>
<td>Base Run</td>
<td>0.0000005</td>
<td></td>
<td></td>
<td>7.1%</td>
<td>10.3%</td>
<td>3.4%</td>
<td>22.9%</td>
<td>17.7%</td>
<td>32.6%</td>
<td>6.0%</td>
</tr>
</tbody>
</table>

(b) Vulcan

<table>
<thead>
<tr>
<th>Vulcan</th>
<th>Risk aversion coefficient</th>
<th>Actuarial sound premium</th>
<th># of Triggered payment</th>
<th>Barley</th>
<th>Canola</th>
<th>Durum</th>
<th>Peas</th>
<th>Wheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>28/(standard deviation)</td>
<td>0.0003990</td>
<td>2953</td>
<td>136</td>
<td>19.8%</td>
<td>9.2%</td>
<td>14.6%</td>
<td>7.8%</td>
<td>48.8%</td>
</tr>
<tr>
<td>2 (expected value)/variance</td>
<td>0.0001000</td>
<td>3098</td>
<td>139</td>
<td>19.4%</td>
<td>17.8%</td>
<td>10.7%</td>
<td>11.3%</td>
<td>40.7%</td>
</tr>
<tr>
<td>5/(standard deviation)</td>
<td>0.0000710</td>
<td>3134</td>
<td>140</td>
<td>19.2%</td>
<td>19.5%</td>
<td>10.1%</td>
<td>12.0%</td>
<td>39.2%</td>
</tr>
<tr>
<td>Base Run</td>
<td>0.0000005</td>
<td></td>
<td></td>
<td>18.8%</td>
<td>27.5%</td>
<td>7.3%</td>
<td>15.0%</td>
<td>31.5%</td>
</tr>
</tbody>
</table>

(c) Red Deer

<table>
<thead>
<tr>
<th>Red Deer</th>
<th>Risk aversion coefficient</th>
<th>Actuarial sound premium</th>
<th># of Triggered payment</th>
<th>Barley</th>
<th>Canola</th>
<th>Peas</th>
<th>Wheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>28/(standard deviation)</td>
<td>0.0007210</td>
<td>2028</td>
<td>163</td>
<td>42.3%</td>
<td>23.1%</td>
<td>4.8%</td>
<td>29.8%</td>
</tr>
<tr>
<td>2 (expected value)/variance</td>
<td>0.0002160</td>
<td>1366</td>
<td>119</td>
<td>39.5%</td>
<td>28.9%</td>
<td>3.1%</td>
<td>28.7%</td>
</tr>
<tr>
<td>5/(standard deviation)</td>
<td>0.0001290</td>
<td>1429</td>
<td>111</td>
<td>38.0%</td>
<td>31.0%</td>
<td>2.7%</td>
<td>28.3%</td>
</tr>
<tr>
<td>Base Run</td>
<td>0.0000005</td>
<td></td>
<td></td>
<td>34.5%</td>
<td>36.7%</td>
<td>2.2%</td>
<td>26.5%</td>
</tr>
</tbody>
</table>
(d) Vermilion River

<table>
<thead>
<tr>
<th>Vermilion River</th>
<th>Risk aversion coefficient</th>
<th>Actuarial sound premium</th>
<th># of Triggered payment</th>
<th>Barley</th>
<th>Canola</th>
<th>Peas</th>
<th>Wheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>28/(standard deviation)</td>
<td>0.00003110</td>
<td>10564</td>
<td>289</td>
<td>31.5%</td>
<td>14.2%</td>
<td>6.3%</td>
<td>47.9%</td>
</tr>
<tr>
<td>2 (expected value)/variance</td>
<td>0.00000550</td>
<td>9790</td>
<td>276</td>
<td>19.6%</td>
<td>32.7%</td>
<td>4.9%</td>
<td>42.8%</td>
</tr>
<tr>
<td>5/(standard deviation)</td>
<td>0.00000510</td>
<td>9776</td>
<td>276</td>
<td>19.3%</td>
<td>33.3%</td>
<td>4.9%</td>
<td>42.5%</td>
</tr>
<tr>
<td>Base Run</td>
<td>0.0000005</td>
<td></td>
<td></td>
<td>14.7%</td>
<td>43.0%</td>
<td>4.7%</td>
<td>37.7%</td>
</tr>
</tbody>
</table>

(e) Westlock

<table>
<thead>
<tr>
<th>Westlock</th>
<th>Risk aversion coefficient</th>
<th>Actuarial sound premium</th>
<th># of Triggered payment</th>
<th>Barley</th>
<th>Canola</th>
<th>Peas</th>
<th>Wheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>28/(standard deviation)</td>
<td>0.0005860</td>
<td>2288</td>
<td>161</td>
<td>32.3%</td>
<td>30.0%</td>
<td>4.2%</td>
<td>33.5%</td>
</tr>
<tr>
<td>2 (expected value)/variance</td>
<td>0.0001880</td>
<td>1581</td>
<td>124</td>
<td>23.3%</td>
<td>38.6%</td>
<td>3.0%</td>
<td>35.0%</td>
</tr>
<tr>
<td>5/(standard deviation)</td>
<td>0.0001080</td>
<td>1429</td>
<td>111</td>
<td>20.1%</td>
<td>42.1%</td>
<td>2.7%</td>
<td>35.1%</td>
</tr>
<tr>
<td>Base Run</td>
<td>0.0000005</td>
<td></td>
<td></td>
<td>14.0%</td>
<td>49.9%</td>
<td>2.4%</td>
<td>33.6%</td>
</tr>
</tbody>
</table>
$TITLE Whole Farm Insurance Model
$Oneolcom
$eolcom #
$OFFSYMLIST OFFSYMXREF
OPTION LIMROW = 0
OPTION LIMCOL = 0
OPTION RESLIM = 50000
OPTION ITERLIM = 1000000
OPTION WORK=90000000

OPTION QCP=CPLEX;
OPTION NLP=CONOPT;
OPTION DNLP=SNOPT;

SETS  k  PRODUCTION PROCESSES
/Wheat,Durum,Barley,Canola,Peas/
   J RESOURCE CONSTRAINTS /land/
   s ITERATIONS IN MONTE CARLO SIMULATION /1*1000/
   c PARAMETERS OF MARGINAL COST FUNCTION /LAMDA,
   ALPHA, BETA/
   f INFORMATION FROM BASE YEAR /cost,pr,yld,obs/
   i Years of historical revenue /1*10/
;
alias(k,kk);
alias(s,ss);

*--------------------------------------------------------------------
SCALAR
elasbar Elasticity of barley /1.04/
delta proportion of insurance paid by farmer /0.7/
Cover Growing Forward payout percentage /0.7/
PayTrig Proportion of reference income to trigger payout /0.7/
Arrow Start value for risk coefficient in 2nd step of PMP /0.0000001/
;

TABLE input(k, f) Input values created in R file
$ondelim
$include Info.csv
$offdelim
;
* ------------------- CONTENTS OF INPUT MATRIX CREATED IN R: -------
----------
* cost - variable cost in $ per acre
* pr - mean price of the various crops in $ per tonne
* yld - average yield by crop in tonnes per acre
* obs - observed hectares in each of the crops with total ha equal 61.05
* -------------------------------------------------------------
* ENTER DATA FROM GROSS REVENUE MONTE CARLO SIMULATIONS
* -------------------------------------------------------------

TABLE carlo(s,k) Monte Carlo REVENUE simulations
$ondelim
$include MonteCarloRev.csv
$offdelim
;

PARAMETER R(J) RESOURCE CONSTRAINTS
    OB(k) OBSERVED LAND USE in hectares
    risk final risk aversion coefficient used in model
;
    R('land') = sum(k, input(k, 'obs'));
    OB(k) = input(k,'obs');
;

TABLE A(J,k) Unit resource requirements per acre production
    Barley Canola Durum Peas Wheat
    land   1   1   1   1   1
;

*-------------------------------------------------------------
* LINEAR PROGRAM to find out shadow price
*-------------------------------------------------------------

VARIABLES LX(k) ACRES PLANTED
    LINPROF LP PROFIT

POSITIVE VARIABLE LX;

EQUATIONS RESOURCE(J) CONSTRAINED RESOURCES
    CALIB(k) CALIBRATION CONSTRAINTS
    LPROFIT LP OBJECTIVE FUNCTION;

RESOURCE(J).. sum(k, A(J,k)*LX(k)) =L= R(J);

CALIB(k)$OB(k).. LX(k) =L= OB(k) + 0.001;

LPROFIT.. LINPROF =E= sum(k, (input(k,'pr')*input(k,'yld') -
    input(k,'cost'))*LX(k));

MODEL CALIBRATE / ALL /;
SOLVE CALIBRATE USING LP MAXIMIZING LINPROF;
DISPLAY LX.L, RESOURCE.M, CALIB.M;

*-------------------------------------------------------------
PARAMETER
LAM(k) PMP DUAL VALUE
ALPHA(k) INTERCEPT COST
BETA(k) COST SLOPE
ADJ Adjustment because barley land is not binding
LAMDA(k) Revised PMP dual values
Target TARGET REVENUE

; LAM(k) = 0 ;
LAM(k)*LX.L(k) = CALIB.M(k);
ADJ = input('barley', 'pr')*input('barley', 'yld')/(2*elasbar);
LAMDA(k) = LAM(k) + ADJ;
ALPHA(k) = input(k,'cost') - LAMDA(k);
BETA(k)*LX.L(k) = 2*LAMDA(k) / LX.L(k) ;

DISPLAY LAMDA, ALPHA, BETA;

* * Write shadow prices for calibration constraints * *
file shade /FromStep1_gf2.csv/;
put shade;
   put 'crop', ',', 'LAMDA', ',', 'ALPHA', ',', 'BETA' /;
loop (k, put k.tl, ',', LAMDA(k), ',', ALPHA(k), ',', BETA(k) /);
putclose shade;

*--------------------------------------------------------* 
* PMP PROGRAM * 
*--------------------------------------------------------*
VARIABLES NX(k) ACRES PLANTED TO EACH CROP
NLPROF NLP PROFIT
RevMC(s) Revenue in each Monte Carlo iteration by crop
NERMC Expected revenue over monte carlo iterations
NcovarMC covariance matrix for WFI from monte carlo revenue

; POSITIVE VARIABLE NX;

EQUATIONS NRESOURCE(J) CONSTRAINED RESOURCES
    NLPROFIT NLP OBJECTIVE FUNCTION
    NrevMC(s) Crop revenue from monte carlo simulation
    NmeanMC Expected revenue by crop from monte carlo simulation
    NvarMC Var-covariance calc from monte carlo simulation
    ;

NRESOURCE(J).. SUM(k, A(J,k)*NX(k)) =L= R(J);
NrevMC(s).. RevMC(s) =E= sum(k, (carlo(s,k) - (ALPHA(k)+0.5*BETA(k)*NX(k)))*NX(k) ) ;
NmeanMC.. NERMC =E= sum(s, RevMC(s))/card(s);

NvarMC.. NcovarMC =E= sum(s,(RevMC(s) - NERMC)*(RevMC(s) - NERMC))/card(s);

NLPROFIT.. NLPROF =E= SUM(k, (input(k,'pr')*input(k,'yld') - (ALPHA(k)+0.5*BETA(k)*NX(k)))*NX(k)) - 0.5*Arrow*NcovarMC ;

MODEL PMP /NRESOURCE, NrevMC, NmeanMC, NvarMC, NLPROFIT /;

file check /check.csv/;

* Start while loop for changing risk coefficient values, denoted Arrow
SOLVE PMP USING NLP MAXIMIZING NLPROF;

While(sum(k, abs(NX.l(k) - OB(k))) <= sum(J, 0.01*R(J)),

put check;
put 'Solver status:', ',', PMP.solvestat /;
put 'Model status:', ',', PMP.modelstat /;
check.nd = 8 ;
put 'Risk Coefficient:', ',', Arrow /;
put 'crop','base','nonlinear';
check.nd = 1 ;
loop (k, put k.tl, ',OB(k), ',NX.l(k)/);
put /;
Arrow = Arrow + 0.0000001;
SOLVE PMP USING NLP MAXIMIZING NLPROF;
);
putclose check;

risk = Arrow - 0.0000001;

* -----------------------------------------------
*TABLE mc(k,*) Input values created in the previous PMP modeling
*$ondelim
*$include FromStep1.csv    # Shadow prices created above
*$offdelim
*;
*--------- CONTENTS OF COST MATRIX CREATED BY
FarmPMP.gms ---------
* lamda - shadow prices during PMP calibration
* ALPHA - intercept of MC function
* BETA - slope of MC function

*----------- GROWING FORWARD PROGRAM --------------
* WHOLE FARM AGRISTABILITY PROGRAM
**VARIABLES**

GX(k)  Acre planted for each crop under EU objective
GEU    Maximized utility for Growing Forward
GFrev(s,k)  Revenue in each Monte Carlo iteration by crop
meanGF(k)  Mean income by crop from Monte Carlo simulations
Covar(k,kk)  Covariance matrix
RefMar  Farm's reference margin
Dev(s)  Deviation in gross margin from insured reference margin
GFprem  Actuarially sound premium w no transaction costs
d(s)    Variable used to resolve MAX function in constraint

**POSITIVE VARIABLE GX, GFprem, d;**

**EQUATIONS**

- **obj**  Objective function for GF (Expected utility)
- **Land(J)**  Land constraint
- **revGF(s,k)**  Revenue as land allocated to crop k increases
- **GFmean(k)**  Long run expected revenue by crop
- **GFVAR(k,kk)**  Covariance matrix of revenue
- **Reference**  Determines reference level of income
- **payment(s)**  Calculates insurance indemnity in each Monte Carlo iteration
- **premia**  Calculates actuarially sound insurance premium

```plaintext
obj..   GEU =E= sum(k, meanGF(k)*GX(k)) - delta*GFprem*R('land')
        - 0.5*risk*sum(k, GX(k)*sum(kk, covar(k,kk)*GX(kk)))
        + sum(s, d(s)*dev(s))*R('land')/card(s) ;

Land(J).. sum(k, A(J,k)*GX(k)) =E= R(J);  #Land constraint

revGF(s,k).. GFrev(s,k) =E= carlo(s,k) - ( ALPHA(k) + 
                                     0.5*BETA(k)*GX(k) ) ;

GFmean(k).. meanGF(k) =E= sum(s, GFrev(s,k))/card(s);  #Average gross margin

GFVAR(k,kk).. Covar(k,kk) =E= sum(s, (GFrev(s,k)-meanGF(k))
                               *(GFrev(s,kk)-meanGF(kk)))/card(s);

Reference.. RefMar =E= (sum((s,k), GFrev(s,k))/card(s))/card(k);
```

* ------ ALTERNATIVE: USE WEIGHTED AVERAGE ---------------

* Reference.. RefMar =E= (sum(s, sum(k, GFrev(s,k)*
GX(k)/R('land')))/card(s))/ card(k);

* -----------------------------------------------
payment(s)..   Dev(s) =E= (PayTrig*RefMar - sum(k, GFrev(s,k))/card(k));

premia..    GFprem =E= sum(s, d(s)*Cover*Dev(s))/card(s);

MODEL  GFor / obj ,Land,revGF,GFmean,GFVAR,Reference,payment,premia /;
d.Up(s) = 1;

SOLVE GFor using nlp maximizing GEU;

PARAMETER Trigg   Proportion of times insurance payout occurs
margin  Expected gross margin
payout  Average annual payout
farmercost  cost to farmer of insurance
var   variance
ev  Expected gross margin
pay  payout from gf
;

Trigg = sum(s, d.l(s))/card(s);
margin = sum(k, meanGF.l(k))/card(k);
payout = GFPrem.l * sum(J, R(J));
farmercost = delta*GFPrem.l;
var = sum(k, GX.l(k)*sum(kk, covar.l(k,kk)*GX.l(kk)));
ev = sum(k, meanGF.l(k)*GX.l(k));
pay = sum(s, d.l(s)*dev.l(s))*R('land')/card(s);

DISPLAY Trigg, margin, risk, var, ev, pay

* Write solution
* Write solution
file insurance /output.csv/;
insurance.nz = 0;  # width as required
put insurance;
put 'Solver status:', ',', GFor.solvestat /;
put 'Model status:', ',', GFor.modelstat /;
put /;
insurance.nd = 0;  # number of decimal points
put 'crop', '','Crop Allocation';
loop (k, put k.tl, '','',GX.l(k)/);
put /;
insurance.nd = 8;  # number of decimal points
put 'Risk coefficient:', ',', Risk //;
put 'Reference Margin ($/ac) '='', ',', RefMar.l/;
put 'Average Gross Margin ($/ac)='', ',', margin//;
put 'Average annual indemnity ($) '='', ',', payout//;
put 'Probability of a payouts '='', ',', Trigg//;
put 'Insurance premium ($/ac) =', GFPrem.l;
put 'Farmer Cost of Insurance ($/ac) =', farmercost;
;
putclose insurance;
************