Ship Detection and Property Extraction in Radar Images on Hardware

by

Koray Kilinc
B.Sc., Bilkent University, 2013

A Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Applied Science

in the Department of Electrical and Computer Engineering

© Koray Kilinc, 2015
University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part, by photocopying or other means, without the permission of the author.
Ship Detection and Property Extraction in Radar Images on Hardware

by

Koray Kilinc
B.Sc., Bilkent University, 2013

Supervisory Committee

Dr. Fayez Gebali, Supervisor
(Department of Electrical and Computer Engineering)

Dr. Kin Fun Li, Co-Supervisor
(Department of Electrical and Computer Engineering)

Dr. Caterina Valeo, Outside Member
(Department of Mechanical Engineering)
Supervisory Committee

Dr. Fayez Gebali, Supervisor
(Department of Electrical and Computer Engineering)

Dr. Kin Fun Li, Co-Supervisor
(Department of Electrical and Computer Engineering)

Dr. Caterina Valeo, Outside Member
(Department of Mechanical Engineering)

ABSTRACT

In this work we review the problem of radar imaging satellites’ dependency on ground stations to transfer the image data. Since synthetic aperture radar images are very big, only ground stations are equipped to transfer that much data. This is a problem for maritime surveillance as it creates delay between the imaging and processing. We propose a new hardware algorithm that can be used by a satellite to detect ships and extract information about them, and since this information is smaller it can be relayed to reduce the delay significantly. For ship detection, an adaptive thresholding algorithm with exponential model is used. This algorithm was selected as it is the best fit for single-look radar images. For the property calculation, a data accumulating, single-look, connected component labeling algorithm is proposed. This algorithm accumulates data about the connected components, which is then used to calculate the properties of ships using image moments. The combined algorithm was then validated on Radarsat-2 images using Matlab for software and co-simulation for hardware.
Contents

Supervisory Committee ii
Abstract iii
Table of Contents iv
List of Tables vii
List of Figures viii
Acknowledgements x

1 Introduction 1
1.1 Overview ... 1
1.2 Motivation for this work ... 2
1.3 Contributions ... 3
1.4 Thesis Organization .. 3

2 Ship Detection and Property Calculation 5
2.1 Ship Detection .. 6
2.1.1 Ship Wake Analysis .. 7
2.1.2 Global Threshold and Morphology 9
2.1.3 Adaptive Threshold .. 10
2.2 Property Calculation .. 12
2.2.1 Connected Component Labeling 12
2.2.2 Image Moments ... 14
2.3 Chapter Summary .. 15

3 Proposed Algorithm for Detection and Characterization of Ships in SAR Images 16
3.1 Reason for considerations ... 16
3.2 Proposed Algorithm ... 17
 3.2.1 Thresholding .. 18
 3.2.2 Clustering and Data Accumulation 20
 3.2.3 Calculation of Ship Parameters 24
3.3 Chapter Summary ... 25

4 Implementation .. 26
 4.1 Software Implementation ... 26
 4.2 Hardware Implementation ... 26
 4.2.1 Thresholding .. 30
 4.2.2 Data Accumulation .. 31
 4.2.3 Property Calculation .. 33
 4.2.4 Storage .. 34
 4.3 Chapter Summary ... 34

5 Experimental Work ... 36
 5.1 Setup .. 36
 5.1.1 Experiment 1: Ship Detection on a low resolution SAR image using software .. 36
 5.1.2 Experiment 2: Ship Detection on a low resolution SAR image using hardware 37
 5.1.3 Experiment 3: Ship Detection on a high resolution SAR image using hardware 37
 5.2 Analysis .. 37
 5.2.1 Experiment 1 Analysis 37
 5.2.2 Experiment 2 Analysis 39
 5.2.3 Experiment 3 Analysis 40
 5.2.4 Timing and Power Results 41
 5.3 Chapter Summary ... 42

6 Conclusion, Contributions and Future Work 43
 6.1 Conclusion .. 43
 6.2 Contributions ... 44
 6.3 Future Work .. 44
 6.3.1 Detecting movement of ships 44
List of Tables

Table 2.1 RADARSAT-2 modes with their respective resolution and nominal scene sizes .. 5

Table 4.1 Port specifications of top level .. 29
Table 4.2 Port specifications of thresholding subsystem 31
Table 4.3 Port specifications of data accumulation subsystem 33
Table 4.4 Port specifications of property calculation subsystem 34
Table 4.5 Port specifications of storage subsystem 35

Table 5.1 Detection of pixel targets on RADARSAT-2 images 38
Table 5.2 Detection of targets on RADARSAT-2 images on software 39
Table 5.3 Utilization of the algorithm on hardware 39
Table 5.4 Detection of targets on RADARSAT-2 images on hardware 40
List of Figures

Figure 1.1 Moving of the SAR antenna .. 2
Figure 1.2 Illustration of the SAR process 2

Figure 2.1 Three types of reflection seen in radar imaging: (a) specular reflection, (b) diffused reflection, (c) corner reflection 7
Figure 2.2 SAR image of an ocean 7
Figure 2.3 Components of ship wakes [8] 8
Figure 2.4 Ship wake in a SAR image 9
Figure 2.5 Illustration of nested windows 10
Figure 2.6 First pass 3x3 window for multi-pass algorithm [21] 12
Figure 2.7 Mask: Pixels in the neighbourhood of X 13
Figure 2.8 Image ellipse with properties 15

Figure 3.1 Block diagram for the proposed algorithm 17
Figure 3.2 Frames of the SAR image 18
Figure 3.3 Nested windows: (a) 2D nested windows, (b) 1D nested windows 19
Figure 3.4 Thresholding: (a) Original image, (b) binary image after thresholding ... 20
Figure 3.5 Flowchart for labeling 21
Figure 3.6 Labeling: (a) Binary image, (b) after labeling each color represents a different label 22
Figure 3.7 Flowchart for merging 23
Figure 3.8 Merging: (a) Initial labeling where each line has different label, (b) after merging the adjacent lines get the same label 23

Figure 4.1 Flowchart for software implementation 27
Figure 4.2 Example block diagram using System Generator 28
Figure 4.3 Top level of hardware implementation 28
Figure 4.4 Connections of subsystems 29
Figure 4.5 Structure of thresholding algorithm 30
Figure 4.6 Thresholding subsystem . 31
Figure 4.7 Data accumulation subsystem 31
Figure 4.8 Property calculation subsystem 33
Figure 4.9 Storage subsystem . 35

Figure 5.1 A 250x250 SAR image with 25m resolution 38
Figure 5.2 Results of the algorithm: (a) is the original image, (b) is the ship
detected image, (c) is the original image with bounding boxes
around detected ships . 41
Figure 5.3 (a) Timing results, (b) Power Results 42
ACKNOWLEDGEMENTS

I would like to thank:

My mother Serap Kilinc and my father Ilhami Kilinc, for their prayers, love, patience, emotional support, motivation and assurance in difficult and frustrating moments and for their constant motivation.

My supervisors Dr. Fayez Gebali and Dr. Kin Fun Li, for all the mentoring and support which enabled me to achieve my academic and research objectives.
Chapter 1

Introduction

1.1 Overview

Imaging radars form image of a target area by sending electromagnetic pulses and registering the intensity of the reflected echo to determine the amount of scattering. The registered electromagnetic scattering is then mapped onto a two-dimensional plane, with points of a higher reflectivity getting assigned a brighter color, thus creating an image. Synthetic aperture radar (SAR) builds on the same idea but uses the motion of the SAR antenna over a target region to provide finer spatial resolution than is possible with conventional beam-scanning radars. The distance the SAR device travels over a target creates a large “synthetic” antenna aperture (the “size” of the antenna).

To create a SAR image, successive pulses of radio waves are transmitted to “illuminate” a target scene, and the echo of each pulse is received and recorded. The pulses are transmitted and the echoes received using a single beam-forming antenna. As shown in Figure 1.1, as the SAR device on board the aircraft or spacecraft moves, the antenna location relative to the target changes over time. Signal processing of the recorded radar echoes combines the recordings from the multiple antenna locations. This forms the synthetic antenna aperture, and allows it to create finer resolution image than what would be possible with the given physical antenna aperture [1].

SAR images have various applications such as: surface topography, storm monitoring, maritime surveillance. Figure 1.2 shows the steps of image creation with the added step of image parsing. Image parsing is used to extract information from the images depending on the application.
1.2 Motivation for this work

Due to the large data size of the radar images, the satellites need to transfer the image to nearby ground stations, which are equipped to handle large data transfers. However, since satellites follow a set orbit, they need to wait until they are close to a ground station before they can send the data, causing orbit delay. The other three causes of delay are signal processing delay, which is caused while forming the image; transmission delay, caused while transferring the data to the ground; and parsing delay, which is caused while extracting information from the images.

Maritime surveillance is the task of monitoring areas of water. Radar images are used to detect human activities, in particular ship detection, for interdiction of criminal activities and for ensuring legal use of waters. For quicker response, the delay between the acquisition of the image and detection of the threat should be minimized.

Since the major contributor to the response time is the orbit delay, this research focuses on reducing this delay.
One approach is to create more ground stations to cover more of the satellites orbit path. However this requires money, land and manpower. Another approach is to reduce the data size so that the satellite doesn’t depend on the ground station.

In radar images taken for maritime surveillance, the targets of interest, ships, only take up a small portion of the whole image where the ocean takes up the rest. Thus, another approach is to extract information about ships on the satellite to reduce the data size.

In this thesis, it is proposed that the image is processed directly on the satellite to detect and characterize ships. This approach decreases the size of the data to be transferred, and since the data is relatively small, the data can be relayed through ships and planes, thus reducing the delay and allowing for quicker response.

The implementation of the processing can be done in two ways: software and hardware. Both allow parallel computing but hardware enables an application specific design which allows for a faster, robust system with low power cost.

1.3 Contributions

The following contributions are made in this work:

- Development of an algorithm that can detect ships in radar images
- Development of an algorithm that can calculate the location, size and orientation properties of connected components (ships)
- Evaluation of the software and hardware implementations of the above algorithms

This work lowers the response time in maritime surveillance by reducing the data size to only the information about the detected ships and thus, eliminating the need for a ground station.

1.4 Thesis Organization

This section outlines the organization of the thesis and provides a brief summary of the main focus for each chapter.
Chapter 1 introduces the reader to the subject and the scope of the research. The motivation and the contributions of the research are discussed, which are the fundamental objectives of this thesis.

Chapter 2 describes the background and fundamentals of ship detection. A brief analysis of ship detection and property calculation methods are provided in order to aid the reader in understanding related previous work done in the area.

Chapter 3 describes our approach towards the extraction of ship properties from radar images. The chosen ship detection algorithm, adaptive thresholding, as well as the new proposed method for property extraction, are presented and their methodology explained.

Chapter 4 describes the software/hardware design and implementation. The system hardware subsystems are further explained.

Chapter 5 contains the experimental setup and analysis. The simulation results of software and hardware are obtained to verify that the algorithms work correctly and then the performance analysis of the hardware is conducted.

Chapter 6 has the concluding statements and a short description of the research work and what have been achieved through this work.
Chapter 2

Ship Detection and Property Calculation

Satellite imagery has always been a focus of interest for governments and businesses around the world. Even though earlier applications were limited and relied on optical imaging, with the advance in technology, radar imaging has become more popular as it provides more information about the target area and is not affected by the weather. Synthetic Aperture Radar (SAR) creates a synthetic aperture, which allows it to have high resolution images without the need of a long antenna. Jackson et al. [2] explains how SAR works in more detail. SAR uses the object reflectivity, quantized by radar cross section (RCS), to form images.

Depending on the operation mode, the resolution of the SAR images, as well as the covered area, changes. Table 2.1 shows the different beam modes of sample datasets from the Canadian radar imaging satellite RADARSAT-2, and their respective resolution and nominal scene sizes [3]. It should be noted that these are only the nominal values.

<table>
<thead>
<tr>
<th>Beam Mode</th>
<th>Nominal Resolution (m)</th>
<th>Nominal Scene Size (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spotlight</td>
<td>4.6 x 0.8</td>
<td>18 x 8</td>
</tr>
<tr>
<td>Ultra-Fine</td>
<td>4.6 x 2.8</td>
<td>20 x 20</td>
</tr>
<tr>
<td>Fine</td>
<td>10.4 x 7.7</td>
<td>50 x 50</td>
</tr>
<tr>
<td>Standard</td>
<td>26.8 x 24.7</td>
<td>100 x 100</td>
</tr>
<tr>
<td>Wide</td>
<td>40.0 x 19.2</td>
<td>150 x 150</td>
</tr>
</tbody>
</table>

Table 2.1: RADARSAT-2 modes with their respective resolution and nominal scene sizes
As the SAR imagery spans hundreds of kilometers, the data size becomes very big. This causes the satellite to only be able to downlink the data to a ground station, which can handle the transfer of a large volume of data in a short time. This means the data won’t be processed until the satellite passes over a ground station. This creates a delay between the time when the image is taken and the time when the image is processed.

SAR data has many applications such as:

- Conducting maritime surveillance (e.g., ship detection);
- Monitoring/tracking ice;
- Detecting oil spills;
- Monitoring floods, landslides, eruptions;
- Aiding forest firefighting.

In the ship detection part of maritime surveillance, the focus is on the ships instead of the ocean, which is only a small percentage of the whole image. Thus, if the information about the ships can be extracted from the image directly, it would be possible to relay the relatively small data without the use of ground stations which would reduce the delay and allow for a quicker response if necessary. The available ship detection and property calculation algorithms are given below.

2.1 Ship Detection

As SAR uses radar reflectivity to create images, analyzing the effects of different reflection types would give an insight on how the images are created. The three types of reflection seen in radar imaging are illustrated in Figure 2.1. These reflections are: specular, diffused and corner reflection. In specular reflection, the smooth surface acts like a mirror for the incident radar pulse. Most of the incident radar energy is reflected away according to the law of specular reflection, i.e., the angle of reflection is equal to the angle of incidence. Very little energy is scattered back to the radar sensor. However, in diffused reflection, the rough surface reflects the incident radar pulse in all directions. Part of the radar energy is scattered back to the radar sensor. The amount of energy backscattered depends on the properties of the target on the ground.
The third type of reflection is corner reflection. This reflection is a special case of specular reflection, where two smooth surfaces form a right angle facing the radar beam causing the beam to bounce twice off the same object. Most of the radar energy is reflected back to the radar sensor. Ships have flat surfaces and lots of right angled corners. This allows them to have high radar cross section (RCS), as opposed the ocean surface, which has a lower RCS [4]. Thus, as seen on Figure 2.2, ships appear as bright spots on the image with ocean having darker colors.

![Figure 2.2: SAR image of an ocean](image)

2.1.1 Ship Wake Analysis

Earlier works in the literature focus on ship detection using wake signatures. This is because the earlier systems used vertical polarization in both transmitters and
receivers resulting in large and distinct wake signatures [5, 6]. Figure 2.3 shows the different components of a ship wake. By processing the image to detect these components, ships can be detected. The wakes can also be further analyzed to extract more information such as the beam and speed of ships [7].

![Figure 2.3: Components of ship wakes](image)

Depending on the configuration of the SAR system, one or more of the following features, as shown in Figure 2.4, are visible. First, the wake is nearly always characterized by a dark trail which is caused by the turbulent vortex created by the ship. Turbulent vortex reduces the roughness of the sea which causes a lower RCS. The dark wake may be delimited by one or two bright lines. Sometimes also, another set of bright arms can be visible: they are located at the border of the Kelvin wave system and form a characteristic angle of about 39°.

Ship detection algorithms using wakes can be advantageous as the wakes are more noticeable, which can help if the ship is in a high clutter area, making the ship itself harder to detect [9]. However, it is found that ship backscatter is robust and independent of the sea state whereas wakes are often not visible at large incident angles and long wavelengths [10]. Because of these reasons, along with the fact that
stationary and slow moving ships don’t create wakes, the focus of the later literature moved on to the detection of the ship target itself. Vachon et al. [11] show that by using horizontal polarization, it is possible to create a better ship-sea contrast making the ships stand out more in the image.

2.1.2 Global Threshold and Morphology

Since ships appear as bright pixels while the pixels belonging to the ocean are dark, the first thing comes to mind is finding a threshold value to separate targets from the background. Lin et al.[12] use an arbitrary global threshold for the entire image, but use a post-processing of morphological closing. Morphological closing works by first dilating all the detections which fills small holes inside ship pixel clusters and connects neighbor ship pixels that belong to the same ship. Dilation operation is followed by erosion, which eliminates isolated detections. More information about how the morphological operations work can be found in [13]. Even though this approach can reduce false detections, it is prone to error if false detections are clustered together where the dilation operation would fill the gaps between false detections, which would prevent the closing operation from eliminating these false detections. More so, if a ship is represented with only one pixel, the closing operation would end up eliminating the detection causing a missed detection.
2.1.3 Adaptive Threshold

Factors like change in incidence angle and different sea states such as height of waves in the ocean can change the RCS of the ocean as well as of ships. This makes using a single threshold for the whole image unfeasible and therefore, creates a need for localized thresholds. One approach is to divide the image into smaller areas and create individual thresholds for each area. The other approach is to have a moving window that decides if the pixel is a valid target according to its surroundings for each pixel. Since the threshold for each pixel depends on the statistics of that individual pixel’s surroundings, these types of algorithms are called adaptive threshold algorithms. Wackerman et al. [14] use 3 nested windows as the base of their algorithm: background, buffer and signal. In this algorithm the statistics of the signal window is compared to the statistics of its surroundings, namely the background window. However, depending on the ship size and current area in question, the background window can be contaminated by the pixels belonging to the ship. Thus, a buffer window is introduced to avoid this contamination.

![Figure 2.5: Illustration of nested windows](image)

One of the aims of the adaptive threshold algorithms is to keep the probability of false alarm rate (PFA) constant. This means keeping the percentage of background pixels above the threshold, which are the false alarms, constant. These detectors are called constant false alarm rate detectors (CFAR) [15]. As required false alarm rates are typically very low, checking the histogram for these detections would require a very large number of samples. Thus, the literature focuses on the parametric modeling of the background distribution and uses the samples in the background window to
estimate the model parameters.

Given the required probability of false alarm rate (PFA) and the parametric probability density function of the background \(f(x) \), the threshold \(T \) can be found by

\[
PFA = \int_T^\infty f(x)dx \quad (2.1)
\]

The thresholding of the tested pixel \(x_t \) is established simply by comparing it to the threshold \(T \). If the target pixel has a higher value than the threshold, it is detection. That means

\[
\int_{x_t}^\infty f(x)dx < PFA \quad (2.2)
\]

Since \(x_t \) and PFA is already known, all that is required is to find a good model for the background. One approach is using Gaussian distribution to model the background. With the Gaussian distribution the detection test becomes

\[
x_t > \mu_b + \sigma_b t \quad (2.3)
\]

where \(x_t \) is the tested pixel value, \(\mu_b \) is the background mean, \(\sigma_b \) is the background standard deviation, and \(t \) is a design parameter, which controls the PFA according to

\[
PFA = \frac{1}{2} - \frac{1}{2}erf \left(\frac{t}{\sqrt{2}} \right) \quad (2.4)
\]

Another model to consider is the negative exponential, which is used for single-look SAR images. These images are created by using only one look compared to multi-look images which create an image by taking several looks at a target in a single radar sweep and averaging them [16].

By fitting the exponential model into equation 2.2, the resulting detector becomes

\[
x_t > \mu_b t \quad (2.5)
\]

where \(x_t \) is the tested pixel value, \(\mu_b \) is the background mean, and \(t \) is a design parameter. Friedman et al. [17] suggest that to maximize ship detection while minimizing false detections, \(t \) should be selected between 5.5-6.0 for high resolution images and 5.0-5.5 for low resolution images.

There are other models to consider. Wang et al. [18] proposes an alpha-stable
distribution, which is widely used for impulsive or spiky signal processing, to describe the background sea clutter. Another distribution to consider is the k-distribution, which is prominently used in multi-look radar images [19, 20].

2.2 Property Calculation

2.2.1 Connected Component Labeling

Multi-pass Algorithm

Depending on the resolution of the radar and the ship size, ship may appear as multiple pixels in the SAR image. Thus, after thresholding, these detections should be handled as one ship instead of individual ships. Connected component labeling algorithms can be used to label pixels belonging to each ship.

Lee et al. [21] suggest a multi-pass algorithm which goes over the image twice to label pixels correctly. In the first pass, a 3x3 window, shown in Figure 2.6, is used. First scan is used to label the foreground pixels while creating an equivalence table to be used in the second scan. When a foreground pixel is found, its neighbours are checked. If only one of its upper and left neighbors has a label or both neighbours have the same label, then that label is copied to the current pixel. However if both upper and left neighbours have different labels, then both labels are entered into an equivalence table as equivalent labels and the upper label is copied to the current pixel. If the neighbours don’t have labels, a new label is assigned to the current pixel.

![Figure 2.6: First pass 3x3 window for multi-pass algorithm [21]](image)

Before the second scan, the equivalence table is rearranged into sequential order to find the lowest label value for each equivalence set. In the second scan, each label is swapped for the lowest label value of the set it belongs. The end result is an image with each connected component colored another color. However, multi-pass
algorithms are not well suited for streamed images since they require buffering of intermediate images between passes.

Single-pass Algorithm

Single pass connected component algorithms on hardware focus on the analysis of the connected components in single pass by gathering data on the regions as they are built. This avoids the need for buffering the image, making it ideally suited for processing streamed images on an FPGA.

![Figure 2.7: Mask: Pixels in the neighbourhood of X](image)

Johnston et al. [22] proposes a single pass algorithm to calculate the area of connected components. This algorithm have the following steps:

1. The neighbourhood mask, shown in Figure 2.7, provides the labels of the four pixels adjacent to the current pixel. A row buffer caches the labels from the previous row. These must be looked up in the merger table to correct the label for any mergers since the pixel was cached.

2. Label selection assigns the label for the current pixel based on the labels of its neighbours:
 - background pixels are labelled 0;
 - if all neighbouring labels are background a new label is assigned;
 - if only a single label appears among the labelled neighbours, that is selected;
 - if the neighbours have two distinct labels, those regions are merged, and the smaller of the two labels is retained and selected.

3. The merger table is updated when two objects are merged. The larger label is modified to point to the smaller label used to represent the region.
4. The data required to calculate the area of each connected component is accumulated. When regions are merged, the corresponding accumulated data are also merged.

The disadvantage of single pass algorithms is that the information about the individual pixels belonging to the object is lost. Therefore, it is not possible to create an image with labeled components.

2.2.2 Image Moments

Teague [23] shows that properties of 2D images with elliptical features can be calculated by using image moments up to second-order. He defines $f(x, y)$ as the image plane irradiance distribution and calculates the zero and first-order moments

$$
\mu_{00} = \int \int f(x, y) dxdy \quad (2.6)
$$

$$
\mu_{10} = \int \int x f(x, y) dxdy \quad (2.7)
$$

$$
\mu_{01} = \int \int y f(x, y) dxdy \quad (2.8)
$$

The centroids are calculated according to the following equations:

$$
\bar{x} = \frac{\mu_{10}}{\mu_{00}}, \quad \bar{y} = \frac{\mu_{01}}{\mu_{00}} \quad (2.9)
$$

Figure 2.8 shows an ellipse with length L, width W and tilt angle ϕ. To calculate these properties, Teague uses second order moments

$$
\mu_{20} = \int \int x^2 f(x, y) dxdy \quad (2.10)
$$

$$
\mu_{11} = \int \int xy f(x, y) dxdy \quad (2.11)
$$

$$
\mu_{02} = \int \int y^2 f(x, y) dxdy \quad (2.12)
$$

The size properties are calculated by
Figure 2.8: Image ellipse with properties

\[
L = 2.83 \sqrt{\mu_{20} + \mu_{02} + \sqrt{(\mu_{20} - \mu_{02})^2 + 4\mu_{11}^2}},
\]

(2.13)

\[
W = 2.83 \sqrt{\mu_{20} + \mu_{02} - \sqrt{(\mu_{20} - \mu_{02})^2 + 4\mu_{11}^2}}
\]

(2.14)

for length and width, respectively and

\[
\phi = \frac{1}{2} \tan^{-1} \left(\frac{2\mu_{11}}{\mu_{20} - \mu_{02}} \right)
\]

(2.15)

for tilt angle \(\phi \).

2.3 Chapter Summary

Ship detection algorithms in literature are all implemented with the assumption that the image is present and accessible for the entirety of the algorithm. However, since these are software algorithms, they tend to run slower than their hardware counterparts, making them hard to implement to be synchronous with the satellite. On the other hand, even though there are theories on property calculation and even software implementations, there is a lack of property calculation algorithms using hardware. Thus, in the following chapter, a ship detection and property calculation algorithm is proposed that can be implemented to be synchronous with the satellite.
Chapter 3

Proposed Algorithm for Detection and Characterization of Ships in SAR Images

3.1 Reason for considerations

Before extracting the properties of the ships, the proposed algorithm should first detect the ships. According to the statistical tests concluded on distributions, the exponential distribution was found as the best fit for single-look images while the k-distribution was found as the best fit for multi-look images [24]. Therefore, since this research uses single-look images for the hardware implementation of the ship detection, an adaptive thresholding algorithm with exponential model is selected.

Single pass algorithms focus on extracting features during labeling instead of creating a labeled image. For Johnston et al. [22], as the feature of interest was the area of a labeled region, they were accumulating the number of pixels that belong to the region and using it as the area. By building upon the same idea, if the required values are accumulated, it would be possible to extract more properties from the regions. Since the calculations by [23] rely only on the moments, by accumulating the required values for the moments for each ship, it is possible to extract the location, size and orientation information from the SAR image using hardware. This approach would allow for a streamlined approach which can be synchronized with the SAR system.

Since no ship detection algorithm is perfect, a discrimination step is also suggested to reduce the false alarms. One way of discrimination is human supervision. Although
in [25] this approach is reported to be working well, there are also more automated options. Liu et al. [26] use morphological operations to cluster neighboring pixels and eliminate isolated detected pixels. Another approach is to cluster pixels that belong to the same ship to compute some measurement such as area, length, width, etc. In [27, 28], the size of the detected ship is used to discriminate detections. Since the calculation of the properties is already a task of this thesis, discrimination using the size of the detected ship is selected to be implemented.

3.2 Proposed Algorithm

As also shown in Figure 3.1, the proposed algorithm consists of the following major steps:

1. Thresholding
2. Clustering and Data Accumulation
3. Calculation of Ship Parameters

The thresholding step applies a ship detection algorithm to the input image to identify ships. The clustering and data accumulation step checks connectivity of detected pixels and if two or more pixels are connected, treats them as a single ship as opposed to multiple ships. This step also extracts some intermediate data from the detected pixels to be used in the property calculation step. Lastly, property calculation step computes the location, size and orientation information for each detected ship and does discrimination depending on the image size. The details of each step are described in following sections.

![Figure 3.1: Block diagram for the proposed algorithm](image-url)
3.2.1 Thresholding

The thresholding part of the algorithm identifies pixels, which have values higher than some predetermined threshold value and thus, identify ships. In the image formation of SAR images on hardware, a frame of image is created once enough data is collected and stored in a RAM while the data for the next frame is being collected. This creates a time restraint for the hardware implementations whereas software applications do not have this issue. Figure 3.2 shows how the frames are created. As it can be observed while the satellite is moving, the antenna of the satellite scans the ground using a single beam. Once enough data is recorded on the azimuth direction an image frame is created. After the literature review, adaptive thresholding algorithm with exponential model was selected for the hardware implementation as it is best suited for single-look images. This algorithm checks the average power level of the pixels around the pixel under test (PUT), and if PUT is higher than the average scaled by a design parameter, that pixel is registered as detection. However, since ships are usually more than a single pixel in a SAR image, the immediately adjacent pixels are omitted while calculating the average to ensure the pixels used to calculate the average only belong to the ocean. This calculation is done for every pixel of the image to detect ships. As briefly explained in Section 2.1, this method implements three nested windows called background, buffer and signal window. Signal window is the pixel being tested; buffer window is the buffer zone and background window where the average is calculated.

![Figure 3.2: Frames of the SAR image](image)

Figure 3.2 shows the traditional nested windows. Generally, the windows are made of boxes. For example, 1x1 window for signal, 5x5 window for buffer and 7x7
for background window. The size of the buffer window is selected according to the biggest expected ship in the image, to create an adequate buffer zone. Background window, on the other hand is selected according to the model chosen to represent the ocean, where more complex models require a higher number of samples, meaning a bigger window. For each tested pixel, the number of pixels read to calculate the average is the background window size subtracted by the buffer window size. In the example case, this number is but can change depending on window sizes. This means to threshold each pixel in the entire image, the memory needs to be accessed 25 times the number of pixels in the image. However, in this thesis, instead of a 2D window, a 1D window is proposed as illustrated in Figure 3.3(b). This stops the need for accessing the image multiple times per each pixel, and thus the image can be streamed with full speed, making the ship detection algorithm real time.

Figure 3.3: Nested windows: (a) 2D nested windows, (b) 1D nested windows

For each frame, the following steps are used for ship detection:

1. For each pixel calculate the mean of the background window μ_b.
2. Calculate threshold as $T\mu_b$.
3. Compare the current pixel value with the threshold.
4. Return detection flag if the tested pixel value is higher than the threshold.

In these steps, μ_b is the mean of the background window and T is the design parameter. By using the guideline of choosing design parameters by [17] and testing different values, the design parameter T was selected as 5. Figure 3.4 shows the input and output of the thresholding step. Figure 3.4(a) shows a ship in an ocean, 3.4(b)
shows the binary output of detections in image format. The white pixels show the
detections as binary 1 while the black pixels show the pixels failed the thresholding
test as binary 0.

![Figure 3.4: Thresholding: (a) Original image, (b) binary image after thresholding](image)

3.2.2 Clustering and Data Accumulation

Depending on the resolution of the satellite and the ship size, a ship can be re-
presented by more than a single pixel in the image. This creates a need for an al-
gorithm that can connect neighboring pixels to correctly represent each individual
ship by pixels belonging to it. On the other hand, calculating the parameters of
ships require some intermediate values to calculate image moments per ship such as
\[\sum x, \sum x^2, \sum y, \sum y^2, \sum xy \] and \(N \). \(x \) and \(y \) are the range and azimuth coordinates of
an individual pixel that belongs to the ship while \(N \) is the number of pixels belonging
to the same ship. By integrating a data accumulation step that runs in parallel with
clustering, the need for an additional scan of the image was omitted. The clustering
and data accumulation step is divided into two sub-steps: labeling and merging. La-
beling connects vertically connected pixels while merging connects the labeled vertical
pixels, horizontally. The algorithm for labeling consists of the following steps and is
also pictorially described in Figure 3.5:

1. Look at each individual detection (C).

2. Look at the pixel above current pixel (U).
3. If U is not a detected pixel, increase the label number by 1 and label the current pixel with the new label number.

4. If U is a detection, add pixel data, \((x, x^2, y, y^2, xy)\), where \(x\) and \(y\) are row and column of \(C\) to the current data stored at that label; increase number of pixels at that label (\(N\)) by one.

5. The data stored at each label will be used to compute the size and orientation of each ship in the latter section of the algorithm.

![Flowchart for labeling](image)

Figure 3.5: Flowchart for labeling

The end result of the labeling portion of the algorithm is all the pixels in the same column are combined together under one label and their pixel data \((x, x^2, y, y^2, xy)\) is added together and stored. The result is shown in Figure 3.6 with different colors identifying different labels. The labeling step completes when the entire image is processed.
Figure 3.6: Labeling: (a) Binary image, (b) after labeling each color represents a different label

The next step is to merge all the individual identified columns into one label, identifying one ship. The following are the steps of the merging algorithm and is also pictorially described in Figure 3.7:

1. Initialize a merger table where each address refers to a label, i.e., value at position 0 is 0, value at position 1 is 1 and so on.

2. For each pixel (C) look to the left (L) to find an adjacent column which will be part of the same ship.

3. Lookup the label of the adjacent column.

4. Update label of the current column with the label of the adjacent column.

5. Add together pixel information \((x,x^2,y,y^2,xy)\) of all pixels with the same label.

After the initialization on step 1, steps 2-4 are done in parallel with the labeling step. The final step 5, is processed after the entire image is processed and only goes over the label list. The result of the merging is shown in Figure 3.8. The labeled image before merging is shown in 3.8(a) where only vertically connected pixels belong to the same label. After merging, all connected pixels are labeled as the same as shown in 3.8(b) where only two colors can be seen denoting two labels.
Figure 3.7: Flowchart for merging

Figure 3.8: Merging: (a) Initial labeling where each line has different label, (b) after merging the adjacent lines get the same label
3.2.3 Calculation of Ship Parameters

Using the pixel data \((x, x^2, y, y^2, xy)\) and number of pixels \(N\), per label stored previously in clustering and the data accumulation step of the algorithm, ship properties are computed using the equations from [23]. These equations were converted to discrete form to be applied on the data.

The location of the ship is calculated by averaging the pixel locations of each pixel belonging to the same cluster. As \(\sum x\) is already accumulated and \(N\) is known. The location is calculated as:

\[
x_c = \frac{\sum x}{N} \quad (3.1)
\]

\[
y_c = \frac{\sum y}{N} \quad (3.2)
\]

The calculation of the size and orientation of the ships uses more complex approach involving the image moments. First the second order moments, \(u_{20}, u_{02}, u_{11}\), are calculated.

\[
u_{xx} = \frac{\sum x^2}{N} - x_c^2 \quad (3.3)
\]

\[
u_{yy} = \frac{\sum y^2}{N} - y_c^2 \quad (3.4)
\]

\[
u_{xy} = x_c y_c - \frac{\sum xy}{N} \quad (3.5)
\]

During the calculation of the size and orientation, the following is a common element and therefore, is calculated once to speed up the process.

\[
C = \sqrt{(u_{xx} - u_{yy})^2 + 4u_{xy}^2} \quad (3.6)
\]

The length \(L\), width \(W\) and orientation \(O\) is calculated using the following formula

\[
L = 2.83 \sqrt{u_{xx} + u_{yy} + c} \quad (3.7)
\]

\[
W = 2.83 \sqrt{u_{xx} + u_{yy} - c} \quad (3.8)
\]

\[
O = \begin{cases} \arctan \left(\frac{u_{xx} - u_{yy} + C}{2u_{xy}} \right) & \text{if } u_{yy} > u_{xx} \\ \arctan \left(\frac{2u_{xy}}{u_{xx} - u_{yy} + C} \right) & \text{else} \end{cases} \quad (3.9)
\]
After the calculations for each ship the following are acquired:

- Location (center) of the ship expressed in x,y coordinates;
- Length and width of the ship expressed in number of pixels;
- Orientation of the ship expressed in degrees in range (-90,90).

Before outputting, the ship size is compared to a minimum size parameter to discriminate unwanted detections. For high resolution images, this value was selected as 1 pixel to eliminate single pixel speckle noise. However, since in low resolution images a ship can be a single pixel, this value was selected as 0.

The location of the ship is the most important information for maritime surveillance which shows where the ship is, as well as if the ship is somewhere prohibited. Size of the ship can be used to identify the ship type or even the ship itself as different ship types have different length-width ratios. On the other hand, orientation of the ship can be used to determine the path of the ship. This information can be cross checked by an automatic information system (AIS), to catch disinformation from vessels.

3.3 Chapter Summary

In this chapter the proposed algorithm is introduced and explained. This algorithm models the ocean using an exponential model and dynamically creates a threshold for each pixel from the statistics of its surrounding. While connected pixels are labeled to detect ships, data is accumulated. This data is then used to calculate properties for each ship. In the next chapter, the software and hardware implementation of the proposed algorithm is discussed.
Chapter 4

Implementation

4.1 Software Implementation

The design was first implemented in Matlab to both validate the algorithm and to set a reference. The code is provided in A.1 and a flowchart is provided in Figure 4.1. This code first goes over each pixel and uses the ship detection algorithm to determine if the tested pixel is a detection. If so, according to the labeling algorithm, its values are extracted and stored in that label location. Meanwhile, a merger table is updated according to the neighboring pixel. After the image is processed, values for neighboring labels are merged using the merger table. The values were used to calculate the properties for each ship which is returned at the end of the process.

4.2 Hardware Implementation

For the implementation of the design on hardware, Xilinx’s System Generator tool [29] was used. System Generator is a tool that integrates with Matlab’s block diagramming tool Simulink, and provides its own library of blocks. The tool allows for simulation through Matlab as well as co-simulation with communication between software in Matlab and hardware on a FPGA. System Generator is also used to create netlists from the block diagram to be used in Xilinx Integrated Synthesis Environment (ISE). This approach was used for its ease of use and for its graphical representation. It also shows the capabilities and potential of the tool. Figure 4.2 shows an example block diagram model created by System Generator. In this model, the blue blocks are provided by the tool’s library. These blocks are connected via lines which trans-
Figure 4.1: Flowchart for software implementation

Transfer the data towards the arrow direction. This model is only a subsystem of the whole design. The white rounded rectangles with numbers represent the ports of the subsystem which connect to other subsystems.

Figure 4.3 shows the top level hardware implementation with 5 input and 7 output ports. The details of the ports are presented in Table 4.1. Even though most ports are self-explanatory, some ports need further explanation. Data is the vertical raster scan of the SAR image which sends a new pixel each clock cycle. Since the algorithm is streamlined, the results of processes are outputted as soon as they are calculated. Validity signals show that the signals they represent are indeed the result of the process instead of old values. For example, Valid is a Boolean signal, which is enabled
only when sending the image pixel values and disabled when the value on the Data signal is no longer presenting an image signal. This allows the system to only process pixels that belong to the SAR image. The term validity is used throughout this section. On the other hand, Read, empty and full signals are connected to the storage unit of the system, which is a FIFO. Read signal is enabled externally, when the satellite can relay the information. Empty signal indicates if there are detected ships waiting in the FIFO, and full signal indicates if the FIFO in the storage unit is full.

The functionality of the system is as follows:

- Compute a Threshold by computing statistics of input image
- Identify detected pixels based on the Threshold
- Cluster detected pixels based on their location and surrounding detections
- Accumulate the required data for computation of properties
- Compute properties location, size and orientation - of each detected cluster
- Store computed properties

<table>
<thead>
<tr>
<th>Signal</th>
<th>Input/Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>Input</td>
<td>Complete SAR image</td>
</tr>
<tr>
<td>Valid</td>
<td>Input</td>
<td>Validity of SAR image input</td>
</tr>
<tr>
<td>ColumnSize</td>
<td>Input</td>
<td>SAR image column size</td>
</tr>
<tr>
<td>RowSize</td>
<td>Input</td>
<td>SAR image row size</td>
</tr>
<tr>
<td>Read</td>
<td>Input</td>
<td>Signal to start reading the calculated ship properties</td>
</tr>
<tr>
<td>Xc</td>
<td>Output</td>
<td>Location of detected ship (X component)</td>
</tr>
<tr>
<td>Yc</td>
<td>Output</td>
<td>Location of detected ship (Y component)</td>
</tr>
<tr>
<td>Length</td>
<td>Output</td>
<td>Length of detected ship (in pixels)</td>
</tr>
<tr>
<td>Width</td>
<td>Output</td>
<td>Width of detected ship (in pixels)</td>
</tr>
<tr>
<td>Orientation</td>
<td>Output</td>
<td>Orientation of detected ship (in radians)</td>
</tr>
<tr>
<td>empty</td>
<td>Output</td>
<td>Flag to indicate the storage subsystem is empty</td>
</tr>
<tr>
<td>full</td>
<td>Output</td>
<td>Flag to indicate the storage subsystem is full</td>
</tr>
</tbody>
</table>

Table 4.1: Port specifications of top level

The top level design is separated into 4 subsystems: thresholding, data accumulation, property calculation and storage. Figure 4.4 shows how these subsystems connect.

Figure 4.4: Connections of subsystems
4.2.1 Thresholding

Figure 4.6 illustrates the thresholding subsystem, which uses the adaptive threshold algorithm to apply a binary threshold to each pixel of the image. For the hardware implementation of the ship detection algorithm, a variation of [30] was used. Figure 4.5 shows the structure of the thresholding algorithm. X is an array of image pixels in the background window, Y is the tested pixel value, T is the design parameter for the algorithm and e(Y) is the result of the algorithm. The value of the tested pixel is compared to the average of stored background values scaled by the design parameter and a Boolean signal is returned. As shown in Table 4.2, this subsystem takes in the SAR image pixel value and the valid signal and outputs a Boolean signal of 1 or 0 depending on the detection with a valid signal of its own.

![Figure 4.5: Structure of thresholding algorithm](image)

The functionality of this subsystem is as follows:

1. Get the new pixel value (X_{N+1} when testing Y+1), adding it to the background window and dropping the pixel that is at the end of the background window, e.g., X_1 when testing Y+1.

2. Compute threshold as the average of background pixels scaled by the design parameter T. T is selected as 5 for reasons explained in Section 3.2.1.

3. Compare the pixel value in the target window to the threshold.

4. Output 1 if pixel value is higher than threshold, else output 0.

5. Return to step 1.
Figure 4.6: Thresholding subsystem

<table>
<thead>
<tr>
<th>Signal</th>
<th>Input/Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>Input</td>
<td>Complete SAR image</td>
</tr>
<tr>
<td>Valid</td>
<td>Input</td>
<td>Validity of SAR image input</td>
</tr>
<tr>
<td>Thresholded</td>
<td>Output</td>
<td>Thresholded Image</td>
</tr>
<tr>
<td>CoorValid</td>
<td>Output</td>
<td>Validity of the data in Threshsolved port</td>
</tr>
</tbody>
</table>

Table 4.2: Port specifications of thresholding subsystem

4.2.2 Data Accumulation

Figure 4.7 illustrates the data accumulation subsystem, which extracts the required data for property calculation from the detected pixels and accumulates the data for each cluster of pixels connected to each other. As shown in Table 4.3, the data accumulation subsystem takes in the results of ship detection from thresholding subsystem and image size. It outputs the accumulated data after labeling and clustering the detections.

Figure 4.7: Data accumulation subsystem
The labeling part of this subsystem works as follows:

1. Get the thresholded image pixel value from the thresholding algorithm;

2. If it is 0 go to step 1. If it is 1 check the value of the pixel above;

3. If the value above is also 1, add the x, x^2, y, y^2, xy data to the label of the previous pixel, else increase the label number and add the data to the new label;

4. Check the pixel to the left;

5. If the pixel on the left is also a detection (has value 1), associate the label of that pixel with label of the current pixel in the merger table;

6. If all pixels of the image is processed move on to clustering part, else go to step 1.

A merger table is a table which is initialized with each address referring to the same value as the address: Address 1 has data 1, address 2 has data 2 and address N has data N, etc. If two labels are horizontally connected, for example label 1 and label 2, the data on the addresses 1 and 2 are checked and the smaller data is written on the addresses. This results in both address 1 and address 2 having the same data 1, and thus creates the association. If label 2 and label 3 are also connected, the data in addresses 2 and 3 are checked. Since the data in address 2 is 1 which is smaller than the data in address 3, address 3 also gets assigned data 1.

The creation of the merger table in the labeling step leads into clustering. Clustering part of this subsystem works as follows:

1. For each label, check if the merger table shows an association with another label, meaning the merger table has another label value in the current label address.

2. If there is an association, accumulate the data in those labels into one and store in RAM.

After clustering is finished, the pixels of the ships are connected as a single label, which has the accumulated data (x, x^2, y, y^2, xy, N) at that label address. The accumulated data is outputted one label at a time. Also an enable signal en is outputted, which controls the storage subsystem. This signal is enabled when clustering is finished, the subsystem starts outputting the accumulated data.
<table>
<thead>
<tr>
<th>Signal</th>
<th>Input/Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thresholded</td>
<td>Input</td>
<td>Thresholded Image</td>
</tr>
<tr>
<td>CoorValid</td>
<td>Input</td>
<td>Validity of the data in Threshsolved port</td>
</tr>
<tr>
<td>ColumnSize</td>
<td>Input</td>
<td>SAR image column size</td>
</tr>
<tr>
<td>RowSize</td>
<td>Input</td>
<td>SAR image row size</td>
</tr>
<tr>
<td>xysumF</td>
<td>Output</td>
<td>$\sum xy$ for each ship</td>
</tr>
<tr>
<td>xsumF</td>
<td>Output</td>
<td>$\sum x$ for each ship</td>
</tr>
<tr>
<td>x2sumF</td>
<td>Output</td>
<td>$\sum x^2$ for each ship</td>
</tr>
<tr>
<td>ysumF</td>
<td>Output</td>
<td>$\sum y$ for each ship</td>
</tr>
<tr>
<td>y2sumF</td>
<td>Output</td>
<td>Accumulated $\sum x$ for each ship</td>
</tr>
<tr>
<td>NF</td>
<td>Output</td>
<td>Number of pixels belonging to the same ship</td>
</tr>
<tr>
<td>en</td>
<td>Output</td>
<td>Write enable for storage subsystem</td>
</tr>
</tbody>
</table>

Table 4.3: Port specifications of data accumulation subsystem

4.2.3 Property Calculation

Figure 4.8 illustrates the property calculation subsystem, which is the final step of the ship detection and property extraction algorithm. This subsystem is responsible for calculating all properties of a detected ship location, size and orientation and sending that information to the Storage subsystem which stores the information on FIFOs.

Since the data accumulation subsystem provides the accumulated x, x^2, y, y^2 and xy data, the image moments can be used to calculate the ship properties as shown in Section 3.2.3. As shown in Table 4.4, the property calculation subsystem takes the output of the data accumulation subsystem and outputs calculated ship properties.
<table>
<thead>
<tr>
<th>Signal</th>
<th>Input/Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xyzumF</td>
<td>Input</td>
<td>$\sum xy$ for each ship</td>
</tr>
<tr>
<td>xsumF</td>
<td>Input</td>
<td>$\sum x$ for each ship</td>
</tr>
<tr>
<td>x2sumF</td>
<td>Input</td>
<td>$\sum x^2$ for each ship</td>
</tr>
<tr>
<td>ysumF</td>
<td>Input</td>
<td>$\sum y$ for each ship</td>
</tr>
<tr>
<td>y2sumF</td>
<td>Input</td>
<td>Accumulated $\sum x$ for each ship</td>
</tr>
<tr>
<td>NF</td>
<td>Input</td>
<td>Number of pixels belonging to the same ship</td>
</tr>
<tr>
<td>Xc</td>
<td>Output</td>
<td>Location of detected ship (X component) to store</td>
</tr>
<tr>
<td>Yc</td>
<td>Output</td>
<td>Location of detected ship (Y component) to store</td>
</tr>
<tr>
<td>Length</td>
<td>Output</td>
<td>Length of detected ship (in pixels) to store</td>
</tr>
<tr>
<td>Width</td>
<td>Output</td>
<td>Width of detected ship (in pixels) to store</td>
</tr>
<tr>
<td>Orientation</td>
<td>Output</td>
<td>Orientation of detected ship (in radians) to store</td>
</tr>
</tbody>
</table>

Table 4.4: Port specifications of property calculation subsystem

4.2.4 Storage

Figure 4.9 illustrates the storage subsystem which stores all properties for each detected ship in FIFO fashion on block rams. These properties can be read when needed by using the read signal. This subsystem also provides full signal to indicate the storage is full and empty signal to indicate the storage is empty, which is outputted for external use. The size of the storage can be changed as a design parameter. In this implementation the FIFOs have a depth of 512. The signals of this subsystem are shown in Table 4.4. Other than the data, read, empty and full signals which were previously explained the enable signal en needs further explaining. This signal controls the write enable of the FIFOs which was provided by the data accumulation subsystem. As there is the property calculation subsystem between data accumulation and storage subsystem, this creates a delay between the creation of the signal and when its used. This problem was solved by adding latches to create delays which synchronize the subsystems. Furthermore, before storing, the size of the ship is checked to discriminate ships smaller than a desired size. In this implementation, a detected ship has a length less than 2, FIFO is not enabled, causing the ship to be ignored. This discrimination step was added to reduce the speckle noise.

4.3 Chapter Summary

In this chapter, the implementations of the algorithm were discussed. The software implementation of the algorithm was coded in Matlab and acted as a reference for
<table>
<thead>
<tr>
<th>Signal</th>
<th>Input/Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_c</td>
<td>Input</td>
<td>Location of detected ship (X component) to store</td>
</tr>
<tr>
<td>Y_c</td>
<td>Input</td>
<td>Location of detected ship (Y component) to store</td>
</tr>
<tr>
<td>Length</td>
<td>Input</td>
<td>Length of detected ship (in pixels) to store</td>
</tr>
<tr>
<td>Width</td>
<td>Input</td>
<td>Width of detected ship (in pixels) to store</td>
</tr>
<tr>
<td>Orientation</td>
<td>Input</td>
<td>Orientation of detected ship (in radians) to store</td>
</tr>
<tr>
<td>empty</td>
<td>Input</td>
<td>Write enable for storage subsystem</td>
</tr>
<tr>
<td>full</td>
<td>Input</td>
<td>Signal to start reading the calculated ship properties</td>
</tr>
<tr>
<td>XcO</td>
<td>Output</td>
<td>Location of stored ship (X component)</td>
</tr>
<tr>
<td>YcO</td>
<td>Output</td>
<td>Location of stored ship (Y component)</td>
</tr>
<tr>
<td>LengthO</td>
<td>Output</td>
<td>Length of stored ship (in pixels)</td>
</tr>
<tr>
<td>WidthO</td>
<td>Output</td>
<td>Width of stored ship (in pixels)</td>
</tr>
<tr>
<td>OrientationO</td>
<td>Output</td>
<td>Orientation of stored ship (in radians)</td>
</tr>
<tr>
<td>empty</td>
<td>Output</td>
<td>Flag to indicate the storage is empty</td>
</tr>
<tr>
<td>full</td>
<td>Output</td>
<td>Flag to indicate the storage is full</td>
</tr>
</tbody>
</table>

Figure 4.9: Storage subsystem

<table>
<thead>
<tr>
<th>Signal</th>
<th>Input/Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_c</td>
<td>Input</td>
<td>Location of detected ship (X component) to store</td>
</tr>
<tr>
<td>Y_c</td>
<td>Input</td>
<td>Location of detected ship (Y component) to store</td>
</tr>
<tr>
<td>Length</td>
<td>Input</td>
<td>Length of detected ship (in pixels) to store</td>
</tr>
<tr>
<td>Width</td>
<td>Input</td>
<td>Width of detected ship (in pixels) to store</td>
</tr>
<tr>
<td>Orientation</td>
<td>Input</td>
<td>Orientation of detected ship (in radians) to store</td>
</tr>
<tr>
<td>en</td>
<td>Input</td>
<td>Write enable for storage subsystem</td>
</tr>
<tr>
<td>Read</td>
<td>Input</td>
<td>Signal to start reading the calculated ship properties</td>
</tr>
<tr>
<td>XcO</td>
<td>Output</td>
<td>Location of stored ship (X component)</td>
</tr>
<tr>
<td>YcO</td>
<td>Output</td>
<td>Location of stored ship (Y component)</td>
</tr>
<tr>
<td>LengthO</td>
<td>Output</td>
<td>Length of stored ship (in pixels)</td>
</tr>
<tr>
<td>WidthO</td>
<td>Output</td>
<td>Width of stored ship (in pixels)</td>
</tr>
<tr>
<td>OrientationO</td>
<td>Output</td>
<td>Orientation of stored ship (in radians)</td>
</tr>
<tr>
<td>empty</td>
<td>Output</td>
<td>Flag to indicate the storage is empty</td>
</tr>
<tr>
<td>full</td>
<td>Output</td>
<td>Flag to indicate the storage is full</td>
</tr>
</tbody>
</table>

Table 4.5: Port specifications of storage subsystem

the hardware implementation. The hardware implementation on the other hand, was designed and simulated using System Generator with the addition of the storage subsystem. The hardware block diagram was then converted into a hardware description language and programmed in to a xc7k325t board for final test. For both implementations, single-look RADARSAT-2 test images were used. The following chapter shows the results and evaluation of the algorithm.
Chapter 5

Experimental Work

5.1 Setup

To test the proposed algorithm three experiments were conducted:

1. Ship Detection on a standard resolution SAR image using software.
2. Ship Detection on a standard resolution SAR image using hardware.
3. Ship Detection on a high resolution SAR image using hardware.

5.1.1 Experiment 1: Ship Detection on a low resolution SAR image using software

The objective of this experiment is to evaluate the accuracy of the ship detection step of the proposed algorithm. For this purpose, 36 horizontally polarized single-look RADARSAT-2 test images were used. However, since these images were proprietary materials of Macdonald Dettwiler and Associates (MDA), only the results of the algorithm will be shown. These images have 40 meter resolution and their size is roughly 15000x20000 pixels. These test images were used with the software design in Matlab using a computer with an Intel I7 processor, 8GB ram and 64 bit operating system. In this experiment, background window was selected as 21 and the buffer window was selected as 11. The threshold design parameter was selected as 5. Since these were low resolution images, the minimum size parameters were selected as 1 to reduce single pixel speckle noise.
5.1.2 Experiment 2: Ship Detection on a low resolution SAR image using hardware

The objective of this experiment is to evaluate the hardware implementation of the ship detection algorithm. The images from the first experiment were used to compare the accuracy to the software implementation. Each image was flattened into a 1-D array column after column. The array was then turned into timeseries format. Timeseries format consists of two arrays. One is the data array and the other is the time array. The \(n_{th} \) element of the data array is sent to the port at time referred by \(n_{th} \) element of the data array. In this case, each element of the data array was assigned to another clock cycle. Then another timeseries, \textit{valid}, was created, where the elements of the data array are 1 at the same clock cycles as when the image data is present, and 0 on other clock cycles. The information about the size of the image was also provided in \textit{RowSize} and \textit{ColumnSize} ports. A constant 1 was given to the \textit{Read} port so the parameters were outputted as soon as they are available.

5.1.3 Experiment 3: Ship Detection on a high resolution SAR image using hardware

In this experiment, a 250x250 SAR image, shown in Figure 5.1, is used. This image has 25m resolution and contains 12 ships. The objective of this experiment was to see if the algorithm can correctly detect the ships and calculate the properties of the ships. Since the resolution is higher in this experiment, the minimum ship size parameters were increased to 2 to further reduce the speckle noise.

5.2 Analysis

5.2.1 Experiment 1 Analysis

Before moving on to the detection of ships, the detection of the individual pixels that passed the thresholding was analyzed. The test data consists of targets we assume to create certain number of pixels passing the test depending on their shape. This is used as the ground truth to check the accuracy of the thresholding algorithm. Table 5.1 shows the total true positive, false positive and false negative results of the experiment.
To test the accuracy of the algorithm F_1 score is calculated. The F_1 score can be interpreted as a weighted average of the precision and recall, where an F_1 score reaches its best value at 1 and worst at 0. For the detection of the individual pixels, the F_1 score was 0.91. This value is calculated as:

$$F_1 = \frac{2TP}{2TP + FP + FN} \quad (5.1)$$

The main cause for false positives was the speckle noise. Another cause for the false positive was the pixels on the edge of ships that were detected as part of them. As it can be seen in Table 5.1, there were also false negatives. One kind of false negative occurs on ships on low incidence angles as on angles lower than 55°, the ocean clutter is high and thus, the contrast is low [31]. Since the implemented ship detection looks at how high the reflection is relative to the background, the low contrast results in false negatives. Furthermore, on bigger angles, ships are less likely to create corner reflections. The other kind of false negatives occur if the selected buffer window is smaller than the biggest ship. This causes the ship pixels to appear in the background window which in turn increases the threshold causing the tested pixel to fail the detection test. The result of this problem is ships with undetected centers.

However, as seen on Table 5.2, both the false negatives and the false positives that
are connected to ships had little to no effect on the detection on total number of ships. This is due to the ground truth was based on the target shape. However, the only thing that had a major effect on the final outcome was the false positives. Even though most of the speckle noise was removed by discriminating single pixel detections, false detections consisting of 2 or more connected pixels passed the discrimination. These detections were interpreted as targets thus lowering the accuracy of the ship detection. Therefore we think discrimination step is more important in this context. For the detection of targets, the F_1 score was 0.98.

<table>
<thead>
<tr>
<th>True Positive</th>
<th>False Positive</th>
<th>False Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>324</td>
<td>13</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 5.2: Detection of targets on RADARSAT-2 images on software

The software implementation takes 37 seconds on average to process images.

5.2.2 Experiment 2 Analysis

Table 5.3 shows the resource utilization of the hardware implementation. In this table flip-flop, look-up-table, dsp48 slices (a math oriented hardware component) and block ram resources usage are given. The dsp48 was used in math intensive blocks such as square root and to reduce the use of look-up-tables which could take up considerable space on hardware. BRAM on the other hand was used as memory to store both intermediate label values and as FIFOs. Since the calculation of the properties is computationally intensive and is done in streamline fashion, the relatively high utilization was expected. This is due to the tradeoff between performance and utilization where in this case performance was chosen to be the main focus.

<table>
<thead>
<tr>
<th></th>
<th>Used</th>
<th>Available</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF</td>
<td>10304</td>
<td>407600</td>
<td>2.5%</td>
</tr>
<tr>
<td>LUT</td>
<td>8247</td>
<td>203800</td>
<td>4%</td>
</tr>
<tr>
<td>DSP48</td>
<td>48</td>
<td>840</td>
<td>5.7%</td>
</tr>
<tr>
<td>BRAM</td>
<td>30</td>
<td>445</td>
<td>6.7%</td>
</tr>
</tbody>
</table>

Table 5.3: Utilization of the algorithm on hardware

The total on chip power was 0.402 W when working on a 65 MHz clock frequency, which is the master clock frequency of RADARSAT-2 [3]. The hardware system took an average of 6 seconds to process each image.
The target detection results are given in Table 5.4. Since both hardware and software implementations result in the same number of detections, this means the exact ship detection algorithm was successfully implemented in hardware.

<table>
<thead>
<tr>
<th>True Positive</th>
<th>False Positive</th>
<th>False Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>324</td>
<td>13</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 5.4: Detection of targets on RADARSAT-2 images on hardware

The main differences in the results between the software and hardware implementations were the size and orientation property of the ships. This was expected since Matlab uses double precision whereas in hardware implementation, much smaller precision was used. However these differences were less than 2%. This error can be further reduced by increasing the precision of the signals on the hardware at the cost of more resource utilization, which increases the power consumption. However, at this point we believe the error is tolerable.

5.2.3 Experiment 3 Analysis

Figure 5.2 below shows green colored rectangles on images which are created using the properties of ships after their calculation. These rectangles represent detected ships with same location, size and orientation information. As it can be seen, these rectangles tightly bound the ships in the image.

All twelve ships were successfully detected and their properties were calculated. Increasing the minimum ship size parameters helped with the discrimination and no false positives occurred.
Figure 5.2: Results of the algorithm: (a) is the original image, (b) is the ship detected image, (c) is the original image with bounding boxes around detected ships

5.2.4 Timing and Power Results

The timing result is given in Figure 5.3(a). As it can be seen, the worst negative slack is a positive number meaning every operation finishes on time. The power results are given in Figure 5.3(b).
5.3 Chapter Summary

The results show that the algorithm is working correctly on hardware with the same clock frequency of the satellite. Thus, it can be implemented to extract the information about detected ships without the need of ground stations. Furthermore, since the property calculation algorithm works on any thresholded image, the property calculation algorithm can be used with other ship detection algorithms.
Chapter 6
Conclusion, Contributions and Future Work

6.1 Conclusion

Ship detection on SAR images is done using the fact that ships return more of the radar waves due to corner reflection, making them appear brighter. An adaptive threshold uses the information of the pixels surrounding the tested pixels to create a threshold which is then compared to the value of the pixel to determine if the pixel is detection. Even though there are methods that use the waves of the ships this method requires a specific type of polarization and is not reliable. Since the data is streamlined, it was decided to accumulate all the data required to compute the properties of the ships. After the data is accumulated, image moments are used to calculate the properties.

The hardware implementation was able to detect the same pixels as the software implementation with small differences in the properties. The proposed algorithm can take the data in a stream and produce immediate information without the need of a ground station allowing a quicker response to the results if needed. Furthermore, since the property calculation algorithm works on any thresholded image, this algorithm can be used with other ship detection algorithms.
6.2 Contributions

In this thesis, the following contributions were made to the problem of dependency of satellites to ground stations to transfer the image data:

- A hardware solution to this problem was suggested to reduce the size of data to only the information needed about ships on the image.

- An existing ship detection method was implemented on hardware and an algorithm that can calculate the location, size and orientation properties of the detected ships was developed.

- This algorithm combined with ship detection was implemented on hardware and evaluated.

6.3 Future Work

This work provided a hardware ship detection and property extraction algorithm for single-look radar images. The work can be extended further in the following directions:

1. Detecting movement of ships
2. Multi-look images
3. Land masking

6.3.1 Detecting movement of ships

Although the proposed algorithm can extract the location, size and orientation properties of ships, it cannot detect the speed. More work in the area is required to extract further properties of ships. More information can be used to better classify the ships and assess the danger.

6.3.2 Multi-look images

Unlike single-look images, which are created by the coverage in mind, multi-look images are created by focusing on the same area during the imaging session. Multiple
images are taken from different antenna locations and averaged to reduced speckle noise [32]. However, this changes the model of the ocean.

For multi-look SAR images, k-distribution was found as the best fit to model the ocean behavior [24]. By using multi-look images and k-distribution model, false detections can be reduced.

6.3.3 Land Masking

If the targeted area to be imaged includes land, ship detection algorithms can make false detections because of the return from the land. Thus, the next step to improve the algorithm is to add an initial step of land masking.

Robertson et al. [33] use pre-existing geographic maps to mask the land by registering the satellite orbit parameters to layover the map on the image. However, it is noted that registration errors up to 2 kilometers can occur. To overcome this problem they use a buffer zone of 2 kilometers along the coastline. To avoid the problem of registration errors, Ferrara et al. [34] suggest a 5 step method for automatic detection of coastlines:

1. Filter to remove speckle.
2. Apply an edge operator.
3. Dilate edge map with a mean filter.
4. Threshold the edge map histogram.
5. Apply a contour following algorithm.

A minimum land area constraint is also used to avoid using ships as masks. In the future, a land masking algorithm can be added as the preprocessing step, allowing the algorithm to work on close to shores and islands.
References

Appendix A

Appendix

A.1 Matlab Code for Software Implementation

function ShipDetection(sar_image)

Ship=[];
% %%
% Thresholding
% %%

% Finding the sizes of the inputted Image
Xlength=size(sar_image,1);
Ylength=size(sar_image,2);

% Size of the Window
Back_win=21
Buff_win=11;

% Size threshold for discrimination
minLength=0;
minWidth=0;

% Turn image into 1-D array
Imm=sar_image(:);

% Thresholding
Thresholded=zeros(1,length(Imm));
for i=1:length(Imm)
 if ((i-(Back_win-1)/2) > 1)
 Ls=sum(Imm(i-(Back_win-1)/2: i-(Buff_win-1)/2));
 else if ((i-(Buff-1)/2) > 1)
 Ls=sum(Imm(1: i-(Buff_win-1)/2));
 else
 Ls=0;
 end

 if ((i+(Back_win-1)/2) < length(Imm))
 Hs=sum(Imm(i+(Buff_win-1)/2: i+(Back_win-1)/2));
 else if ((i+(Buff-1)/2) < length(Imm))
 Hs=sum(Imm(i+(Buff_win-1)/2):length(Imm));
 else
 Hs=0;
 end

 Threshold= (Ls+Hs)/(Back_win-Buff_Win);
 Thresholded(i)=Imm(i)>Threshold;
end

% %%
% Labeling
% %%
% Variable Initialization

Imm=sar_image(:);
Label=0; % Label #
RamSize=100000; % Number of Maximum Label Locations
RAM=linspace(1,RamSize,RamSize);
Labeled=zeros(1,Xlength*Ylength);
xsum=zeros(1,RamSize); % Sum of X
x2sum=zeros(1,RamSize); % Sum of X^2
ysum=zeros(1,RamSize); % Sum of Y
y2sum=zeros(1,RamSize); % Sum of Y^2
xysum=zeros(1,RamSize); % Sum of X*Y
N=zeros(1,RamSize); % Number of Pixels
Finalxsum=zeros(1,RamSize); % Final Sum of X
Finalx2sum=zeros(1,RamSize); % Final Sum of X^2
Finalysum=zeros(1,RamSize); % Final Sum of Y
Finaly2sum=zeros(1,RamSize); % Final Sum of Y^2
Finalxysum=zeros(1,RamSize); % Final Sum of X*Y
FinalN=zeros(1,RamSize); % Final Number of Pixels

% Labeling and Calculation of Sums
xx=0;
yy=1;
for i=1:length(Imm)
 xx=xx+1;
 if xx==Xlength+1
 yy=yy+1;
 xx=1;
 end
 if(i-1>0)
 Cur=Thresholded(i);
 Prev=Thresholded(i-1);
 else
 Cur=Thresholded(i);
 Prev=0;
 end
 if(Cur==1)
 % If the current pixel is the start of a new label, increase label number
 if(Prev==0||xx==1)
 Label=Label+1;
 end
 Labeled(i)=Label;
 xsum(Label)=xsum(Label)+xx; % Updating of Sum of X
 x2sum(Label)=x2sum(Label)+xx^2; % Updating of Sum of X^2
 ysum(Label)=ysum(Label)+yy; % Updating of Sum of Y
 y2sum(Label)=y2sum(Label)+yy^2; % Updating of Sum of Y^2
 xysum(Label)=xysum(Label)+xx*yy; % Updating of Sum of X*Y
 N(Label)=N(Label)+1; % Updating of Number of Pixels
% Connect the Current Pixel with the one on the left if applicable
if (i-Xlength>0 && Label>0 && Labeled(i-Xlength)>0)
 if RAM(Label)<RAM(Labeled(i-Xlength))
 RAM(Labeled(i-Xlength))=RAM(Label);
 else
 RAM(Label)=RAM(Labeled(i-Xlength));
 end
else
 Labeled(i)=0;
end
end

dbstop if err
% %%%
% Clustering
% %%%
% Merging and Calculation of Final Sums

for i=1:RamSize
% Updating of Final Sum of X
Finalxsum(RAM(i))=Finalxsum(RAM(i))+xsum(i);
% Updating of Final Sum of X^2
Finalx2sum(RAM(i))=Finalx2sum(RAM(i))+x2sum(i);
% Updating of Final Sum of Y
Finalysum(RAM(i))=Finalysum(RAM(i))+ysum(i);
% Updating of Final Sum of Y^2
Finaly2sum(RAM(i))=Finaly2sum(RAM(i))+y2sum(i);
% Updating of Final Sum of X*Y
Finalxysum(RAM(i))=Finalxysum(RAM(i))+xysum(i);
% Updating of Final Number of Pixels
FinalN(RAM(i))=FinalN(RAM(i))+N(i);
end

dbstop if err
% %%%
% Calculation of location, size and orientation for Ship Reports
% %%%
% Calculation of Ship Locations

Xc=Finalxsum./FinalN;
Yc=Finalysum./FinalN;
% Calculation of Length, Width and Orientation

Orientation=zeros(1,length(Xc));
Length=zeros(1,length(Xc));
Width=zeros(1,length(Xc));

for i=1:RamSize
 % Calculation of Necessary Parameters for Property Calculation
 uxx=Finalx2sum(i)/FinalN(i)-Xc(i)^2+1/12;
 uyy=Finaly2sum(i)/FinalN(i)-Yc(i)^2+1/12;
 uxy=Xc(i)*Yc(i)-Finalxysum(i)/FinalN(i);
 common=sqrt((uxx - uyy)^2 + 4*uxy^2);

 Length(i)=abs(2.45*sqrt(uxx + uyy + common)); % Calculation of Length
 Width(i)=abs(2.45*sqrt(uxx + uyy - common)); % Calculation of Width

 % Calculation of Orientation
 if (uyy > uxx)
 num = uyy - uxx + sqrt((uyy - uxx)^2 + 4*uxy^2);
 den = 2*uxy;
 else
 num = 2*uxy;
 den = uxx - uyy + sqrt((uxx - uyy)^2 + 4*uxy^2);
 end
 if (num == 0) && (den == 0)
 Orientation(i) = 0;
 else
 Orientation(i) = (180/pi) * atan(num/den); % Calculation of Orientation
 end
end
A=(pi/180)*Orientation;

% Plotting of the Bounding Boxes on the Original Image
% And Creation of the Ship Report

if flag_debug==1
 figure
 imshow(sar_image)
 title(['Image ' num2str(1) ' Discrimination and Data Acquisition'])
end
% Discrimination

No=0;
for i=1:RamSize
if(Length(i)>minLength && Width(i)>minWidth)
if flag_debug==1
 % Upper-Left Corner of Bounding Box
 UL=[Yc(i)+(Width(i)/2)*cos(A(i))-(Length(i)/2)*sin(A(i)),Xc(i)+...
 (Length(i)/2)*cos(A(i))+(Width(i)/2)*sin(A(i))];
 % Upper-Right Corner of Bounding Box
 UR=[Yc(i)-(Width(i)/2)*cos(A(i))-(Length(i)/2)*sin(A(i)),Xc(i)+...
 (Length(i)/2)*cos(A(i))-(Width(i)/2)*sin(A(i))];
 % Bottom-Left Corner of Bounding Box
 BL=[Yc(i)+(Width(i)/2)*cos(A(i))+(Length(i)/2)*sin(A(i)),Xc(i)-...
 (Length(i)/2)*cos(A(i))+(Width(i)/2)*sin(A(i))];
 % Bottom-Right Corner of Bounding Box
 BR=[Yc(i)-(Width(i)/2)*cos(A(i))+(Length(i)/2)*sin(A(i)),Xc(i)-...
 (Length(i)/2)*cos(A(i))-(Width(i)/2)*sin(A(i))];
 line([UL(1),UR(1),BR(1),BL(1),UL(1)],
 [UL(2),UR(2),BR(2),BL(2),UL(2)],...
 'Color','g','linewidth',2.5)
 % Drawing of the Bounding Box
 hold on
 % Putting a Marker to the Center of Ships
 plot(Yc(i),Xc(i),'g*','MarkerSize',2.5,'linewidth',1);
end
No=No+1;
% Saving Location Information to the Ship Report Structure
Ship(No).Location=[Xc(i) Yc(i)];
% Saving Size Information to the Ship Report Structure
Ship(No).Size=[Length(i) Width(i)];
% Saving Orientation Information to the Ship Report Structure
Ship(No).Orientation=(Orientation(i));
end
end

% Plotting of the Ship Reports
if No>0
if flag_debug==1
figure
%suptitle(['Image ' num2str(1) ' Image Chips']);
end
for i=1:No
% Calculation of Upper Boundary
Up=round(Ship(i).Location(1)-(Ship(i).Size(1))/2-3);
% Calculation of Lower Boundary
Down=round(Ship(i).Location(1)+(Ship(i).Size(1))/2+3);
% Calculation of Left Boundary
Left=round(Ship(i).Location(2)-(Ship(i).Size(1))/2-3);
% Calculation of Right Boundary
Right=round(Ship(i).Location(2)+(Ship(i).Size(1))/2+3);
if(Up<1)
 Up=1;
end
if(Down>Xlength)
 Down=Xlength;
end
if(Left<1)
 Left=1;
end
if(Right>Ylength)
 Right=Ylength;
end

% Scaling of Image Color

mn=double(min(min(sar_image(Up:Down,Left:Right))));
mx=double(max(max(sar_image(Up:Down,Left:Right))));
Ship(i).ImChip=uint8(double(sar_image(Up:Down,Left:Right)-mn)*...
(255/(mx-mn)));
if flag_debug==1
 subplot(ceil(No/10),10,i)
 imshow(uint8(double(sar_image(Up:Down,Left:Right)-mn)*...
(255/(mx-mn))));
 xlabel(['Location: ' num2str(Ship(i).Location(1),3) ', ' num2str(Ship(i).Location(2),3)];
 ylabel(['Size: ' num2str(Ship(i).Size(1),3) ', ' num2str(Ship(i).Size(2),3)];
 ylabel(['Orientation: ' num2str(Ship(i).Orientation,3)]);
title(['Ship ' num2str(i)])
end
end
end