Extracting Surface Structural Information from Vibrational Spectra with Linear Programming

by

Kuo Kai Hung
B.Sc., University of Victoria, 2012

A thesis submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in the Department of Computer Science

© Kuo Kai Hung, 2015
University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part, by photocopying or other means, without the permission of the author.
Extracting Surface Structural Information from Vibrational Spectra with Linear Programming

by

Kuo Kai Hung
B.Sc., University of Victoria, 2012

Supervisory committee

Dr. Dennis K. Hore, Co-Supervisor
(Department of Chemistry)

Dr. Ulrike Stege, Co-Supervisor
(Department of Computer Science)
Dr. Dennis K. Hore, Co-Supervisor
(Department of Chemistry)

Dr. Ulrike Stege, Co-Supervisor
(Department of Computer Science)

ABSTRACT

Vibrational spectra techniques such as IR, Raman and SFG all carry molecular orientation information. Extracting the orientation information from the vibrational spectra often involves creating model spectra with known orientation details to match the experimental spectra. The running time for the exhaustive approach is $O(n!)$. With the help of linear programming, the running time is pseudo $O(n)$. The linear programming approach is without a doubt far more superior than exhaustive approach in terms of running time. We verify the accuracy of the answer of the linear programming approach by creating mock experimental data with known molecular orientation distribution information of alanine, isoleucine, methionine, lysine, valine and threonine. Linear programming returns the correct orientation distribution information when the mock experimental spectrum consisted of different amino acids. As soon as the mock experimental spectrum consisted of same amino acids, different conformer with different orientation distribution, linear programming fails to give the correct answer albeit the species population is roughly correct.
Contents

Supervisory Committee ... ii
Abstract ... iii
Table of contents ... iv
List of figures .. vii
List of tables ... xiii
List of symbols and definitions xiv
Acknowledgments ... xv

1 Introduction ... 1

1.1 Background and Motivation 1

1.1.1 Infrared absorption spectra 5

1.1.2 Raman scattering spectra 5

1.1.3 Vibrational sum-frequency spectra 6

1.2 Aims and Scope .. 7

2 Methods ... 9

2.1 Vibrational Spectrum simulation overview 9

2.2 Coordinate transformation 11

2.2.1 Unit Vectors in the lab and molecular frames 11

2.2.2 Direction cosine matrix 13

2.2.3 Obtaining the Euler angles 14

2.3 Projecting molecular properties into the lab frame 17
4.8.1 Making SFG pickle files for linear programming 62
4.8.2 The experimental data file . 63
4.8.3 Linear Programming Text Input 63
4.8.4 Linear Programming Input and Output 64
4.8.5 Plotting Result . 64
4.9 Results and Discussion . 65
 4.9.1 Delta distributions . 65
 4.9.2 Gaussian distribution, theta only 68
 4.9.3 Discussion . 70
4.10 Conclusions . 72

5 Summary and future work 77
 5.1 Summary . 77
 5.2 Future work . 78
List of Figures

1.1 Various systems that may be probed with vibrational spectroscopy including the (a) air/vacuum–solid surface, (b) solid–water interface, (c) molecules in solution, adsorbed at the solid–solution interface, (d) dried samples, measured at the air/vacuum–solid surface, and (e) rinsed samples, measured at the solid–water interface. In each case, IR absorption spectroscopy, Raman scattering, and/or SFG spectroscopy may be used, depending on the focus of the study. .. 4

2.1 Illustration of vectors that may be used to define the molecular-frame unit vectors for a water molecule. (a) In the case where both O–H bond lengths are known to be fixed and equal, one can define \vec{c} as the vector that runs from the midpoint M of the two H atoms to the O atom. \vec{a} is then simply defined between the two H atoms. (b) In the case where the bond lengths may be unequal, it may be simpler to define \vec{a} first, between the two H atoms. \vec{c} would then originate from a point P along \vec{a}, such that the vector defined between P and the O atom is perpendicular to \vec{a}. These decisions should follow from whatever is most clear or logical for a particular molecule. In both cases, \vec{b} may be obtained in the last step from the cross product relationship between the unit vectors in a right-handed coordinate system. .. 12

2.2 The Euler angles represented as the spherical polar angles θ, ϕ and ψ. . . . 15
2.3 Illustration of the 3 successive rotations that transform the lab \((x, y, z)\) coordinate system into the molecular \((a, b, c)\) frame. In the case of an intrinsic set of rotations (top row), one performs \(R_z(\phi)\) a rotation by \(\phi\) about \(z\), \(R_{y'}(\theta)\) rotation by \(\theta\) about \(y'\), and finally \(R_c(\psi)\) rotation by \(\psi\) about \(c\). In the case of an extrinsic set of rotations (bottom row), one performs \(R_z(\psi)\) a rotation by \(\psi\) about \(z\), \(R_y(\theta)\) rotation by \(\theta\) about \(y\), and finally \(R_z(\phi)\) rotation by \(\phi\) about \(z\).

3.1 The \(x\) and \(z\) components of the IR absorption (first row), \(xx, xy, xz,\) and \(zz\) components of the Raman scattering (middle row), and \(xxz, xzx,\) and \(zzz\) components of the hyperpolarizability (bottom row) for a uniaxial vibrational mode as a function of the mean tilt angle \(\theta_0\) and half-width \(\sigma\) of a Gaussian distribution of the methyl \(C_3\) axes. Darker red colors indicate higher intensity. Horizontal dashed white lines at \(\sigma = 7.5^\circ\) and \(\sigma = 50^\circ\) indicate distribution widths for which derivatives are displayed in Fig. 3.2.

3.2 Derivatives of the uniaxial response function plotted in Fig. 3.1 corresponding to a narrow distribution with \(\sigma = 7.5^\circ\) (a) The solid green line indicates the slope of \(x\) with respect to \(\theta_0\); the dashed green line \(z\). (b) Similarly, the slopes of the Raman response are indicated in red, with the solid lines for \(xx\), short dashes \(xy\), medium dashes \(xz\), and long dashes \(zz\). (c) Finally the slope of the SFG response with respect to \(\theta_0\) is indicated in blue, with the solid line corresponding to \(xxz\), short dashes \(xzx\), and medium dashes \(zzz\). The second column illustrates a wide distribution with \(\sigma = 50^\circ\) for the (d) IR, (e) Raman, and (f) SFG response.
3.3 Illustration of (a) a methyl group with the molecular \(c \) vector passing through its \(C_3 \) axis. \(\theta \) is the angle between the surface normal \(z \) and the \(c \) vector; the twist angle \(\psi \) is assumed to be uniformly distributed. (b) In the case of a non-uniaxial entity defining the \(ac \)-plane, the tilt and twist angles are both relevant. (c) The leucine molecule-fixed coordinates as the \((a, b, c)\) unit vectors. The \(c \) axis passes from the \(\gamma \) carbon atom (CG) to the \(\alpha \) carbon atom (CA). \(a \) passes from the \(\beta \) carbon atom to the line joining CG and CB; \(b \) is obtained by vector cross product of \(a \) and \(c \). Here I also consider the twist \(\psi \) about the \(c \) axis.

3.4 The \(x \) and \(z \) components of the IR absorption (first row), \(xx, xy, xz, \) and \(zz \) components of the Raman scattering (middle row), and \(xxz, xzx, \) and \(zzz \) components of the hyperpolarizability (bottom row) for a methyl symmetric stretch as a function of the mean tilt angle \(\theta_0 \) and half-width \(\sigma \) of a Gaussian distribution of the methyl \(C_3 \) axes. Eight combinations A–H of the parameters \(\theta_0 \) and \(\sigma \) in the Gaussian distribution are shown as annotations on the plots for comparison with Fig. 3.6 and Fig. 3.7. Positive values are shaded in red with solid contours; negative values are shaded in blue with dashed contours. Horizontal dashed white lines at \(\sigma = 7.5^\circ \) and \(\sigma = 50^\circ \) indicate distribution widths for which derivatives are displayed in Fig. 3.5.
3.5 Derivatives of the uniaxial response function plotted in Fig. 3.4 corresponding to a narrow distribution with $\sigma = 7.5^\circ$ (a) The solid green line indicates the slope of x with respect to θ_0; the dashed green line z. (b) Similarly, the slopes of the Raman response are indicated in red, with the solid lines for xx, short dashes xy, medium dashes xz, and long dashes zz. (c) Finally the slope of the SFG response with respect to θ_0 is indicated in blue, with the solid line corresponding to xxz, short dashes $xzxFy$, and medium dashes zzz. The second column illustrates a wide distribution with $\sigma = 50^\circ$ for the (d) IR, (e) Raman, and (f) SFG response.

3.6 The aliphatic stretching spectra of leucine for 4 combinations A–D of the parameters θ_0 and σ representing wide Gaussian distributions of tilt angles. Model IR absorption x and z spectra are shown in the top row. Raman xx, xy, xz, and zz scattering spectra are displayed in the middle row. The imaginary component of the complex-valued xxz, $xzxFy$, and zzz $\chi^{(2)}$ spectra corresponding to a visible-IR sum-frequency generation experiment are shown in the bottom row.

3.7 The aliphatic stretching spectra of leucine for 4 combinations E–H of the parameters θ_0 and σ representing relatively narrow Gaussian distributions of tilt angles. Model IR absorption x and z spectra are shown in the top row. Raman xx, xy, xz, and zz scattering spectra are displayed in the middle row. The imaginary component of the complex-valued xxz, $xzxFy$, and zzz $\chi^{(2)}$ spectra corresponding to a visible-IR sum-frequency generation experiment are shown in the bottom row.
3.8 The aliphatic stretching spectra of leucine obtained from molecular dynamics simulations of adsorption from solution onto two types of surfaces. Results for a superhydrophobic surface (contact angle $\approx 150^\circ$) are shown in blue; results for a moderately hydrophobic surface (contact angle $\approx 85^\circ$) are shown in red. Model IR absorption x and z spectra are shown in the top row. Raman xx, xy, xz, and zz scattering spectra are displayed in the middle row. The imaginary component of the complex-valued xxz, xzx, and zzz. $\chi^{(2)}$ spectra corresponding to a visible-IR sum-frequency generation experiment are shown in the bottom row.

4.1 These are three figures to help explain the idea of sum of difference. A is the target. B and C are candidates. Three points selected in each figure to perform sum of difference.

4.2 These are three figures to help explain the idea of sum of squared difference. A is the target. B and C are candidates. Three points selected in each figure to perform sum of squared difference.

4.3 All the possible solutions that satisfies the constraints are inside the gray area. The optimum solution happens at the vertices.

4.4 The imaginary component of alaine’s ssp response. Blue line represent alanine with orientation distribution of $\theta_0 = 60^\circ$ and $\theta_\sigma = 30^\circ$. Green line represents alanine with orientation distribution of $\theta_0 = 30^\circ$ and $\theta_\sigma = 5^\circ$.

4.5 The top panel show the spectrum that linear programming returns. The bottom panel show the difference between the result that linear programming returns and the actual spectrum.

4.6 The top panel show the spectrum that linear programming returns. The bottom panel show the difference between the result that linear programming returns and the actual spectrum.
4.7 The top panel shows the spectrum that linear programming returns. The bottom panel shows the difference between the result that linear programming returns and the actual spectrum.

4.8 Linear programming solver does not return the optimal solution. The bottom panel shows the difference at each data point. As one can see, there are some difference at some data points. This indicates the returned answer is not perfect.

4.9 The vertical axis is θ_0. The saturation of the color is representative of the difference in shape between $\theta_\sigma = 5^\circ$ and $\theta_\sigma = 30^\circ$ for that particular θ_0 of alanine. The first three panels represent the difference for ssp, sps, and ppp respectively. The bottom panel shows the difference considering all three polarizations.

4.10 The vertical axis is θ_0. The saturation of the color is representative of the difference in shape between $\theta_\sigma = 5^\circ$ and $\theta_\sigma = 30^\circ$ for that particular θ_0 of Isoleucine. The first three panels represent the difference for ssp, sps, and ppp respectively. The bottom panel shows the difference considering all three polarizations.

4.11 The vertical axis is θ_0. The saturation of the color is representative of the difference in shape between $\theta_\sigma = 5^\circ$ and $\theta_\sigma = 30^\circ$ for that particular θ_0 of methionine. The first three panels represent the difference for ssp, sps, and ppp respectively. The bottom panel shows the difference considering all three polarizations.
List of Tables

4.1 This shows whether or not the linear programming solver returns more accurate results as the intensity magnitude increases. The true column shows what the correct answer should be. The other columns show the answer that linear programming solver returns at different intensity scaling. 71
List of Symbols and Definitions

<table>
<thead>
<tr>
<th>symbol</th>
<th>definition</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>polarizability</td>
<td>$C \text{ m}^2 \text{ V}^{-1}$</td>
</tr>
<tr>
<td>λ</td>
<td>wavelength</td>
<td>m</td>
</tr>
<tr>
<td>χ</td>
<td>electric susceptibility</td>
<td>a.u.</td>
</tr>
<tr>
<td>$\chi^{(2)}$</td>
<td>second order nonlinear susceptibility</td>
<td>a.u.</td>
</tr>
<tr>
<td>ω</td>
<td>angular frequency</td>
<td>rad s^{-1}</td>
</tr>
<tr>
<td>t</td>
<td>time</td>
<td>s</td>
</tr>
<tr>
<td>μ</td>
<td>electric dipole moment</td>
<td>$C \cdot \text{ m}$</td>
</tr>
<tr>
<td>Γ</td>
<td>spectral line width</td>
<td>cm$^{-1}$</td>
</tr>
<tr>
<td>SFG</td>
<td>sum frequency generation</td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>molecular dynamics</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>direction cosine matrix</td>
<td></td>
</tr>
<tr>
<td>θ, ϕ, ψ</td>
<td>Euler angles for tilt, azimuth and twist</td>
<td>deg or rad</td>
</tr>
<tr>
<td>xyz</td>
<td>laboratory coordinate system unit vector</td>
<td></td>
</tr>
<tr>
<td>ijk</td>
<td>place holders for any of the x, y or z coordinates</td>
<td></td>
</tr>
<tr>
<td>abc</td>
<td>molecular coordinate system unit vectors</td>
<td></td>
</tr>
<tr>
<td>lmn</td>
<td>place holders for any of the a, b or c coordinates</td>
<td></td>
</tr>
</tbody>
</table>
I would like to thank:

Dr. Dennis Hore and Dr Ulrike Stege, for being very supportive, meeting with me over the skype, helping me develop a lot of key ideas in this thesis and finish the thesis in time.

My family, for always be there for me, especially when I need emotional support.

Sandra Roy, for generating the molecular properties files.

Sandra Roy, William FitzGerald and Paul Covert, for being such a great company in the lab.

PITA group, for all the fun, laughter and knowledge we share in the PITA weekly meeting.

UVic, for financial support and nurturing me for almost 8 years

Compute Canada, for the use of the Westgrid clusters, , and especially Belaid Moa for advice and support.
Chapter 1

Introduction

1.1 Background and Motivation

Vibrational spectra, especially when performed by selecting different combination of polarization states of input and/or output beams, carry a lot of structural information of molecular organization at interfaces. This is key to deeper understanding of catalytic processes [1–3], biocompatibility [4, 5], and chemical separations [6–9]. Optical methods such as infrared absorption (IR), Raman scattering and sum-frequency generation (SFG) have distinctive advantage over other experimental techniques to probing molecules at surfaces in that they are rapid, non-destructive and are able to access buried interfaces. However, various types of analysis are required to extract quantitative structural information that molecules adopt when adsorbed onto the surfaces. Vibrational spectra allows us to examine structural information of the molecule adsorbed onto a surface. Different types of vibrational spectroscopy requires different analysis processes to extract such information. Generally speaking, it involves knowing the properties of a molecule’s vibrational mode in the molecular frame, hypothesizing the orientation average of the molecules adsorbed onto the surface based on mathematical distribution function and projecting the vibrational mode properties from molecular frame to laboratory frame. The experimental spectra that match the modeled spectra are assumed to have similar, if not the same, molecular orientation [10–14, 14, 15]. The orientation average can be acquired otherwise via molecular dynamic simulation. It is a more time consuming, computationally intensive approach but it provides
a much different orientation distribution that is not constrained to any specific distribution functional. Either way, properties projection from molecular frame to laboratory frame is necessary.

Fig. 1.1 shows various interfacial environments. Scenarios such as the surface of interest is sandwiched between two condensed phases is often seen in biological environment. One of the difficulty is to achieve selectivity for the interfacial chemical species (e.g. adsorbate on a surface), ignoring signals coming from the adjacent condensed phases. In Fig. 1.1a, the signals coming from the bulk should be separated from the the signals coming from the solid surface. Fig. 1.1b illustrates Fig. 1.1a being placed in water. One may want to study the structural change of the solid surface or how water molecules orient and stack near the solid surface. Last but not least, Fig. 1.1c represents another scenario where selectivity for the interfacial chemical species is crucial.

I only want the vibrational signal from the adsorbate. The vibrational signal coming from the same molecules floating in the solution should be excluded. In the three cases mentioned above, techniques based on even orders of the electronic susceptibility tensor are suitable since they do not produce spectral response from centro-symmetric environments. In another words, molecules that are not ordered in a polar manner will not trigger a signal. Therefore, techniques such as electronic second-harmonic generation [16–21], vibrational sum-frequency generation (SFG) [22, 23, 23–29] and difference-frequency generation (DFG) [30, 31] are ideal for probing interfacial structures. Although in some scenarios a $\chi^{(2)}$ based spectroscopy technique such as SFG is an obvious choice to achieve interfacial specificity, IR and Raman scattering may also be considered in situations where the surface is dried after adsorption from solution (Fig. 1.1d) or the solution is washed away and replaced with water (Fig. 1.1e). By leveraging polarized light, IR [32–36], Raman [37–43], SHG [44–49], SFG [22, 50–59] have become techniques capable of determining quantitative structural information.

Extracting quantitative structural information involves creating a model spectra that
matches the experimental spectrum. Dipole moment and polarizability of a molecule produces the spectrum signals. They are dependent on the conformation of the molecule. That is, if the conformation of a molecule changes, the molecule’s dipole moment and polarizability change as well. It is obvious that the number of possible dipole moments and polarizability would be enormous for a big molecule. Besides that, there are also Euler angles (tilt, twist and azimuthal) that play direct part in dictating the spectroscopy response.

In this study, I limit the number of possible dipole moment and polarizability by studying small but crucial molecules, amino acids. I also limit the Euler angle parameter space by considering only tilt and twist and assume isotropy in the azimuthal angular distribution. Even with all the limitations, the number of candidate spectra is still great and the possible combination of them is even greater. Trying to build the model spectrum from a large number of candidate spectra to match the experimental spectrum would take a lot of time and computational resources. A new algorithm is in need for building a model spectrum to match the experimental one from the candidates.

Linear programming is a very promising approach to such problem. It is a method to achieve an optimal solution (maximum or minimum) whose requirements are represented in linear equality/inequality. In world war II, linear programming was used to plan military activities to reduce costs and increase enemy’s losses [60]. In this case, I want to find the best combination of the candidate spectrum that matches the experimental spectrum. With the right combination, I would have a modeled spectrum whose difference with the experimental spectrum is minimum. Linear programming problem can be solved in pseudo polynomial time [61]. It is still an open question as to whether linear programming admit a strongly polynomial-time algorithm. Even so, by formulating the spectrum modeling problem as linear programming, I can explore larger parameter space and avoid exponential running time. Since this thesis is about extracting orientation information from the vibrational spectra, the rest of this section is going to give introduction to vibrational spectra techniques (IR, Raman and SFG) and their formalism.
Figure 1.1: Various systems that may be probed with vibrational spectroscopy including the (a) air/vacuum–solid surface, (b) solid–water interface, (c) molecules in solution, adsorbed at the solid–solution interface, (d) dried samples, measured at the air/vacuum–solid surface, and (e) rinsed samples, measured at the solid–water interface. In each case, IR absorption spectroscopy, Raman scattering, and/or SFG spectroscopy may be used, depending on the focus of the study.

<table>
<thead>
<tr>
<th>System</th>
<th>Structural Focus</th>
<th>Applicable Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) (air)-solid</td>
<td>solid surface</td>
<td>SFG</td>
</tr>
<tr>
<td>(b) water-solid</td>
<td>solid surface, or water</td>
<td>SFG</td>
</tr>
<tr>
<td>(c) solution-(adsorbate)-solid</td>
<td>adsorbate</td>
<td>SFG</td>
</tr>
<tr>
<td>(d) (air)-adsorbate-solid</td>
<td>adsorbate</td>
<td>IR, Raman, SFG</td>
</tr>
<tr>
<td>(e) water-adsorbate-solid</td>
<td>adsorbate</td>
<td>IR, Raman, SFG</td>
</tr>
</tbody>
</table>
1.1.1 Infrared absorption spectra

In the harmonic approximation, the IR transition dipole moment $\vec{\mu}$ is given by the derivative of the static dipole moment μ with respect to the normal mode coordinate Q, evaluated at the equilibrium geometry.

$$\langle 1 | \vec{\mu} | 0 \rangle \approx \frac{1}{\sqrt{2m_Q \omega_Q}} \frac{\partial \mu}{\partial Q}$$ \hspace{1cm} (1.1)

where $|0\rangle$ is the vibrational ground state, $|1\rangle$ is the vibrational excited state, m is the reduced mass of the normal mode, and ω is the resonance frequency. The dipole moment μ is a vector with x, y and z. Therefore, the dipole moment derivatives can be expressed as

$$\frac{\partial \mu}{\partial Q} = \begin{bmatrix} \frac{\partial \mu_x}{\partial Q} \\ \frac{\partial \mu_y}{\partial Q} \\ \frac{\partial \mu_z}{\partial Q} \end{bmatrix}.$$ \hspace{1cm} (1.2)

The IR spectral intensity is proportional to the square of the transition dipole moment. Therefore it is also proportional to the square of the dipole moment derivative. For example, the intensity of the x-polarized absorption spectrum is given by

$$I_x(\omega_{IR}) = \sum_Q \frac{1}{2m_Q \omega_Q} \left[\frac{\partial \mu_x}{\partial Q} \right]^2 \frac{\Gamma_Q}{(\omega_{IR} - \omega_Q)^2 + \Gamma_Q^2}$$ \hspace{1cm} (1.3)

where ω_{IR} is the frequency of the probe radiation, I am assuming a Lorentzian lineshape with a spectral width of Γ, and a summation over all normal modes Q.

1.1.2 Raman scattering spectra

Similar to infrared absorption, I can represent the Raman transition polarizability $\vec{\alpha}$ as the derivative of the polarizability $\alpha^{(1)}$ with respect to the normal mode coordinate. For example, in the case of Stokes Raman scattering

$$\langle 1 | \vec{\alpha} | 0 \rangle \approx \frac{1}{\sqrt{2m_Q \omega_Q}} \frac{\partial \alpha^{(1)}}{\partial Q}$$ \hspace{1cm} (1.4)

where $|0\rangle$ is the vibrational ground state, $|1\rangle$ is the vibrational excited state, m is the reduced mass of the normal mode, and ω is the resonance frequency. The polarizability is expressed
as a matrix, as it couples \((x, y, z)\) components of the driving field with \((x, y, z)\) components of the induced dipole. The derivatives are therefore written as

\[
\frac{\partial \alpha^{(1)}}{\partial Q} = \begin{bmatrix}
\frac{\partial \alpha^{(1)}_{xx}}{\partial Q} & \frac{\partial \alpha^{(1)}_{xy}}{\partial Q} & \frac{\partial \alpha^{(1)}_{xz}}{\partial Q} \\
\frac{\partial \alpha^{(1)}_{yx}}{\partial Q} & \frac{\partial \alpha^{(1)}_{yy}}{\partial Q} & \frac{\partial \alpha^{(1)}_{yz}}{\partial Q} \\
\frac{\partial \alpha^{(1)}_{zx}}{\partial Q} & \frac{\partial \alpha^{(1)}_{zy}}{\partial Q} & \frac{\partial \alpha^{(1)}_{zz}}{\partial Q}
\end{bmatrix}.
\] \hspace{1cm} (1.5)

The intensity of the Raman scattering is proportional to the square of the transition polarizability which also means it’s proportional to the square of the polarizability derivative. For example, with the incident field linearly-polarized along \(x\), the \(x\) component of the scattered radiation is given by

\[
I_{xx}(\omega_{\text{IR}}) = \sum_{Q} \frac{1}{2m_{Q}\omega_{Q}} \left[\frac{\partial \alpha^{(1)}_{xx}}{\partial Q} \right]^{2} \frac{\Gamma_{Q}}{(\omega_{\text{IR}} - \omega_{Q})^{2} + \Gamma_{Q}^{2}}.
\] \hspace{1cm} (1.6)

where \(\omega_{\text{IR}}\) is the frequency of the probe radiation, I am assuming a Lorentzian lineshape with a spectral width of \(\Gamma\), and a summation over all normal modes \(Q\).

1.1.3 Vibrational sum-frequency spectra

Vibrational sum-frequency generation (SFG) spectroscopy has proven itself to be a useful probe of molecules in non-centrosymmetric environments such as at surfaces and buried interfaces. It is something that infrared absorption spectra and Raman scattering spectra not capable of. The intensity is proportional to the squared magnitude of the second-order susceptibility, \(|\chi^{(2)}|^{2}\). \(\chi^{(2)}\) itself is derived from the ensemble average of each molecule’s second-order polarizability, \(\alpha^{(2)}\).

When only the infrared beam is near a molecular resonance \(\alpha^{(2)}\) is given by the polarizability derivative and dipole moment derivative product.

\[
\langle 0 | \bar{\alpha} | 1 \rangle \langle 1 | \bar{\mu} | 0 \rangle \approx \frac{1}{2m_{Q}\omega_{Q}} \left(\frac{\partial \alpha^{(1)}_{lm}}{\partial Q} \otimes \frac{\partial \mu_{n}}{\partial Q} \right).
\] \hspace{1cm} (1.7)

In other words, any of the 27 elements of \(\alpha^{(2)}\) may be evaluated from

\[
\alpha^{(2)}_{lmn} \approx \frac{\partial \alpha^{(1)}_{lm}}{\partial Q} \frac{\partial \mu_{n}}{\partial Q}.
\] \hspace{1cm} (1.8)
The spectral response is represented by the following complex-valued expression.

\[
\chi_{xzx}^{(2)} = \frac{N}{\varepsilon_0} \sum_Q \frac{1}{2m_Q\omega_Q} \frac{\alpha_{xzx}^{(2)}}{\omega_Q - \omega_{IR} - i\Gamma_Q}
\]

(1.9)

in the case of an \(x\)-polarized infrared pump beam, \(z\)-polarized visible pump beam, and \(x\)-polarized SFG emission. Here \(N\) is the number of molecules contributing to the SFG process, \(\varepsilon_0\) is the vacuum permittivity, and \(i = \sqrt{-1}\).

1.2 Aims and Scope

Linear programming is a type of optimization technique that can deal with large scale decision problems of complexity. Simplex algorithm, which is a widely adapted to solve linear program efficiently, is considered one of the greatest algorithm invented in the 20th century [62]. There exists algorithms that can solve linear programming problem in weakly polynomial time, such as ellipsoid methods [63] and interior-point techniques [64]. However, whether or not there is a strong polynomial time algorithm to solve general linear programming problem is still one of the biggest unanswered question [65]. Despite linear programming’s great potential to solve decision problem efficiently, it had not been intensively discussed and studied until after 1947. Fourier had published a paper that solves the linear programming in 1837, but not much study follows up after that [60]. The thesis is not about linear programming itself, but rather how to use it to extract quantitative orientation information from vibrational spectra. That is, how to formulate a linear programming. In chapter 4, I gave a introduction to linear programming as to what is it and why it is relevant. Along with detailed description in a step by step manner including formalism to how to formulate a linear programming problem. However, it is extremely important to create quality spectra candidates. Without them, the results returned by linear programming would still be meaningless. Therefore, two chapters are devoted to discuss the different aspects of generating vibrational spectra.

The rotation from one Cartesian coordinate system to another has been a well-
developed method [66–68]. However, in practice, the process is often very confusing because the rotation operator expression changes drastically as the convention system changes. To make things worse, identifying which convention system is used in a particular formula is not straight forward. In section 2.2, I revisit the topic of coordinate transformation and show how to do coordinate transformation without confusion. By applying the knowledge from section 2.2, I demonstrate how to project dipole moment and polarizability derivatives from molecular frame to laboratory frame with clearly described convention and formalism in section 2.3. Section 2.4 discussed two approaches to deriving orientation distribution for generating simulated spectrum.

There have been many studies discussing surface specificity of SHG/SFG [15, 22, 23, 49, 69, 70]. However, there is little for IR and Raman. In chapter 3, I compare the ability of IR, Raman and SFG to detecting molecular orientation changes. First, I establish the formalism of generating the spectroscopy responses for each techniques subject to orientation distribution. Secondly, I present results considering gaussian distribution of methyl tilt angles on a surface with common methyl symmetric vibrational mode. Next I present results of leucine’s entire aliphatic C-H stretching mode when leucine is absorbed onto a surface. Lastly, I investigate the scenario where I sample the molecular tilt and twist angle distribution from molecular dynamic simulations instead of using analytical distribution function such as gaussian distribution function.
Chapter 2

Methods

2.1 Vibrational Spectrum simulation overview

Atoms can be considered the building blocks for bigger molecules. All atoms are comprised of protons, neutrons and electrons. Most of an atom’s mass is centered at the atom space, taking up only a tiny portion of the total atom space. The rest of the space is taken up by electrons. Although electrons are much, much lighter than protons and neutrons, they play a very important role in chemical reaction. Atoms bind to one another stably by losing or gaining electrons, forming molecules. Electronic structure is the state of motion of the electrons. Electrons are not stationary like the nuclei of an atom. They are constantly moving. Therefore, at different times, a molecule has different electronic structures and different energies associated with each structure. The fact that the electrons are constantly mobile means that the electron density in the molecule is uneven, which in turn, causes the molecule to have electronic polarity. This phenomenon can be described mathematically by

\[
\mu = \alpha \times E_0 \tag{2.1}
\]

The expanded form

\[
\begin{bmatrix}
\mu_x \\
\mu_y \\
\mu_z
\end{bmatrix}
= \begin{bmatrix}
\alpha_{xx} & \alpha_{xy} & \alpha_{xz} \\
\alpha_{yx} & \alpha_{yy} & \alpha_{yz} \\
\alpha_{zx} & \alpha_{zy} & \alpha_{zz}
\end{bmatrix}
\times
\begin{bmatrix}
E_x \\
E_y \\
E_z
\end{bmatrix} \tag{2.2}
\]
\(\mu \) is a quantity called dipole moment, which is the electronic polarity of the molecule at a given state. The dipole moment is induced when there is uneven distribution of electronic cloud in the molecule. It is a product of \(\alpha \) and \(E \). \(\alpha \) is a quantity called polarizability, which describes the molecule’s ability to be polarized in an electromagnetic field. \(E \) is the electromagnetic field in which the molecule resides. In the world of vibrational spectroscopy, dipole moment and polarizability are very important in that their derivatives gives signals to vibrational spectroscopic techniques such as IR, Raman and SFG.

A very important intermediate step is to come up with dipole moment derivatives and polarizability derivatives. IR is essentially governed by sum of dipole moment derivatives squared. Raman is essentially governed by sum of polarizability squared and SFG is essentially governed by the square of absolute value of dipole moment derivatives and polarizability product. The following sections will explain in details the expressions of the three spectrum techniques.

The approach to obtaining the derivatives goes like this. The program chosen to do electronic structure calculation is GAMESS [71]. First, do an hessian calculation on the molecule, then one will get equilibrium coordinates, all of the vibrational modes along with their frequencies and displacements. Second, imagine taking 7 snapshots when the molecule is vibrating in a specific mode. At each moment the dipole moment and polarizability are different. The values are obtained by doing a force field calculation for each moment. Interpolate the dipole moment and polarizability at those moment and differentiate the corresponding function; one can therefore obtains the dipole moment derivatives and polarizability derivatives. These values are crucial in simulating IR, Raman and SFG spectrums as discussed before. A lot of content in this chapter is based on my previously co-authored paper “Rotations, Projections, Direction Cosines, and Vibrational Spectra” [72].
2.2 Coordinate transformation

As mentioned in the previous section, GAMESS is the software we choose to gather dipole moment and polarizability. Dipole moment and polarizability are both vectors that are defined in the GAMESS’s coordinate system, which I call it molecular frame. However, in the system where the surface exists (laboratory environment), I call it laboratory frame. Vibrational spectrum may be modeled from molecular properties such as dipole moment and polarizability. Therefore, doing rotation operations from molecular to laboratory coordinate systems are needed. Although projecting coordinates from one Cartesian coordinate system to another has been discussed and practiced in many places, it is still very confusing sometimes. This is mainly because different conventions employed in the expression will make the projection expressions appear slightly different yet the results vary drastically. It is also not a simple task to tell which convention is employed in a particular formula. In this section, I describe a systematic way to transform molecular properties. To give concrete examples, two scenarios are considers. First, comparing amplitudes in a vibrational spectrum to another model with orientation distribution function that is to be parameterized. Second, modeling of a spectra based on the results of molecular dynamics simulation.

2.2.1 Unit Vectors in the lab and molecular frames

Let lab frame Cartesian coordinates be x, y, z and molecular frame coordinates be a, b, c. The lab frame unit vectors are

$$\hat{x} \equiv \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$ (2.3a)

$$\hat{y} \equiv \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$ (2.3b)
Figure 2.1: Illustration of vectors that may be used to define the molecular-frame unit vectors for a water molecule. (a) In the case where both O–H bond lengths are known to be fixed and equal, one can define \(\vec{c} \) as the vector that runs from the midpoint \(M \) of the two H atoms to the O atom. \(\vec{a} \) is then simply defined between the two H atoms. (b) In the case where the bond lengths may be unequal, it may be simpler to define \(\vec{a} \) first, between the two H atoms. \(\vec{c} \) would then originate from a point \(P \) along \(\vec{a} \), such that the vector defined between \(P \) and the O atom is perpendicular to \(\vec{a} \). These decisions should follow from whatever is most clear or logical for a particular molecule. In both cases, \(\vec{b} \) may be obtained in the last step from the cross product relationship between the unit vectors in a right-handed coordinate system.

\[
\hat{z} \equiv \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
\]

(2.3c)

If the molecule of interest is a linear shape, it would be very confusing if I choose something other than the its long axis. Let’s call this long axis \(c \); the tilt angle which brings the \(z \) into \(c \) is \(\theta \). If the molecule is ”cigar-like”, then it doesn’t matter how you choose your \(a \) and \(b \) molecular axis. As long as \(a \), \(b \) and \(c \) are all perpendicular to one another and follows the right-handed coordinate system form, which is defined as

\[
\hat{a} \times \hat{b} = \hat{c}
\]

(2.4)

However, if the molecule of interest has a flat part, it is highly recommended to choose \(a \) or \(b \) that lies in the plane of the flat region, as shown in 2.1.

Now that I have vectors \(\vec{a}, \vec{b}, \vec{c} \) vectors in molecular frame, let’s turn them into unit vectors \(\hat{a}, \hat{b}, \hat{c} \).

\[
\hat{a} = \frac{\vec{a}}{||\vec{a}||}
\]

(2.5a)

\[
\hat{c} = \frac{\vec{c}}{||\vec{c}||}
\]

(2.5b)
It’s easy to calculate the unit vector b from a and c. This is done by re-arranging Eq. 2.4.

$$\hat{b} = \hat{c} \times \hat{a} \quad (2.5c)$$

Since \hat{a} and \hat{c} are unit vectors, the cross product of \hat{a} and \hat{c} is also a unit vector. So there is no need to normalize \vec{b}. The order of the cross product is extremely important. $\hat{c} \times \hat{a} = \hat{b}$ and $\hat{a} \times \hat{c} = -\hat{b}$; the former is a right-handed coordinate system and the latter one is a left-handed coordinate system. I now have the molecular frame unit vectors.

$$\hat{a} \equiv \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \quad (2.6a)$$

$$\hat{b} \equiv \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \quad (2.6b)$$

$$\hat{c} \equiv \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} \quad (2.6c)$$

With Eq. 2.3, I have a complete set of unit vectors in both lab and molecular frame.

2.2.2 Direction cosine matrix

The direction cosine matrix (DCM) is a matrix that can be used to directly transform Eq. 2.3 into Eq. 2.6. In fact, all the vectoral properties can be transformed from coordinate system represented by Eq. 2.3 (lab frame) to coordinate system represented by Eq. 2.6 (molecular frame). The matrix gets its name because each element is a cosine between vector i in the lab frame and vector l in the molecular frame.

$$D = \begin{bmatrix}
\cos \xi_{xa} & \cos \xi_{xb} & \cos \xi_{xc} \\
\cos \xi_{ya} & \cos \xi_{yb} & \cos \xi_{yc} \\
\cos \xi_{za} & \cos \xi_{zb} & \cos \xi_{zc}
\end{bmatrix} \quad (2.7)$$

I can view the matrix in a different way. Take the top left $D_{1,1}$ as an example.

$$\cos \xi_{xa} = \frac{\hat{x} \cdot \hat{a}}{||\hat{x}|| \cdot ||\hat{a}||} = \frac{x_1 a_1 + x_2 a_2 + x_3 a_3}{1 \cdot 1} = a_1 \quad (2.8)$$
Because x_1 is one and x_2 and x_3 are zero, the only surviving term is a_1. Repeating the same process for all of the elements in the matrix, the final DCM may be written in a very compact form

$$D = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}. \quad (2.9)$$

The inverse of the DCM is also very important, as it takes the vectoral properties from molecular frame into lab frame. Since the DCM is an orthogonal matrix, its inverse is also its transpose

$$D^{-1} = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = D^T. \quad (2.10)$$

As one can tell, D and D^{-1} are very similar. It is important not to confuse one with the other. Bear in mind that the D provides transformation from lab frame to molecular frame.

$$D \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

and D^{-1} provides transformation from molecular frame to lab frame.

$$D^{-1} \cdot \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

With these two equations, one can quickly do a sanity test on the correctness of rotation and identify DCM and inverse DCM.

2.2.3 Obtaining the Euler angles

The Euler angles is a popular definition and convention for paramerizing rotations. It is by no means, the only choice. But Euler angles do permit nice visualization in three dimensions. In the previous section, I construct the form of DCM. It so happens that I can extract the Euler angles from the DCM. I have already defined θ as the tilt angle, it is the angle between z and c. There are two more angles ϕ and ψ. ϕ is the azimuthal angle of rotation about z. To be more precise, it is the angle between x and the projection of a into the xy-plane. ψ is the twist angle about c. The definitions of these angles are
Figure 2.2: The Euler angles represented as the spherical polar angles θ, ϕ and ψ. [66]

Figure 2.3: Illustration of the 3 successive rotations that transform the lab (x, y, z) coordinate system into the molecular (a, b, c) frame. In the case of an intrinsic set of rotations (top row), one performs $R_z(\phi)$ a rotation by ϕ about z, $R_{y'}(\theta)$ rotation by θ about y', and finally $R_c(\psi)$ rotation by ψ about c. In the case of an extrinsic set of rotations (bottom row), one performs $R_z(\psi)$ a rotation by ψ about z, $R_y(\theta)$ rotation by θ about y, and finally $R_z(\phi)$ rotation by ϕ about z. [66]

...illustrated in Fig. 2.2. Technically speaking, both ϕ and ψ are both azimuthal angles about different vectors. To avoid confusion, I refer only ϕ as azimuth and ψ as twist angle. Three successive rotations can turn molecular frame into lab frame, as illustrated in Fig. 2.3 The first operation is a rotation by about the molecular c axis, followed by a rotation about N, the line of nodes that is defined by the current location of the molecular b axis (see Fig. 2.3b). Finally a rotation is performed about the lab frame z axis. This follows the right-handed convention, rotating counter-clockwise when looking towards the origin. There are two conventions for describing and applying the rotation operators: intrinsic and extrinsic.
Intrinsic rotations are applied to a rotating coordinate system, where subsequent rotations are performed on axes that exist only as a result of a prior rotation operation. On the other hand, extrinsic rotations are applied about a fixed frame. In other words, the successive rotation operators are always about \(x\), \(y\), or \(z\) axes, even in intermediate step. Extrinsic rotations can be easily described by the three following operators

\[
R_z(\psi) = \begin{bmatrix}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{bmatrix} \tag{2.11a}
\]

\[
R_y(\theta) = \begin{bmatrix}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{bmatrix} \tag{2.11b}
\]

\[
R_z(\phi) = \begin{bmatrix}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{bmatrix} \tag{2.11c}
\]

These operators represent rotating about a fixed frames’ \(Z\), \(Y\), \(Z\) axis for \(\psi\), \(\theta\) and \(\phi\) respectively. Having seen the Fig. 2.3, one may think the rotation from molecular frame to lab frame is the product of the three extrinsic operators in the order they are listed. This is a common misunderstanding. The rotations illustrated in Fig. 2.3 are not extrinsic rotations. Extrinsic rotations applied to fixed frames. The rotations shown in Fig. 2.3 are performed on axis that is the result of the previous rotation. Luckily, there is a straightforward relationship between extrinsic and intrinsic rotations. Any extrinsic rotation is equivalent to an intrinsic rotation by the same angles but with inverted order of elemental rotations, and vice-versa. Therefore, the intrinsic rotations illustrated in Fig. 2.3 can be described by extrinsic operator as

\[
D(\theta, \phi, \psi) = R_z(\phi) \cdot R_y(\theta) \cdot R_z(\psi) = \begin{bmatrix}
\cos \phi \cos \theta \cos \psi - \sin \phi \sin \psi \\
\sin \phi \cos \theta \cos \psi + \cos \phi \sin \psi \\
-\cos \psi \sin \theta
\end{bmatrix} \begin{bmatrix}
\cos \phi \cos \theta \sin \psi - \sin \phi \cos \theta \\
\sin \phi \cos \theta \sin \psi + \cos \phi \cos \psi \\
-\sin \phi \sin \theta
\end{bmatrix} \begin{bmatrix}
\sin \theta \cos \phi \\
\sin \theta \sin \phi \\
\cos \theta
\end{bmatrix}. \tag{2.12}
\]
D is a function of the Euler angles, for brevity I will write only D instead of \(D(\theta, \phi, \psi) \).

Looking closely at Eq. 2.12 The Euler angles may be obtained from

\[
\theta = \cos^{-1} D_{3,3} \quad (2.13a)
\]

\[
\phi = \tan^{-1} \frac{D_{2,3}}{D_{1,3}} \quad (2.13b)
\]

\[
\psi = \tan^{-1} \frac{D_{3,2}}{-D_{3,1}}. \quad (2.13c)
\]

Note that quadrant preservation is tricky in the arctangent evaluation as both \(\phi \) and \(\psi \) are defined in the interval \((-\pi, \pi)\). For example, \(\arctan(1/1) \) is \(\pi/4 \) rad or \(45^\circ \). \(\arctan(-1/-1) \) will also be evaluated to \(\pi/4 \) rad or \(45^\circ \) as well where it clearly should be \(3\pi/4 \) rad, or \(135^\circ \). To prevent this from happening, \(\arctan2 \) function is devised to preserving the quadrant by considering the signs of both vector components.

2.3 Projecting molecular properties into the lab frame

Here I deal with the situation where an optical property is known (possibly through an electronic structure calculation) in the \((a, b, c)\) molecular frame defined by the electronic structure calculation program (GAMESS). I wish to construct spectra based on snapshots of a molecular dynamics simulation, where the coordinates of the molecule are given in the laboratory frame.

2.3.1 Infrared absorption spectra

In the harmonic approximation, the IR transition dipole moment \(\mu \) is governed by the derivative of the dipole moment \(\mu \) evaluated at the equilibrium geometry.

\[
\langle 1 | \bar{\mu} | 0 \rangle \approx \frac{1}{\sqrt{2m_\omega \omega}} \frac{\partial \mu}{\partial Q} \quad (2.14)
\]

where \(|0\rangle \) is the vibrational ground state, \(|1\rangle \) is the vibrational excited state, \(m \) is the reduced mass of the normal mode, and \(\omega \) is the resonance frequency. The dipole moment is a
vectorial quantity (tensor of rank 1) with \(a, b \) and \(c \) components in the Cartesian molecular frame, and so the derivative becomes

\[
\frac{\partial \mu}{\partial Q} = \begin{bmatrix}
\frac{\partial \mu_a}{\partial Q} \\
\frac{\partial \mu_b}{\partial Q} \\
\frac{\partial \mu_c}{\partial Q}
\end{bmatrix}.
\] \tag{2.15}

As the intensity of the IR absorption is proportional to the square of the dipole moment, I wish to compute elements of \((\partial \mu / \partial Q)^2\) in the lab \((i, j, k)\) frame. The requires transformation as in

\[
\frac{\partial \mu}{\partial Q}(\theta, \phi, \psi) \bigg|_{ijk} = \mathbf{D} \cdot \frac{\partial \mu}{\partial Q} \bigg|_{lmn} \tag{2.16}
\]

Here I can see that \(\partial \mu / \partial Q \) in the lab frame is a function the Euler angles. This is equivalent to writing

\[
\frac{\partial \mu_i}{\partial Q}(\theta, \phi, \psi) = \sum_{l} D_{il} \frac{\partial \mu_l}{\partial Q}. \tag{2.17}
\]

2.3.2 Raman scattering spectra

Based on the formalism developed in the above section, I can consider that the Raman transition polarizability \(\bar{\alpha} \) may approximated as the derivative of tge polarizability \(\alpha^{(1)} \) with respect to the normal mode coordinate [67]. For example, in the case of Stokes Raman scattering

\[
\langle 1|\bar{\mu}|v\rangle\langle v|\bar{\mu}|0\rangle \equiv \langle 1|\bar{\alpha}|0\rangle \approx \frac{1}{\sqrt{2mQ\omega_Q}} \frac{\partial \alpha^{(1)}}{\partial Q} \tag{2.18}
\]

where the ground and first excited vibrational states are connected through the virtual electronic state \(|v\rangle\). The polarizability can be expressed as a matrix.

\[
\frac{\partial \alpha^{(1)}}{\partial Q} = \begin{bmatrix}
\frac{\partial \alpha_{aa}^{(1)}}{\partial Q} & \frac{\partial \alpha_{ab}^{(1)}}{\partial Q} & \frac{\partial \alpha_{ac}^{(1)}}{\partial Q} \\
\frac{\partial \alpha_{ba}^{(1)}}{\partial Q} & \frac{\partial \alpha_{bb}^{(1)}}{\partial Q} & \frac{\partial \alpha_{bc}^{(1)}}{\partial Q} \\
\frac{\partial \alpha_{ca}^{(1)}}{\partial Q} & \frac{\partial \alpha_{cb}^{(1)}}{\partial Q} & \frac{\partial \alpha_{cc}^{(1)}}{\partial Q}
\end{bmatrix}. \tag{2.19}
\]

The intensity of the Raman scattering is proportional to the square of the lab frame polarizability derivative. For example, with the incident field linearly-polarized along \(x \),
the x component of the scattered radiation is given by

\[I_{xx}(\omega_{IR}) = \sum_Q \frac{1}{2m_Q \omega_Q} \left[\frac{\partial \alpha_{xx}^{(1)}}{\partial Q} \right]^2 \frac{\Gamma_Q}{(\omega_{IR} - \omega_Q)^2 + \Gamma_Q^2}. \quad (2.20) \]

To project $\alpha^{(1)}$ into the lab frame on an element-by-element basis

\[\frac{\partial \alpha_{ij}^{(1)}}{\partial Q}(\theta, \phi, \psi) = \sum_{l} \sum_{m} D_{il} D_{jm} \frac{\partial \alpha_{lm}^{(1)}}{\partial Q}. \quad (2.21) \]

There are 9 terms in the above expression, as each of $\alpha_{aa}^{(1)}$, $\alpha_{ab}^{(1)}$, all the way to $\alpha_{cc}^{(1)}$ contribute to $\alpha_{xx}^{(1)}$. A similar expression then provides the 9 terms required to calculate $\alpha_{xy}^{(1)}$, and so on. 81 terms must be evaluated to complete $\alpha^{(1)}$ in the lab frame. There is a more efficient and straightforward way to do this.

\[\frac{\partial \alpha_{ijk}^{(1)}}{\partial Q}(\theta, \phi, \psi) = D \cdot \frac{\partial \alpha_{lmm}^{(1)}}{\partial Q} \bigg|_{lmm} \cdot D^{-1} \quad (2.22) \]

As a result, transforming $\partial \alpha^{(1)}/\partial Q$ from molecular frame into the lab frame requires only the multiplication of 3 matrices.

2.3.3 Vibrational sum-frequency spectra

Vibrational sum-frequency generation (SFG) spectroscopy has proven itself to be a useful probe of molecules in non-centrosymmetric environments such as at surfaces and buried interfaces. [23, 24, 28, 73–75] The intensity is proportional to the squared magnitude of the second-order susceptibility, $|\chi^{(2)}|^2$. $\chi^{(2)}$ itself is derived from the ensemble average of each molecule’s second-order polarizability, $\alpha^{(2)}$. [74] in the case of an anti-Stokes Raman transition from $|1\rangle$ to $|0\rangle$. When only the infrared beam is near a molecular resonance $\alpha^{(2)}$ is given by the tensor product

\[\langle 0|\bar{\alpha}|1\rangle\langle 1|\bar{\mu}|0\rangle \approx \frac{1}{2m_Q \omega_Q} \left(\frac{\partial \alpha^{(1)}}{\partial Q} \otimes \frac{\partial \mu}{\partial Q} \right). \quad (2.23) \]

In other words, any of the 27 elements of the tensor $\alpha^{(2)}$ may be evaluated from

\[\alpha_{lmn}^{(2)} \approx \frac{\partial \alpha_{lm}^{(1)}}{\partial Q} \frac{\partial \mu_n}{\partial Q}. \quad (2.24) \]
The spectral response is obtained in the form of the complex-valued second-order susceptibility

\[\chi^{(2)}_{xzx} = \frac{N}{\varepsilon_0} \sum_Q \frac{1}{2m_Q \omega_Q} \frac{\alpha^{(2)}_{xzx}}{\omega_Q - \omega_{\text{IR}} - i\Gamma_Q} \]

(2.25)

in the case of an \(x \)-polarized infrared pump beam, \(z \)-polarized visible pump beam, and \(x \)-polarized SFG emission. Here \(N \) is the number of molecules contributing to the SFG process, \(\varepsilon_0 \) is the vacuum permittivity, and \(i = \sqrt{-1} \).

I have two options for projecting \(\alpha^{(2)} \) into the lab frame. If I first form the complete \(3 \times 3 \times 3 \) tensor in the molecular frame, then I have no choice but to use the general expression for the coordinate transformation

\[\alpha^{(2)}_{ijk}(\theta, \phi, \psi) = \sum_{l} \sum_{m} \sum_{n} D_{il} D_{jm} D_{kn} \alpha^{(2)}_{lmn}. \]

(2.26)

Once again, note that there are 27 elements in the above expression. Each of \(\alpha^{(2)}_{aaa}, \alpha^{(2)}_{aab}, \) up to and including \(\alpha^{(2)}_{ccc} \) contribute to \(\alpha^{(2)}_{xxx} \). If I want to calculate another element, such as \(\alpha^{(2)}_{xxz} \), another 27 terms must be considered. If the above process is repeated 27 times, I can have the full \(\alpha^{(2)} \) tensor in the lab frame, requiring \(27 \times 27 = 729 \) terms to be calculated. Implementing Eq. 2.26 directly requires writing 6 nested loops.

The more compact way of doing this is to first project \(\mu \) into the lab frame as in Eq. 2.16, project \(\alpha^{(1)} \) into the lab frame (preferably using Eq. 2.22), and then form the tensor product

\[\alpha^{(2)}(\theta, \phi, \psi)_{ijk} = \frac{\partial \alpha^{(1)}(\theta, \phi, \psi)}{\partial Q} \bigg|_{ijk} \otimes \frac{\partial \mu}{\partial Q} (\theta, \phi, \psi) \bigg|_{ijk} \]

(2.27)

2.4 Orientation distribution

How do molecules orient on the surface determines what the spectrum looks like. It is unlikely that all the molecules orient in the exact same way. To simulate vibrational spectrum, I need to come up with reasonable orientation distribution for the molecule being studied. There are two approaches. There is numerical approach which uses molecular
dynamic simulation and analytic method which follows specific distribution function, in this case, Gaussian distribution.

2.4.1 Numerical method - Molecular Dynamic (MD) Simulation

MD simulation is one way to find out the populations of different orientation, which is essential for generating vibrational spectra. The benefit of this is that it adds flexibility and is not constrained to specific functional form. However, it is much more time consuming. A few seconds worth of MD simulation could take days or months to generate depending on the size of the molecule and the complexity of the environment. Another way is to assume the population of different orientation follows a specific distribution function. Gaussian distribution is a good example and will be discussed in more detail in the next section.

The program that is chosen to perform molecular dynamic simulation is GROMACS. By specifying system such as the molecule of interest, solution type and surface type, GROMACS simulates the physical movement of molecules in the system with Newtonian physics. The GROMACS output file is a series of frames. Each frame is a snapshot of the system at a particular time. The location and orientation of a particular molecule is represented by the Cartesian coordinates of each atoms in the molecule. Since I am only interested in molecules on the surface, only frames with molecules close to the surface is selected to study. The information to extract from the frames are how the molecules orient on the surface (Euler angles) in the form of orientation distribution. Keep in mind that the electronic structure calculation is done in one coordinate system (molecular frame) and the MD simulation is done in yet another coordinate system (laboratory frame). To properly generate predicted vibrational spectra based on the orientation distribution obtained from MD simulation, I need to project the vectoral values in molecular frame such as dipole moment and polarizability into laboratory frame.
2.4.2 Analytic method - Gaussian Distribution

This is a counterpart of the MD simulation. With MD, I go through each frame to obtain the orientation distribution. Here, it is assumed that the molecule orientation distribution follows Gaussian distribution. If only θ is being considered, then the distribution function can be expressed as Eq. 2.28.

$$f(\theta) = \exp \left[-\frac{(\theta - \theta_0)^2}{2\sigma^2} \right]$$ \hspace{1cm} (2.28)

The θ_0 dictates the mean orientation population and the σ dictates deviation from the mean orientation population. The orientation distribution gathered from MD does not necessarily resemble that of any distribution function. Simulating orientation distribution with distribution function is faster. A numerical approach (molecular dynamic simulation) requires considering every single frame to aggregate a final orientation distribution. Where as in analytic approach (Gaussian distribution), orientation distribution can be derived directly from a math expression.
Chapter 3

Sensitivity of different techniques to orientation distribution

3.1 Overview

In chapter 2, I have discussed some of the aspects of creating vibrational spectrum, such as properties projection and how to obtain mock orientation distribution. In this chapter, I am going to compare the orientation sensitivity of different spectroscopy techniques. This is done by generating spectra for IR, Raman and SFG starting with a simple orientation distribution of a single vibrational mode, leading up to a complex orientation distribution with multiple vibrational modes and then comparing their spectra response sensitivity to the features of the orientation distribution. The result of this chapter allows us to choose appropriate spectroscopy technique for generating spectrum that is rich in orientation information. This chapter is based on my previously co-authored paper “IR Absorption, Raman Scattering, and IR-vis Sum-frequency Generation Spectroscopy as Quantitative Probes of Surface Structure” [76].

3.2 Formalism and molecular response

3.2.1 Vibrational Response

The formalism for IR, Raman and SFG spectrum has been developed and shown in section 1.1. I will discuss it briefly here again. In the case of IR, the response intensity of x-
polarized absorption spectrum under harmonic approximation is governed by

\[I_x(\omega_{\text{IR}}) \propto N \sum_q \frac{1}{2m_q\omega_q} \left(\frac{\partial \mu_x}{\partial Q} \right)_q^2 \Gamma_q^2 \left(\omega_{\text{IR}} - \omega_q \right)^2 + \Gamma_q^2 \] (3.1)

\(I_x \) represents \(x \)-polarized intensity. The same expression applies to \(I_y \) and \(I_z \). \(\omega_{\text{IR}} \) is the frequency of the probe radiation. \(\mu \) is the dipole moment. \(m_q, \omega_q, \Gamma_q, Q_q \) are the reduced mass, resonance frequency, homogeneous linewidth, and normal mode coordinate of the \(q \)th vibrational mode. \(x \)-polarized Raman spectrum has similar approximated expression

\[I_{xx}(\Delta \omega) \propto N \sum_q \frac{1}{2m_q\omega_q} \left(\frac{\partial \alpha_{xx}^{(1)}}{\partial Q} \right)_q^2 \Gamma_q^2 \left(\Delta \omega - \omega_q \right)^2 + \Gamma_q^2 \] (3.2)

where \(\Delta \omega \) is the Stokes Raman shift and \(\alpha_{xx}^{(1)} \) is one of the 9-element polarizability tensor.

The last technique is visible-infrared sum-frequency generation (SFG). The response is second-order susceptibility tensor \(\chi^{(2)} \). For instance, \(\chi^{(2)}_{xxx} \) is probed in such way that a \(x \)-polarized visible incoming beam at frequency \(\omega_{\text{vis}} \) and \(x \)-polarized infrared beam incoming with frequency \(\omega_{\text{IR}} \) are incident to the sample, and the \(x \)-component of the SFG at frequency \(\omega_{\text{SFG}} = \omega_{\text{vis}} + \omega_{\text{IR}} \) is selected for detection. When only the infrared beam is close to a molecular resonance, the response intensity is governed by

\[\chi^{(2)}_{xxx}(\omega_{\text{IR}}) = \frac{N}{\varepsilon_0} \sum_q \frac{1}{2m_q\omega_q} \left(\frac{\partial \alpha_{xx}^{(1)}}{\partial Q} \right)_q \left(\frac{\partial \mu_x}{\partial Q} \right)_q \frac{1}{\omega_q - \omega_{\text{IR}} - i\Gamma_q} \] (3.3)

As one can see, \(\chi^{(2)} \) is a complex value because of \(i = \sqrt{-1} \) in the denominator. Therefore, the real and imaginary components of the second-order susceptibility can be determined.

The SFG response can be shown as \(\text{Im}[\chi^{(2)}_{xxx}(\omega_{\text{IR}})] \).

3.2.2 Molecular orientation distribution

General description. All of the molecular properties such as dipole moments and polarizability derivatives are defined in the molecular frame \((x, y, z) \). However, they are only valuable when they are put in the right context, which is the laboratory frame. The transition involves projecting these values into the lab frame based on their Euler angles
\((\theta, \phi, \psi) \) in the lab frame. These angles can be obtained through molecular dynamic simulation (numerical approach) or orientation distribution function (analytic approach). For example, if the coordinates of all the molecules are known, I can compute \(x \)-polarized IR as

\[
N \left\langle \left[\frac{\partial \mu_x}{\partial Q} \right]^2 \right\rangle = \sum_{\text{molecules}} \left[\frac{\partial \mu_x}{\partial Q}(\theta, \phi, \psi) \right]^2
\]

(3.4)

The projection into the lab frame dipole moment derivative can be expressed as

\[
\frac{\partial \mu_x}{\partial Q}(\theta, \phi, \psi) = D_{1,1}(\theta, \phi, \psi) \frac{\partial \mu_a}{\partial Q} + D_{1,2}(\theta, \phi, \psi) \frac{\partial \mu_b}{\partial Q} + D_{1,3}(\theta, \phi, \psi) \frac{\partial \mu_c}{\partial Q}
\]

(3.5)

where \(D \) is a \(3 \times 3 \) direction cosine matrix. Similar expressions exist for Raman and SFG, although in more complex forms. In the case of analytic approach where an orientation distribution is determined by an orientation distribution function instead of deriving from individual coordinates, the dipole moment can be computed as

\[
\left\langle \left[\frac{\partial \mu_x}{\partial Q} \right]^2 \right\rangle \approx N_c \int_\Omega f(\Omega) \left[\frac{\partial \mu_x}{\partial Q}(\Omega) \right]^2 \partial \Omega
\]

\[
eq \int_0^{2\pi} \int_0^{2\pi} \int_0^{\pi} f(\theta, \phi, \psi) \left[\frac{\partial \mu_x}{\partial Q}(\theta, \phi, \psi) \right]^2 \sin \theta \partial \theta \partial \phi \partial \psi
\]

(3.6)

Isotropic averages. In a bulk liquid phase, such as water. There is no preference in orientation. All Euler angles are uniformly distributed. Therefore achieving isotropic distribution. The spectral response in the environment is very different for IR, Raman and SFG. For IR, all elements of the dipole moment derivative are equal and they represent the average of the molecular frame dipole moment derivative.

\[
\left\langle \left[\frac{\partial \mu_x}{\partial Q} \right]^2 \right\rangle = \left\langle \left[\frac{\partial \mu_y}{\partial Q} \right]^2 \right\rangle = \left\langle \left[\frac{\partial \mu_z}{\partial Q} \right]^2 \right\rangle = \frac{1}{3} \left(\left[\frac{\partial \mu_a}{\partial Q} \right]^2 + \left[\frac{\partial \mu_b}{\partial Q} \right]^2 + \left[\frac{\partial \mu_c}{\partial Q} \right]^2 \right)
\]

(3.7)
In the case of Raman scattering, all 3 values $\left\langle \left[\partial \alpha^{(1)}_{ij} / \partial Q \right]^2 \right\rangle$ with $i = j$ are equivalent, as are the 6 values for which $i \neq j$. As a result, any two elements of these sets may be used to calculate the Raman depolarization ratio in solution [72]. Sum-frequency generation requires a net polar orientation to break inversion symmetry. The technique is valued for its surface specificity as all 21 achiral elements of $\chi^{(2)}_{ijk}$ (excluding the 6 elements for which $i \neq j \neq k$) have an isotropic average of zero.

Uniaxial tilt and twist distributions. In most cases, I assume isotropy distribution in the azimuthal angle ϕ since it is the most common scenario. This may not be true on the surfaces that are rubbed or striped causing alignment in the plane of the surface. Other than that, symmetry may only break in the up-down direction. If I assume isotropic orientation distribution in both ϕ and ψ and consider tilt angle θ follows Gaussian distribution. The resulting orientation distribution function would be

$$f(\theta) = N_c \exp \left[-\frac{(\theta - \theta_0)^2}{2\sigma^2} \right] \quad (3.8)$$

Gaussian distribution looks like a bell curve. In this context, θ_0 is the center of the bell-curve (mean tilt angle). σ is the half-width of the bell curve. N_c is a normalization constant. Taking the x-polarized IR absorption spectrum as an example, the response is calculated according to Eq. 3.6. When the half-width σ is small, the bell curve will look like a tall thin peak. If the width is infinitesimal $\delta(\theta - \theta_0)$, I end up with the $\left\langle [\partial \mu_x / \partial Q]^2 \right\rangle = \left\langle [\partial \mu_y / \partial Q]^2 \right\rangle$. That is, identical x- and y-polarized IR absorption spectra. For Raman spectra, I am still considering scenarios where far from electronic resonance, Raman tensor being symmetric. Therefore, I still have $\left\langle [\partial \alpha^{(1)}_{ij} / \partial Q]^2 \right\rangle = \left\langle [\partial \alpha^{(1)}_{ji} / \partial Q]^2 \right\rangle$. However, I now have four unique elements instead of two in the isotropic case. They are
\[
\left\langle \left[\frac{\partial \alpha^{(1)}_{xx}}{\partial Q} \right]^2 \right\rangle = \left\langle \left[\frac{\partial \alpha^{(1)}_{yy}}{\partial Q} \right]^2 \right\rangle \quad (3.9a)
\]
\[
\left\langle \left[\frac{\partial \alpha^{(1)}_{xy}}{\partial Q} \right]^2 \right\rangle = \left\langle \left[\frac{\partial \alpha^{(1)}_{yx}}{\partial Q} \right]^2 \right\rangle \quad (3.9b)
\]
\[
\left\langle \left[\frac{\partial \alpha^{(1)}_{xz}}{\partial Q} \right]^2 \right\rangle = \left\langle \left[\frac{\partial \alpha^{(1)}_{yz}}{\partial Q} \right]^2 \right\rangle = \left\langle \left[\frac{\partial \alpha^{(1)}_{zy}}{\partial Q} \right]^2 \right\rangle = \left\langle \left[\frac{\partial \alpha^{(1)}_{zx}}{\partial Q} \right]^2 \right\rangle \quad (3.9c)
\]
\[
\left\langle \left[\frac{\partial \alpha^{(1)}_{zz}}{\partial Q} \right]^2 \right\rangle \quad (3.9d)
\]

For simplicity, I write these Raman responses as \(xx = yy, xy = yx, xz = zx = zy, \) and \(zz. \) I refer to each unique response by the first member of each set. In SFG spectra, 7 out of 27 elements of \(\chi^{(2)} \) are now non-zero and 3 out of 7 are unique.

\[
\left\langle \alpha^{(2)}_{xxx} \right\rangle = \left\langle \alpha^{(2)}_{yyz} \right\rangle \quad (3.10a)
\]
\[
\left\langle \alpha^{(2)}_{zzz} \right\rangle = \left\langle \alpha^{(2)}_{yyz} \right\rangle = \left\langle \alpha^{(2)}_{zzx} \right\rangle = \left\langle \alpha^{(2)}_{zzy} \right\rangle \quad (3.10b)
\]
\[
\left\langle \alpha^{(2)}_{zzz} \right\rangle \quad (3.10c)
\]

Again, for simplicity, I write \(xxx = yyz, xzx = yzy = zxx = zyy, \) and \(zzz. \) The amplitudes and imaginary part of the spectra associated with these four unique elements are labeled according to the first member of each set.

3.3 Results and discussion

3.3.1 Vibrational modes dominated by a single element in the IR and Raman response

I now consider a vibrational mode dominated by a single element of the dipole moment

\[
\frac{\partial \mu}{\partial Q} = \begin{bmatrix} 0 \\ 0 \\ \partial \mu_c / \partial Q \end{bmatrix} \quad (3.11)
\]
and a single element of the polarizability derivative

$$\frac{\partial \alpha^{(1)}}{\partial Q} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \partial \alpha^{(1)}_{cc}/\partial Q \end{bmatrix}. \quad (3.12)$$

Both of these properties are along the bond axis. That is why I call this case uniaxial case. This describes a carbonyl group or a single C–H bond. The intensity of the IR absorption spectra are proportional to the square of the laboratory frame dipole moment derivative as described in Eq. 3.1. In this particular case, the resulting expressions are

$$\langle (\frac{\partial \mu_x}{\partial Q})^2 \rangle = \frac{1}{2} \langle \frac{\partial \mu_c}{\partial Q} \rangle^2 [1 - \langle \cos^2 \theta \rangle] \quad (3.13a)$$

$$\langle (\frac{\partial \mu_z}{\partial Q})^2 \rangle = \langle \frac{\partial \mu_c}{\partial Q} \rangle^2 \langle \cos^2 \theta \rangle, \quad (3.13b)$$

and the Raman scattering may bear the form

$$\langle (\frac{\partial \alpha^{(1)}_{xx}}{\partial Q})^2 \rangle = \frac{3}{8} \langle \frac{\partial \alpha^{(1)}_{cc}}{\partial Q} \rangle^2 [1 - 2\langle \cos^2 \theta \rangle + \langle \cos^4 \theta \rangle] \quad (3.14a)$$

$$\langle (\frac{\partial \alpha^{(1)}_{xy}}{\partial Q})^2 \rangle = \frac{1}{8} \langle \frac{\partial \alpha^{(1)}_{cc}}{\partial Q} \rangle^2 [1 - 2\langle \cos^2 \theta \rangle + \langle \cos^4 \theta \rangle] \quad (3.14b)$$

$$\langle (\frac{\partial \alpha^{(1)}_{xz}}{\partial Q})^2 \rangle = \frac{1}{2} \langle \frac{\partial \alpha^{(1)}_{cc}}{\partial Q} \rangle^2 [\langle \cos^2 \theta \rangle - \langle \cos^4 \theta \rangle] \quad (3.14c)$$

$$\langle (\frac{\partial \alpha^{(1)}_{zz}}{\partial Q})^2 \rangle = \langle \frac{\partial \alpha^{(1)}_{cc}}{\partial Q} \rangle^2 \langle \cos^4 \theta \rangle. \quad (3.14d)$$

In the uniaxial case, the expression for lab frame hyperpolarizability which dictates the SFG response intensity is also very compact.

$$\langle \alpha^{(2)}_{xxz} \rangle = \langle \alpha^{(2)}_{xzx} \rangle = \frac{1}{2} \alpha^{(2)}_{ccc} \left(\langle \cos \theta \rangle - \langle \cos^3 \theta \rangle \right) \quad (3.15a)$$

$$\langle \alpha^{(2)}_{zzz} \rangle = \alpha^{(2)}_{ccc} \langle \cos^3 \theta \rangle. \quad (3.15b)$$

There are now only two unique elements of the hyperpolarizability (and therefore $\chi^{(2)}$) in the lab frame. These elements of $\alpha^{(2)}$ directly influenced the measured SFG intensities according to the polarization (s or p) of the incoming visible and IR beams, and the (s or
Figure 3.1: The x and z components of the IR absorption (first row), xx, xy, xz, and zz components of the Raman scattering (middle row), and xxz, xzx, and zzz components of the hyperpolarizability (bottom row) for a uniaxial vibrational mode as a function of the mean tilt angle θ_0 and half-width σ of a Gaussian distribution of the methyl C_3 axes. Darker red colors indicate higher intensity. Horizontal dashed white lines at $\sigma = 7.5^\circ$ and $\sigma = 50^\circ$ indicate distribution widths for which derivatives are displayed in Fig. 3.2.
p) generated SFG beam. As stated in our description of the experiments, $\langle \alpha^{(2)} \rangle_{xxz}$ is probed with I_{ssp}, while $\langle \alpha^{(2)} \rangle_{zzz}$ is one of four contributions to I_{ppp}.

I can verify the predicted response when the narrow distributions (σ is almost zero, along the bottom edge of the subplots) since the trigonometric functions in Eq. 3.13 and Eq. 3.15 are relatively simple. For instance, the z-polarized component is proportional to $\cos^2 \theta$. This means the highest intensity happens when the methyl group is perpendicular to the surface. The x-polarized IR has the highest intensity when $\theta = 90^\circ$ because it is proportional to $1 - \cos^2 \theta$ (or $\sin^2 \theta$). Same analogy applies to xy Raman component and xyz SFG component. At narrow distribution, the maxima happens at θ other than 0° or 90°.

Fig. 3.1 directly plotted the variation in signal intensity as the θ_0 and σ of the normal distribution varies. However, it is not intuitive to compare the orientation sensitivity of the three technique this way. It is difficult in that it is the combination of the magnitude of the signal intensity and the amount in which the signal varies that defines the sensitivity. In other words, the one which has the biggest difference in magnitude does not necessary mean it is the most sensitive. It is the percentage change that shows the sensitivity. Therefore, I normalized the signals within each techniques and calculated the derivatives with respect to θ_0. Two scenarios are shown in Fig. 3.2. (a–c) show a narrow distribution with $\sigma = 7.5^\circ$ and (d–f) show a wide distribution with $\sigma = 50^\circ$.

Looking at Fig. 3.2, especially the lines that represent IR z, Raman zz and SFG zzz curves, one can observe that Raman has the steepest slope, followed by SFG and then IR. The steepness of the slope correspond to the sensitivity since the percentage change is higher. Looking at the x-polarized response, Raman is once again more sensitive than IR. (Cannot compare to SFG since $\chi^{(2)}_{xxx} = 0$). Comparing the rest of the elements are much more difficult since they all show comparable sensitivity to θ. However, the bottom line is, in scenarios such as narrow orientation distribution, Raman has higher sensitivity to orientational changes.
Figure 3.2: Derivatives of the uniaxial response function plotted in Fig. 3.1 corresponding to a narrow distribution with $\sigma = 7.5^\circ$ (a) The solid green line indicates the slope of x with respect to θ_0; the dashed green line z. (b) Similarly, the slopes of the Raman response are indicated in red, with the solid lines for xx, short dashes xy, medium dashes xz, and long dashes zz. (c) Finally the slope of the SFG response with respect to θ_0 is indicated in blue, with the solid line corresponding to xxz, short dashes xzx, and medium dashes zzz. The second column illustrates a wide distribution with $\sigma = 50^\circ$ for the (d) IR, (e) Raman, and (f) SFG response.
3.3.2 Methyl group response

The discussion in the previous section has allowed us to make comparisons between the three techniques in terms of orientational sensitivity. There is a simple relationship between the tilt angle and single element of IR and Raman response along the bond axis. However, since the results are sensitive to nature of the specific vibrational mode, I should also consider a more complex mode, such as the methyl symmetric stretch. The dipole moment derivative of the common C_{3v} symmetry functional group is governed by

$$\frac{\partial \mu}{\partial Q} = \begin{bmatrix} 0 \\ 0 \\ \partial \mu_c / \partial Q \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} \quad (3.16)$$

and the expression for polarizability is

$$\frac{\partial \alpha^{(1)}}{\partial Q} = \begin{bmatrix} \partial \alpha^{(1)}_{aa} / \partial Q & 0 & 0 \\ 0 & \partial \alpha^{(1)}_{aa} / \partial Q & 0 \\ 0 & 0 & \partial \alpha^{(1)}_{cc} / \partial Q \end{bmatrix} = \begin{bmatrix} 2.5 & 0 & 0 \\ 0 & 2.5 & 0 \\ 0 & 0 & -1 \end{bmatrix} \quad (3.17)$$

where the molecular c axis is aligned with the methyl C_3 axis, pointing from the carbon atom towards the hydrogen atoms. Here I can see that, although the dipole moment derivative is still assumed to lie entirely along the three-fold symmetry axis, I now introduce an additional non-zero element of the polarizability derivative perpendicular to this axis. Furthermore, methyl represents a significant departure from the Raman tensor dominated by $\partial \alpha^{(1)}_{cc} / \partial Q$ as $\partial \alpha^{(1)}_{aa} / \partial Q$ is larger than this element by a factor of 2.5. The resulting expressions for the lab-frame IR response are therefore identical to those presented in Eq. 3.14, but the Raman expressions become
Figure 3.3: Illustration of (a) a methyl group with the molecular c vector passing through its C_3 axis. θ is the angle between the surface normal z and the c vector; the twist angle ψ is assumed to be uniformly distributed. (b) In the case of a non-uniaxial entity defining the ac-plane, the tilt and twist angles are both relevant. (c) The leucine molecule-fixed coordinates as the (a, b, c) unit vectors. The c axis passes from the γ carbon atom (CG) to the α carbon atom (CA). a passes from the β carbon atom to the line joining CG and CB; b is obtained by vector cross product of a and c. Here I also consider the twist ψ about the c axis.

\[
\begin{align*}
\langle \left(\frac{\partial \alpha_{xx}}{\partial Q} \right)^2 \rangle &= \frac{3}{8} \left(\frac{\partial \alpha_{aa}}{\partial Q} \right)^2 + \frac{1}{4} \left(\frac{\partial \alpha_{aa}}{\partial Q} \right) \left(\frac{\partial \alpha_{cc}}{\partial Q} \right) + \frac{3}{8} \left(\frac{\partial \alpha_{cc}}{\partial Q} \right)^2 \langle \cos^2 \theta \rangle \\
&\quad + \frac{1}{4} \left[\left(\frac{\partial \alpha_{aa}}{\partial Q} \right)^2 + 2 \left(\frac{\partial \alpha_{aa}}{\partial Q} \right) \left(\frac{\partial \alpha_{cc}}{\partial Q} \right) - 3 \left(\frac{\partial \alpha_{cc}}{\partial Q} \right)^2 \right]^2 \langle \cos^4 \theta \rangle \\
&\quad + \frac{3}{8} \left[\left(\frac{\partial \alpha_{aa}}{\partial Q} \right) - \left(\frac{\partial \alpha_{cc}}{\partial Q} \right) \right]^2 \langle \cos^4 \theta \rangle \\
\end{align*}\]

(3.18a)

\[
\begin{align*}
\langle \left(\frac{\partial \alpha_{xy}}{\partial Q} \right)^2 \rangle &= \frac{1}{8} \left[\left(\frac{\partial \alpha_{aa}}{\partial Q} \right) - \left(\frac{\partial \alpha_{cc}}{\partial Q} \right) \right]^2 \left[1 - 2 \langle \cos^2 \theta \rangle + \langle \cos^4 \theta \rangle \right] \\
&\quad - \langle \cos^2 \theta \rangle \langle \cos^4 \theta \rangle \\
\end{align*}\]

(3.18b)

\[
\begin{align*}
\langle \left(\frac{\partial \alpha_{xz}}{\partial Q} \right)^2 \rangle &= \frac{1}{2} \left[\left(\frac{\partial \alpha_{aa}}{\partial Q} \right) - \left(\frac{\partial \alpha_{cc}}{\partial Q} \right) \right]^2 \left[\langle \cos^2 \theta \rangle - \langle \cos^4 \theta \rangle \right] \\
\end{align*}\]

(3.18c)

\[
\begin{align*}
\langle \left(\frac{\partial \alpha_{zz}}{\partial Q} \right)^2 \rangle &= \left(\frac{\partial \alpha_{aa}}{\partial Q} \right)^2 + 2 \left[\left(\frac{\partial \alpha_{aa}}{\partial Q} \right) \left(\frac{\partial \alpha_{cc}}{\partial Q} \right) - \left(\frac{\partial \alpha_{cc}}{\partial Q} \right)^2 \right] \langle \cos^2 \theta \rangle \\
&\quad + \left[\left(\frac{\partial \alpha_{aa}}{\partial Q} \right) - \left(\frac{\partial \alpha_{cc}}{\partial Q} \right) \right]^2 \langle \cos^4 \theta \rangle. \\
\end{align*}\]

(3.18d)

The non-zero elements of the hyperpolarizability still holds a simple form even though
more elements of the Raman tensor are added.

\[
\langle \alpha_{xxz}^{(2)} \rangle = \frac{1}{2} (\alpha_{aac}^{(2)} + \alpha_{ccc}^{(2)}) \langle \cos \theta \rangle + \frac{1}{2} (\alpha_{aac}^{(2)} - \alpha_{ccc}^{(2)}) \langle \cos^3 \theta \rangle \tag{3.19a}
\]

\[
\langle \alpha_{xzx}^{(2)} \rangle = \frac{1}{2} (\alpha_{ccc}^{(2)} - \alpha_{aac}^{(2)}) \left(\langle \cos \theta \rangle - \langle \cos^3 \theta \rangle \right) \tag{3.19b}
\]

\[
\langle \alpha_{zzz}^{(2)} \rangle = \alpha_{aac}^{(2)} \langle \cos \theta \rangle + (\alpha_{ccc}^{(2)} - \alpha_{aac}^{(2)}) \langle \cos^3 \theta \rangle. \tag{3.19c}
\]

The first row, second row and bottom row represents IR, Raman and SFG respectively as a function of \(\theta_0 \) and \(\sigma \) of the tilt Gaussian distribution described in Eq. 3.8. As described in the previous, the \(x \)- and \(y \)-components of the IR intensity are the same when considering isotropic azimuthal angle. Therefore, I only displayed \(x \) and \(z \). The first thing I observe is that when \(\sigma \approx 90^\circ \) (effectively isotropic distribution), \(x \approx y \). This is equivalent to \(x = y = z = 1/3 \) and is expected according to Eq. 3.7. Moving on to the trends observed at small \(\sigma \), the IR intensity for \(x \) increases when \(\theta_0 \) increases whereas the IR intensity for \(z \) decreases when \(\theta_0 \) increases. This makes sense since the methyl dipole moment is parallel with the \(x \)- polarized and \(z \)- polarized IR probe when \(\theta_0 = 90^\circ \) and \(\theta_0 = 0^\circ \) respectively. Another observation is that \(z \) has the highest intensity. This is due to the fact that, for the orientation distribution I assume, all of the molecules could align along \(z \) (\(\theta_0 = 0^\circ \), \(\sigma \approx 0^\circ \)), while having molecules uniformly distributed in the \(xy \)-plane when \(\theta_0 = 90^\circ \). The last observation is that the \(z \)-polarized component for IR adsorption at narrow distribution is more sensitive than the \(x \)- and \(y \)-polarized component. For broad distribution, IR is simply not very sensitive to the change in title angle.

Moving on to the results of Raman scattering shown in the middle row of Fig. 3.4. In the case of narrow distributions, all of the elements in the Raman tensor are sensitive to mean tilt angle and width of the tilt Gaussian distribution. Take \(xz \) for example, its intensity increases as \(\theta_0 \) increases until approximately \(45^\circ \) but starts decreasing when the methyl group is closing on to the plan of the surface. \(zz \) shares the same behavior with its peak intensity at around \(\theta_0 = 25^\circ \). The results also show that when the \(\sigma \) of the distribution gets bigger (isotropic distribution), then \(xx = zz \) and \(xy = xz \). These observations indicate
Figure 3.4: The x and z components of the IR absorption (first row), xx, xy, xz, and zz components of the Raman scattering (middle row), and xxz, xzx, and zzz components of the hyperpolarizability (bottom row) for a methyl symmetric stretch as a function of the mean tilt angle θ_0 and half-width σ of a Gaussian distribution of the methyl C_3 axes. Eight combinations A–H of the parameters θ_0 and σ in the Gaussian distribution are shown as annotations on the plots for comparison with Fig. 3.6 and Fig. 3.7. Positive values are shaded in red with solid contours; negative values are shaded in blue with dashed contours. Horizontal dashed white lines at $\sigma = 7.5^\circ$ and $\sigma = 50^\circ$ indicate distribution widths for which derivatives are displayed in Fig. 3.5.
that Raman may have shown more sensitivity to orientational change than IR at narrow distribution.

Hyperpolarizability tensor $\alpha^{(2)}$ intensity, which is the a measure of heterodyne SFG spectroscopy response is shown in the bottom row of Fig. 3.4 as a result of varying θ_0 and σ. Representing $\alpha^{(2)}_{ijk}$, dashed contour and blue shading indicate negative value while solid contour ad red shading indicate positive values. When σ is large (isotropic average), the hyperpolarizability tensor $\alpha^{(2)}$ becomes small. For this reason, SFG shows the most contrast when θ_0 and/or σ of the orientation distribution is very large or small. One may also notice that, for relatively narrow distribution ($\sigma < 20^\circ$), xzx is more sensitive to orientational changes (greater variation in intensity) than the xxz element. This is consistent with the understanding in SFG spectroscopy that ssp polarization is not as sensitive to symmetric modes as other polarization combination. Most noticeably, zzz shows most sensitivity to orientation distribution change. This may be one reason that the ppp element, which includes xxz, xzx, zxx and zzz, show very good sensitivity to orientation change in some cases [47, 49].

The most direct way to compare these techniques in terms of orientation sensitivity is the rate of changing (slopes) with respect to θ_0. Two values of θ_0 are chosen from Fig. 3.4 to represent narrow and wide distribution scenarios. The results of the narrow distribution slopes (small θ_0) are shown in Fig. 3.5a–c. The results of wide distribution slopes (bigger θ_0) are shown in Fig. 3.5d–f.

Note that these derivatives are displayed using the same scale as those shown for the simpler vibrational mode in Fig. 3.2.

In practice, it is more useful to compare the local slopes of these plots rather than comparing extrema as it is the local slopes that determine the orientation sensitivity. To study this in more detail, in the following section I will create model spectra that consider multiple vibrational mode. By doing this, the line shape for different spectroscopy can be taken into account since they also contribute to the observed response, especially when
Figure 3.5: Derivatives of the uniaxial response function plotted in Fig. 3.4 corresponding to a narrow distribution with $\sigma = 7.5^\circ$ (a) The solid green line indicates the slope of x with respect to θ_0; the dashed green line z. (b) Similarly, the slopes of the Raman response are indicated in red, with the solid lines for xx, short dashes xy, medium dashes xz, and long dashes zz. (c) Finally the slope of the SFG response with respect to θ_0 is indicated in blue, with the solid line corresponding to xxz, short dashes xzx, and medium dashes zzz. The second column illustrates a wide distribution with $\sigma = 50^\circ$ for the (d) IR, (e) Raman, and (f) SFG response.
considering neighboring vibrational modes. Since the sign of the imaginary of $\chi^{(2)}$ is preserved, it provides orientation information that is not found in IR and Raman response. For example, the fact that $xxz < 0$ and $xzx > 0$ tells the polarity of the orientation. To be more precise, it allows us to determine if the molecules orient with $0^\circ < \theta_0 < 90^\circ$ or they position upside down with $90^\circ < \theta_0 < 180^\circ$.

Spectra with multiple vibrational modes. So far I have only discussed spectrum with single vibrational mode. Let’s consider a more complicated molecular response by taking into account multiple vibrational modes. The theory behind the more complicated spectrum is the same except that now polarizability derivative has 6 unique elements and dipole moment derivative has 3 unique non-zero elements. Amino acid leucine is a good molecule to study for comparison purpose since leucine’s vibrational response has been well studied, including SFG [77, 78, 78, 79]. Leucine’s structure, along with its molecular frame is illustrated in Fig. 3.3c. I used GAMESS package [71] with B3LYP/6-31G(d,p) to calculate the dipole moment and polarizability derivatives. To approximate an aqueous solution environment, a polarizable continuum is selected. Lorentzian line shapes were set to have width of $\Gamma = 10 \text{ cm}^{-1}$, which is in agreement with experiment [78]. In light of the experiment [77], Harmonic frequencies from a Hessian calculation were scaled by 0.945.

The results for methyl group orientation presented in the previous section compare the three techniques with 8 different Gaussian distributions, four broad distribution (A-D) and four narrow distributions (E-H), shown in the inset of Fig. 3.4. Similar approach is applied to leucine molecule. I will start the discussion in broad distribution. The simulated IR, Raman and SFG spectra of the broad distribution distributions (A–D) are shown in Fig. 3.6 with aliphatic C-H stretching region 2800–3000 cm$^{-1}$. A and B both have $\theta_0 = 30^\circ$ but different width. Similarly, C and D both have $\theta_0 = 70^\circ$ but different width. One can immediately see that IR (top row) and Raman (middle row) both have spectra with not much variation for the (A-D) distribution. Raman scattering arguably shows more
Figure 3.6: The aliphatic stretching spectra of leucine for 4 combinations A–D of the parameters θ_0 and σ representing wide Gaussian distributions of tilt angles. Model IR absorption x and z spectra are shown in the top row. Raman xx, xy, xz, and zz scattering spectra are displayed in the middle row. The imaginary component of the complex-valued xxz, xzx, and $zzz \chi^{(2)}$ spectra corresponding to a visible-IR sum-frequency generation experiment are shown in the bottom row.

variation. These methods seem to be insensitive to the changes in the broad orientation distribution. The same behavior is observed in the study of the methyl group (Fig. 3.4). Narrow distribution seems to have higher sensitivity (more changes in intensity) and broad distribution seems to have more uniform spectral response. From Fig. 3.4 it is clear that Raman has slightly greater variation than IR and SFG.

The conclusion is slightly different in the case of the narrow orientation distributions. The results of leucine adsorbed onto a surface with Gaussian distribution of $\theta_0 = 20^\circ$ with $\sigma = 5^\circ$ (E), $\sigma = 10^\circ$ (F), $\theta_0 = 30^\circ$ with $\sigma = 5^\circ$ (G) and $\sigma = 10^\circ$ (H) are shown in Fig. 3.7. Since the orientation distribution are fairly similar, there shouldn’t be too much difference in the spectra and this is exactly what I observed. Once again, IR (top row of Fig. 3.7) shows least sensitivity to change in θ_0 and σ compared to Raman and SFG. Raman(middle) and SFG(bottom) have roughly the same sensitivity to variation in θ_0 and σ.
Figure 3.7: The aliphatic stretching spectra of leucine for 4 combinations E–H of the parameters θ_0 and σ representing relatively narrow Gaussian distributions of tilt angles. Model IR absorption x and z spectra are shown in the top row. Raman xx, xy, xz, and zz scattering spectra are displayed in the middle row. The imaginary component of the complex-valued xxz, xzx, and zzz $\chi^{(2)}$ spectra corresponding to a visible-IR sum-frequency generation experiment are shown in the bottom row.

3.3.3 Numerical orientation distributions

In this section, the orientation distribution (numerical distribution) is obtained from molecular dynamics simulation instead of analytical orientation distribution functions. The software I used to generate the trajectories is GROMACS [80]. Among all the trajectory frames, only the ones whose molecule is close to the surface are considered. Whether or not a molecule is close to the surface is determined by the center of geometry cutoff distance [79]. The trajectories represent the position of the leucine molecules by the Cartesian coordinates. This allows us to calculate the ensemble average easily. Take x-polarized IR spectra for example,

$$N \left\langle \left[\frac{\partial \mu_x}{\partial Q} \right]^2 \right\rangle = \sum_{\text{molecules}} \left[\frac{\partial \mu_x}{\partial Q}(\theta, \phi, \psi) \right]^2.$$ \hspace{1cm} (3.20)

If I consider the IR absorption in its simplest form. The expression becomes,

$$\frac{\partial \mu_x}{\partial Q}(\theta, \phi, \psi) = D_{1,1}(\theta, \phi, \psi) \frac{\partial \mu_a}{\partial Q} + D_{1,2}(\theta, \phi, \psi) \frac{\partial \mu_b}{\partial Q} + D_{1,3}(\theta, \phi, \psi) \frac{\partial \mu_c}{\partial Q}.$$ \hspace{1cm} (3.21)
Figure 3.8: The aliphatic stretching spectra of leucine obtained from molecular dynamics simulations of adsorption from solution onto two types of surfaces. Results for a superhydrophobic surface (contact angle $\approx 150^\circ$) are shown in blue; results for a moderately hydrophobic surface (contact angle $\approx 85^\circ$) are shown in red. Model IR absorption x and z spectra are shown in the top row. Raman xx, xy, xz, and zz scattering spectra are displayed in the middle row. The imaginary component of the complex-valued xxz, xzx, and zzz. $\chi^{(2)}$ spectra corresponding to a visible-IR sum-frequency generation experiment are shown in the bottom row.

where D_{ij} are elements of the direction cosine matrix

$$
D(\theta, \phi, \psi) = \begin{bmatrix}
\cos \phi \cos \theta \cos \psi - \sin \phi \sin \psi & -\cos \phi \cos \psi & \sin \theta \cos \phi \\
\sin \phi \cos \theta \cos \psi + \cos \phi \sin \psi & -\sin \phi \cos \psi & \sin \theta \sin \phi \\
-\cos \psi \sin \theta & \sin \psi \sin \theta & \cos \theta
\end{bmatrix}.
$$

I avoid calculating the Euler angles to express the lab-frame quantities by computing the direction cosine matrix for each vibrational mode. Eq. 3.21 that the lab frame dipole moment derivative is solely dependent on the elements of D, which is again dependent on the Euler angle of the molecule. Note that dipole moment derivative is a constant in the (a, b, c) molecular frame.

The blue spectroscopic response in Fig. 3.8 is a result of leucine adsorbed onto superhydrophobic surface with its orientation distribution closely resembles Gaussian
distribution of tilt angles with $\theta_0 \approx 25^\circ$ and $\sigma_\theta \approx 20^\circ$, twist angles with $\psi_0 \approx 135^\circ$ and $\sigma_\psi \approx 80^\circ$. The red spectroscopic response is the result of leucine adsorbed onto moderately/minimally hydrophobic surface with complex orientation distribution in tilt (θ) and twist (ψ). For the leucine molecules that are considered close to the surface, their tilt (θ) and twist (ψ) angles are calculated. The aggregate results are shown in the inset of Fig. 3.8. Fig. 3.8 shows that all three spectroscopic techniques are sensitive to the two (θ, ψ) distribution that I picked. IR (top row) does show some variation in response intensity, but the overall shape stays roughly the same. Raman (middle row) shows significant difference especially in in the xy- and zz-polarized components. SFG has the greatest sensitivity among the three spectroscopic techniques as it shows appreciable differences in all three elements of $\chi^{(2)}$.

3.4 Conclusions

Nonlinear Spectroscopic techniques such as SFG has advantage over the linear spectroscopic techniques such as IR and Raman in that it is able to gather spectroscopic response from the molecules that are ordered in a polar manner and ignore the spectroscopic response from the molecules in the adjacent bulk phase. However, in the case where the molecules being studied only present in the interfacial region and there is not need for adjacent bulk discrimination IR and Raman are also viable alternatives that may even provide richer structural information by probing the molecules with polarized light. Molecular response tensor for each vibrational mode, the relative position of the chemical functional groups within the molecule, the line shape and how the molecular properties (dipole moment and polarizability) are projected into the lab frame all take part in determine the sensitivity of the spectroscopic techniques to the orientational change. In this chapter, I have discussed every one of the factors listed here by examining simple uniaxial molecular response, symmetric stretch in methyl group with three-fold symmetry and C–H stretching region of the leucine molecule. In these three scenarios, first they are examined
with analytical orientation distribution (Gaussian distribution) and then with numerical orientation distribution which is gathered by sampling the molecular dynamics simulation trajectory. Even though SFG is a the only surface specific spectroscopic technique that is able to discriminate the adjacent bulk phase, in the scenario such as molecules adsorbed on a surface where the bulk solution is absent, IR and Raman also provides molecular orientation information. Lastly, all three techniques can be combined to reliably extract molecular orientation distribution parameters and additional information.
Chapter 4

Linear Programming

4.1 Overview

Knowing which spectroscopy technique is sensitive to orientation change is important. It enables us to generate a spectrum that is most rich in orientation distribution information. However, it is a whole different story to extract orientation distribution information from a vibrational spectrum. To extract the orientation distribution information, it involves creating model spectrum with known orientation distribution. If the model spectrum matches the experimental spectrum, they most likely carry the same orientation distribution information. In Chapter 3, I illustrated how to make vibrational spectra and what they look like. Now I am going to generate many spectra based on Gaussian distribution with different θ_0 and θ_σ and call them candidates. Then I am going to combine them in a known ratio to create model spectra and apply linear programming approach to see if the linear programming approach can return the accurate ratio of the candidates.

4.2 Introduction

If I consider a spectrum as a polynomial function, it is really just a line constituted of an infinite number of points with x and y values. If I denote the points in one spectrum as (x_1, y_1) and the points in another spectrum as (x_2, y_2). The two spectra are identical if and only if $y_1 = y_2$ when $x_1 = x_2$ or $y_1 - y_2 = 0$ when $x_1 - x_2 = 0$. That is, the points’ y
Figure 4.1: These are three figures to help explain the idea of sum of difference. A is the target. B and C are candidates. Three points selected in each figure to perform sum of difference.

value should the same if their x value is the same. It is easy to determine if two spectra are identical because the criterion is straightforward. To determine the level of similarity between spectra is another story. If I have spectra A, B and C, how do I determine between B and C which one is more similar to A? A more advanced questions would be, what is the best ratio of B and C that would produce a new spectrum closest to A. This is exactly the question I want to answer here; how to find the best ratio of the candidates that best fits the target spectrum. To say one ratio is better than the other, I must give each ratio a score. I consider two approaches to obtain such a score; sum of differences and sum of squared differences. Each method has its advantages and disadvantages along with different statistical implication [81, 82].

The sum of differences approach sums up all the absolute differences in y value along the x axis. Whichever candidate spectrum has the least sum of differences is the one most similar to the target spectrum. The sum of differences between Fig. 4.1A and Fig. 4.1B is

$$|2 - 3| + |3 - 4| + |3 - 1| = 4.$$
The sum of differences between Fig. 4.1A and Fig. 4.1C is

\[|(4 - 3)| + |(4 - 4)| + |(1 - 1)| = 1. \]

Therefore, I can conclude Fig. 4.1C is more similar to Fig. 4.1A than Fig. 4.1B. The absolutely notation in the expression is crucial. Unlike the sum of squared differences where all the individual squared differences are positive numbers (any squared negative number is a positive one), the difference in sum of differences, without absolute value sign, can be positive or negative and therefore canceling each other out. Without absolute sign, the sum of differences between Fig. 4.1A and Fig. 4.1B is

\[(2 - 3) + (3 - 4) + (3 - 1) = 0, \]

which is now better than the sum of differences between Fig. 4.1A and Fig. 4.1C

\[(4 - 3) + (4 - 4) + (1 - 1) = 1. \]

The sum of differences is more likely to be affected by outliers than the sum of squared differences approach [83, 84].

Sum of squared difference approach sums up all the squared differences in y value along the x axis. This is almost exactly the same as the sum of differences approach. Except this time, there is no absolute sign since I are accumulating the squared y difference. The sum of squared differences between Fig. 4.2A and Fig. 4.2B is

\[(5 - 3)^2 + (2 - 4)^2 + (3 - 1)^2 = 12. \]

The sum of squared differences between Fig. 4.2A and Fig. 4.2C is

\[(3 - 3)^2 + (8 - 4)^2 + (1 - 1)^2 = 16. \]

Therefore, I come to the conclusion that Fig. 4.2B is more similar to Fig. 4.2A than Fig. 4.2B. Squaring the difference will more likely prevent having outliers because the
Figure 4.2: These are three figures to help explain the idea of sum of squared difference. A is the target. B and C are candidate. Three points selected in each figure to perform sum of squared difference.

Outliers are penalized heavily. In comparison, the sum of differences approach, the difference between Fig. 4.2A and Fig. 4.2B is

\[|(5 - 3)| + |(2 - 4)| + |(3 - 1)| = 6. \]

The differences between Fig. 4.2A and Fig. 4.2C is

\[|(3 - 3)| + |(8 - 4)| + |(1 - 1)| = 4. \]

Fig. 4.2C now has better score than Fig. 4.2B. Although sum of squared difference is favorable from the statistic point of view, the associated optimization technique, quadratic programming, is far more computational intensive than linear programming and therefore limiting the problem size [64].

If we search for the best ratio by calculating scores for all the possible ratios, it wouldn’t scale well and examining more complex molecule/surface would be infeasible. Consider the scenario where there are \(n \) candidates and the percentage is allocated to each candidate
in the granularity of 1%, the least percentage a candidate can have is 0% and the most percentage a candidate can have is 100%. Finding out the total number of possible ratios in this case is equivalent to finding all possible combination of 100 identical balls in \(n \) non-identical bins. The answer to the question is

\[
\frac{(100 + n - 1)!}{100!(n-1)!}.
\]

Therefore, even scoring takes constant time, the time complexity for the exhaustive approach is still \(\mathcal{O}(n!) \).

Since the exhaustive approach is not very appealing due to its complexity, I next turn to mathematical programming. Mathematical programming is the selection of best element among the alternatives. Since mathematical programming has been studied intensively, a lot of efficient algorithms have been proposed and practiced. The hope is that, by formulating the candidate ratio problem in a mathematical programming, I could take advantage of the efficiency of the mathematical programming algorithm. Depending on which scoring scheme is chosen, sum of difference or sum of squared difference, the candidate ratio problem can be formulated as linear programming or quadratic programming respectively. Because quadratic programming is far more computational intensive than linear programming and therefore limiting the problem size, I choose linear programming to solve candidate ratio problem.

Linear programming is an optimization technique to find optimum solutions for a linear objective function under linear constraints. It is a special case of mathematical programming whose constraint can be arbitrary degree of polynomial functions. Linear constraints, whether it is linear equality or linear inequality constraints, collectively define the region in \(n \) dimensional space in which all the possible solutions are defined. This feasible region on a 2 dimensional space is often a polygon. The linear objective function’s minimum or maximum happens at the vertices of the polygon. A linear programming algorithm finds the vertex where the linear objective function has smallest or largest value if it exists. The theory behind linear programming provides a way to drastically reduce the
Figure 4.3: All the possible solutions that satisfy the constraints are inside the gray area. The optimum solution happens at the vertices.

parameter space needs to be explored to determine the optimal solution. (See Fig. 4.3 for example).

4.3 Linear Programming with inequality constraints

This section will show a simple linear programming example which involves inequality constraints. The concepts and procedures shown here are directly applicable to formulating candidate ratio problem as a linear program. Let us consider a simple example where the to-be-minimized objective functions is

\[|x - 10| + |y - 6| + |z + 3|. \] (4.1)

This objective function, however, has a small problem. In the world of linear programming, everything should be a linear function including objective function and constraints. Having absolute signs in your function disqualifies it to be a linear function. Luckily, there is a relatively simple way to take out the absolute signs from the objective function by adding few more constrains. Two for each absolute value to be more precise.

If I want to minimize \(|x|\), it is equivalent to minimize \(t\) with two constraints \(t \geq x\) and \(t \geq -x\). When \(x\) is a negative number, say -1, the constraints dictates that \(t \geq -1\) and
\(t \geq -(-1) \) which causes \(t \) to be 1. This is correct because absolute value of -1 is indeed 1. When \(x \) is a positive number, 1, the constraint dictates that \(t \geq 1, t \geq -1 \) which causes \(t \) to be 1. This is also correct because absolute value of 1 is still 1. Therefore, no matter \(x \) is greater or less than 0, I always have the desired value. Now that I establish the technique to take out the absolute value sign from the linear function. Let us apply it to the objective function 4.1.

For \(|x - 10|\), let

\[
\begin{align*}
X_1 &= |x - 10| \\
X_1 &\geq x - 10 \quad (4.2a) \\
X_1 &\geq -x + 10 \quad (4.2b)
\end{align*}
\]

For \(|y - 6|\), let

\[
\begin{align*}
X_2 &= |y - 6| \\
X_2 &\geq y - 6 \quad (4.3a) \\
X_2 &\geq -y + 6 \quad (4.3b)
\end{align*}
\]

For \(|z + 3|\), let

\[
\begin{align*}
X_3 &= |z + 3| \\
X_3 &\geq z + 3 \quad (4.4a) \\
X_3 &\geq -z - 3 \quad (4.4b)
\end{align*}
\]

By letting \(t_1, t_2 \) and \(t_3 \) represent each absolute value, the objective function to be minimized now becomes

\[
t_1 + t_2 + t_3 \quad (4.5)
\]

with six constraints 4.2a - 4.4b.
4.4 Generating the candidates

In this section, I demonstrate how to generate candidate spectrums using leucine as an example. The first step is to enumerate all the possible conformations of the molecule being studied. Even for a molecule as small as an amino acid like leucine, the number of total possible conformations is huge. However, by doing geometry optimization, a process of finding the arrangement of atoms in space that has low potential energy, I can limit the number of molecule conformations to consider. Here I show the content of a GAMESS [71] geometry optimization input file. \texttt{runtyp=OPTIMIZE} tells GAMESS to do geometry optimization on the input molecule. The ifreez parameter specifies the atoms whose cartesian coordinates are fixed. One may want to use ifreez if there is already some knowledge about the structures of the molecule. Taking out the ifreez would give GAMESS more freedom to change the initial structure. The end result may be very different from the initial input. Here is an example GAMESS geometry optimization input for leucine.

```
$contr1 scftyp=rhf runtyp=OPTIMIZE ispher=0 nzvar=0 $end
$system mwords=10 $end
$guess guess=huckel $end
$basis gbasis=n31 ngauss=6 $end
$statpt OPTTOL=0.001 $end
$statpt ifreez(1)=1,2,3,4,5,6,7,8,9,13,14,15,16,17,18,31,32,33 $end
$statpt nstep=50 $end
$force method=seminum $end
$DATA
leucine mu and alpha
C  6.0  0.9532281549  -1.2178128047  1.8142365566
C  6.0  -0.1149028612  -1.3185010550  0.7185104463
C  6.0  -0.0389625474  -0.2693473197  -0.4241985774
C  6.0  -0.9425644460  0.9429502115  -0.1401324546
C  6.0  -0.4053079053  -0.9042105089  -1.7752113807
N  7.0  2.3413280587  -1.5526139817  1.3019818258
C  6.0  1.1223317178  0.1818702652  2.5046372618
O  8.0  0.1090948361  0.6777315166  3.0254051757
O  8.0  2.3126207029  0.6284835803  2.4702527020
H  1.0  0.7294920443  -1.9468505411  2.5975519316
H  1.0  -1.0853126538  -1.245953080  1.2197769668
H  1.0  -0.6661303079  -2.330982902  0.3026022533
H  1.0  2.4049680673  -1.596053837  0.2849304154
H  1.0  2.7049830016  -2.4209197564  1.6915023392
```
After the geometry optimization, the next step is to do Hessian calculation. The Hessian calculation tells us the number vibrational modes and associated displacement from the equilibrium state. Again, the program I choose to do the calculation is GAMESS. The header for the GAMESS electronic structure calculation is very similar to that of geometry optimization file. The major difference is that RUNTYP is now HESSIAN instead of OPTIMIZE. Here is an example GAMESS Hessian calculation input for leucine.

```plaintext
$contrl scftyp=runotyp=Hessian nosym=1 ispher=0 $end
$system mwords=10 $end
$DFT dfttyp=b3lyp $end
$guess guess=huckel $end
$basis gbasis=n31 ngauss=6 npfunc=1 ndfunc=1 $end
$PCM solvnt=water $end
$force method=semimin $end
$DATA
leucine mu and alpha
C1
6.0  0.9532285149 -1.2178128047 1.8142365566
C  6.0 -0.1149028612 -1.3185010550 0.7185104463
C  6.0 -0.0389625474 -0.2693473197 -0.421985774
C  6.0 -0.9425644460  0.9429502115 -0.1401324546
C  6.0 -0.4053079053 -0.9042105089 -1.7752113807
N  7.0  2.3413280587 -1.5526139817 1.3019818258
C  6.0  1.1223317178  0.1817026532 2.5046372618
O  8.0  0.1090948361  0.677315166  3.0254051757
O  8.0  2.3126207029  0.6284835803  2.4702527020
H  1.0  0.7294920443 -1.9466505704  1.8142365566
H  1.0 -1.2457953080  0.1817026532  2.5046372618
H  1.0 -0.6613030794 -2.3309829020  0.3026022533
H  1.0  1.5960538837  0.2849304154
H  1.0  2.4049680673  2.4209197564  1.6915023392
H  1.0  2.8624743345  2.04557806  1.6767353227
H  1.0  0.9961898439  0.0983591282 -0.5006749995
H  1.0 -0.8161334887  1.7137851886  0.9082518288
H  1.0 -1.958591030  0.6340267584 -0.1471630607
H  1.0 -0.3736111792 -0.1606071906 -2.5788293493
```

$END
The Hessian calculation result is in pure text format. For the results to be usable for the programs, I need to parse the output. The python script `parse.py` is created for this purpose. The results will be parsed into Python pickle file. In Python, pickling is a standard way to serialize data. Run the following command to parse the output file

```
python parse.py <Gamess output file name> <pickle file name>.pkl
```

To access the frequency for each mode: `Frequency[mode]`

- `Frequency[0]` returns the frequency of mode 0
- `Frequency[40]` returns the frequency of mode 41

To access the equilibrium coordinates: `Coordinates[xyz][atom]`

- `Coordinates[0][0]` access the x coordinate of atom 1
- `Coordinates[1][2]` access the y coordinate of atom 3
- `Coordinates[2][35]` access the z coordinate of atom 36

To access the displacement of an atom in x, y, z direction in each vibration mode:

```
Displacement [mode][xyz][atom]
```

- `Displacement[0][0][0]` access the displacement of mode 1 in x coordinate of atom 1

The rest of the information stored in the pickle file are AtomType, ReducedMass and AtomCharge. The way to access them is similar to that of frequency. The information are stored into a pickle file in the order of frequency, coordinates, displacement, atomtype, reducedmass and atomCharge. When the pickle file is unloaded, the information is unloaded the same order.
A specific vibrational mode indicates the molecule vibrates in a certain way, described by the x, y, z displacement from the equilibrium state of each atom. Dipole moment and polarizability both change as the shape of the molecule changes. Calculate the dipole moment and polarizability at different moment of the vibration, interpolate the value, calculate the rate of changing at equilibrium state and I now have the dipole moment derivative and polarizability derivative.

In practice, each vibrational mode has 7 snapshots, which represent each different state the molecule can assume during the mode vibration. The python script `create_input_files.py` is created to do the job. This script will create multiple GAMESS input files (7 in this case) based on the information in pickle file from the Hessian calculation. The run type for each GAMESS job is `runtyp=ffield`. This run type does the electronic calculation and return dipole moment and polarizability. The following shows how to run the script. The first argument is the pickle file; second argument is starting mode number; third number is ending mode number; fourth argument is part of the name of the input file.

```python
python create_input_files.py
    <Hessian calculation result pickle>.pkl
    <start mode number> <end node number>
    <file header>
```

After the last step, I obtained 7 dipole moments and polarizabilities for each mode. I interpolate those values with second degree polynomial plot and calculate the rate of change at equilibrium point to get the derivative of dipole moment and polarizability for each mode. `read_output_files.py` takes care of all that. The first argument is the output pickle file name. Second argument is the name header of GAMESS output file from last step. For example, if the output file names are of the form `glu_mode_X_point_X.out` then put `glu`. Third argument is the dipole moment derivative pickle file name you want. The fourth argument and fifth argument specifies the starting mode and ending mode number inclusive.
Now that all the necessary pieces (dipole moment derivative and polarizability derivative) are gathered, I can finally create the candidate spectrum. Instead of doing MD simulation and project derivatives from molecular frame to lab frame. I leverage orientation distribution function (Normal/Gaussian distribution). Use `spectrum_orientation_distribution_analyticalMeshgrid.py` to generate analytical spectrum. Here is the usage to this script:

```python
spectrum_orientation_distribution_analyticalMeshgrid.py
<dipole moment/polarizability derivatives output file>.pkl
<output file name>.pkl
<theta0=x> <thetasigma=y> <psi0=x> <psisigma=y>
<thetaonly=true/false>
```

This script assumes uniformly distributed ϕ and/or ψ. theta0 defines the average in the θ normal distribution. thetasigma defines θ_σ in the θ normal distribution. psi0 defines the average in the ψ normal distribution. psisigma defines ψ_σ in the ψ normal distribution. If thetaonly is set to true, this means I assume an uniform distribution in both ϕ and ψ. The candidate spectrum is stored in a pickle file. Fig. 4.4 shows an example of alanine candidates.

4.5 Combining the candidates

As demonstrated I can compare candidates with the target spectrum by applying sum of differences technique to find which single candidate is most similar to the target spectrum.
Figure 4.4: The imaginary component of alaine’s ssp response. Blue line represents alanine with orientation distribution of $\theta_0 = 60^\circ$ and $\theta_\sigma = 30^\circ$. Green line represents alanine with orientation distribution of $\theta_0 = 30^\circ$ and $\theta_\sigma = 5^\circ$.
It is a problem that requires little computational power. The running time is $O(n)$. However, it is not quite what I want. In real life, molecules don’t orient on a surface in a single way. They orient in different ways with different population. Therefore, the candidates should not be considered individually. I should instead consider different combinations of the candidates spectra to find the best match to the target spectrum.

Let us consider m sample points in n candidates spectra whose population is denoted as X_1, X_2, X_3 ... X_n and the functions to represent each candidate spectrum as $f_1(x), f_2(x), f_3(x)...f_n(x)$, the function to represent target spectrum is $f_0(x)$. Because the final population is always 100%, the population for each candidate spectrum will add up to one, $X_1 + X_2 + X_3 + ...X_n = 1$. When $m = 1$, meaning only one sample point is picked, the expression for calculating sum of differences for each candidate population combination is $|f_0(x_1) - (X_1 \cdot f_1(x_1) + X_2 \cdot f_2(x_1) + X_3 \cdot f_3(x_1) + ...X_n \cdot f_n(x_1))|$. In a more general form where there are m sample points, I have

$$
|f_0(x_1) - (X_1 \cdot f_1(x_1) + X_2 \cdot f_2(x_1) + X_3 \cdot f_3(x_1) + ...X_n \cdot f_n(x_1))| + \\
|f_0(x_1) - (X_1 \cdot f_1(x_1) + X_2 \cdot f_2(x_1) + X_3 \cdot f_3(x_1) + ...X_n \cdot f_n(x_1))| + \\
|f_0(x_2) - (X_1 \cdot f_1(x_2) + X_2 \cdot f_2(x_2) + X_3 \cdot f_3(x_2) + ...X_n \cdot f_n(x_2))| + \\
|f_0(x_2) - (X_1 \cdot f_1(x_3) + X_2 \cdot f_2(x_3) + X_3 \cdot f_3(x_3) + ...X_n \cdot f_n(x_3))| + \\
\vdots \\
|f_0(x_m) - (X_1 \cdot f_1(x_m) + X_2 \cdot f_2(x_m) + X_3 \cdot f_3(x_m) + ...X_n \cdot f_n(x_m))|
$$

(4.6)

The compact form is

$$
\sum_{p=1}^{\text{points}} \left| \text{Im}[\chi^{(2)}]_p - \sum_{c=1}^{\text{candidates}} f_c \cdot \text{Im}[\chi^{(2)}]_{c,p} \right|
$$

(4.7)

I can take out the absolute sign as demonstrated in section 4.3. Let $t_1, t_2, t_3, ..., t_m$ represent each of the absolute value and the objective function becomes

$$
t_1 + t_2 + t_3 + ... + t_m
$$

(4.8)

This is the constraint due to the fact that the ratio adds up to 1 (or 100%)

$$
X_1 + X_2 + X_3 + ... + X_n = 1
$$

(4.9)
These constraints are the byproduct of getting rid of the absolute sign.

\[t_1 - X_1 \cdot f_1(x_1) - X_2 \cdot f_2(x_1) - X_3 \cdot f_3(x_1) - \ldots - X_n \cdot f_n(x_1) \geq -f_0(x_1) \]

\[t_1 + X_1 \cdot f_1(x_1) + X_2 \cdot f_2(x_1) + X_3 \cdot f_3(x_1) + \ldots + X_n \cdot f_n(x_1) \geq f_0(x_1) \]

\[\vdots \]

\[t_n - X_1 \cdot f_1(x_n) - X_2 \cdot f_2(x_n) - X_3 \cdot f_3(x_n) - \ldots - X_n \cdot f_n(x_n) \geq -f_0(x_n) \]

\[t_n + X_1 \cdot f_1(x_n) + X_2 \cdot f_2(x_n) + X_3 \cdot f_3(x_n) + \ldots + X_n \cdot f_n(x_n) \geq f_0(x_n) \]

In the end, we have a linear program with one objective function and \(2m + 1\) constraints.

If I do this exhaustively, i.e. calculating the sum of differences for all possible combinations of the candidates, the problem space will be too big to compute. Assuming the population percentage is allocated wholly, the total possible number of combination among \(n\) candidates will be

\[
\frac{(100 + n - 1)!}{100!(n-1)!}.
\]

This leads the running time of solving the problem to \(O(n!)\), which is infeasible to compute even for moderate size \(n\). The number of sample points picked to calculate sum of differences also impacts the performance. Picking too many sample points requires too much computational power. However, if the number of sample points are too few, then the final answer may not be very accurate. How many points in a figure should I consider for calculating sum of differences? There is no single answer that fits all scenarios. Please consult NyquistShannon sampling theorem for sampling guidance [85].

I now have established the goal is to model the (target) experimental spectra based of the linear combinations of the candidates. Each candidate is a spectrum whose orientation distribution and electronic structure properties are known. For example, I could have a spectrum candidate in which the species is leucine with Gaussian distribution of \(\theta_0 = 30^\circ\) and \(\theta_\sigma = 5^\circ\). Choosing candidates is important. If I consider too many variables, the number of candidate could grow exponentially. For instance, consider one conformer of leucine with delta distribution on tilt and twist angle in \(1^\circ\) step. I will easily have \(180 \times 360 = 64800\) candidates. No matter how many candidates are there, the final population is
always 100%. For example, I have three candidates a, b, c with population A, B, C, then $A + B + C = 1$. One possible answer is $A = 0.6$, $B = 0.3$ and $C = 0.1$. This means 60% of a, 30% of b and 10% of c. It is absolutely possible for a candidate to have population zero in the final answer. As a matter of fact, since the number of candidates is generally big, most of the candidate’s population will be zero or nearly zero.

4.6 Differential weighting of candidate sampling points

For the mathematical expression shown in Fig. 4.6, it is assumed that the difference at all the data points are weighed equally. However, in some scenarios, some data points should be weighed more heavily than the other ones. For example, if there are features (peaks and valley) in a spectrum which one deems important, I can put more weight on the data points reside in those regions by introducing $a_1, a_2, ..., a_m$ in front of each elements in function 4.6. The expression now becomes Fig. 4.11. For example, if a_1 is 10 and a_2 is 1, this means data point a_1 is weighed 10 times more than a_2. When the weight factor $a_1, a_2, ..., a_m$ is 1 for all the data points, all the data points are weighed equally.

\[
\begin{align*}
 a_1 \cdot |f_0(x_1) - (X_1 \cdot f_1(x_1) + X_2 \cdot f_2(x_1) + X_3 \cdot f_3(x_1) + ... X_n \cdot f_n(x_1))| + \\
 a_2 \cdot |f_0(x_2) - (X_1 \cdot f_1(x_2) + X_2 \cdot f_2(x_2) + X_3 \cdot f_3(x_2) + ... X_n \cdot f_n(x_2))| + \\
 a_3 \cdot |f_0(x_3) - (X_1 \cdot f_1(x_3) + X_2 \cdot f_2(x_3) + X_3 \cdot f_3(x_3) + ... X_n \cdot f_n(x_3))| + \\
 \vdots \\
 a_m \cdot |f_0(x_m) - (X_1 \cdot f_1(x_m) + X_2 \cdot f_2(x_m) + X_3 \cdot f_3(x_m) + ... X_n \cdot f_n(x_m))| \tag{4.11}
\end{align*}
\]

In this thesis, I treated all the points in the spectra to be equal. However, this is an important technique to be noted. In the later of this chapter I will show that some of the spectra region is more sensitive to the orientational changes. Therefore, if we put more weights on the points reside in that region, more accurate results could be achieved.
4.7 GNU linear programming tool kit

The tool I choose to carry out Linear programming is called “GNU linear programming tool kit” (GLPK). It is written in ACNSI C and is intended for solving large scale linear programming. The format in which I represent our linear program is CPLEX format. Another possible format is MPS. GLPSOL, the GLPK command-line solver is capable of consuming this type of input format and carrying out linear programming optimization. For example, the linear programming problem in Func 4.1 can be represented as follows

Minimize

\[\text{objective: } T1 + T2 + T3 \]

Subject To

\[\text{constraint0: } T1 - x \geq -10 \]
\[\text{constraint1: } T1 + x \geq +10 \]
\[\text{constraint2: } T2 - y \geq -6 \]
\[\text{constraint3: } T2 + y \geq +6 \]
\[\text{constraint4: } T3 - z \geq +3 \]
\[\text{constraint5: } T3 + z \geq -3 \]

Bounds

- \(-\infty \leq x \leq +\infty\)
- \(-\infty \leq y \leq +\infty\)
- \(-\infty \leq z \leq +\infty\)

End

Bounds

- \(-\infty \leq x \leq +\infty\)
- \(-\infty \leq y \leq +\infty\)
- \(-\infty \leq z \leq +\infty\)
End

If the input is saved as test.lp, run the following command. The output is saved as test.out.

glp sol -o test.out --lp test.lp

It is necessary to specify the bounds of x, y, z to be between positive and negative infinity. The default lower bound is zero and the default upper bound is positive infinity. The default will remain in effect until the bound is explicitly changed. Here is the output:

Output:

Problem:
Rows: 6
Columns: 6
Non-zeros: 12
Status: OPTIMAL
Objective: objective = 0 (MINimum)

<table>
<thead>
<tr>
<th>No.</th>
<th>Row name</th>
<th>St</th>
<th>Activity</th>
<th>Lower bound</th>
<th>Upper bound</th>
<th>Marginal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>constraint0</td>
<td>NL</td>
<td>-10</td>
<td>-10</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>constraint1</td>
<td>NL</td>
<td>10</td>
<td>10</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>constraint2</td>
<td>NL</td>
<td>-6</td>
<td>-6</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>4</td>
<td>constraint3</td>
<td>NL</td>
<td>6</td>
<td>6</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>5</td>
<td>constraint4</td>
<td>NL</td>
<td>3</td>
<td>3</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>6</td>
<td>constraint5</td>
<td>NL</td>
<td>-3</td>
<td>-3</td>
<td></td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Column name</th>
<th>St</th>
<th>Activity</th>
<th>Lower bound</th>
<th>Upper bound</th>
<th>Marginal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T1</td>
<td>B</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>T2</td>
<td>B</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>T3</td>
<td>B</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>x</td>
<td>B</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>y</td>
<td>B</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>z</td>
<td>B</td>
<td>-3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Karush-Kuhn-Tucker optimality conditions:

KKT.PE: max.abs.err = 0.00e+00 on row 0
max.rel.err = 0.00e+00 on row 0
High quality

KKT.PB: max.abs.err = 0.00e+00 on row 0
max.rel.err = 0.00e+00 on row 0
High quality

KKT.DE: max.abs.err = 0.00e+00 on column 0
max.rel.err = 0.00e+00 on column 0
High quality

KKT.DB: max.abs.err = 0.00e+00 on row 0
The optimal solution to the linear programming is listed above. As one can see, T1, T2, and T3 are zeros. This is as a result of $x = 10$, $y = 6$ and $z = -3$. The last section is called Karush-Kuhn-Tucker optimality conditions [86, 87]. They are necessary and sufficient for the given solution to be a global optimum.

4.8 Methods and Implementation

4.8.1 Making SFG pickle files for linear programming

A SFG pickle file contains necessary information to create a SFG spectrum. `spectrum_orientation_distribution_analyticalMeshgrid.py` will generate such pickle file given necessary parameter from command line such as θ angle, ψ angle and the dipole property pickle file of the molecule being studied. Because the number of candidates is big and I am creating a SFG pickle file for each candidate, it is inefficient to create them one by one on a terminal. I use `make_theta_psi_analytical_pickles.sh` to generate those SFG pickle files. `make_theta_psi_analytical_pickles.sh` will in turn calls `spectrum_orientation_distribution_analyticalMeshgrid.py` with different θ and ψ value. Make sure `spectrum_orientation_distribution_analyticalMeshgrid.py` is up-to-date.

`make_theta_psi_analytical_pickles.sh` can create multiple pickles with different θ_0 and ψ_0 all with delta distribution. However, the script can be changed to create pickle file with gaussian distribution as well. There is another script `make_theta_analytical_pickles.sh` that does the same thing except for it’s θ only. Details for how to generate dipoleproperty pickle file, please refer to the previous document.
4.8.2 The experimental data file

All of the pickle files generated from the last step are the candidates. I want to know what combinations/percentage of each candidates will reproduce the experimental SFG spectrum. The experimental data file consists of four columns. The columns, from left to right, represents wavelength, ssp, sps and ppp. Use `getData.py` to print the data points to standard output (POINTS_PICKED is defined in `fresnelsMicro.py`.) This script will print to stdout the y values of the experimental spectrum at POINTS_PICKED and is an auxiliary script used by `makeLP.py`. You most likely won’t use this script directly.

```
python getData.py <dataFileName> <sps/ssp/ppp/all>
```

With all option, the script will print out all three polarization in the order of ssp, sps and ppp. so the number of values being printed out is POINTS_PICKED*3

4.8.3 Linear Programming Text Input

This is the final step before creating CPLEX LP input for GLPSOL. The linear programming text input contains the number of the candidates, the number of the sample points, the location of the candidate files, the y values of the data points in target and in each candidates. The first line of the linear programming text input are two numbers. The first number is the number of candidates. The second number is the number of data points being sampled and it should be the same as POINTS_PICKED which is defined in `fresnelsMicro.py`. The second line are the y values of the experimental spectrum at POINTS_PICKED. The first two lines are taken care of by the `makeLP.py`.

```
python makeLP.py <dataFileName> <number cadidates>
  <number points picked> <sps/sps/ppp/all>
```

The rest of the lines starts with the location of the pickle file of each candidate followed by the y values of the experimental spectrum at POINTS_PICKED. The rest of the lines
are filled by completeLP.sh which in turn calls makeLPinputFromPickel.py. Here is the example of calling completeLP.sh.

```
completeLP.sh lp.txt ssp
```

Note that the location of the pickle files and the pattern of the name of the pickle files are still hard-coded. Here is the example of the linear programming text input. There are 2 candidates in total and the number of sample points is 3.

```
2 3
1 2 3
candidates/candidate1.pkl 1 1 1
candidates/candidate2.pkl 3 2 1
```

4.8.4 Linear Programming Input and Output

`realProblemSolver.py` will parse the linear programming text input into CPLEX LP format.

```
realProblemSolver.py <linear programming input> <output file>
```

Linear Programming Calculation with GLPSOL

```
glpsol -o <output file> --lp <CPLEX LP input file>
```

In the output file, there lies the answer.

4.8.5 Plotting Result

As a result of the previous step, I now know what is the best, or at least optimal combination/percentage of the candidates to reconstruct the target spectrum. `plotResultByPopulation.sh` draws the spectrum based on the answer given the linear programming output file. It does this by parsing the linear programming output file and pass the information to `plotResultByPopulation.py`.
4.9 Results and Discussion

I have established the theory and implementation details in the previous chapters. The next step is to see if the linear programming approach indeed returns the optimal solution or a near optimal solution. It is not practical to use experimental spectra as target spectra because the orientation distribution is usually unknown. Instead, the target spectra is made up with known candidates and known orientation distribution. This allows us to evaluate the accuracy of the answer that linear programming returns.

4.9.1 Delta distributions

All of the candidates created in this section assume delta distribution. Delta distribution, in this context, means all of the population has the same orientation and has no deviation at all.

Different amino acids, θ_0 only. The target spectrum presented here is θ only with delta distribution. It consists of 34% alanine with $\theta_0 = 20^\circ$, 12% isoleucine with $\theta_0 = 30^\circ$ and 54% methionine with $\theta_0 = 40^\circ$. 2001 data points are picked evenly between 1000 cm$^{-1}$ and 3000 cm$^{-1}$, ssp only. With this setting, the linear programming solver is able to find right combination of among candidates to match the target spectrum. The candidates are alanine, isoleucine, methionine, lysine, valine and threonine with θ_0 from 10$^\circ$ to 180$^\circ$ in 10$^\circ$ step. Linear programming returns the right answer. The result is represented visually in Fig. 4.5. As one can see, the bottom panel is zero across all data point. This means that linear programming returns the perfect answer.

Different amino acids, θ_0 and ψ_0. The target spectrum presented here is both θ and ψ with delta distribution. It is consisted of 34% alanine with $\theta_0 = 30^\circ$ and $\psi_0 = 10^\circ$, 12% isoleucine with $\theta_0 = 50^\circ$ and $\psi_0 = 250^\circ$, 54% methionine with $\theta_0 = 110^\circ$ and $\psi_0 = 150^\circ$. 2001 data points are picked evenly between 1000$^{-1}$ and 3000 cm$^{-1}$, ssp only. With this setting, the linear programming solver is able to find right combination
Figure 4.5: The top panel shows the spectrum that linear programming returns. The bottom panel shows the difference between the result that linear programming returns and the actual spectrum.
among 972 candidates to match the target spectrum. The candidates are alanine, isoleucine, methionine, lysine, valine and threonine with θ_0 from 10° to 170° in 20° step and ψ_0 from 10° to 350° in 20° step. Again, linear programming returns the correct answer. The result is represented visually in Fig. 4.6.

Same amino acids, different degree in θ_0. The target spectrum presented here is θ only with delta distribution. It is consisted of 34% alanine with $\theta_0 = 20^\circ$, 12% alanine with $\theta_0 = 30^\circ$ and 54% alanine with $\theta_0 = 40^\circ$. The 2001 data points are picked evenly between 1000 cm$^{-1}$ and 3000 cm$^{-1}$, ssp only.

With this setting, the linear programming solver is not able to find right combination of
Figure 4.7: The top panel show the spectrum that linear programming returns. The bottom panel show the difference between the result that linear programming returns and the actual spectrum.

108 candidates to match the target spectrum. The candidates are 18 of alanine, isoleucine, methionine, lysine, valine and threonine each at various degree in θ. The returned answer from linear programming solver is 3.0% alanine with $\theta_0 = 10^\circ$, 82.3% alanine with $\theta_0 = 30^\circ$ and 14.6% alanine with $\theta_0 = 50^\circ$. Although the answer is incorrect, it is worth noting that the species is correct. They are all alanine. The result is represented visually in Fig. 4.7.

4.9.2 Gaussian distribution, theta only

Different amino acids, different degree in θ_0. The target spectrum presented here is theta only with delta distribution. It is consisted of 34% alanine with $\theta_0 = 40^\circ$ and $\theta_\sigma = 5^\circ$, 12% isoleucine with $\theta_0 = 130^\circ$ and $\theta_\sigma = 30^\circ$ and 54% methionine with $\theta = 170^\circ$ and $\theta_\sigma = 5^\circ$. 2001 data points are picked evenly between frequency 1000 and 3000 cm$^{-1}$, ssp only.
Figure 4.8: Linear programming solver does not return the optimal solution. The bottom panel show the difference at each data point. As one can see, there are some difference at some data points. This indicates the returned answer is not perfect.

With this setting, the linear programming solver is not able to find right combination of 180 candidates to match the target spectrum. The candidates are 30 of alanine, isoleucine, methionine, lysine, valine and threonine each at various degree in θ and various degree in θ_σ. The returned answer from linear programming solver is 10.2% alanine with $\theta_0 = 20^\circ$ and $\theta_\sigma = 5^\circ$, 25.5% alanine with $\theta_0 = 50^\circ$ and $\theta_\sigma = 5^\circ$, 7.0% isoleucine with $\theta_0 = 130^\circ$ and $\theta_\sigma = 5^\circ$, 0.8% isoleucine with $\theta_0 = 170^\circ$ and $\theta_\sigma = 5^\circ$, 1.4% methionine with $\theta = 60^\circ$ and $\theta_\sigma = 5^\circ$, 33.5% methionine with $\theta_0 = 180^\circ$ and $\theta_\sigma = 5^\circ$ and 21.6% methionine with $\theta_0 = 160^\circ$ and $\theta_\sigma = 5^\circ$. By grouping the percentages by species, I have alanine 35.8%, isoleucine 7.764% and methionine 56.4%. The population for each species is roughly correct. The result is represent visually in Fig. 4.8
4.9.3 Discussion

In the case of delta distribution, whether it’s theta only or both theta and psi, the linear programming solver is always able to get the correct solution when the target spectrum consisted of different molecules (i.e. no same molecules with different orientation). See Fig. 4.5 and Fig. 4.6. I then turned to see if the linear programming solver is able to return the optimal solution when the target spectrum consisted of candidates which are the same molecule but has different orientation. This is supposedly a harder problem because candidates that are the same molecule with different orientation are much more similar to each other than they are when the candidates are different molecules. Unfortunately, the linear programming solver did not return the optimal solution in the case of Fig. 4.7.

It is a success when the target spectrum consisted of different molecules (i.e. no same molecules with different orientation) in the case of delta distribution. The linear programming solver is able to find the optimal solution. Same condition for the target spectrum (i.e. no same molecules with different orientation) in the case of Gaussian distribution. This time the linear programming solver failed to return the optimal solution. However, the linear programming solver did return roughly the correct population by molecule.

Scaling the intensity. One of the theory behind the linear programming solver unable to find the optimal solution in some scenarios (e.g. Same amino acids, different degree in theta) is because each candidate’s intensity is too small. If I examine Fig. 4.5, Fig. 4.6, Fig. 4.7 and Fig. 4.8 carefully, it is not hard to see the intensities are in the neighborhood of 10^{-3} and 10^{-4}. The difference at each data point is even smaller, between 10^{-10} and 10^{-9}. Perhaps the diminutiveness of the spectrum for each candidate hinders the linear programming solver’s ability to give right answers. I attempted to prove this theory by increasing intensity of the target spectrums and candidates by various magnitude.

Looking at the results presented in Fig. 4.1, it is difficult to say that the accuracy
Table 4.1: This shows whether or not the linear programming solver returns more accurate results as the intensity magnitude increases. The true column shows what the correct answer should be. The other columns show the answer that linear programming solver returns at different intensity scaling.

<table>
<thead>
<tr>
<th>AA</th>
<th>true</th>
<th>scale 1</th>
<th>scale 10</th>
<th>scale 100</th>
<th>scale 1K</th>
<th>scale 10K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala</td>
<td>0.150</td>
<td>0.151</td>
<td>0.151</td>
<td>0.151</td>
<td>0.155</td>
<td>0.150</td>
</tr>
<tr>
<td>Ile</td>
<td>0.100</td>
<td>0.114</td>
<td>0.114</td>
<td>0.114</td>
<td>0.109</td>
<td>0.091</td>
</tr>
<tr>
<td>Thr</td>
<td>0.150</td>
<td>0.150</td>
<td>0.150</td>
<td>0.150</td>
<td>0.150</td>
<td>0.184</td>
</tr>
<tr>
<td>Met</td>
<td>0.330</td>
<td>0.273</td>
<td>0.273</td>
<td>0.273</td>
<td>0.274</td>
<td>0.305</td>
</tr>
<tr>
<td>Val</td>
<td>0.270</td>
<td>0.312</td>
<td>0.312</td>
<td>0.312</td>
<td>0.312</td>
<td>0.270</td>
</tr>
<tr>
<td>total</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

increases as the intensity magnitude increases. However, it is clearly that the linear programming solver returns different answers as the magnitude changes. Investigating further into the relation between intensity magnitude and linear programming would shed more lights on how to make linear programming solver return more accurate answers.

Narrow/Wide distributions. Linear programming works the best when the candidates are drastically different from one another. The results presented in section 4.9.2 suggests that linear programming could not differentiate candidates if they only differ in θ_σ. This could also mean that at some scenarios, candidates which differ only in θ_σ may look very similar. Here I investigate the difference between narrow($\theta_\sigma = 5^\circ$) and wide ($\theta_\sigma = 30^\circ$) distribution for the amino acids I study. The first amino acid I look at is the alanine. From Fig. 4.9, I can clearly see that the difference is nearly 0 for wave number 1000 cm$^{-1}$ to 1200 cm$^{-1}$and 1400 cm$^{-1}$ to 1800 cm$^{-1}$ for ppp, sps and ssp and all three polarizations. sps shows most difference between wave number 1200 cm$^{-1}$ to 1400 cm$^{-1}$ and $\theta_0 = 60^\circ$ to $\theta_0 = 90^\circ$. ppp and ssp shows most difference in the same wave number region, 1200 cm$^{-1}$ to 1400 cm$^{-1}$ but with $\theta_0 = 0^\circ$ to $\theta_0 = 30^\circ$. If I consider ppp, ssp and sps together (Fig. 4.9 bottom panel), the most difference region is still between wave number, 1200 cm$^{-1}$ to 1400 cm$^{-1}$ and $\theta_0 = 0^\circ$ to $\theta_0 = 30^\circ$. This is not surprising considering two of three polarization’s most difference region is there. Coming up is isoleucine. sps, sps and ppp all
show noticeable difference at wavenumbers 1060 cm$^{-1}$, 1210 cm$^{-1}$, 1340 cm$^{-1}$ between $\theta_0 = 60^\circ$ to $\theta_0 = 90^\circ$ and $\theta_0 = 0^\circ$ to $\theta_0 = 40^\circ$. Besides those wavenumbers, ssp also has two more bands at wave number 1280 cm$^{-1}$ and 1460 cm$^{-1}$. The last amino acid to examine is methionine. sps and ppp have very similar bad patterns. They all show significant differences at wave number 1080 cm$^{-1}$ and 1450 cm$^{-1}$ between $\theta_0 = 0^\circ$ to $\theta_0 = 35^\circ$ and $\theta_0 = 60^\circ$ to $\theta_0 = 90^\circ$. ssp shows great difference at the same wave numbers, but only between $\theta_0 = 0^\circ$ to $\theta_0 = 35^\circ$. The ssp spectrum also shows a band that is not seen in sps and ppp at wave number 1550 cm$^{-1}$ between $\theta_0 = 60^\circ$ to $\theta_0 = 90^\circ$. Having know the region where most difference happens helps us to decide which points to put more weights on. This could theoretically increases the accuracy of the result linear programming returns.

4.10 Conclusions

Doing an exhaustive search among the candidates to find the right combination that best matches the experimental spectrum is intuitive and accurate. However, the running time for the exhaustive approach is $O(n!)$, which is even worse than the exponential growth rate. Therefore, it doesn’t scale and prevents us from examining the spectrum for large size molecules. By formulating the problem as linear programming, the running time is now drastically reduced to pseudo $O(n)$ and I can therefore consider more parameters and examine spectrum of bigger molecules. To evaluate the accuracy of the linear programming approach, mock spectra for IR, Raman and SFG are made with known ration of the candidates and apply linear programming to see if the results is the same as the known ratio. In the case where the candidates are delta distribution, linear programming is able to return the right ratio when the mock spectra is constituted of different species even when considering both θ and ψ Euler angles. However, when the mock spectra is made out of candidates of same species, linear programming returns the right specie but with wrong orientation distribution. In the case of broad distribution, linear programming does not
Figure 4.9: The vertical axis is θ_0. The saturation of the color is representative of the difference in shape between $\theta_\sigma = 5^\circ$ and $\theta_\sigma = 30^\circ$ for that particular θ_0 of alanine. The first three panels represent the difference for ssp, sps and ppp respectively. The bottom panel shows the difference considering all three polarizations.
Figure 4.10: The vertical axis is θ_0. The saturation of the color is representative of the difference in shape between $\theta_\sigma = 5^\circ$ and $\theta_\sigma = 30^\circ$ for that particular θ_0 of Isoleucine. The first three panels represent the difference for ssp, sps and ppp respectively. The bottom panel shows the difference considering all three polarizations.
Figure 4.11: The vertical axis is θ_0. The saturation of the color is representative of the difference in shape between $\theta_\sigma = 5^\circ$ and $\theta_\sigma = 30^\circ$ for that particular θ_0 of methionine. The first three panels represent the difference for ssp, sps and ppp respectively. The bottom panel shows the difference considering all three polarizations.
return the perfect answer like it did in the case of delta distribution. Nonetheless, it is still worth noting that the linear programming solver does return roughly the right ratio in terms of species.
Chapter 5

Summary and future work

5.1 Summary

Extracting quantitative orientation information from the spectra often involves creating a model spectra from the candidates that closely resemble, if not identical, to the experimental spectra. However, creating a model spectra from the candidates in an exhaustive way is very time consuming and requires a lot of computational resources because the complexity is $O(n!)$ and the number of candidates is usually very large. The possible combination of them is even greater. Linear programming provides a way to solve this problem in pseudo polynomial time $O(n)$. Before one can take advantage of the power of linear programming, the problem needs to be formulated as one. Detailed steps from creating the linear programming input to using the GNU linear programming tool kit has been provided and discussed. Linear programming may not always return the correct answer as demonstrated by the mock experimental data test. However, it is almost always correct about the species that contribute to the spectrum and their population.

To explore linear programming’s ability in extracting quantitative orientation information from spectra, it requires development of lots of candidate spectra which involves property projection between different coordinate systems and evaluation of each spectroscopic technique’s sensibility to orientational changes. Infrared absorption (IR), Raman scattering and sum-frequency generation (SFG) are three viable spectroscopy techniques to determine structure at surfaces. In the case where adjacent bulk response needs to be excluded, SFG
would be an obvious choice because it is based on even orders of the electric susceptibility tensor and therefore does not produce a response from centrosymmetric environments. However, in other cases where bulk discrimination is not need, IR and Raman are the alternative technique that could carry even richer molecular orientation information than SFG in some scenario. It would be more robust to extract orientation information by combing all three techniques together.

5.2 Future work

Linear programming is proven to be great at solving large scale problem and therefore is a very promising technique to help extracting quantitative structure information from vibrational spectra. However, although linear programming has excellent running time $O(n)$ compared to the original exhaustive approach $O(n!)$, it doesn’t seem to always return the optimal solution. This is perhaps a limitation for linear programming. Nonetheless, an answer to what causes this limitation is still very much in need. As it may provide more insight as to how to formulate the input to increase the accuracy of the linear programming, even with the trade-off of computation time.

One of the important direction is to understand the pros and cons of each mainstream linear programming solver algorithms, such as simplex algorithm and interior point method. Some algorithms are better at dealing with certain problems than the other one. With more detailed understanding of the algorithms, it allows us to choose the algorithm that could potentially deliver better outcome, at least in theory. The other direction is to survey all of the linear programming solvers and programming frame works. In this thesis I choose GLPK, but there are a lot of other options both proprietary ones and open source ones, each with different strength and focus. Further down the road, once the technique of using linear programming to extract quantitative orientation information has matured, studying bigger molecules on a more complex surface will then be much more feasible.
References

